
Solving Poisson Equations using Neural Walk-on-Spheres

Hong Chul Nam * 1 Julius Berner * 2 Anima Anandkumar 2

Abstract
We propose Neural Walk-on-Spheres (NWoS), a
novel neural PDE solver for the efficient solution
of high-dimensional Poisson equations. Lever-
aging stochastic representations and Walk-on-
Spheres methods, we develop novel losses for
neural networks based on the recursive solution
of Poisson equations on spheres inside the do-
main. The resulting method is highly paralleliz-
able and does not require spatial gradients for
the loss. We provide a comprehensive compari-
son against competing methods based on PINNs,
the Deep Ritz method, and (backward) stochas-
tic differential equations. In several challenging,
high-dimensional numerical examples, we demon-
strate the superiority of NWoS in accuracy, speed,
and computational costs. Compared to commonly
used PINNs, our approach can reduce memory
usage and errors by orders of magnitude. Fur-
thermore, we apply NWoS to problems in PDE-
constrained optimization and molecular dynamics
to show its efficiency in practical applications.

1. Introduction
Partial Differential Equations (PDE) are foundational to our
modern scientific understanding in a wide range of domains.
While decades of research have been devoted to this topic,
numerical methods to solve PDEs remain expensive for
many PDEs. In recent years, deep learning has helped
to accelerate the solution of PDEs (Azzizadenesheli et al.,
2023; Zhang et al., 2023b; Cuomo et al., 2022) as well
as tackle PDEs, which had been entirely out of range for
classical methods (Han et al., 2018; Scherbela et al., 2022;
Nüsken & Richter, 2021b).

Among the biggest challenges for classical numerical PDE
solvers are complex geometries and high dimensions. In

*Equal contribution 1ETH Zurich 2Caltech. Correspondence
to: Hong Chul Nam <honam@student.ethz.ch>, Julius Berner
<jberner@caltech.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

0 200 400 600 800 1000
Time (s)

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

L2 e
rro

r

Neural WoS (Ours)
DeepRitz
Diffusion Loss
PINN
Neural Cache

Figure 1. Convergence of the relative L2-error when solving the
10d Laplace equation in Section 5 using our considered methods.

particular, grid-based methods, such as finite-element, finite-
volume, or finite-difference methods, scale exponentially in
the underlying dimension. On the other hand, deep learning
approaches have been shown to overcome this so-called
curse of dimensionality (De Ryck & Mishra, 2022; Duan
et al., 2021; Berner et al., 2020b). Corresponding algorithms
are typically based on Monte Carlo (MC) approximations
of variational formulations of PDEs.

In this work, we focus on high-dimensional Poisson equa-
tions on general domains. We note that the accurate numer-
ical solution of such types of PDEs is crucial for a large
variety of areas. For instance, Poisson equations are promi-
nent in geometry processing (Sawhney & Crane, 2020), as
well as many areas of theoretical physics, e.g., electrostatics
and quantum mechanics (Bahrami et al., 2014). In high
dimensions, they govern important quantities in molecular
dynamics, such as likely transition pathways and transition
rates between regions or conformations of interest (Vanden-
Eijnden et al., 2006; Lu & Nolen, 2015).

Several deep learning methods are amendable to the numer-
ical solution of Poisson equations. This includes physics-
informed neural networks (PINNs) or Deep Galerkin meth-
ods (Raissi et al., 2019; Sirignano & Spiliopoulos, 2018),
the Deep Ritz method (E et al., 2017), as well as approaches
based on (backward) stochastic differential equations (Han
et al., 2017; Nüsken & Richter, 2021a; Han et al., 2020).
However, previous methods suffer from unnecessarily high
computational costs, bias, or instabilities, see Section 3.

1

mailto:honam@student.ethz.ch
mailto:jberner@caltech.edu

Solving Poisson Equations using Neural Walk-on-Spheres

Figure 2. Left: Time-discretization of the solution Xξ to the SDE
in (6) with stopping time τ(Ω, ξ) in (7) for the domain Ω = [0, 1]2.
Right: Realization of the Walk-on-Spheres algorithm in Section 4.

Walk-on-Spheres (WoS): To overcome the above chal-
lenges, we propose a novel approach based on so-called
Walk-on-Spheres (WoS) methods (Muller, 1956). The WoS
method is a Monte Carlo method specifically tailored to-
ward Poisson equations by rewriting their solutions as an
expectation over Brownian motions stopped at the bound-
ary of the domain. Simulating the Brownian motion using
time-discretizations either is slow or introduces bias (de-
pending on the chosen time step). Leveraging the isotropy
of Brownian motion, WoS accelerates this process by iter-
atively sampling from spheres around the current position
until reaching the boundary, see Figure 2.

However, as with all Monte Carlo methods, WoS can only
obtain pointwise estimates and suffers from slow conver-
gence w.r.t. the number of trajectories. In particular, every
sufficiently accurate estimate of the solution on a single
point takes a considerable amount of time. This is pro-
hibitive if many solution evaluations are needed sequentially,
e.g., in PDE-constrained optimization problems.

Our approach (NWoS): We develop Neural Walk-on-
Spheres (NWoS), a version of WoS that can be combined
with neural networks to learn the solution to (parametric
families of) Poisson equations on the whole domain. Our
method amortizes the cost of WoS during training so that
the solution, and its gradients, can be evaluated in fractions
of seconds afterward (and at arbitrary points in the domain).
In particular, in order to obtain accuracy ε, the standard
WoS method incurs a cost of O(ε−2) trajectories for the
evaluation of the solution while NWoS has a reduced cost
of a single O(1) forward-pass of our model.

Using the partially trained model as an estimator, we can
limit the number of simulations and WoS steps for train-
ing without introducing high bias or variance. The result-
ing objective is more efficient and scalable than competing
methods, without the need to balance penalty terms for the
boundary condition or compute spatial derivatives (Table 1).
In particular, we demonstrate a significant reduction of GPU
memory usage in comparison to PINNs (Figure 3) and up
to orders of magnitude better performance for a given time
and compute budget (Figure 1).

Table 1. Comparison of neural PDE solver for Poisson equations.
#Derivatives, #Loss terms, and Cost denote the order of spatial
derivatives, the number of terms required in the loss function, and
the computational cost for one gradient step. Propagation speed
describes how quickly boundary information can propagate to the
interior of the domain, see Section 3 for details.

Method #Derivatives #Loss Cost Propagation
terms speed

PINN 2 2 medium slow
Deep Ritz 1 2 low slow
Feynman-Kac 0 1 high fast
BSDE 1 1 high fast
Diffusion loss 1 2 medium medium

NWoS (ours)1 0 1 low fast

10 100 1000
Dimension (d)

102

103

104

M
em

or
y

Si
ze

 (M
B)

Neural WoS (Ours)
DeepRitz
Diffusion Loss
PINN

Figure 3. Peak GPU memory usage of different methods during
training with batch size 512 for the Poisson equation in Section 5
in different dimensions d.

Our contributions can be summarized as follows:

• We analyze previous neural PDE solver and their short-
comings when applied to high-dimensional elliptic PDEs,
such as Poisson equations (Section 3).

• We devise novel variational formulations for the solution
of Poisson equations based on WoS methods and pro-
vide corresponding theoretical guarantees and efficient
implementations (Section 4).

• We compare against previous approaches on a series of
benchmarks and demonstrate significant improvements in
terms of accuracy, speed, and scalability (Section 5).

2. Related works
Neural PDE solver: We provide an in-depth compari-
son to competing deep learning approaches to solve ellip-
tic PDEs in Section 3. These include physics-informed
neural networks (PINNs) (Raissi et al., 2019; Sirignano
& Spiliopoulos, 2018), the Deep Ritz method (Jin et al.,

1While not necessary for NWoS, we note that the gradient of
the model and an additional boundary loss can still be used to
improve performance, see Section 4.5.

2

Solving Poisson Equations using Neural Walk-on-Spheres

2017), and the diffusion loss (Nüsken & Richter, 2021a),
see also Table 1. The diffusion loss can be viewed as an
interpolation between PINNs and losses based on backward
SDEs (BSDEs) (Han et al., 2017; E et al., 2017; Beck et al.,
2019). Methods based on BSDEs and the Feynman-Kac
formula (Beck et al., 2018; Berner et al., 2020a; Richter
& Berner, 2022) have been investigated for the solution of
parabolic PDEs, where the SDE is stopped at a given ter-
minal time. Due to costly simulation times, they cannot be
applied efficiently to elliptic problems. To combat this issue,
we draw inspiration from Walk-on-Spheres methods.

Monte Carlo (MC) methods: Since grid-based methods
cannot tackle high-dimensional PDEs, MC methods are typ-
ically used. For Poisson equations, the WoS method has
been developed by Muller (1956) and has since been suc-
cessfully used in various scientific settings (Sabelfeld, 2017;
Juba et al., 2016; Bossy et al., 2010) as well as recently in
computer graphics (Qi et al., 2022; Sawhney et al., 2022). In
the latter domain, caches based on boundary values (Miller
et al., 2023) and neural networks (Li et al., 2023) have been
proposed to estimate the PDE solution across the domain
and accelerate convergence. Our objective can be scaled to
high-dimensional parametric PDEs and guarantees that its
minimizer approximates the solution on the whole domain.
We refer to Grohs & Herrmann (2022); Beznea et al. (2022)
for related neural network approximation results.

3. Neural PDE Solver for Elliptic PDEs
We start by defining our problem and describing previous
deep learning methods for its solution. Our goal is to ap-
proximate the solution2 u ∈ C(Ω) to elliptic PDEs with
Dirichlet boundary conditions of the form{

P[u] = f, on Ω,

u = g, on ∂Ω,
(1)

with differential operator

P[u] := 1
2Tr(σσ

⊤Hessu) + µ · ∇u.

In the above, Ω ⊂ Rd is an open, bounded, connected, and
sufficiently regular domain, see, e.g., Baldi (2017); Karatzas
& Shreve (2014); Schilling & Partzsch (2014) for suitable
regularity assumptions. Note that the formulation in (1)
includes the Poisson equation for µ = 0 and σ =

√
2I, i.e.,{

∆u = f, on Ω,

u = g, on ∂Ω.
(2)

In the following, we will summarize existing neural PDE
solvers for these PDEs, see Table 1 for an overview. On a

2For simplicity, we assume that a sufficiently smooth, strong
solution exists.

high level, they propose different variational formulations
minv∈V L[v] with the property that the minimizer over a
suitable function space V ⊂ C(Ω) is a solution u to the
PDE in (1). The space V is then typically approximated by
a set of neural networks with a given architecture, such that
the minimization problem can be tackled using variants of
stochastic gradient descent.

3.1. Strong and weak formulations of elliptic PDEs

Let us start with methods based on strong or weak formula-
tions of the PDE in (1).

Physics-informed neural networks (PINNs): In its ba-
sic form, the loss of PINNs (Raissi et al., 2019) or Deep
Galerkin methods (Sirignano & Spiliopoulos, 2018), is
given by

LPINN[v] := E
[
(P[v](ξ)− f(ξ))2

]
+ βLbnd[v], (3)

where
Lbnd[v] := E

[
(v(ζ)− g(ζ))2

]
. (4)

In the above, β ∈ (0,∞) is a penalty parameter, and ξ
and ζ are suitable random variables distributed on Ω and
∂Ω, respectively. While improved sampling methods have
been investigated, see, e.g., Tang et al. (2023); Chen et al.
(2023), the default choice is to pick uniform distributions.
The expectations are then approximated with standard MC
or quasi-MC methods based on a suitable set of samples.

By minimizing the point-wise residual of the PDE, PINNs
have gained popularity as a universal and simple method.
However, PINNs are sensitive to hyperparameter choices,
such as β, and suffer from training instabilities or high vari-
ance (Wang et al., 2021; Krishnapriyan et al., 2021; Nüsken
& Richter, 2021b). Moreover, the objective in (3) requires
the evaluation of the derivatives appearing in P[v]. While
this can be done exactly using automatic differentiation, it
leads to high computational costs, see Figure 3.

Deep Ritz method: For the Poisson equation in (2), one
can avoid this cost by leveraging weak variational formula-
tions, see, e.g., Evans (2010). Rather than directly optimiz-
ing the regression loss in (3), the Deep Ritz method (E et al.,
2017) proposes to minimize the objective

LRitz[v] := E

[
∥∇v(ξ)∥2

2
− f(ξ)v(ξ)

]
+ βLbnd[v]. (5)

Under suitable assumptions, the minimizer again corre-
sponds to the solution to the PDE in (2). The objective only
requires computing the gradient∇v instead of the Laplacian
∆v. Using backward mode automatic differentiation, this
reduces the number of backward passes from d+ 1 to one,
see also the reduced cost in Figure 3. Moreover, we note
that the loss in (5) allows for weak solutions that are not

3

Solving Poisson Equations using Neural Walk-on-Spheres

twice differentiable. We refer to Chen et al. (2020), for an
extensive comparison of the Deep Ritz method to PINNs
for elliptic PDEs with different boundary conditions.

Finally, we mention that both methods suffer from the fact
that the interior losses only consider local, pointwise infor-
mation at samples x ∈ Ω. At the beginning of training,
the interior loss might thus not be meaningful. Specifically,
the boundary condition g first needs to be learned via the
boundary loss Lbnd, and then propagate from the boundary
∂Ω to interior points x via the local interior loss. There exist
some heuristics to mitigate this issue by, e.g., progressively
learning the solution, see Penwarden et al. (2023) for an
overview. The next section describes more principled ways
of including boundary information in the loss and directly
informing the interior points of the boundary condition.

3.2. Stochastic formulations of elliptic PDEs

From weak solutions, we will now proceed to stochastic
representations of elliptic PDEs in (1). To this end, consider
the3 solution Xξ to the stochastic differential equation

dXξ
t = µ(Xξ

t) dt+ σ(Xξ
t) dWt, Xξ

0 = ξ, (6)

where W is a standard d-dimensional Brownian motion.
Moreover, we define the stopping time τ as the first exit
time of the stochastic process Xξ from the domain Ω, i.e.,

τ = τ(Ω, ξ) := inf{t ∈ [0,∞) : Xξ
t /∈ Ω}. (7)

An application of Itô’s lemma to the process u(Xξ
t∧τ) shows

that we almost surely have that

u(Xξ
τ) = u(Xξ

0) +

∫ τ

0

P[u](Xξ
t) dt+ Su

τ ,

where Su
τ is the stochastic integral

Su
τ :=

∫ τ

0

(σ⊤∇u)(Xξ
t) · dWt.

Using the fact that Xξ
0 = ξ and assuming that u solves the

elliptic PDE in (1), we arrive at the formula

g(Xξ
τ) = u(ξ) + F ξ

τ + Su
τ , (8)

where we used the abbreviation

F ξ
τ :=

∫ τ

0

f(Xξ
t) dt.

Since the stochastic integral Sτ
u has zero expectation, see,

e.g., Baldi (2017, Theorem 10.2), we can rewrite (8) as a
stochastic representation, i.e.,

u(x) = E
[
g(Xξ

τ)− F ξ
τ

∣∣ξ = x
]
, (9)

3We assume that there exists a unique solution, see, e.g., Le Gall
(2016) for corresponding conditions.

which goes back to Kakutani’s Theorem (Kakutani, 1944)
and is a special case of the Feynman-Kac formula.

While the representation in (9) leads to MC methods for the
pointwise approximation of u at a given point x ∈ Ω, it also
allows us to derive variational formulation for learning u on
the whole domain Ω. Based on the above results, we can
derive the following three losses.

Feynman-Kac loss: The Feynman-Kac loss is given by

LFK[v] := E
[(
v(ξ)− g(Xξ

τ) + F ξ
τ

)2]
(10)

and follows from the fact that the solution to a quadratic
regression problem as in (10) is given by the conditional
expectation in (9). Notably, this variational formulation
does neither require a derivative of the function v nor an
extra boundary loss Lbnd.

BSDE loss: Since the formula in (8) holds if and only if
u solves the PDE in (1), we can derive the BSDE loss

LBSDE[v] := E
[(
v(ξ)− g(Xξ

τ) + F ξ
τ + Sv

τ

)2]
. (11)

Compared to the Feynman-Kac loss in (10), the BSDE
loss requires computing the gradient of v at every time-
discretization of the SDE Xξ in order to compute Sv

τ . How-
ever, due to (8), Sv

τ acts as a control variates and causes
the variance of the MC estimator of (11) to vanish at the
optimum, see Richter & Berner (2022) for details.

For the previous two losses, boundary information is directly
propagated along the trajectory of the SDE Xξ to the interior.
However, simulating a batch of realizations of the SDE until
they reach the boundary ∂Ω, i.e., until the stopping time τ ,
can incur prohibitively high costs.

Diffusion loss: The diffusion loss (Nüsken & Richter,
2021a) circumvents long simulation times by stopping the
SDE at s = τ ∧T , i.e., at the minimum of a prescribed time
T ∈ (0,∞) and the stopping time τ . Since the trajectories
might not reach the boundary, the loss is supplemented with
a boundary loss. This yields the variational formulation

LDiff [v] := E
[(
v(ξ)− v(Xξ

s) + F ξ
s + Sv

s

)2]
+ βLbnd[v].

Note that this can be viewed as an interpolation between the
BSDE loss (for s→∞) and the PINN loss (for s→ 0 and
rescaling by s−2). In the same way, it also balances the ad-
vantages and disadvantages of both losses, see also Table 1.

4. Neural Walk-on-Spheres (NWoS) Method
In this section, we will present a more efficient way of simu-
lating the SDE trajectories for the case of Poisson-type PDEs
as in (2). Our loss is based on the FK loss in (10), which
does not require the computation of any spatial derivatives

4

Solving Poisson Equations using Neural Walk-on-Spheres

of the neural network v. However, we reduce the number of
steps for simulating the process Xξ while still reaching the
boundary (different from the diffusion loss).

4.1. Recursion of elliptic PDEs on sub-domains

First, we outline how to cast the solution of the PDE in (1)
into nested subproblems of solving elliptic PDEs on sub-
domains. Specifically, let Ω0 ⊂ Ω be an open sub-domain
containing4 ξ0 := ξ and let τ0 := τ(Ω0, ξ) be the corre-
sponding stopping time, defined as in (7). Analogously
to (9), we obtain that

u(ξ) = E
[
u(Xξ

τ0)− F ξ
τ0

∣∣ξ] . (12)

Note that this is a recursive definition since the solution u to
the PDE in (1) appears again in the expectation. To resolve
the recurrence, we define the random variable ξ1 ∼ Xξ

τ0
and choose another open sub-domain Ω1 ⊂ Ω containing
ξ1. Considering the stopping time τ1 := τ(Ω1, ξ1), we can
calculate the value of u appearing in the inner expectation

u(Xξ
τ0) ∼ u(ξ1) = E

[
u(Xξ1

τ1)− F ξ1
τ1

∣∣ξ1]
We can now iterate this process for k ∈ N and combine the
result with (12) to obtain

u(ξ) = E

[
g(Xξ

τ)−
∑
k≥0

F ξk
τk

∣∣∣∣∣ξ
]
. (13)

In the above, we used the strong Markov property of the
SDE solution and the tower property of the conditional ex-
pectation, see also Grohs & Herrmann (2022). This nested
stochastic representation can be compared to the one in (9).
The next section shows how this provides a practical algo-
rithm that terminates in finitely many steps.

4.2. Walk-on-Spheres

We tackle the problem of solving the Poisson equation in (2),
i.e., µ = 0 and σ =

√
2I. Then, the SDE in (6) is just

a scaled Brownian motion starting at ξ. Picking Ωk :=
Brk(ξk) to be a ball of radius rk ∈ (0,∞) around ξk in the
k-th step, the isotropy of Brownian motion ensures that

ξk+1 ∼ Xξk
τk
∼ U(∂Brk(ξk)).

In other words, we can just sample ξk+1 uniformly from
a sphere of radius rk around the previous value ξk. To
terminate after finitely many steps, we pick the maximal
radius in each step, i.e.,

rk := dist(ξk, ∂Ω),

4Since ξ is a random variable, the sub-domain Ω0 is random,
and the statement is to be understood for each realization.

and stop at step κ when reaching an ε-shell, i.e., when
rκ < ε for a prescribed ε ∈ (0,∞). This allows us to
“walk” from sphere to sphere until (approximately) reaching
the boundary, such that we can estimate the first term in (13).
Specifically, the value u(Xξ

τ) in (13) is approximated by the
boundary value g(ξ̄κ), where

ξ̄κ := argmin
x∈∂Ω

∥x− ξκ∥

is the projection to the boundary.

We note that the bias from introducing the stopping tol-
erance ε can be estimated as O(ε) (Mascagni & Hwang,
2003). Moreover, for well-behaved, e.g., convex, domains
Ω, the average number of steps κ behaves like O(log(ε−1))
(Motoo, 1959; Binder & Braverman, 2012). This shows
that ε can be chosen sufficiently small without incurring
too much additional computational cost. We note that this
leads to much faster convergence than time-discretizations
of the Brownian motion. In order to have a comparable bias,
we would need to take steps of size O(ε), requiring Ω(ε−2)
steps to converge.

4.3. Source term

To compute the second term in (13), we need to accumulate
values of the form

v(z) := E
[
−F z

τ(B,z)

]
(14)

with a given ball B = Br(z). By (9), we observe that v is
the solution of a Poisson equation on the ball B with zero
Dirichlet boundary condition evaluated at z ∈ Ω. We can
thus use classical results by Boggio (1905), see also Gaz-
zola et al. (2010), to write the solution in terms of Green’s
functions. Specifically, we have that

v(z) = −|Br(z)|E[f(γ)Gr(γ, z)], (15)

where γ ∼ U(Br(z)) and

Gr(y, z) :=

{
1
2π log r

∥y−z∥ , d = 2,

Γ(d/2−1)
4πd/2

(
∥y − z∥2−d − r2−d

)
, d > 2,

see Appendix A for further details. In practice, we can now
approximate the expectation in (15) using an MC estimate.

4.4. Learning Problem

Based on the previous derivations, we can establish a vari-
ational formulation, where the minimizer is guaranteed to
approximate the Poisson equation in (2) on the whole do-
main Ω. Specifically, we define

LNWoS[v] := E
[(
v(ξ)−WoS(ξ)

)2]
, (16)

5

Solving Poisson Equations using Neural Walk-on-Spheres

!!!

!"!

!#!

!$!

!!"

!$"

"!!

""!

"!"
!""

#

! "!
1

"""

$%!!

$%"!

$%!"

$%""

1
!% = #$ %&% , 	 (%&% ,)Ω < ,

-'(%&%), 	 else	
2

min' MSE[!% −;
()*

&+,
<-!" = >(% ?-!" %(

% , >(% , -' %*%]3

Figure 4. Neural Walk-on-Spheres (NWoS): Our algorithm for learning the solution to Poisson equations ∆u = f on Ω ⊂ Rd and
u|∂Ω = g. 1 In each gradient descent step, we sample a batch of random points (ξi0)mi=1 in the domain Ω and simulate Brownian motions
by iteratively sampling ξik from spheres Bri

k
inscribed in the domain. To account for the source term f , we sample γi

k ∼ U(Bri
k
) to

compute an MC approximation |Bri
k
|f(γi

k)Gri
k
(ξik, γ

i
k) to the solution of the Poisson equation on the sphere Bri

k
using the Green’s

function Gri
k

in Section 4.3. 2 We stop after a fixed number of maximum steps K and either evaluate our neural network vθ or the

boundary condition g if we reach an ε-shell of ∂Ω. 3 If vθ satisfies the PDE, the mean-value property implies that vθ(ξi0) is approximated
by the expected value of yi minus the accumulated source term contributions. We thus minimize the corresponding mean squared error
over the parameters θ using gradient descent.

where the single-trajectory WoS method WoS(ξ) with ran-
dom initial point ξ is given by

WoS(ξ) := g(ξ̄κ)−
κ−1∑
k=0

|Brk(ξk)|f(γk)Grk(γk, ξk).

In the above, γk ∼ U(Brk(ξk)), and the random variables
κ, ξk, ξ̄κ, and rk are defined as in Section 4.2. From the
stochastic formulation of the solution in (13) and Proposi-
tion 3.5 in Grohs & Herrmann (2022), it follows that the
minimizer of (16), i.e., x 7→ E

[
WoS(ξ)

∣∣ξ = x
]
, approxi-

mates the solution u in (2) in the uniform norm up to error
O(ε), where ε is the stopping tolerance, see Section 4.2. We
also remark that, in theory, the loss requires only a single
WoS trajectory per sample of ξ since the minimizer of the
regression problem in (16) averages out the noise.

Having established a learning problem, we can analyze
both approximation and generalization errors. For the for-
mer, Grohs & Herrmann (2022) and Beznea et al. (2022)
bounded the size of neural networks vθ to approximate the
solution u up to a given accuracy. In particular, the number
of required parameters θ only scales polynomially in the
dimension d and the reciprocal accuracy, as long as the func-
tions f , g, and dist(·, ∂Ω) can be efficiently approximated
by neural networks.

One can then leverage results by Berner et al. (2020b) to
show that also the generalization error does not underlie

the curse of dimensionality when minimizing the empirical
risk, i.e., an MC approximation of (16), over a suitable set
of neural networks vθ. Specifically, the number of required
samples of ξ to guarantee that the empirical minimizer ap-
proximates the solution u up to a given accuracy also scales
only polynomially with dimension and accuracy.

4.5. Implementation

In this section, we discuss implementations for the loss
LNWoS in (16) described in the previous section. We sum-
marize our algorithm in Figure 4 and provide pseudocode
for the vanilla version in Algorithm 1. In the following,
we present strategies to trade-off accuracy and computa-
tional cost and to reduce the variance of MC estimators. We
provide pseudocode for NWoS with these improvements in
Algorithm 2 and Algorithm 3 in the appendix.

WoS with maximum number of steps: For sufficiently
regular geometries, the probability of a walk taking more
than k steps is exponentially decaying in k (Binder & Braver-
man, 2012). However, if a single walk in our batch needs
significantly more steps, it slows down the overall train-
ing. We thus introduce a deterministic maximum number of
steps K ∈ N; see Beznea et al. (2022) for a corresponding
error analysis. However, we do not want to introduce non-
negligible bias by, e.g., just projecting to the closest point
on the boundary.

6

Solving Poisson Equations using Neural Walk-on-Spheres

Table 2. Relative L2-error (and standard deviations over 5 independent runs) of our considered methods, estimated using MC integration
on 106 uniformly distributed (unseen) points in Ω.

Method Problem
Laplace (10d) Committor (10d) Poisson Rect. (10d) Poisson (50d)

PINN 7.42e−4 ± 1.84e−4 4.10−3 ± 1.11e−3 1.35e−2 ± 1.57e−3 7.70e−3 ± 2.25e−3

Deep Ritz 8.43e−4 ± 6.29e−5 6.15e−3 ± 5.30e−4 1.06e−2 ± 6.20e−4 1.05e−3 ± 1.70e−4

Diffusion loss 1.57e−4 ± 7.74e−6 4.48e−2 ± 6.93e−3 9.69e−2 ± 1.03e−2 5.96e−4 ± 1.06e−5

Neural Cache 3.99−4 ± 4.08e−5 1.26e−3 ± 5.82e−5 4.98e−2 ± 1.80e−2 1.63e−2 ± 1.42e−2

WoS 1.08e−3 ± 1.34e−6 1.99e−3 ± 9.79e−6 2.32e−1 ± 2.09e−1 4.50e−3 ± 7.38e−4

NWoS (ours) 4.29e−5 ± 2.02e−6 6.56e−4 ± 2.42e−5 2.60e−3 ± 9.99e−5 4.82e−4 ± 1.32e−5

Instead, we want to enforce the mean-value property on
subdomains of Ω based on our recursion in Section 4.1. We
thus propose to use the model v instead of the boundary
condition g if the walk does not converge after K steps, i.e.,
we define5

yξ,v :=

{
v(ξK), d(ξK , ∂Ω) > ε,

g(ξ̄K), else.

We can then replace the second term in (16) by

WoS(ξ, v) := yξ,v −
K−1∑
k=0

|Brk(ξk)|f(γk)Grk(γk, ξk).

This helps to reduce the bias when d(ξK , ∂Ω) is non-
negligible and leads to faster convergence assuming that
we obtain increasingly good approximations vθ ≈ u during
training of a neural network vθ. Our approach bears similar-
ity to the diffusion loss, see Section 3; however, we do not
need to use a time-discretization of the SDE.

Boundary Loss: We find empirically that an additional
boundary loss can improve the performance of our method.
While theoretically not required, it can especially help for
a smaller number K of maximum steps (see the previous
paragraph). In general, we thus sample a fraction of the
points on the boundary ∂Ω and optimize

LNWoS[v] + βLbnd[v],

where Lbnd is defined6 as in (4).

Variance-reduction: While not necessarily needed for
the objective in (16), we can still average multiple WoS
trajectories N ∈ N per sample of ξ to reduce the variance.
This leads to the estimator

L̂NWoS[v] :=
1

m

(
m∑
i=1

v(ξi)− 1

N

N∑
n=1

WoSn(ξi)

)
,

5Since we stop the walk when reaching an ε-shell, the first
condition can also be written as K < κ.

6Note that Lbnd can be interpreted as a special case of LNWoS

where the WoS method directly terminates since the initial points
are sampled on the boundary.

where ξi are i.i.d. samples of ξ and WoSn(ξi) are i.i.d. sam-
ples of WoS(ξi), i.e., N trajectories with the same initial
point ξi, see (16). Note that we vectorize the WoS sim-
ulations across both the initial points and the trajectories,
making our NWoS method highly parallelizable and scal-
able to large batch sizes.

We further introduce control variates to reduce the variance
of estimating WoS(x), where we focus on a fixed x ∈ Ω
for ease of presentation. Control variates seek to reduce the
variance by using an estimator of the form

E [WoS(x)] ≈ E[δ] + 1

N

N∑
n=1

WoSn(x)− δn,

where δn are i.i.d. samples of a random variable δ with
known expectation.

Motivated by Sawhney & Crane (2020), we use an approxi-
mation of the first-order term of a Taylor series of u in the
direction of the first WoS step. We assume that ∇vθ pro-
vides an increasingly accurate approximation of the gradient
∇u during training and propose to use

δn := ∇vθ(x) · (ξn1 − x),

where ξn1 is the first step of WoSn(x). In particular, ξn1 ∼
U(∂Br1(x)) and thus E[δ] = 0 holds for any function vθ.

While we need to compute the gradient∇vθ(x) for the con-
trol variate, we mention that this operation can be detached
from the computational graph. In particular, we do not need
to compute the derivative of ∇vθ(x) w.r.t. the parameters
θ as is necessary for PINNs, the Deep Ritz method, the
diffusion loss, and the BSDE loss. In Appendix C, we em-
pirically show that the overhead of using the control variates
is insignificant.

Buffer: Motivated by Li et al. (2023), we can use a buffer
to cache training points(

ξ(i),
1

N

N∑
n=1

WoSn(ξ(i))
)B
i=1

. (17)

Since we only update the buffer after a given number of
training steps L ∈ N, this accelerates the training. Note

7

Solving Poisson Equations using Neural Walk-on-Spheres

Algorithm 1 Training of vanilla NWoS method
Input: neural network vθ with initial parameters θ, opti-

mizer method step for updating the parameters, number
of iterations T , batch size m, source term f , boundary
term g, stopping tolerance ε

Output: optimized parameters θ
for k ← 0, . . . , T do

xΩ ← sample from ξ⊗m ▷ Sample points in Ω
x← xΩ

r ← dist(x, ∂Ω) ▷ Compute distances to ∂Ω
while r > ε do

γ ← sample from U(Br(x)) ▷ Estimate source
s← s− |Br(x)|f(γ)Gr(x, γ)
u← sample from U(∂Br(x))
x← x+ u ▷ Walk to next points
r ← dist(x, ∂Ω) ▷ Compute distances to ∂Ω

end while
x← project x to ∂Ω ▷ Find closest points in ∂Ω
yΩ ← s+ g(x) ▷ Estimate boundary
L̂NWoS ← MSE(vθ(xΩ), yΩ) ▷ NWoS loss
θ ← step

(
γ,∇θL̂NWoS

)
▷ SGD step

end for

that this is not possible for the other methods since they
require evaluation of the current model or its gradients. In
every buffer update, we average over additional trajectories,
i.e., increase N in (17), for a fraction of points to improve
their accuracy. However, different from Li et al. (2023), we
also evict a fraction of points from the buffer and replace
them with WoS estimates on newly sampled points ξ(i) in
the domain Ω to balance the diversity and accuracy of the
training data in the buffer.
Remark 4.1. The Neural Cache method by Li et al. (2023)
uses a related approach to accelerate WoS methods for ap-
plications in computer graphics. However, their method
never replaces any point ξ(i) in the buffer, i.e., only updates
estimates in the buffer. We observed that the model is thus
prone to overfitting on the points in the buffer, especially in
high dimensions, preventing it from achieving high accura-
cies across the domain Ω.

5. Experiments
In this section, we compare the performance of NWoS,
PINN, DeepRitz, Diffusion loss, and Neural Cache on var-
ious problems across dimensions from 10d to 50d. We
do not consider the FK and BSDE losses since they incur
prohibitively long runtimes for simulating the SDEs with
sufficient precision. To compare against the baselines, we
consider benchmarks from the works proposing the Deep
Ritz and diffusion losses (Jin et al., 2017; Nüsken & Richter,
2021a). For a fair comparison, we set a fixed runtime of
25d + 750 seconds and GPU memory budget of 2GiB for

training and ran a grid search over a series of hyperparame-
ter configurations for each method. Then, we performed 5
independent runs for the best configurations w.r.t. the rela-
tive L2-error. More details on the hyperparameters and our
implementations7 can be found in Appendix B.

Laplace Equation: The first PDE is a Laplace equation
on a square domain given by

f(x) = 0, g(x) =
∑d/2

i=0 x2ix2i+1, x ∈ Ω = (0, 1)d.

To test our models, we compare against the analytic solution
as u(x) =

∑d/2
i=0 x2kx2k+1. Following Jin et al. (2017), we

consider the case d = 10.

Poisson Equation: Next, we consider the Poisson equa-
tion presented in Jin et al. (2017), i.e.,

f(x) = 2d, g(x) =
∑d

i=1 x
2
i , x ∈ Ω = (0, 1)d,

with analytic solution u(x) =
∑d

i=1 x
2
i . We choose d = 50

and present results with8 d ∈ {100, 500} in Appendix D.

Poisson Equation with Rectangular Annulus: We also
consider a Poisson equation on a rectangular annulus Ω =
(−1, 1)d \ [−c, c]d with sinusoidal boundary condition and
source term

g(x) =
1

d

d∑
i=1

sin(2πxi), f(x) = −4π2

d

d∑
i=1

sin(2πxi).

We choose c = 0.25
1
d and d = 10, and note that the analytic

solution is given by u(x) = 1
d

∑d
i=1 sin(2πxi).

Committor Function: The fourth equation deals with
committor functions from molecular dynamics. These func-
tions specify likely transition pathways and transition rates
between (potentially metastable) regions or conformations
of interest (Vanden-Eijnden et al., 2006; Lu & Nolen, 2015).
They are typically high-dimensional and known to be chal-
lenging to compute. To compare NWoS, we consider the
setting in Nüsken & Richter (2021a). The task is to estimate
the probability of a particle hitting the outer surface of an
annulus Ω = {x ∈ Rd : a < ∥x∥ < b} with a, b ∈ (0,∞),
before the inner surface.

The problem can then be formulated as solving the Laplace
equation given by

f(x) = 0, g(x) = 1{∥x∥=b}, x ∈ Ω.

For this specific Ω, a reference solution can be computed as

u(x) =
a2 − ∥x∥2−da2

a2 − b2−da2
.

7Our PyTorch code can be found at https://github.
com/bizoffermark/neural_wos.

8While d = 100 is considered by Jin et al. (2017), we find
that a simple projection outperforms all models in sufficiently high
dimensions for this benchmark, see Appendix D.

8

https://github.com/bizoffermark/neural_wos
https://github.com/bizoffermark/neural_wos

Solving Poisson Equations using Neural Walk-on-Spheres

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

Initialization

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

Prediction

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

Ground Truth

0.0

0.2

0.4

0.6

0.8

Figure 5. Qualitative assessment of the solution to the PDE-
constrained optimization problem. (Left) Initial function uc for
random parameters c ∈ D. (Middle) Predicted function uĉ for the
parameters ĉ obtained after a few gradient descent steps using the
approximation of the solution to the parametric Poisson equation
obtained with NWoS. (Right) The groundtruth solution uc∗ .

We further use the setting by Nüsken & Richter (2021a) and
choose a = 1, b = 2, and d = 10.

PDE-Constrained Optimization: Finally, we want to
solve the optimization problem

min
u∈H1

0 (Ω),m∈L2(Ω)

1

2

∫
Ω

(u− ud)
2dx+

α

2

∫
Ω

m2dx

constraint to u being a solution to the Poisson equation
with g(x) = 0 and f(x) = −m(x) for x ∈ Ω = (0, 1)2.
The goal of the optimization problem is to balance the
energy of the input control m with the proximity of the
state u and the target state ud while satisfying the PDE
constraint. Following Hwang et al. (2022), we choose
ud = 1

2π sin(πx1) sin(πx2) as target state.

To tackle this problem and showcase the capabilities of
NWoS, we first solve a parametric Poisson equation, where
we parametrize the control as mc = c1 sin(c2x1) sin(c3x2)
with c ∈ D := [0.5, 1.0] × [2.5, 3.5]2. Similar to Berner
et al. (2020a), we can sample random c ∈ D in every gra-
dient descent step to use NWoS for solving a whole family
of Poisson equations. Freezing the trained neural network
parameters afterward, we can reduce the PDE-constraint
optimization problem to a problem over c ∈ D. In this
illustrative example, we can compute the ground-truth pa-
rameters as c∗ =

(
1

1+4απ4 , π, π
)

and choose α = 10−3.

5.1. Results

We present our results in Table 2. We first note that we
improve the Deep Ritz method and the diffusion loss by
almost an order of magnitude compared to the results re-
ported by Jin et al. (2017); Nüsken & Richter (2021a). Still,
our NWoS approach can outperform all other methods on
our considered benchmarks. In addition to these results, we
highlight that the efficient objective of NWoS also leads
to faster convergence, see Figure 1. We provide ablation
studies in Appendix C and additional numerical evidence
in Appendix D.

The PDE-constrained optimization problem shows that
NWoS can be extended to parametric problems, where a
whole family of Poisson equations is solved simultaneously.
We observe that for this 5-dimensional problem (two spatial
dimensions and three-parameter dimensions), NWoS con-
verges within 20 minutes to a relative L2-error of 0.79%
(averaged over D×Ω). The trained network can then be used
to solve the optimization problem directly (where we use
L-BFGS) without requiring an inner loop for the PDE solver.
The results show a promising relative L2-error of 1.30% for
estimating the parameters c∗ leading to an accurate predic-
tion of the minimizer, see Figure 5 and Appendix C for an
ablation study.

6. Conclusion
We have developed Neural Walk-on-Spheres, a novel way
of solving high-dimensional Poisson equations using neural
networks. Specifically, we provide a variational formulation
with theoretical guarantees that amortizes the cost of the
standard Walk-on-Spheres algorithm to learn solutions on
the full underlying domain. The resulting estimator is more
efficient than competing methods (PINNs, the Deep Ritz
method, and the diffusion loss) while achieving better perfor-
mance at lower computational costs and faster convergence.
We show that NWoS also performs better on a series of chal-
lenging, high-dimensional problems and parametric PDEs.
This also highlights its potential for applications where such
problems are prominent, e.g., in molecular dynamics and
PDE-constraint optimization.

Extensions and limitations: NWoS is currently only ap-
plicable to Poisson equations with Dirichlet boundary con-
ditions. While this PDE appears frequently in applications,
we also believe that future work can extend our method.
For instance, one can try to leverage adaptations of WoS to
spatially varying coefficients (Sawhney et al., 2022), drift-
diffusion problems (Sabelfeld, 2017), Neumann boundary
conditions (Sawhney et al., 2023; Simonov, 2007), frac-
tional Laplacians (Kyprianou et al., 2018), the screened
Poisson or Helmholtz equation (Sawhney & Crane, 2020;
Cheshkova, 1993), as well as linearized Poisson-Bolzmann
equations (Hwang & Mascagni, 2001; Bossy et al., 2010).
Moreover, one can also take other elementary shapes in
each step, e.g., rectangles or stars (Deaconu & Lejay, 2006;
Sawhney et al., 2023), and omit the need for ε-shells for
certain geometries using the Green’s function first-passage
algorithm (Given et al., 1997).

Finally, while NWoS can tackle parametric PDEs, we need
to have a fixed parametrization of the source or boundary
functions. It would be promising to extend the ideas to
neural operators, which currently only use losses based on
PINNs (Goswami et al., 2022; Li et al., 2021) or diffusion
losses for parabolic PDEs (Zhang et al., 2023a).

9

Solving Poisson Equations using Neural Walk-on-Spheres

Acknowledgements
The authors thank Rohan Sawhney for helpful discussions.
J. Berner acknowledges support from the Wally Baer and
Jeri Weiss Postdoctoral Fellowship. A. Anandkumar is
supported in part by Bren endowed chair and by the AI2050
senior fellow program at Schmidt Sciences.

Impact Statement
The aim of this work is to advance the field of machine
learning and scientific computing. While there are many
potential societal consequences of our work, none of them
are immediate to require being specifically highlighted here.

References
Azzizadenesheli, K., Kovachki, N., Li, Z., Liu-Schiaffini,

M., Kossaifi, J., and Anandkumar, A. Neural operators
for accelerating scientific simulations and design. arXiv
preprint arXiv:2309.15325, 2023.

Bahrami, M., Großardt, A., Donadi, S., and Bassi, A. The
Schrödinger–Newton equation and its foundations. New
Journal of Physics, 16(11):115007, 2014.

Baldi, P. Stochastic Calculus: An Introduction Through The-
ory and Exercises. Universitext. Springer International
Publishing, 2017.

Beck, C., Becker, S., Grohs, P., Jaafari, N., and Jentzen, A.
Solving stochastic differential equations and Kolmogorov
equations by means of deep learning. arXiv preprint
arXiv:1806.00421, 2018.

Beck, C., E, W., and Jentzen, A. Machine learning approxi-
mation algorithms for high-dimensional fully nonlinear
partial differential equations and second-order backward
stochastic differential equations. Journal of Nonlinear
Science, 29(4):1563–1619, 2019.

Berner, J., Dablander, M., and Grohs, P. Numerically solv-
ing parametric families of high-dimensional Kolmogorov
partial differential equations via deep learning. In Ad-
vances in Neural Information Processing Systems, pp.
16615–16627, 2020a.

Berner, J., Grohs, P., and Jentzen, A. Analysis of the
generalization error: Empirical risk minimization over
deep artificial neural networks overcomes the curse of
dimensionality in the numerical approximation of Black–
Scholes partial differential equations. SIAM Journal on
Mathematics of Data Science, 2(3):631–657, 2020b. doi:
10.1109/IWOBI.2017.7985525.

Beznea, L., Cimpean, I., Lupascu-Stamate, O., Popescu,
I., and Zarnescu, A. From Monte Carlo to neural net-

works approximations of boundary value problems. arXiv
preprint arXiv:2209.01432, 2022.

Binder, I. and Braverman, M. The rate of convergence of the
walk on spheres algorithm. Geometric and Functional
Analysis, 22(3):558–587, 2012.

Boggio, T. Sulle funzioni di green d’ordine m. Rendiconti
del Circolo Matematico di Palermo (1884-1940), 20:97–
135, 1905.

Bossy, M., Champagnat, N., Maire, S., and Talay, D. Proba-
bilistic interpretation and random walk on spheres algo-
rithms for the Poisson-Boltzmann equation in molecular
dynamics. ESAIM: Mathematical Modelling and Numer-
ical Analysis, 44(5):997–1048, 2010.

Chen, J., Du, R., and Wu, K. A comparison study of deep
Galerkin method and deep Ritz method for elliptic prob-
lems with different boundary conditions. arXiv preprint
arXiv:2005.04554, 2020.

Chen, X., Cen, J., and Zou, Q. Adaptive trajectories sam-
pling for solving pdes with deep learning methods. arXiv
preprint arXiv:2303.15704, 2023.

Cheshkova, A. “walk on spheres” algorithms for solving
helmholtz equation. Bulletin of the Novosibirsk Comput-
ing Center: Numerical analysis, (4):7, 1993.

Cuomo, S., Di Cola, V. S., Giampaolo, F., Rozza, G., Raissi,
M., and Piccialli, F. Scientific machine learning through
physics–informed neural networks: Where we are and
what’s next. Journal of Scientific Computing, 92(3):88,
2022.

De Ryck, T. and Mishra, S. Error analysis for physics-
informed neural networks (PINNs) approximating kol-
mogorov PDEs. Advances in Computational Mathemat-
ics, 48(6):1–40, 2022.

Deaconu, M. and Lejay, A. A random walk on rectangles
algorithm. Methodology and Computing in Applied Prob-
ability, 8:135–151, 2006.

Duan, C., Jiao, Y., Lai, Y., Lu, X., and Yang, Z. Conver-
gence rate analysis for deep ritz method. arXiv preprint
arXiv:2103.13330, 2021.

E, W. and Yu, B. The deep ritz method: a deep learning-
based numerical algorithm for solving variational prob-
lems. Communications in Mathematics and Statistics, 6
(1):1–12, 2018.

E, W., Han, J., and Jentzen, A. Deep learning-based nu-
merical methods for high-dimensional parabolic partial
differential equations and backward stochastic differential
equations. Communications in Mathematics and Statis-
tics, 5(4):349–380, 2017.

10

Solving Poisson Equations using Neural Walk-on-Spheres

Evans, L. C. Partial Differential Equations, volume 19.
American Mathematical Soc., 2010.

Gazzola, F., Grunau, H.-C., and Sweers, G. Polyharmonic
boundary value problems: positivity preserving and non-
linear higher order elliptic equations in bounded domains.
Springer Science & Business Media, 2010.

Given, J. A., Hubbard, J. B., and Douglas, J. F. A first-
passage algorithm for the hydrodynamic friction and
diffusion-limited reaction rate of macromolecules. The
Journal of chemical physics, 106(9):3761–3771, 1997.

Goswami, S., Bora, A., Yu, Y., and Karniadakis, G. E.
Physics-informed neural operators. arXiv preprint
arXiv:2207.05748, 2022.

Grohs, P. and Herrmann, L. Deep neural network approxi-
mation for high-dimensional elliptic PDEs with boundary
conditions. IMA Journal of Numerical Analysis, 42(3):
2055–2082, 2022.

Han, J., Jentzen, A., et al. Deep learning-based numerical
methods for high-dimensional parabolic partial differen-
tial equations and backward stochastic differential equa-
tions. Communications in mathematics and statistics, 5
(4):349–380, 2017.

Han, J., Jentzen, A., and E, W. Solving high-dimensional
partial differential equations using deep learning. Pro-
ceedings of the National Academy of Sciences, 115(34):
8505–8510, 2018.

Han, J., Nica, M., and Stinchcombe, A. R. A derivative-free
method for solving elliptic partial differential equations
with deep neural networks. Journal of Computational
Physics, 419:109672, 2020.

Hwang, C.-O. and Mascagni, M. Efficient modified
“walk on spheres” algorithm for the linearized Poisson–
Bolzmann equation. Applied Physics Letters, 78(6):787–
789, 2001.

Hwang, R., Lee, J. Y., Shin, J. Y., and Hwang, H. J. Solving
PDE-constrained control problems using operator learn-
ing. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 4504–4512, 2022.

Jin, K. H., McCann, M. T., Froustey, E., and Unser, M.
Deep convolutional neural network for inverse problems
in imaging. IEEE Transactions on Image Processing, 26
(9):4509–4522, 2017.

Juba, D., Keyrouz, W., Mascagni, M., and Brady, M. Ac-
celeration and parallelization of zeno/walk-on-spheres.
Procedia computer science, 80:269–278, 2016.

Kakutani, S. Two-dimensional Brownian motion and har-
monic functions. Proceedings of the Imperial Academy,
20(10):706–714, 1944.

Karatzas, I. and Shreve, S. Brownian motion and stochastic
calculus, volume 113. springer, 2014.

Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., and
Mahoney, M. W. Characterizing possible failure modes
in physics-informed neural networks. Advances in Neural
Information Processing Systems, 34, 2021.

Kyprianou, A. E., Osojnik, A., and Shardlow, T. Unbiased
‘walk-on-spheres’ Monte Carlo methods for the fractional
Laplacian. IMA Journal of Numerical Analysis, 38(3):
1550–1578, 2018.

Le Gall, J.-F. Brownian motion, martingales, and stochastic
calculus. Springer, 2016.

Li, Z., Zheng, H., Kovachki, N., Jin, D., Chen, H., Liu,
B., Azizzadenesheli, K., and Anandkumar, A. Physics-
informed neural operator for learning partial differential
equations. arXiv preprint arXiv:2111.03794, 2021.

Li, Z., Yang, G., Deng, X., De Sa, C., Hariharan, B., and
Marschner, S. Neural caches for Monte Carlo partial
differential equation solvers. In SIGGRAPH Asia 2023
Conference Papers, pp. 1–10, 2023.

Lu, J. and Nolen, J. Reactive trajectories and the transition
path process. Probability Theory and Related Fields, 161
(1-2):195–244, 2015.

Mascagni, M. and Hwang, C.-O. ϵ-shell error analysis for
“walk on spheres” algorithms. Mathematics and comput-
ers in simulation, 63(2):93–104, 2003.

Miller, B., Sawhney, R., Crane, K., and Gkioulekas, I.
Boundary value caching for walk on spheres. arXiv
preprint arXiv:2302.11825, 2023.

Motoo, M. Some evaluations for continuous Monte Carlo
method by using brownian hitting process. Annals of the
Institute of Statistical Mathematics, 11:49–54, 1959.

Muller, M. E. Some continuous Monte Carlo methods
for the dirichlet problem. The Annals of Mathematical
Statistics, pp. 569–589, 1956.

Nüsken, N. and Richter, L. Interpolating between
BSDEs and PINNs: deep learning for elliptic and
parabolic boundary value problems. arXiv preprint
arXiv:2112.03749, 2021a.

Nüsken, N. and Richter, L. Solving high-dimensional
Hamilton–Jacobi–Bellman PDEs using neural networks:
perspectives from the theory of controlled diffusions and
measures on path space. Partial Differential Equations
and Applications, 2(4):1–48, 2021b.

11

Solving Poisson Equations using Neural Walk-on-Spheres

Penwarden, M., Jagtap, A. D., Zhe, S., Karniadakis, G. E.,
and Kirby, R. M. A unified scalable framework for
causal sweeping strategies for physics-informed neural
networks (PINNs) and their temporal decompositions.
arXiv preprint arXiv:2302.14227, 2023.

Qi, Y., Seyb, D., Bitterli, B., and Jarosz, W. A bidirectional
formulation for walk on spheres. In Computer Graph-
ics Forum, volume 41, pp. 51–62. Wiley Online Library,
2022.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
Physics, 378:686–707, 2019.

Richter, L. and Berner, J. Robust SDE-based variational for-
mulations for solving linear PDEs via deep learning. In
Proceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 18649–18666. PMLR, 2022.

Sabelfeld, K. K. Random walk on spheres algorithm for
solving transient drift-diffusion-reaction problems. Monte
Carlo Methods and Applications, 23(3):189–212, 2017.

Sawhney, R. and Crane, K. Monte Carlo geometry pro-
cessing: A grid-free approach to PDE-based methods on
volumetric domains. ACM Transactions on Graphics, 39
(4), 2020.

Sawhney, R., Seyb, D., Jarosz, W., and Crane, K. Grid-free
Monte Carlo for PDEs with spatially varying coefficients.
ACM Transactions on Graphics (TOG), 41(4):1–17, 2022.

Sawhney, R., Miller, B., Gkioulekas, I., and Crane, K.
Walk on stars: A grid-free Monte Carlo method for
PDEs with Neumann boundary conditions. arXiv preprint
arXiv:2302.11815, 2023.

Scherbela, M., Reisenhofer, R., Gerard, L., Marquetand, P.,
and Grohs, P. Solving the electronic Schrödinger equation
for multiple nuclear geometries with weight-sharing deep
neural networks. Nature Computational Science, 2(5):
331–341, 2022.

Schilling, R. L. and Partzsch, L. Brownian motion: an
introduction to stochastic processes. Walter de Gruyter
GmbH & Co KG, 2014.

Simonov, N. Random walk-on-spheres algorithms for
solving mixed and Neumann boundary-value problems.
Sibirskii Zhurnal Vychislitel’noi Matematiki, 10(2):209–
220, 2007.

Sirignano, J. and Spiliopoulos, K. DGM: A deep learning al-
gorithm for solving partial differential equations. Journal
of computational physics, 375:1339–1364, 2018.

Tang, K., Wan, X., and Yang, C. DAS-PINNs: A deep
adaptive sampling method for solving high-dimensional
partial differential equations. Journal of Computational
Physics, 476:111868, 2023.

Vanden-Eijnden, E. et al. Towards a theory of transition
paths. Journal of statistical physics, 123(3):503–523,
2006.

Wang, S., Teng, Y., and Perdikaris, P. Understanding and
mitigating gradient flow pathologies in physics-informed
neural networks. SIAM Journal on Scientific Computing,
43(5):A3055–A3081, 2021.

Zhang, R., Meng, Q., Zhu, R., Wang, Y., Shi, W., Zhang, S.,
Ma, Z.-M., and Liu, T.-Y. Monte Carlo neural operator
for learning pdes via probabilistic representation. arXiv
preprint arXiv:2302.05104, 2023a.

Zhang, X., Wang, L., Helwig, J., Luo, Y., Fu, C., Xie, Y.,
Liu, M., Lin, Y., Xu, Z., Yan, K., et al. Artificial intelli-
gence for science in quantum, atomistic, and continuum
systems. arXiv preprint arXiv:2307.08423, 2023b.

12

Solving Poisson Equations using Neural Walk-on-Spheres

A. Green’s function for the Ball
For the sake of completeness, this section provides details
on the derivation in Section 4.3. To compute integrals of the
form (14), we look at a special case of a Poisson equation on
a ball B = Br(z) with zero Dirichlet boundary condition,
i.e., {

∆v = f, on B,

v = 0, on ∂B.

Analogously to (9), we obtain that

v(z) = E

[
−
∫ τ(B,z)

0

f(Xz
t) dt

]
, (18)

where τ(B, z) is the corresponding stopping time, see (7).
However, since we simplified the domain to a simple ball,
we can write the solution in terms of Green’s functions.
Specifically, we have that

v(z) = −
∫
B

f(y)Gr(y, z) dy (19)

where

Gr(y, z) :=

{
1
2π log r

∥y−z∥ , d = 2,

Γ(d/2−1)
4πd/2

(
∥y − z∥2−d − r2−d

)
, d > 2.

We note that (19) is equivalent to (15).

While this is a classical result by Boggio (1905), see
also Gazzola et al. (2010), we will sketch a proof in the
following. We consider the Laplace equation ∆Φx = δx for
given x ∈ Rd in the distributional sense. It is well known
that the fundamental solution Φx is given by

Φx(y) =

{
1
2π log ∥y − x∥, d = 2,

−∥y−x∥2−d

(d−2)ωd
, d > 2,

where

ωd = |∂B1(0)| =
2πd/2

Γ(d/2)
=

4πd/2

(d− 2)Γ(d/2− 1)

is the surface measure of the d-dimensional unit ball B1(0).
Under suitable conditions, it further holds that the solution
to (18) is given by

v(x) =

∫
B

f(y) (Φx(y)− ϕx(y)) dy (20)

for every x ∈ B, where the corrector function ϕx satisfies
the Laplace equation{

∆ϕx = 0, on B,

ϕx = Φx, on ∂B,

see Evans (2010, Chapter 2.2). Based on (9) and the fact
that Φz is constant at the boundary of B = z +Br(0), we
can compute the value of the corrector function ϕz , i.e.,

ϕz(y) = E[Φz(X
y
τ(B,y))] =

1
2π log r, d = 2,

− rd−2

(2−d)ωd
, d > 2.

This shows that the value of the Green’s function at the
center z of the ball B is given by

Φz(y)− ϕz(y) = −Gr(y, z),

which, together with (20), establishes the claim.

A.1. Stable Implementation

For numerical stability, we directly compute the quantity
G̃r(γ, z) := |Br(z)|Gr(γ, z) in practice, as needed in (15).
The volume of the hyper-sphere |Br(z)| is given by

|Br(z)| =
π

d
2

Γ(d2 + 1)
rd,

such that we obtain

G̃r(γ, z) :=:=

r2

2 log r
∥γ−z∥ , d = 2,

rd

d(d−2)

(
∥γ − z∥2−d − r2−d

)
, d > 2.

B. Implementation Details
We implemented all methods in PyTorch and provide pseu-
docode in Algorithms 2 and 3. The experiments have been
conducted on A100 GPUs.

For all our training, we use the Adam optimizer and limit
the runtime to 25d+ 750 seconds for a fair comparison. In
every step, we sample uniformly distributed samples (ξ, ζ)
in the domain Ω and on the boundary ∂Ω to approximate
the expectations of the loss and boundary terms. Moreover,
we employ an exponentially decaying learning rate, which
reduces the initial learning rate by two orders of magnitude
throughout training. We choose a feedforward neural net-
work with residual connections, 6 layers, a width of 256,
and a GELU activation function. We also perform the grid
search for the boundary loss penalty term, i.e.,

β ∈ {0.5, 1, 5, 50, 100, 500, 1000, 5000}.

We further include the batch size m ∈ {2i}17i=7 in our grid
search. For a fair comparison, we set a fixed GPU memory
budget of 2GiB for training, leading to different maximal
batch-sizes depending on the method; see also Figure 3.
Unless otherwise specified, 10% of the batch size is used
for boundary points. Moreover, we set ε = 10−4 for all
methods using an ε-shell. Let us detail the hyperparameter
choices specific to each method in the following.

13

Solving Poisson Equations using Neural Walk-on-Spheres

Algorithm 2 Training of our NWoS method
Input: neural network vθ with initial parameters θ, opti-

mizer method step for updating the parameters, WoS
method WoS in Algorithm 3, number of iterations T ,
batch sizes md and mb for domain and boundary points,
buffer B of size B, boundary function g, buffer update
interval L, boundary penalty parameter β

Output: optimized parameters θ
x∂Ω ← sample from ζ⊗B ▷ Sample points in ∂Ω
B ← initialize with (x∂Ω, g(x∂Ω)) ▷ Initialize buffer
for k ← 0, . . . , T do

if k mod L = 0 then
xΩ ← sample from ξ⊗md ▷ Sample points in Ω
xB ← sample from B ▷ Sample points in B
x← [xΩ, xB] ▷ Concatenate points
[yΩ, yB]← vmap[WoS(x, vθ)] ▷ WoS
B ← update with (xB, yB) ▷ Update estimates
B ← replace with (xΩ, yΩ) ▷ Replace points

end if
x∂Ω ← sample from ζ⊗mb ▷ Sample points in ∂Ω
(xB, yB)← sample from B ▷ Sample points in B
L̂NWoS ← MSE(vθ(xB), yB) ▷ Domain loss
L̂bnd ← MSE(vθ(x∂Ω), g(x∂Ω)) ▷ Boundary loss
L̂ = L̂NWoS + βL̂bnd

θ ← step
(
γ,∇θL̂

)
▷ SGD step

end for

Walk-on-Spheres (WoS): For WoS (Muller, 1956), we
directly approximate the solution at the evaluation points.
We batch trajectories to saturate the memory budget and
present the best result for different configurations within the
given runtime. Specifically, we pick the number of trajec-
tories N in the grid {1, 10, 100, 1000, 10000, 100000} and
the maximum number of steps K in {0, 1, 10, 100, 1000}.

Neural Walk-on-Spheres (NWoS): For NWoS, we try
the different extensions in Section 4.5. Specifically,
we fix the buffer size B to 10 times that of the batch
size m, and sweep the number of gradient steps be-
tween buffer updates L ∈ {10, 100, 1000}. We also
include the maximum number of WoS steps K ∈
{0, 1, 5, 10, 50, 100} and the number of trajectories per
update N ∈ {1, 10, 100, 200, 300, 400, 500, 1000} in our
grid search. If using a boundary loss, we sweep over
{0.1, 0.2, 0.3, 0.4, 0.5} in the grid search to find the opti-
mal proportion of the batch size for the boundary loss.

Neural Cache: For the neural cache method (Li et al.,
2023), we use the best configuration for different buffer
sizes, update intervals, and number of trajectories within
the given time and memory constraints. Specifically, we
try buffer sizes B ∈ {10000, 20000, 100000, 1000000},
intervals L ∈ {1, 10, 100, 1000, 5000, 10000} to update
the buffer, and N ∈ {1, 10, 20, 30, 40, 50, 100, 500, 1000}

Algorithm 3 Walk-on-Spheres (WoS)
Input: neural network vθ, source term f , boundary term

g, point for evaluation x, maximum number of steps K,
stopping tolerance ε, number of trajectories N

Output: estimator v̂ of solution v to PDE in (2) at x
v̂ ← 0
for i← 1, . . . , N do ▷ Batched in implementation

s← 0
for t← 1, . . . ,K do

r ← dist(x, ∂Ω) ▷ Compute distance to ∂Ω
if r < ε then

Break ▷ Reach boundary
end if
γ ← sample from U(Br(x)) ▷ Estimate source
s← s− |Br(x)|f(γ)Gr(x, γ)
u← sample from U(∂Br(x))
if t = 0 & use control variate then

s← s−∇xvθ(x) · u ▷ Control variate
end if
x← x+ u ▷ Walk to next point

end for
if r < ε then ▷ Estimate solution at x

x← project x to ∂Ω ▷ Find closest point in ∂Ω
v̂ ← s+ g(x)

else
v̂ ← s+ vθ(x)

end if
end for
v̂ ← 1

N v̂ ▷ Compute MC estimate

number of trajectories for each update.

Diffusion loss: For the diffusion loss (Nüsken & Richter,
2021a), we perform a grid search over the time-steps ∆t ∈
{10−3, 10−4, 10−5} of the Euler-Maruyama scheme and
the maximum number of steps in {1, 5, 10, 50}.

PINNs: For PINNs (Raissi et al., 2019; Sirignano &
Spiliopoulos, 2018), we use automatic differentiation to
compute the Laplacian ∆vθ.

Deep Ritz: For the Deep Ritz method (E et al., 2017), we
experiment with the original network architecture proposed
in their paper. We sweep the number of blocks in {4, 6, 8},
the number of layers in {2, 4}, and the hidden dimension in
{64, 128, 256}. Moreover, we replace the activation func-
tion with GELU.

C. Ablation Studies
In this section, we provide additional ablation studies on
the the contribution of our additional improvements in Sec-
tion 4.5, namely the control variates as well as the neural
network evaluation for trajectories that did not reach the

14

Solving Poisson Equations using Neural Walk-on-Spheres

Table 3. Ablation study of the contribution of control variates and
the neural network evaluation for trajectories that did not converge
after a given maximum number of steps K. We report the relative
L2-error for the parameter estimation in our PDE-constrained
optimization problem.

Method Relative L2-error

Base NWoS 2.89%
+ Control Variate 1.72%
+ Terminal Eval 1.70%
+ Both 1.30%

1 5 10
Maximum Steps

0.00

0.01

0.02

0.03

0.04

Ti
m

e
pe

r i
te

ra
tio

n
(s

) Base
Control Variate
Terminal Eval

Figure 6. Decomposition of the training time for one iteration of
NWoS in the plain version (Section 4.4), as well as using our
improvements from Section 4.5, i.e., the control variates and a
neural network evaluation for trajectories that did not converge
after a given maximum number of steps K.

1 5 10
Maximum Steps

10 2

2 × 10 2

3 × 10 2

4 × 10 2

Ti
m

e
pe

r i
te

ra
tio

n
(s

)

Deep Ritz
Diffusion Loss
PINN

Figure 7. Training time of our considered methods for one gradi-
ent step. For NWoS, we present the comparison for a different
maximum number of steps K.

boundary. We also analyze the speed of NWoS and perform
comparisons with PINNs, Deep Ritz, and the diffusion loss.

In Table 3, we perform an ablation study on the contribution
of our improvements in our PDE-constrained optimization
problem. We observe that they can decrease the relative L2-
error from 2.89% to 1.72% and 1.70%, respectively. If both
the control variate and the neural network evaluation are

Table 4. Relative L2-error (and standard deviations over 5 inde-
pendent runs) of our considered methods, estimated using MC
integration on 106 uniformly distributed (unseen) points in Ω.

Method Problem
Poisson (100d) Poisson (500d)

PINN 1.49e−3 ± 3.21e−5 2.42−2 ± 6.06e−4

Deep Ritz 1.77e−2 ± 1.94e−4 9.92e−3 ± 2.56e−5

Diffusion loss 6.71e−4± 1.31e−5 9.47e−3 ± 3.81e−5

Projection 2.92e−4 ± 5.17e−7 1.19e−5 ± 1.67e−8

NWoS (ours) 6.22e−4 ± 1.18e−5 9.14−3 ± 6.31e−5

used, we obtain the best relative error of 1.30%, indicating
that they can efficiently decrease bias and variance.

Figure 6 decomposes the training time per iteration into the
time for the base NWoS algorithm and the time for the ad-
ditional extensions from Section 4.5. We assume the batch
size to be fixed to m = 512 and test on the Poisson equation
in Section 4.5 in 100d. We observe that our proposed exten-
sions incur comparably small overheads. Figure 7 further
compares NWoS with DeepRitz, NSDE, and PINN with
different maximum number of steps K, see Section 4.5.
Considering the logarithmic scaling of the plot, each itera-
tion of NWoS is significantly faster than PINN and NSDE
but slower than Deep Ritz for a larger maximum number of
steps K. Choosing K, we can balance high accuracy and
fast training.

D. Further Evaluations
In this section, we provide further numerical evidence. We
report the convergence of the relative L2-error for the other
PDEs and evaluate our method on the Poisson equation in
100d and 500d.

Figures 8 to 10 demonstrate that neural WoS achieves the
fastest convergence in comparison to all baseline methods
within the provided time and memory constraints.

Table 4 provides results for our considered methods on the
Poisson equation in 100d and 500d as proposed by E & Yu
(2018). We demonstrate that our NWoS method achieves
lower relative L2-error than the baselines. However, we
discover empirically that, for this benchmark, a simple pro-
jection to the boundary achieves the highest accuracy. This
can be motivated by the smoothness of the solution and the
fact that uniformly distributed evaluation samples concen-
trate at the boundary in high dimensions.

15

Solving Poisson Equations using Neural Walk-on-Spheres

0 200 400 600 800 1000
Time (s)

10 3

10 2

10 1

100

Re
la

tiv
e

L2 e
rro

r

Neural WoS (Ours)
DeepRitz
Diffusion Loss
PINN
Neural Cache

Figure 8. Convergence of the relative L2-error when solving the
Committor function in 10d using our considered methods.

0 200 400 600 800 1000
Time (s)

10 3

10 2

10 1

100

Re
la

tiv
e

L2 e
rro

r

Neural WoS (Ours)
DeepRitz
Diffusion Loss
PINN
Neural Cache

Figure 9. Convergence of the relative L2-error when solving the
Poisson equation in 10d with rectangular torus using our consid-
ered methods.

0 250 500 750 1000 1250 1500 1750 2000
Time (s)

10 3

10 2

10 1

100

Re
la

tiv
e

L2 e
rro

r

Neural WoS (Ours)
DeepRitz
Diffusion Loss
PINN
Neural Cache

Figure 10. Convergence of the relative L2-error when solving the
Poisson equation in 50d using our considered methods.

16

