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ABSTRACT

Diffusion models have shown strong performance in image-to-image (I2I) trans-
lation, combining high-fidelity generation with scalability to large-scale datasets.
However, state-of-the-art models like Diffusion Bridge Models (DBMs) suffer
from slow sampling speeds, requiring dozens to hundreds of expensive model
evaluations. We address this limitation by extending Consistency Models (CMs),
originally developed for noise-to-image (N2I) generation, to the I2I setting. We pro-
pose Consistency Bridge Models (CBMs), a new framework that enables few-step
I2I translation from arbitrary source images without relying on pretrained diffusion
models. CBMs inherit the efficiency of CMs while generalizing their theory to
arbitrary non-Gaussian prior distributions. Evaluating on multiple datasets and
image resolutions, we show that CBMs outperform prior work, reducing forward
evaluations by up to 88%, and improving FID scores by up to 71%, offering an
efficient framework for high-quality I2I translation.

1 INTRODUCTION

Diffusion Probabilistic Models (DPMs) have emerged as a powerful class of generative models that
can produce highly realistic images through a gradual noise-to-data transformation, as illustrated in
the Noise-to-Image (N2I) panel of Figure 2. This framework has driven major progress in image
generation (Ho et al., 2020; Song et al., 2020b; Karras et al., 2022; Dhariwal & Nichol, 2021) and
editing (Meng et al., 2021; Li et al., 2023; Liu et al., 2023; Su et al., 2022b).

However, sampling DPM is computationally intensive, often requiring hundreds of sequential steps
for high-quality results. Advances by Song et al. (2020a); Lu et al. (2022a;b); Zhao et al. (2024)
alleviate this cost, reducing sampling to around twenty steps while maintaining strong performance.

A related task, Image-to-Image (I2I) translation, converts images from one domain to another, e.g.,
day to night, as illustrated in the I2I panel of Figure 2. Recently, Zhou et al. (2023) introduced

CBM (Ours)
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DBIM (Zheng et al.)

NFE 4 | FID 17.85

Hybrid Heun (Zhou et al.)

NFE 20 | FID 41.03

Figure 1: Few-step image synthesis (4 NFEs ↓) with high-quality generated details (5.61 FID ↓).
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Figure 2: Overview of consistency-based generative modeling. Left (Noise-to-Image Generation):
CMs (Song et al., 2023) generate images from noise, either trained from scratch or adapted from
diffusion models. Right (Image-to-Image Generation): DBMs (Zhou et al., 2023) extend diffusion
to I2I translation but need many steps. Our Consistency Bridge Models (CBMs) extend consistency
theory to I2I and enable training from scratch, without fine-tuning (Geng et al., 2024; He et al., 2024).

Diffusion Bridge Models (DBMs): a generalization of the diffusion framework that constructs
diffusion bridges between arbitrary image pairs, making high-quality diffusion-based I2I translation
possible. While effective, DBMs also require dozens to hundreds of sampling steps for high-quality
results, limiting their practicality. This raises a central question: “Is it possible to design a framework
for I2I translation that preserves quality without requiring dozens of costly sampling steps?"

Consistency Models (CMs) (Song et al., 2023) improve efficiency by learning to directly map noise to
data, enabling few-step N2I generation. Yet, their reliance on a Gaussian prior restricts them mainly
to N2I generation, leaving I2I translation theoretically unsupported. To address this, we extend
the consistency theory to I2I translation via Doob’s h-transform (Doob, 1984). Unlike methods
that finetune DBMs, our approach provides a principled framework for training consistency models
for I2I translation. We introduce Consistency Bridge Models (CBMs): a family of standalone,
trainable-from-scratch generative models for few-step, high-quality I2I translation.

CBMs significantly outperform their DBM counterparts, reducing the number of forward evaluations
(NFEs) by up to 60% while achieving superior Fréchet Inception Distance (FID) (Heusel et al., 2017)
scores compared to DBM-based Hybrid Heun (Zhou et al., 2023) or DBIM (Zheng et al., 2024)
(Section 4.1) sampling. Extensive experiments across multiple datasets and resolutions demonstrate
the scalability, efficiency, and generalizability of CBMs, offering a faster and more cost-effective
alternative to diffusion-based sampling. We will publicly release the code and model weights.

2 BACKGROUND AND RELATED WORK

2.1 NOISE-TO-IMAGE GENERATIVE MODELS

Diffusion Probabilistic Models. DPMs learn to generate images from a distribution pdata(x)
through a gradual denoising process (Ho et al., 2020; Song et al., 2020b; Karras et al., 2022; Dhariwal
& Nichol, 2021). Starting with the prior Gaussian distribution pprior(x) = N (0, σ2

T I) with mean
0 and standard deviation σT > 0, DPMs iteratively denoise xT ∼ pprior(x) to recover the image
sample x0 ∼ pdata(x). Surprisingly, the time evolution of this denoising process follows the Ordinary
Differential Equation (ODE) (Anderson, 1982; Song et al., 2020b):

dxt =

[
f (xt, t)−

1

2
g(t)2∇xt log pt(xt)

]
dt, (1)

where time t ∈ [0, T ], T > 0, and f (·, ·) and g(·) are known as the drift and diffusion coefficients,
respectively. The perturbed images (i.e., xt) are sampled from pt(x), with ∇xt

log pt(x) being its
score function. This score function is learned by a neural network through the Score Matching
objective (Hyvärinen, 2005; Song et al., 2020b). In addition, we can see that p0(x) ≡ pdata(x) and
pT (x) ≡ pprior(x). Song et al. (2020b) dub Equation (1) as the Probability Flow (PF) ODE. Note
that specific hand-designed choices for f (·, ·) and g(·) lead to variance-preserving (VP), variance-
exploding (VE), or TrigFlow formulations (see Appendix A).
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Consistency Models. Consistency models (Song et al., 2023; Song & Dhariwal, 2023) are gen-
erative models that learn to directly map an arbitrary point on the PF ODE trajectory (i.e., xt, the
perturbed image at time t) back to the initial point (i.e., x0, the clean image). Song & Dhariwal
(2023) showed that CMs trained from scratch can surpass the image generation quality of DPMs (Ho
et al., 2020; Karras et al., 2022; Song et al., 2020a;b) in just a few steps. The noisy image xt is
obtained by perturbing the clean image: xt = x0 + tz, where z ∼ N (0, I). CMs are trained via the
Consistency Matching objective:

LCM(θ) = E [w(t, r) d( fθ(xt, t), fθ(xr, r))] , (2)

where t and r are successive time steps such that 0 ≤ r < t ≤ T . After a consistency model fθ is
trained, images are generated via the Multistep Sampler (Song et al., 2023) in a few steps.

2.2 IMAGE-TO-IMAGE GENERATIVE MODELS

Diffusion Bridge Models. Zhou et al. established a theoretical framework for image-to-image
translation by leveraging Doob’s h-transform (Doob, 1984; Rogers & Williams, 2000)–a mathematical
tool enabling the construction of stochastic bridges between two arbitrary endpoints, x0 ∼ p0(x) and
xT ∼ pT (x). This enables the conditioned forward diffusion from x0 to xT , whose time evolution is
governed by the Stochastic Differential Equation (SDE):

dxt =
(

f (xt, t)− g(t)2 [∇xt
log pt(xt | xT )−∇xt

log pt(xT | xt)]
)

dt+ g(t) dwt, (3)

where ∇xt
log pt(xt | xT ) is the score of the conditional probability pt(xt | xT ). In addition, Zhou

et al. showed that Equation (3) has an ODE interpretation:

dxt

dt
= f (xt, t)− g(t)2

(
1

2
∇xt log pt(xt | xT )−∇xt log pt(xT | xt)

)
. (4)

Generating Images with DBMs. Zhou et al. introduced the Hybrid Heun (HH) Sampler, which
solves the SDE (Equation (3)) via the 1st-order Euler-Maruyama method, which is a simple numerical
scheme for approximating SDEs (Maruyama, 1955), and the ODE (Equation (4)) via the 2nd-order
Heun method (Heun, 1888; Süli & Mayers, 2003). However, this sampling procedure takes 119
NFEs, requiring multiple hours to generate images. Moreover, these images (showcased in Section 4)
are low quality and contain noise even after the many NFEs. To alleviate this, Zheng et al. proposed
DBIM, a Non-Markovian approach for sampling DBMs. While they achieved better results in fewer
NFEs, they still require dozens of steps to achieve high-quality results, as shown in Section 4.

3 GENERALIZING CONSISTENCY MODELS FOR I2I TRANSLATION

As noted in Section 2.2, DBMs enable I2I translation but are computationally heavy; and while CMs
are efficient, their theory is limited to N2I generation. To bridge this gap, we extend the consistency
theory and introduce Consistency Bridge Models (CBMs): a generalization of consistency models for
I2I translation achieved via Doob’s h-transform. This allows CBMs to be capable of traversing from
a known fixed endpoint back to a desired data point.

At the crux of CBMs lies the consistency bridge function, which maps any point xt on the bridge
trajectory back to the initial point x0 (illustrated in Figure 3). Furthermore, our CBMs can be regarded
as a generalization of He et al. (2024)’s recent consistency-based approach named CDBMs, which
we describe in Section 3.4.

Formally, let the solution trajectory to Equation (3) be given as {xt}t∈[0,T ]. We define the con-
sistency bridge function as f : (xt, t,xT , T ) 7→ x0, which satisfies the self-consistency prop-
erty: f (xt, t,xT , T ) = f (xt′ , t

′,xT , T ) = x0 for all t, t′ ∈ [0, T ], with the boundary condition
f (x0, 0,xT , T ) = x0. For brevity, we adopt fθ(xt, t,xT ) := fθ(xt, t,xT , T ) in the text.

Our goal is to learn a neural network fθ that estimates f by enforcing the self-consistency property,
ensuring an effective Consistency Bridge Model. To the best of our knowledge, this is the first attempt
to generalize the consistency framework to achieve I2I translation. We recap the design differences
between DBMs, CMs, and CBMs in Table 1 before proceeding to the next section.
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Table 1: Comparing CBMs to DBMs and CMs.

Generative Models Diffusion Bridge Models [37] Consistency Models [28] Consistency Bridge Models (Ours)

Theoretical Framework Diffusion-based Consistency-based Consistency-based
Support for I2I Translation Yes No Yes
Sampling Method(s) Hybrid Heun [37], DBIM [36] Multistep Sampler [28] Algorithm 2

Forward Trajectory

Figure 3: Consistency Bridge Models (CBM) for I2I Translation. The CBM fθ learns to map any
data point (e.g., xt, xt′ , and xT ) on the Bridge trajectory back to the initial data point, x0.

3.1 PARAMETERIZING CBMS

For stability in training, we parametrize the CBM fθ as a combination of input xt and network Fθ:

fθ(xt, t,xT , T ) = cskip(t, T )xt + cout(t, T )Fθ(cin(t, T )xt, cnoise(t),xT ),

where cin(t, T ), cnoise(t), cskip(t, T ), and cout(t, T ) are time-dependent differentiable scaling functions
(Appendix B). Song et al. (2023) and Karras et al. (2022) also follow similar formulations to improve
training stability. The input perturbed image at time t is xt ∼ N (µ̂t, σ̂tI), which can be rewritten as:

xt = µ̂t + σ̂tz, z ∼ N (0, I), (5)

where µ̂t :=
SNRT

SNRt

αt

αT
xT + αt

(
1− SNRT

SNRt

)
x0, and σ̂2

t := σ2
t

(
1− SNRT

SNRt

)
. αt and σt are functions

of t, and similar to Song et al. (2023), we implement CBMs with the VE formulation (see Table 6).

3.2 TRAINING VIA THE CONSISTENCY BRIDGE MATCHING OBJECTIVE

Having described how to parametrize a CBM fθ, we now describe its training procedure for I2I
Translation. Given two perturbed images xti and xti+1

for time steps 0 ≤ ti < ti+1 ≤ T , we train fθ
by minimizing the Consistency Bridge Matching Objective over θ:

LCBM(θ) = E
[
w(ti, ti+1) d( fθ(xti+1 , ti+1,xT ), fθ−(xti , ti,xT ))

]
, (6)

where w(·, ·) is the weighting function, d(·, ·) is the distance function, θ− is the EMA of θ (Song
et al., 2023), and the expectation is taken over ti, ti+1 ∼ p(ti), x0 ∼ pdata(x), and xT ∼ pprior(x).

As CBMs are generalizations of CMs, we can incorporate their training techniques for stable training,
including the adoption of w(ti, ti+1) =

1
ti+1−ti

as the weighting function and sampling the noise
level ti from a lognormal distribution i ∼ n(i). These changes stabilize the training procedure of
CMs, as observed by Song & Dhariwal (2023), which we find to be true for CBMs as well. Lastly, we
adopt the Pseudo-Huber (Charbonnier et al., 1997) or Mean Squared Error as the distance function.
By implementing these techniques in the training process, we reach Algorithm 1.

3.3 MULTISTEP BRIDGE SAMPLER: PERFORMING I2I TRANSLATION WITH CBMS

Given a prior image sample xtN = xT ∼ pprior(x) and N sampling steps, we directly predict x̃0

from xtN using a well-trained CBM. We iteratively refine the output by computing the intermediate
bridge points x̃tn ∼ ptn(xtn | x̃0,xT ) as described in Equation (5), and predicting x̃0 from x̃tn , for
tn times, tn ∈ {tN−1, · · · , t2, t1}. Intuitively, this iterative refinement step can be thought of as the
‘predict-and-correct’ or ‘noise-and-denoise’ step in diffusion-based samplers. This Multistep Bridge
(MB) Sampler is capable of high-quality I2I translation. We frame it as Algorithm 2.

4
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Algorithm 1 Training Consistency Bridge Models

Input: Initial model parameter θ, initial distribution p0(x), prior distribution pT(x), step dis-
cretization schedule N(·), lognormal distribution n(i), distance metric d(·, ·), and learning rate η.
Initialize: Training iteration count, k ← 0
repeat

Define noise discretization as a function of k: T = tN(k) > · · · > t2 > t1
Sample x0 ∼ p0(x), xT ∼ pT(x), and i ∼ n(i)
Sample xti−1 ∼ pti−1(xti−1 | xT ,x0), xti ∼ pti(xti | xT ,x0)
LCBM(θ)← w(ti+1, ti) d( fθ(xti+1 , ti+1,xT ), fθ−(xti , ti,xT )) {Computing the Loss}
θ ← θ − η∇θLCBM(θ) {Updating the Model Parameters}
k ← k + 1

until convergence

Algorithm 2 Multistep Bridge (MB) Sampler for CBMs

Inputs: Pretrained CBM fθ(·, ·, ·), Number of sampling steps N , Time steps T = tN > · · · >
t1 > t0 = 0, and Prior distribution pT (x).

Initial Step: Sample x̃tN = xT ∼ pT (x), with SNRT ← α2
T /σ

2
T

Subsequent Stochastic Refinement:
for i = N to 1 do
x̃0 ← fθ(x̃ti , ti,xT ) {▷ Generate x̃0 from x̃ti using CBM fθ}
if i > 1 then

Sample zi−1 ∼ N (0, I), with SNRti−1
← α2

ti−1
/σ2

ti−1

x̃ti−1
← αti−1

αT

SNRT

SNRti−1
xT + αti−1

(
1− SNRT

SNRti−1

)
x̃0 + σti−1

√(
1− SNRT

SNRti−1

)
zi−1

end if
end for
Output: x̃0 {▷ Final translated image}

3.4 RELATION TO PRIOR CONSISTENCY-BASED APPROACHES

For CMs, the perturbations xt are simply computed as xt = x0+tz (Section 2.1), consistent with N2I
generation (Song et al., 2023). For CBMs, xt is instead formed from x0, xT , and noise (Equation (5)),
reflecting the paired I2I setting where intermediate states interpolate between prior and target images.
Architecturally, CMs take xt and time step t as inputs, while CBMs additionally use xT to guide
translation via the consistency bridge function. During sampling, CMs refine Gaussian noise to x̃0,
whereas CBMs translate from prior xT to target x̃0 using our MB Sampler.

Meanwhile, He et al. (2024)’s CDBMs are closely related to CBMs. Instead of training from scratch,
CDBMs simply progressively distill a pretrained DBM via the training procedure described by Geng
et al. (2024), which uses the consistency bridge function’s boundary condition (discussed in Section 3).
While CDBMs can generate high-quality images, they are constrained by requiring a pretrained DBM
that needs further finetuning, which is a major computational limitation. In contrast, CBMs require
relatively much lower computational costs to train from scratch while producing high-quality images,
as evidenced by Table 2 and Figure 6, while taking demonstrably lower training resources.

4 EXPERIMENTS

We train all CBMs entirely from scratch using the Consistency Bridge Matching objective (Section 3.2)
and describe their training hyperparameters in Appendix C.1. Our evaluation spans across three
datasets with varying resolutions: Edges2Handbags (E2H, 64 × 64) (Isola et al., 2017), DIODE
(256× 256) (Vasiljevic et al., 2019), and Face2Comics (256× 256) (Sxela, 2021). Furthermore, we
additionally evaluate on Face2Comics (64 × 64) and (128 × 128) resolutions to demonstrate the
scalability of CBMs. On DIODE, the task is to translate dense surface normal maps into color images,
while Face2Comics requires mapping natural human faces into stylized comic renderings.
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We assess generation quality using FID (Heusel et al., 2017) and efficiency via the number of forward
evaluations (NFEs) (Song et al., 2020a; Lu et al., 2022a), and report previously published results
of Zhou et al. (2023) and Zheng et al. (2024). For baselines, we compare against diffusion-based I2I
methods, including DDIB (Su et al., 2022a), SDEdit (Meng et al., 2021), Rectified Flow (Liu et al.,
2022), I2SB (Liu et al., 2023), and DDBM (Zhou et al., 2023), the current state-of-the-art.

For E2H and DIODE, we sample images using the pretrained DBM weights published by Zhou
et al. with the Hybrid Heun and DBIM samplers. Lastly, as pretrained weights do not exist for
Face2Comics and CelebAMask, we identically train both DBMs and CBMs from scratch for fairness.

4.1 RESULTS

Image Translation on DIODE (256×256) and E2H (64×64). We observe that CBMs demon-
strate improvements in quality, speed, and computational efficiency compared to prior work based
on GAN and diffusion. We compare CBMs to prior state-of-the-art works on both DIODE and
E2H datasets and summarize it in Table 2. We observe that a DBM with the Hybrid Heun (HH)
sampler can only reach 5.42 and 1.83 FIDs on DIODE and E2H respectively, even though given a
very generous computation budget of 119 NFEs. Meanwhile, DBM with DBIM on the DIODE
dataset achieves a FID of 17.85 with 4 NFEs, improving to 7.99 with an extended budget of 10 NFEs.
A similar trend is observed on E2H, where DBIM reaches 4.14 and 2.49 FID with 4 and 10 NFEs,
respectively. In contrast, our CBM (with the Multistep Bridge Sampler) significantly outperforms
DBMs with HH and DBIM, achieving 3.79 FID on DIODE and 1.22 FID on E2H with just 6 NFEs.

CBMs achieve state-of-the-art performance with substantially reduced computational overhead,
operating within a notably compact architectural design, as detailed in Appendix 9. By effectively
balancing the trade-off between speed (fewer NFEs) and quality (lower FID), our CBMs enhance
both aspects while requiring fewer training samples, leading to shorter training durations and fewer
training iterations, as illustrated in Figure 6 on DIODE and E2H.

The qualitative results in Figures 4 and 5 align with the quantitative results, where we can observe
that our CBM generates higher-fidelity images in fewer steps. In Figure 4, the images generated with
HH still contain large amounts of noise at 20 NFEs, while our CBM achieves high-quality images
with just 4 NFEs. Although CDBMs achieve a lower FID of 2.93 on DIODE and 0.80 on E2H, they
require considerably more training and computational resources, as presented in Figure 6. Please
refer to Section 3.4 for a discussion on why CDBM is not a suitable baseline comparison for CBMs.

Label-to-Face Generation on CelebAMask-HQ (256×256). Figure 7 and Table 3 illustrate
the advantages of our CBM over prior methods in generating high-quality facial images from
segmentation masks. At just 6 NFEs, CBM achieves an FID of 13.14, outperforming the 44.92 FID of

CBM (Ours)

NFE 4 | FID 5.61

DBIM (Zheng et al.)

NFE 4 | FID 17.85

Hybrid Heun (Zhou et al.)

NFE 20 | FID 41.03

Figure 4: Qualitative comparison on DIODE 256 × 256 [33]. Our CBMs with Multistep Bridge
Sampler generate higher-quality images with fewer NFEs compared to DBMs with HH (Zhou et al.,
2023) and DBIM (Zheng et al., 2024) (Table 2). xT are Surface Normal Maps, and x0 are Images.
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Table 2: Quantitative performance comparison of various diffusion-based and consistency-based
models on the DIODE [33] and Edges2Handbags (E2H) [12]. We report model size, training duration
(in number of images), NFEs, and FID to assess efficiency and generation quality. Traditional
diffusion methods (e.g., DDIB, SDEdit, Rectified Flow, I2SB) require significantly higher NFEs to
achieve competitive FID scores. DBIM sampler generates higher-quality images but require large
NFEs. While CDBMs achieve strong FID scores with minimal NFEs, they require substantial training
costs. Our proposed Consistency Bridge Models (CBMs) outperform prior methods by achieving
state-of-the-art FID scores with ≤ 6 NFEs, reduced training cost, and similar or smaller model sizes.

Method DIODE (256×256) [33] Edges2Handbags (E2H) (64×64) [12]

Model Size (↓) Training Duration (↓) NFE (↓) FID (↓) Model Size (↓) Training Duration (↓) NFE (↓) FID (↓)
Other Diffusion-based Methods:

DDIB [29] – – ≥ 40 242.30 – – ≥ 40 186.84
SDEdit [23] – – ≥ 40 31.14 – – ≥ 40 26.50
Rectified Flow [17] – – ≥ 40 25.30 – – ≥ 40 77.18
I2SB [16] – – ≥ 40 9.34 – – ≥ 40 7.43

Diffusion Bridge Models:

Hybrid Heun [37] 534 Mil. 25.6×106 20 41.03 284 Mil. 102.4×106 20 46.74
534 Mil. 25.6×106 119 5.42 284 Mil. 102.4×106 119 1.83

DBIM [36] 534 Mil. 25.6×106 4 17.85 284 Mil. 102.4×106 4 4.14
534 Mil. 25.6×106 10 7.99 284 Mil. 102.4×106 10 2.49

Further Fine-Tuning of DBMs:

CDBM† [7] 534 Mil. 33.3×106 2 2.93 284 Mil. 110.1×106 2 0.80
Consistency-based Models (Training from Scratch):

CBM (Ours) 161 Mil. 11.5×106 4 5.61 284 Mil. 90.6×106 4 1.96
161 Mil. 11.5×106 6 3.79 284 Mil. 90.6×106 6 1.22

† CDBMs require a pretrained DBM that is further finetuned (refer to Section 3.4 and Figure 6).

CBM (Ours)

NFE 4 | FID 1.96

DBIM

NFE 4 | FID 4.14

Hybrid Heun

NFE 20 | FID 46.88

CBM (Ours)

NFE 4 | FID 1.96

DBIM

NFE 4 | FID 4.14

Hybrid Heun

NFE 20 | FID 46.88

Figure 5: Qualitative comparison on E2H 64 × 64 (Isola et al., 2017). CBMs produce superior
visual outputs with fewer NFEs relative to the HH (Zhou et al., 2023) and DBIM (Zheng et al., 2024)
samplers for DBMs (Table 2). xT are Edges, and x0 are Images.
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Figure 6: Comparing (a): Number of Training Iterations, and (b): Training Duration (images). CBMs
demonstrably require significantly less computational resource compared to DBMs and CDBMs,
taking just 26% and 51% of the training iterations for DIODE and E2H, respectively.

DBIM and surpassing all GAN-based and diffusion baselines. While DBIM tends to produce overly
smooth outputs, often lacking fine-grained details and exhibiting a plastic-like appearance, CBM
preserves intricate facial structures and textures. This leads to sharper, more anatomically faithful
generations that enhance both realism and alignment with xT .

Image Stylization on Face2Comics (256×256). Similarly, as shown in Figure 8 and Table 4,
CBMs outperform DBMs at both 7 and 14 NFEs, consistently generating higher-quality images.
Analytical studies presented in the subsequent discussion further demonstrate that increasing the
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CBM (Ours)

NFE 6 | FID 13.14

DBIM (Zheng et al.)

NFE 6 | FID 44.92

Hybrid Heun (Zhou et al.)

NFE 119 | FID 97.75

Figure 7: Qualitative comparison of CBMs with prior diffusion-based methods on the CelebAMask-
HQ 256×256 dataset (Lee et al., 2020). CBMs produce sharper, more coherent, and visually realistic
outputs, demonstrating superior semantic alignment and style fidelity compared to DBM baselines
with the HH and DBIM samplers.
Table 5: Evaluating the scalability of CBMs compared
to DBMs on increasing resolutions of the Face2Comics
dataset (Sxela, 2021). We train a DBM and CBM with
the same model design and scale it to resolutions of
64× 64 and 128× 128. Our CBM with the Multistep
Bridge (MB) Sampler significantly outperforms DBMs
with the Hybrid Heun and DBIM Samplers.

Method Face2Comics (64× 64) Face2Comics (128× 128)

Model Size NFE (↓) FID (↓) Model Size NFE (↓) FID (↓)
Diffusion Bridge Models:

Hybrid Heun [37] 101 Mil. 119 2.50 139 Mil. 119 31.28
DBIM [36] 101 Mil. 6 2.78 139 Mil. 6 21.76

Consistency Bridge Models:

CBM (Ours) 101 Mil. 6 0.89 139 Mil. 6 12.24

CBM  
(Ours)

NFE 4

DBIM  
(Zheng et al.)


NFE 4

Hybrid Heun  
(Zhou et al.)


NFE 119

Figure 9: Qualitative comparison at 128×
128 resolution on Face2Comics.

model capacity of CBMs leads to notable performance gains over prior approaches. As observed
in Table 4, CBMs consistently achieve lower FID scores with far fewer NFEs across all resolutions
compared to baseline DBMs. At a resolution of 256 × 256, our CBM attains an FID of 3.64 with
just 6 NFEs, outperforming HH and DBIM samplers, which yield FIDs of 13.29 (in 6 NFEs) and
52.39 (in 20 NFEs), respectively. We observe similar trends at 64× 64 and 128× 128 resolutions
presented in the following paragraph where the effect of model size is also observed.

Scalability of CBMs Compared to DBMs. To evaluate the scalability of CBMs, we assess their
performance across multiple image resolutions in comparison to DBMs. Specifically, we train
separate CBM and DBM models from scratch on the Face2Comics dataset at 64× 64, 128× 128,
and the primary 256× 256 resolution, as summarized in Table 5. We compare CBMs against DBMs
using HH and DBIM samplers. To accommodate the increase in resolution, we increase the model
capacity to meet dimensional requirements and ensure sufficient representational power for handling
more detailed inputs. We use 101M, 139M, and 161M parameters for the 64× 64, 128× 128, and
256× 256 models, respectively. Additional architectural details are provided in Appendix C.1.

Limitations and Future Work. Our work explores discrete-time CBMs, which can be affected
by discretization errors, requiring careful scheduling of timesteps. Following Lu & Song (2024),
investigating continuous-time frameworks for CBMs can present a promising research direction
that will help to address these issues. Next, analogous to CMs, the FID performance of CBMs
also plateaus with NFEs, providing diminishing returns with an increase in sampling steps. This
aspect can be tackled in future research, similar to Xie et al. (2024). Further research could explore

8
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Table 3: Quantitative results on CelebAMask-HQ
256× 256 for label-to-face generation. CBMs achieves
superior FID with fewer NFEs and a smaller model.

Method Model Training CelebAMask-HQ (256×256) [14]

Size (↓) Iterations (↓) Time (↓) NFE (↓) FID (↓)
GANs & Other Diffusion-based Models:

Pix2Pix [12] - - - 1 56.99
CycleGAN [38] - - - 1 78.23
BBDM [15] 534 Mil. - - 200 21.35

Diffusion Bridge Models:

Hybrid Heun [37] 534 Mil. 15.36×106 409.84 119 97.75
DBIM [36] 534 Mil. 15.36×106 20.64 6 44.92

534 Mil 15.36×106 104.24 30 18.99

Consistency-based Models:

CBM (Ours) 350 Mil. 15.36×106 8.10 4 18.41
350 Mil. 15.36×106 16.19 6 13.14

Table 4: Quantitative results on styliza-
tion on Face2Comics 256 × 256. CBMs
achieve superior FID with fewer NFEs
and a smaller model. Notably, our CBM
reaches an FID of 3.64 with just 6 NFEs,
outperforming HH and DBIM samplers by
a significant margin.

Method Model Size Face2Comics (256×256) [31]

Time (↓) NFE (↓) FID (↓)
Diffusion Bridge Models:

Hybrid Heun [37] 534 Mil. 24.57 20 52.39
DBIM [36] 534 Mil. 9.28 4 14.56

534 Mil. 25.64 6 13.29

Consistency Bridge Models:

CBM (Ours) 161 Mil. 6.30 4 14.06
161 Mil. 17.38 6 3.64

CBM (Ours)

NFE 4 | FID 14.06

DBIM (Zheng et al.)

NFE 4 | FID 14.56

Hybrid Heun (Zhou et al.)

NFE 20 | FID 52.39

Figure 8: Qualitative comparison between images generated by a DBM using the HH and DBIM
samplers, and a CBM with the Multistep Bridge sampler. When the DBM is sampled for 7 and 14
NFEs, the generated images are noisy and low-quality, whereas our CBM produces high-quality
images. Numerical analyses presented in Table 4 support these results. Performed on Face2Comics
256× 256 (Sxela, 2021); xT are Human Faces, and x0 are Comics.

extending CBMs to complex I2I tasks, such as text-based conditional generation (Luo et al., 2023),
video synthesis, and Video-Language-Action Models.

5 CONCLUSION

In conclusion, our research advances the field of I2I translation by introducing Consistency Bridge
Models (CBMs), which unify the iterative refinement capabilities of Diffusion Bridge Models (DBMs)
with the sampling efficiency of Consistency Models (CMs) (Song et al., 2023). CBMs emerge as a
compelling alternative to traditional diffusion-based approaches such as DDBM (Zhou et al., 2023),
BBDM (Li et al., 2023), and I2SB (Liu et al., 2023), offering fast, few-step I2I translation without
compromising output quality. By addressing key limitations in both speed and fidelity, CBMs pave
the way for scalable, high-quality I2I applications across diverse domains. We believe this framework
opens new avenues for future research in efficient generative modeling.

Use of Large Language Models. LLMs were employed exclusively for editorial refinement,
without influencing research design or substantive content.
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Ethics Statement. We affirm compliance with the ICLR Code of Ethics (https://iclr.cc/
public/CodeOfEthics). This work presents CONSISTENCY BRIDGE MODELS, a generaliza-
tion of consistency models that accelerates image-to-image translation compared to prior diffusion-
based approaches. All experiments utilized publicly available datasets; no human subjects or private
data were involved. Care was taken to avoid generating harmful, biased, or misleading content. Al-
though generative models carry potential misuse risks, our approach enhances efficiency and fidelity
without introducing new ethical concerns. We advocate responsible deployment and transparent
reporting in practical applications.

Reproducibility Statement. We have prioritized reproducibility by detailing the CBM training
and sampling algorithms, including their mathematical foundations and implementation, in the main
text and appendix. All datasets are publicly accessible and properly cited. The CBM training and
sampling pseudo-algorithms, evaluation protocols, and metrics are all fully described, and we intend
to publish the source code with reproduction instructions.
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A DIFFERENT FORMULATIONS FOR DIFFUSION MODELS

As introduced in Section 2.1, the reverse diffusion process is given by the PF ODE (Anderson, 1982;
Song et al., 2020b):

dxt =

[
f (xt, t)−

1

2
g(t)2∇xt

log pt(x)

]
dt, (7)

where the drift and diffusion coefficients are defined as:

f (xt, t) = xt
d
dt

logαt, and g(t)2 = −2σ2
t

d
dt

log

(
αt

σt

)
,

where αt := α(t) and σt := σ(t), for time t ∈ [0, T ] (where T > 0).

Different choices for αt and σt lead to distinct formulations of the diffusion process. Prior work
has proposed hand-crafted schedules to instantiate specific types of diffusion models, including the
variance-preserving (VP) (Song et al., 2020b; Zhou et al., 2023), variance-exploding (VE) (Karras
et al., 2022), and TrigFlow (Lu & Song, 2024) formulations. We summarize and compare the designs
of these formulations in Table 6.

Table 6: Design choices for widely-used diffusion formulations.

Formulation αt σt f (xt, t) g(t)2 SNRt = α2
t/σ2

t Domain of t

VP [27; 37] e−(0.5t2+0.05t)
√
1− e−(t2+0.1t) −(t+ 0.05)xt 2t+ 0.1 1/(e(t

2+0.1t)−1) [0.0001, 1]
VE [13] 1 t 0 2t 1/t2 [0.002, 80]
TrigFlow [18] cos(t) sin(t) − tan(t)xt 2 tan(t) cot2(t) [0, π/2]

B PRECONDITIONING AND PARAMETRIZATION OF CBMS

As discussed in Section 3.1, we parametrize CBM fθ as a combination of input xt and network Fθ

for stable training as:

fθ(xt, t,xT , T ) = cskip(t, T )xt + cout(t, T )Fθ(cin(t, T )xt, cnoise(t),xT ),

where cin(t, T ), cnoise(t), cskip(t, T ), and cout(t, T ) are time-dependent differentiable scaling functions.
Works such as Song et al. (2023) and Karras et al. (2022) also follow such formulations to improve
the training stability.

Denote σ2
data, σ2

prior, and σcov as the variance of x0, variance of xT , and the covariance between the two,
respectively. Further, let SNRt := α2

t/σ2
t , the signal-to-noise ratio at time t. Let a(t, T ) := αt

αT
· SNRT

SNRt
,

b(t, T ) := αt

(
1− SNRT

SNRt

)
, and c(t, T ) = σt

√
1− SNRT

SNRt
. We detail the formulations for cin(t, T ),

cskip(t, T ), and cout(t, T ) in Table 7. Lastly, we define the noise scaling, cnoise(t) := 1000 t.
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Table 7: Preconditionings for CBM Parametrization. Let at:=a(t, T ), bt:=b(t, T ), and ct:=c(t, T ).

cin(t, T ) cskip(t, T ) cout(t, T )(
a2tσ

2
prior + b2tσdata + 2atbtσcov + c2t

)−1/2 [
a2t

(
σ2

dataσ
2
prior − σ2

cov

)
+ σ2

datac
2
t

]1/2

· cin(t, T )
(
btσ

2
data + atσcov

)
· c2in(t, T )

C EXPERIMENT DETAILS

C.1 TRAINING DETAILS

We provide thorough details for the training procedures of DBMs and CBMs in Table 8 and Table 9,
respectively.

Table 8: Training details for DBMs for various I2I Translation tasks.

Dataset Edges2Handbags (E2H) [12] DIODE [33] Conditional Inpainting on ImageNet [3] CelebAMask-HQ [14] Face2Comics [31]

Hyperparameters and Training Details

Bridge Formulation VP VP I2SB [16] VP VP
Noise Conditioning, cnoise 250 ln t 250 ln t 1000 t 250 ln t 250 ln t
Learning Rate 1e-4 1e-4 1e-4 2e-4 2e-4
EMA Rate 0.9999 0.9999 0.9999 0.9993 0.9993
Noise Discretization Schedule Karras Karras Karras Karras Karras
Noise Discretization Steps 40 40 40 40 40
Batch Size 256 64 256 64 64
Total Training Iterations 400K 400K 2380K 120K 120K
Number and Type of GPUs 4 A100 4 A100 8 A800 (& V100) 8 A6000 8 A6000

Model Details
Model Channels 192 256 256 256 256
Dropout 10% 10% 10% 10% 10%
Time Embedding Cosine Cosine Cosine Cosine Cosine
Channel Multiplier (1, 2, 3, 4) (1, 1, 2, 2, 4, 4) (1, 1, 2, 2, 4, 4) (1, 1, 2, 2, 4, 4) (1, 1, 2, 2, 4, 4)
Number of Residual Layers 3 2 2 2 2
Attention Resolutions (8, 16, 32) (8, 16, 32) (8, 16, 32) (8, 16, 32) (8, 16, 32)
Model Capacity (Mparams) 284 534 534 534 534

Table 9: Training details for CBMs for various I2I Translation tasks.

Dataset Edges2Handbags (E2H) [12] DIODE [33] Conditional Inpainting on ImageNet [3] CelebAMask-HQ [14] Face2Comics [31]

Hyperparameters and Training Details
Bridge Formulation VE VE VE VE VE
Noise Conditioning, cnoise 250 ln t 250 ln t 1000 t 250 ln t 250 ln t
Learning Rate 1e-4 1e-4 2e-4 2e-4 2e-4
EMA Rate 0.9999 0.9999 0.999 & 0.9993 0.9993 0.9993
Noise Discretization Schedule Karras Karras Karras Karras Karras
Noise Discretization Steps 40 40 40 40 40
Batch Size 256 64 160 64 64
Total Training Iterations 400K 400K 168K 120K 120K
Number and Type of GPUs 4 A100 4 A100 4 H200 8 A6000 8 A6000

Model Details
Model Channels 192 256 256 256 256
Dropout 10% 10% 0% 10% 10%
Time Embedding Cosine Cosine Cosine Cosine Cosine
Channel Multiplier (1, 2, 3, 4) (1, 1, 2, 2, 4, 4) (0.5, 0.5, 1, 2, 3, 4) (1, 1, 2, 2, 4, 4) (1, 1, 2, 2, 4, 4)
Number of Residual Layers 3 2 2 2 2
Attention Resolutions (8, 16, 32) (8, 16, 32) (8, 16, 32) (8, 16, 32) (8, 16, 32)
Model Capacity (Mparams) 284 534 398 534 534

D EXTENDED RESULTS

We present more qualitative results on Conditional Inpainting ImageNet 256 × 256 (Deng et al.,
2009) in Figure 10. We train a CBM from scratch (described in Table 9). We use the DBM model
weights provided by Zheng et al. (2024), which is a heavily finetuned version of an N2I generating
DPM on ImageNet 256× 256 that was published by Dhariwal & Nichol (2021).

We observe that CBMs achieve an FID of 5.61 in just 4 NFE, surpassing DBM with DBIM sampler’s
17.85 FID in the same NFEs. Note that compared to CBM, the DBM is trained for considerably
longer; the CBM was trained only for 26.88M images, whereas the DBM is trained for 609.28M
images in total (506.88M for DPM, and 102.4M for additional finetuning), taking relatively over 21×
longer. This further shows the training efficiency of CBMs compared to DBMs.
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NFE 20 | FID 41.03 NFE 4 | FID 17.85 NFE 4 | FID 5.61

CBM (Ours)DBIMHybrid Heun

Figure 10: Qualitative comparison on the DIODE dataset (Vasiljevic et al., 2019) at 256 × 256
resolution. Our CBMs with Multistep Bridge Sampler generate higher-quality images with fewer
NFEs when compared to DBMs with HH (Zhou et al., 2023) and DBIM (Zheng et al., 2024) (Table 2).
xT are Surface Normal Maps, and x0 are Images.

CBM (Ours)

NFE 4 | FID 1.96

DBIM

NFE 4 | FID 4.14

Hybrid Heun

NFE 20 | FID 46.88

CBM (Ours)

NFE 4 | FID 1.96

DBIM

NFE 4 | FID 4.14

Hybrid Heun

NFE 20 | FID 46.88

Figure 11: Qualitative comparison on Edges2Handbags 64× 64 (Isola et al., 2017). CBMs produce
superior visual outputs with reduced numerical function evaluations relative to the HH (Zhou et al.,
2023) and DBIM (Zheng et al., 2024) approaches employed in traditional DBMs (Table 2). xT are
Edges, and x0 are Images. Note that when sampling CBMs (Algorithm 2), every intermediate xti
contains randomly added noise that results in the final output image looking slightly different from
the ground truth x0 image. Regardless, they maintain high-level of realism and image quality, as seen
in the quantitative results.

We present additional results for E2H 64 × 64 in Figure 11, and CelebAMask-HQ 256 × 256
in Figure 12. Once again, CBMs achieve better image quality and FIDs in fewer NFEs compared to
DBMs with HH or DBIM samplers.
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CBM (Ours)

NFE 6 | FID 13.14

DBIM (Zheng et al.)

NFE 6 | FID 44.92

Hybrid Heun (Zhou et al.)

NFE 119 | FID 97.75

Figure 12: Qualitative comparison of CBM to other baselines on CelebAMask-HQ 256× 256.
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