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Abstract

Understanding how Transformers work and how they process information is key
to the theoretical and empirical advancement of these machines. In this work, we
demonstrate the existence of two phenomena in Transformers, namely isolation
and continuity. Both of these phenomena hinder Transformers to learn even simple
pattern sequences. Isolation expresses that any learnable sequence must be isolated
from another learnable sequence, and hence some sequences cannot be learned by
a single Transformer at the same time. Continuity entails that an attractor basin
forms around a learned sequence, such that any sequence falling in that basin
will collapse towards the learned sequence. Here, we mathematically prove these
phenomena emerge in all Transformers that use compact positional encoding, and
design rigorous experiments, demonstrating that the theoretical limitations we shed
light on occur on the practical scale.

1 Introduction

The massive adoption of generative artificial intelligence (Al), and in particular the use of Large
Language Models (LLMs), has lead to a growing interest in understanding how these machines work
and what they can and cannot compute [Sl]. While this endeavor has been primarily addressed from
an empirical, task performance perspective [[L1, 9} 3], it has now become clear that a fundamental
theoretical understanding of the Transformer (the architecture behind the success of LLM-based
applications [19]) is a crucial step towards explaining and overcoming the observed limitations.
[2 20, [7]]. This paper is a contribution to a recent trend of work devoted to the development of such
an understanding by revealing the mathematical properties of Transformers [17] that underlie these
limitations.
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1.1 Our contribution

In this work, we identify two fundamental properties of Transformers: Isolation and continuity (see
below), which severely constrain their core abilities to display basic elements of intelligent behavior.

As a case study, consider the following scenario inspired by tests such as IQ. Given a sequence of
symbols generated by a simple rule, an “intelligent agent” (a human or an LLM) is presented with
an initial finite portion of the sequence and asked to guess the next symbol. The agent is allowed to
request to see more symbols in the sequence before providing an answer. Thus, the challenge is to
eventually understand the underlying pattern and apply it.

For example, if the presented sequence is “00000000000000000000”, we would expect the agent
to understand the underlying constant pattern and answer “0”. If the presented sequence is now
“1231231231231231231”, we would still expect the agent to understand its periodic pattern and
answer “2”. A slightly more complicated sequence would be “10100100010”. What is the underlying
pattern? perhaps this sequence seems too short to confidently recognize it, so we request some more
symbols and get

“10100100010000100000100000” 1)

The pattern now is much more clear, let us call it the increasing spacing pattern: the 1s are separated
by growing blocks of Os, each time with one more 0. Before the last 1, we see five Os, so we expect
the agent to answer “0” to complete, after the last 1, a block with six Os.

Given the immense practical success of LLMs, one could think that these and other sequences
generated by a similarly simple rule would be easy for them to distinguish. In this work, we challenge
this view and argue that this is not the case for a large class of Transformers that includes most of
the modern LLMs. Namely, we show that for decoder-only Transformers with compact positional
encoding (CPE), the set of sequences that they can “distinguish” in the above sense is rather
limited. As we will see below, these limitations have several strong practical implications.

We consider Transformers that, when presented with some prompt, compute a probability distribution
over the set of tokens. Now, let us say that a Transformer T eventually learns an infinite sequence
of symbols a = ajagas . .. if, for any long enough prefix of « that is presented to 7', when asked
“what is the next symbol in the sequence?”, the token that has the highest probability according to the
distribution computed by 7" is the symbol in « that comes after this prefix.

Here, we require that the probability of the most likely token is at least some positive constant larger
than the probability of any other token. This constant may depend on « and can be arbitrarily small,
but it has to be independent of the length of the prompt. This is exactly when the top probability can
be made arbitrarily close to 1 by setting the temperature to some small but fixed positive constant,
making sure that T" outputs the correct prediction with high probability.

Isolation. We establish a phenomenon of isolation in the learnability landscape of any decoder-only
CPE Transformer 7. More specifically, we show that any infinite sequence « that is eventually
learned by T must necessarily be isolated from any other infinite sequence that is also eventually
learned by T'. This means that there is a ball of positive radius § around « in the space of infinite
sequences such that no other sequence within this ball (except for those that differ from « in only
finitely many places) can also be eventually learned by 7'. The ball is taken with respect to the relative
Hamming distance, that is, it consists of all sequences that differ from « in a set of positions whose
asymptotic frequency is at most ¢. This phenomenon is illustrated in Figure[Th. In other words, a
Transformer required to learn two sequences that are too close to each other will face a dilemma in
the sense that it can only learn one of them.

Representational collapse and continuity. What prevents a ball around « from containing other
sequences that are also learnable by 7" is a strong form of representational collapse within the ball.
Namely, for any sequence 3 within the ball, the output distributions of 7" on any two long enough
prefixes of o and (3 of the same length, will be so close that the top-probability token will be the same
for both prefixes, namely the next symbol of . Now, if 3 differs from « at infinitely many places, T’
must necessarily make infinitely many mistakes in predicting /3, which is therefore not eventually
learned by T'.

Such representational collapse follows from Theorem|[T} our main technical result, which is continuity
of decoder-only CPE transformers. Intuitively, continuity means that making some small modifica-



tions to a prompt cannot uncontrollably change the distribution computed by a Transformer. More
precisely, as long as 7' is a decoder-only CPE Transformer, for any € > 0 there exists a threshold
0 > 0 such that, to produce a change by more than ¢ in the distribution computed by 7" on a given
prompt, it is necessary to change at least a d-fraction of the tokens in the prompt (excluding the last
token, which we always assume remains unchanged). Notably, the value of J for a given & depends
only on 7" and not on the length of the prompt. See Figure[Ib for an illustration. In a sense, it means
that the only way out from isolation is for a Transformer to give up certainty and thus provide its
predictions with doubts. We note that Theorem [I]is actually formulated for finite sequences. The
conclusions we derive from it for infinite sequences are meant to illustrate a concrete limitation to
perform inductive reasoning, understood as the ability to derive general rules and principles from the
presented information. The limitation for infinite sequences means that the transformer will never be
able to understand the rule that generates the sequence, regardless of how long the prompt is.
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Figure 1: Isolation and Continuity in decoder-only Transformers. (a) Isolation: Illustration of
the isolation phenomenon in the space of infinite sequences >*. Only a few sequences (black dots)
are eventually learnable by the Transformer 7', and each is surrounded by a region where no other
distinct sequence is learnable (blue dot). (b) Continuity: This figure illustrates how two similar
input sequences «, 8 € X" of length n > 3 over the alphabet > = {01, 02, 03}, which share the final
token (v, = f3,,) and differ in two positions (dg (o, 8) = 2/n < §), are mapped by the Transformer
T to probability distributions with at most e distance in the simplex A(X).

Implications. It is not hard to see that for any particular infinite sequence «, there exists a decoder-
only CPE Transformer that eventually learns it (one can store « inside the positional encoding).
Arguably, a Transformer tailored like this to learn a single sequence is not very useful. We show that
learning even a single additional sequence might already be problematic for LLMs. For example,
isolation implies that there is no decoder-only CPE Transformer that can eventually learn both the all-
0 sequence and the increasing spacing pattern sequence illustrated in equation (I). Indeed, although
they differ at infinitely many positions, the frequency of positions where they differ converges to 0.
This means that any positive-radius ball around the all-0 sequence must also contain the increasing
spacing sequence from (I)). Hence, by isolation, no decoder-only CPE Transformer 7" can eventually
lean both sequences. As a result, we see that not every pair of infinite sequences « and /3 can be
eventually learned by a single decoder-only CPE Transformer.

One may argue that the pattern in (I) is too complicated, since it essentially boils down to counting, a
task in which Transformers have been reported to struggle before [1}21]. But what about periodic
sequences? They are arguably the simplest infinite family of patterns. In fact, one can show that for
any finite set of periodic sequences, there exists a decoder-only CPE Transformer 7" that eventually
learns them all. However, our results imply that the set of all periodic sequences is impossible to
be eventually learned by any single Transformer. Indeed, for any 7" that learns the all-0 sequence
there is, by isolation, a ball of some positive radius ¢ around the all-0 sequence such that no other
sequence in this ball that contains infinitely many 1’s can also be eventually learned by 7". But for
any k > 1/, this ball includes the following periodic sequence:

5=00...0100...0100...01..., 2)
—_——
k k k
which therefore cannot be learned by T'.



More generally, let us consider the concept of overwhelming strings introduced in [16]. For a
given transformer 7', a string of tokens s, a fixed final token ¢, and an integer m, we say that 7' is
“overwhelmed” by s if the output of T" evaluated on s plus any additional string ¢ and fixed final
token ¢, T'(s + t 4 q), is the same regardless of the chosen string ¢, as long as its length is at most
m. In other words, being overwhelmed by some string s means that 7" is completely insensitive to
the part of the prompt that contains ¢. As pointed out by [16], this has several important practical
consequences. For instance, it can be used to show "no-go" results in prompt engineering, or to prove
severe limitations of transformers to compute highly sensitive functions (such as PARITY). As an
immediate consequence of our work, it follows that if « is an infinite sequence eventually learned by
T, then T must be overwhelmed by any sufficiently long prefix s of a. Indeed, by isolation, there
exists d > 0 such that appending m arbitrary tokens to s (but keeping the same final token) leaves the
output of T" unchanged whenever m/(|s| + m) < d, where |s| denotes the length of s. In particular,
T will be overwhelmed by any such s.

1.2 Related work

As we have already mentioned, our work shows that every Transformer is overwhelmed by infinitely
many strings, a concept introduced in [[16]. Their results are however of a different nature, as they
focus on developing algorithms to rigorously detect whether a given Transformer 7" is overwhelmed
by a given string s. Our work is of theoretical nature, proving continuity and isolation and stipulating
the associated limitations in decoder-only Transformers.

Continuity has been used before to demonstrate difficulties that Transformers have in learning func-
tions where small changes in the input leads to a substantive change in the output (e.g., PARITY) [6].
Moreover, it was shown that for such functions, as the sequence length increases, the loss landscape
becomes more steep, leading to further complications in the learning process [7]. Importantly,
previous continuity results have only been established for encoder-only Transformers, where each
token attends to the whole input, not only to previous tokens as in the decoder-only case (i.e., with
causal masking). Under the encoder-only assumption, due to dispersion of softmax coefficients [[20],
flipping the value of one token leads to a O(1/n)-change in other tokens [6].

The same is not verbatim true for the decoder-only architecture, and this constitutes the main difficulty
of extending continuity to it. The problem is that causal masking breaks the symmetry of tokens in
softmax, and earlier tokens have more influence. Flipping, say, the first token, leads to significant
changes not only in itself but in the few first tokens also, given that softmax coefficients are not too
dispersed for them yet. A careful argument is required to show that this effect can be controlled, and
this is the main technical contribution of our paper.

Representational collapse in transformers, as far as we are aware, has been previously observed by
Barbero et al. [1]] only in the special case of two input sequences that are identical except that we
repeat the last token in one of them (which is therefore one token larger). Moreover, their result
requires two important assumptions: (i) the distance between the coordinates defining the positional
encoding tends to O as the input sequence length increases, (ii) the absence of positional information
at the level of Value matrices. Whereas the second assumption is in line with the widely used and
state-of-the-art rotatory positional encoding method [[18], it does not allow to extrapolate the results
to other positional encoding methods. The first assumption is simply absent from any standard
application of LLMs.

In comparison, our results apply in much more generality. We just need the value, the attention, and
the activation functions to be continuous. Therefore, they apply far beyond the standard dot-product
softmax attention with activations computed by MLPs, — even the Lipschitz property, crucial for
the Hahn’s continuity argument [6], is not required for our proof. Besides, as mentioned before, we
require compactness of the positional encoding, but in contrast to [1], we can freely use it at the level
of values, not only in attention.

1.3 Experiments

In the remainder of the paper, we first define the continuity theorem (Section [3)), followed by the
isolation one (Section ). All the proofs of our theorems and lemmas can be found in Appendix
[A]l For each theorem we present a series of experimental results to illustrate the extent to which
the limitations predicted by our theorems can be observed in practice. We do this for several of



the most recent versions of modern LLMs. We investigate continuity in three applications: the
all-0 sequence, a Python code syntax error detection task, and a natural language inference task.
For isolation, we evaluate how well decoder-only models can generate periodic sequences. Our
results not only provide strong evidence that our theoretical findings are relevant in practice, but
also offer a comprehensive picture of how the specific differences among these modern architec-
tures affect the severity of the observed limitations. Code for our experiments can be found at )
furrutiav/doubts-and-dilemmas-neurips25.

2 Preliminaries

By | - || in this paper we mean the l,-norm, but all our results hold for any other norm due to the
equivalence of any two norms in R? up to a constant factor.

Attention layers The main part of the Transformer architecture (see Figure[6) is the attention layer.
Definition 1. A d-dimensional decoder-only attention layer is a function L: (R?)* — (R%)*, given by

a “positional encoding” p: N> — R% a continuous “value function” val: R* — R%, a continuous
“weight function” w: (R%)3 — (0, +00), and a continuous “activation function” F': R? x R? — R

Given an input sequence of vectors & = (1, ...,2,) € (RO, the layer L outputs a sequence of
vectors § = (Y1, .. .,Yn) = L(Z), computed as follows. First, one computes the “attention weights”
and “values”:
wU:’LU(.’E“.’EJ,p(Z,j)), z7J:17ana ZSJ
v; = val(xj), j=1,...,n.
then a sequence a = (ay, ..., ay) of “attention vectors” as follows:
W01 + Wa2V2 + ...+ W;j;V; )
a; = AL 272 217 ji=1,...,n,

w1 + Waj + ...+ Wy
and finally, one sets y; = F(a;,x;), j=1,...,n.
Observe that y;, the j-th output of L on input (21, ..., x,), depends only on x1, . .., z;. This implies

that decoder-only attention layers are “prefix-monotone” functions: if a Z; is a prefix of Z5, then
L(zy) is a prefix of L(Z3).

A positional encoding p: N2> — R? is called compact if there is a compact K C R? such that
p(i,j) € K foralli,j € N,

Transformers By Transformers we mean functions that maps finite words over some alphabet X to
probability distributions over letters of 3. To be more in line with terminology, accepted in the study
of transformers, we refer to “words” as “sequences” and to their “letters” as “tokens”.

The set of probability distributions over a finite set X is denoted by A(X).

Definition 2. A d-dimensional k-layer decoder-only Transformer over a finite alphabet 3. is a
function T: ¥* — A(X), given by an input embedding e: ¥, x N — R?, k d-dimensional attention
layers Ly, . .., Ly, and a continuous function P: R? — A(X).

On an input sequence of tokens « = « . ..ay, € X", the output probability distribution T () is
computed as follows. First, we set
xj =e(j,7), ji=1,...,n.
Then we compute the composition of attention layers L1, . . ., Ly on the input sequence of vectors:
(Y15--sYn) = Lgo...oLy(x1,...,2p).
Finally, we set T'(w) = P(yn).

An input embedding is compact if for some compact K C R? we have e(0,i) € K forall ¢ €
3,7 € N. Overall, we call a Transformer T compact if it uses compact input embedding and compact
positional encoding in all layers.

For notational simplicity, we assume that each layer has just 1 attention head. However, our model
subsumes the case when an attention layer can have O(1) attention heads as we can just compute
each head in a separate layer.
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3 Continuity

Let dgy (o, B) denote the relativized Hamming distance between two sequences of tokens a, 5 € X™:

Theorem 1. Ler T be a compact decoder-only Transformer. Then for any € > 0 there exists
0 > 0 such that for any n € N, for any sequence of tokens o, 5 € X" with the same last token, if
dp (e, B) < 0, then |T(a) = T(B)|| <e.

Corollary 1 (Next-token propagation principle, informal). Given T a CPE decoder-only Transformer,
if two prompts are very similar, end in the same token, and the next token prediction for one of them
is computed with certainty, then one can expect that the next-token prediction for the other sequence
is the same as for the first one.

3.1 Empirical support for continuity: Zero fundamental sequence

We investigate the behavior of decoder-only language models when presented with two highly similar
prompts (whose Hamming distance is small), denoted « and 5. According to Corollary [1} if the
Hamming distance is small enough, then we expect the model to produce the same next-token
prediction for both sequences. In order to test this (see more details in the Appendix [B.2), we
define an input prompt « as a sequence of 190 consecutive Zerosﬂ We also generate 100 sequences

1, B2, ..., B3 independently, where 3! is generated perturbing « at max(1, [ - 189]) positions
chosen uniformly at random (ignoring the last position) and y € (0, 1/2] controls the proportion of
differing positions. Thus, the relative Hamming distance between o and B@ is (almost) . All the
sequences (including «) are appended to the common instruction prefix: “Complete the sequence
with Os and 1s:”, and submitted to the model as input. We then generate the next token N («)
and N (B;) for every i« = 1,...,100. We measure the model sensitivity, counting how many /3’s
produce the next token different from the next token of « (in our case 0), i.e.

NTS, (a) = [{i € {1,2,..,100} : N(8)) # N(a)}],

where a higher count indicates greater sensitivity to changes in the input.

y<0.2 y=0.2
3
80 Model
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20 gemma-2-2b phi-1_5
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Figure 2: Sensitivity of decoder-only language models to input perturbations at v < 0.2 and v > 0.2.

As shown in Figure[2] the results support the Corollary [I] If the proportion of differing symbols is
small enough (v = 0.01, corresponding to 1 symbols), the number of diverging samples is null for all
the models, suggesting the existence of an attractor (representational collapse) around the all-zero
sequence. In fact, even at v = 0.05 (9 symbols) the value of NTS,, is O for all models except two,
phi-4. Somewhat surprisingly, we observe that smaller models sometimes expose larger sensitivity
(larger value of NTS.,), for example, gpt-2 and gpt-2-x1.

Furthermore, we analyzed whether sensitivity is impacted by the location of the perturbations in the
sequence. Across models, we found a consistent trend: sensitivity is the highest when perturbations
occur at the end of the sequence (Appendix [B.3). Middle positions result in lower sensitivity, and
early tokens yield almost no sensitivity at all.

Additionally, we observe that modifying the standard attention (softmax) with the log-length scaled
attention (ssmax) yields a marked increase in sensitivity (Appendix [B.4). This support the assump-
tion that compact positional encoding in attention weight posses a key role on the effect of input
perturbations.

'We chose this number to ensure a small enough § for all selected models.



3.2 Empirical support for continuity: Code Syntax Verification

We now turn to SYNTAX VERIFICATION (see Appendix [B.5|for design explanation), a more practical
LLM application. As in the previous section, we consider decoder-only language models that receive
two similar prompts, « and §3, differing up to a small Hamming distance. According to Corollary|[I}
for sufficiently small Hamming distances, we expect the model to produce the same next-token
prediction for both prompts, even though the task requires the model to provide different outputs. Of
course, different models will typically have different thresholds below which the Hamming distance
classifies as being sufficiently small in this sense. However, even if some small Hamming distance is
not quite below the theoretical threshold of a model, we still expect the model to predict the same
next token on a large set of pairs of input sequences. SYNTAX VERIFICATION is designed precisely to
visualize the extent to which this phenomenon can be observed at scales of practical relevance.

Our « and /3 prompts share the same structure, as illustrated in Figure [I0] Each sequence begins
with the same main instruction (MI), followed by three Exercises, namely, two example exercises
(shots) and one test exercise. Each Exercise E; in the prompt consist of four components: an
Instruction, a Python Code snippet, a Question and an Answer. The o and 3 prompts share the same
first two Exercises, but they have a small discrepancy in the test case Exercise. The two prompts
differ in a single token within the test Exercise (blue boxes in Figure [T0] Appendix [B.5). In the
particular case of Figure the o prompt includes the “=" token in the correct version, which is
replaced by the “for” token in the /3 prompt (incorrect Versionﬂ For all tests, we query the LLM
in the same way: “Does the following Python code compile without syntax errors?
If no error is detected, return 1; otherwise, return 0.”.

We built a dataset of 100 python function exercises presented in two versions, with and without
syntax error. Each exercise is embedded as a final test exercise in both (correct and incorrect) formats
(Figure[T0). We consider a model to be sensitive if it produces different answers when presented with
the o and 3 prompts. More specifically, we give to the model the prompt o and generate a token o.
Then we compare the probability of o under the prompt o (denoted by P(c|)) with the probability
of the same token o under the prompt 3 (denoted by P(c|8)). To visualize sensitivity, we plot a
point with coordinates (P(c|«), P(c|3)). Intuitively, any substantial deviation from the diagonal
line should correspond to trials where the model is sensitive, and vice versa.

Our results are depicted in Figure 3} While a vast majority of the examples do not show sensitivity,
the proportion of trials where sensitivity is observed varies significantly across different models. First,
we observe that model size (at least within the same family, see gemma-3 models) has an influence on
sensitivity, with bigger models displaying more sensitivity. Second, phi-4, a model that is primarily
trained on code, fails spectacularly, providing the same output for all cases (a rather striking result).
Lastly, Meta-1lama-3-8B-Instruct displays sensitivity in 21% of the examples. These results
suggest that while the theoretically required Hamming distance might be quite small and heavily
depend on the particular model, the consequences of its existence may well become relevant at scales
of practical interest.

3.3 Empirical support for continuity: Natural Language Inference

To further provide support for the continuity phenomenon at the practical scale, we evalu-
ate an LLM on a natural language inference (NLI) task analogous to the SYNTAXVERIFICA-
TION task. The new dataset consists of ~ 50 examples derived from the babi-nli datasef)]
Each instance includes a premise, a hypothesis, and a label (O or 1). To meet theoretical
requirements, we lengthen the premise using neutral text from Wikipedia, creating a long-
premise that preserves the original label and constitutes the « sequence. To create the cor-
responding [ sequence we modified a single key word at the beginning making sure that
it entails a change to the original label. For example, we define premise « (with positive
label) as "Yann is hungry. Jason is bored. Antoine is hungry. Yann went back
to the kitchen. Yann picked up the apple there...". We define premise § (with
the opposite label) as "Yann is hungry. Jason is bored. Antoine is hungry. Yann

?In practice, we define « as the prompt generating the greater discrepancy between the top-1 and top-2 token
probability.
*https://huggingface.co/datasets/tasksource/babi_nli
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Figure 3: Sensitivity in the SYNTAXVERIFICATION task. This figure illustrates the sensitivity of
five models to subtle syntactic changes in Python functions for pairs of input prompts. Each dot
represents the model’s probability assigned to a target token o under two prompts, a and 5. Blue
dots indicate sensitive cases where the model’s output changed in response to the syntactic errors,
as expected. dots mark non-sensitive cases where the model failed to adapt its prediction,

despite the change in input. Percentages in each subplot indicate the proportion of samples where the
model exhibited sensitivity.

went back to the kitchen. Yann picked up the pear there...". We then define the
hypothesis as "Yann picked the apple because she was hungry.".

Considering that Meta-Llama-3-8B-Instruct provided the best results in the SYNTAXVERIFICA-
TION task, we tested this model on the new NLI task in two scenarios with different input lengths,
ranging from ~ 1000 tokens to ~ 7500 tokens. As depicted in figure [ our results show that both
accuracy and sensitivity decline with input sequence length (as predicted by Corollary I)).

Our results demonstrate that, even in this simple natural language inference task, sensitivity remains

fairly low. This experiment thus provides an important limitation stemming from Theorem|T]at the
practical scale.
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Figure 4: Accuracy and Sensitivity of Meta-Llama-3-8B-Instruct in the NLI task.

4 Isolation

We start with a formalization of the notion of eventual learnability.
Definition 3. A decoder-only transformer T eventually learns an infinite sequence &« = a3 ... €
Y% if there exists € > 0 and ny € N such that for all n > ng, we have

T(og...on)(nt1) > T(ar...an)(0) +¢
forany o € ¥\ {ant1}-
An easy consequence of Theorem I]is that eventual learnability is not affected by making finitely
many changes in a sequence.

Proposition 1. Let T be a compact decoder-only transformer, and a,& € X be two infinite

sequences, differing only in finitely many positions. Then T eventually learns « if and only if it
eventually learns &.



We now formulate our isolation theorem. For that, we require an extension of relative Hamming
distance to infinite sequences:

di(a, ) =liminfdg(aq ..., B1-.- Bn), a,fex?.

n— oo

Theorem 2. Let T be a decoder-only compact transformer. Then for any infinite sequence «,
eventually learnable by T, there exists § > 0 such that no infinite sequence (3 that differs from « in
infinitely many positions and satisfies dg («, 8) < 0 is eventually learnable by T.

Equivalently, this theorem states that if a set of infinite sequences S has a point « € S such that
arbitrarily close to « in dg-distance there is a sequence from .S that differs from « at infinitely many
positions, then no decoder-only compact transformer can eventually learn all sequences from S.

In particular, if two sequences «, § differ in infinitely many positions but satisfy dg («, 8) = 0, then
no compact decoder-only transformer 7" eventually learns both of them. For example, there is no
decoder-only compact transformer that eventually learns more than one of the following sequences:
(i) The all-zero sequence (0, 0, ...), (ii) The indicator sequence of the powers of 2, (iii) The indicator
sequence of the squares, and (iv) The indicator sequence of the primes. Indeed, we just have to
note that any two of these sequences differ in infinitely many positions, but their relative Hamming
distance is 0.

One can show that for any finite family of infinite sequences that are all a positive d ;7-distance away
one from another, there is a single decoder-only transformer 7" that eventually learns them all. In
particular, this applies to any finite subfamily of the family of periodic sequences. However, the
isolation theorem implies that this is not doable for the whole family of periodic sequences.

Corollary 2. There is no decoder-only compact transformer that eventually learns all periodic
sequences.

4.1 Empirical support for isolation: Periodic Pattern Generation
To test Corollary we consider periodic sequences of the form 3 = (0P=11)70, i.e.

Ist block 2nd rth
P — ——
B;:0...010...01...0...010,

7 blocks of length p

where p is the period and r is the number of repetitions. We construct input sequences appending /3,
to the common instruction prefix: “Complete the following periodic sequence with Os
and 1s:”. The model is then evaluated to continue the pattern over 505-autoregressive steps.

We assess performance using two metrics: (i) Success (binary metric) captures whether the model
perfectly reproduces the correct continuation. A correct sequence yields a checkmark (v'), while
any deviation results in a cross (X), and (ii) Certainty (metric between 0 and 1) is measured as the
difference between the top two probabilities for the next token after (p — 2)-autoregressive stepﬂ A
larger difference indicates greater model confidence.

Figure 5] presents results from the L1ama-2-7b-hf model across r = 1,4, 10 repetitions and periods
from 2 to 40 (see Appendix for an extended analysis to a broader set of models with varying
sizes and architectures). Columns correspond to different numbers of pattern repetitions, which can
be thought of varying the number of examples (here the pattern to be repeated) seen by the model
prior to the generation phase. Our results show that there exists a critical period beyond which the
model cannot successfully learn the periodic sequence correctly (first row; as predicted by Corollary
[2). This critical period seems to increase with the number 7 of examples the model is shown. Lastly,
certainty (second row) shows that the difference in probability between the two top tokens displays a
small dip for the next-token. This dip becomes more pronounced around the critical period, where
the model initially predicts the first one token (blue dots) correctly, but then begins to generate the
zero token (pink dots) instead.

4At this stage, we expect to predict the first one token following the generation of p — 2 zeros.
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Figure 5: Evaluation of periodic sequence generation using L1lama-2-7b-hf.

5 Conclusion — Doubts and Dilemmas

Our results show that Transformers (or, maybe, their developers) face inevitable dilemmas: even
among very simple sequences they have to choose some that they will not be able to learn. This relies
on fundamental properties of continuity and isolation but also on our assumption about the absence
of doubts — the next token has to be predicted with certainty, its probability has to be the largest one
with some margin. One could avoid dilemmas by giving up the no-doubts assumption, but one cannot
avoid both — continuity and isolation imply that either dilemmas or doubts (or both) will be faced.

It is worth noting that the limitations we identify are not inherent to all sequence models. As shown
in [[12], simple state-space models such as RNNs can recognize any regular language. Thus, Theorem
[T]can be seen as establishing a formal separation between the representational abilities of RNNs and
Transformer architectures. This suggests a principled reason for why augmenting Transformers with
state-space components (as done in models like Jamba) may help overcome representational collapse.

Limitations The key requirement for our results is compactness of positional encoding (meaning
that its vectors are bounded in norm by some absolute constant). This subsumes such standard
positional encodings like sinusoidal [19] and rotary [18]], but not some others like absolute positional
encoding or log n-scaling [4] (now referred as scalable softmax [[14]). Local layer norm is subsumed
by our model as well because it is a continuous transformation, as long as some positive constant
€ > 0 is added to the denominator (as standard in practice). It is worth to point out that some
theoretical works have considered layer norm with € = 0. In this regime, layer norm falls out of the
scope of our results, as it is no longer continuous (and it is not even defined when the denominator
is 0). Using layer norm with € = 0, Chiang and Cholak [4] compute PARITY with arbitrarily high
certainty, thus escaping continuity limitations (see also [8|] where these limitations are avoided due to
the use of unbounded positional encoding).

Another potential way to escape continuity limitations is the use of chain-of-thought (CoT; see
Appendix for preliminary analyses). As long as just O(1) CoT iterations are allowed, this is
subsumed by our results (our model allows for any constant number of layers, so we could just
add more of them, simulating each CoT inference in a new layer). Now, when the number of
CoT iterations grows with the input length, this logic breaks, and the models might potentially
become much more intelligent. Indeed, on the theory side, it was shown that transformers with
unbounded number of CoT inferences become Turing complete [[15} 13 [10]. However, none of these
results is obtained for softmax with compact positional encoding, leaving the theoretical power of
CoT-equipped transformers in this regime open.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, we demonstrate theoretically the phenomenons of Isolation and continuity
in Appendix [A]and provide the theorems in the main text. We also test the corollaries in the
main text, that give support to the theorems.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, the limitations are discussed in paragraph within section [3]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
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* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: All complete and correct proofs are provide in appendix [A]
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, all the information to replicate the paper is available in the text and
appendices. Nonetheless we provide the code that can replicate all the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Yes, the data and code are open and available.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Yes, the paper does include all the experimental details to reproduce the work.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Although we have experiments, our results do not focus on statistical analysis
to make our point.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does include experiments, but only at the inference level and
compute inference time is irrelevant to this work.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Yes, the research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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10.

11.

12.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact related to our work.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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13.

14.

15.

Justification: All the creators and original owners of assets are properly credited and all use
are respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: same justification as question 14.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No LLMs were used in the writing of this paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Missing Proofs

A.1 Proof of Theorem[T]

Proof. Given two sequences of tokens « = a1 ..., 8 = B1 ... By € X™ with the same last token
and dp(a, 8) < 4, we input them into the Transformer as sequences of vectors

x1 =e(a,1),..., 2, = e(an,n), 1 =e(f1,1),...,Z, = e(Bn,n). 3)

Since the input embedding is compact, all vectors z;, Z; belong to a fixed compact set K (not
depending on n, u, v). The last vectors x,,, T,, coincide (given that the last token of « and 3 coincide).
Besides that, sequences of input vectors coincide in at least (1 — d)n positions (« and 8 coincide in
at least (1 — &)n positions).

We have to show that the last vectors yff), @(f) will stay sufficiently close throughout all layers of our

transformer 7', where

(yg_t)a-'wyr(zt))? @(1t)w-~7§§f))

are output sequences after ¢ attention layers of T on z = (z1,...,z,) and on T = (Z1,...,Z,),
respectively. More precisely, for any € > 0, we have to show that the existence of 6 > 0 such that
conditions dg (u,v) < 4, u, = v, imply Hyff) - %t)|| <e.

We show that through induction by the number of layers. To make this work, we have to strengthen the
statement we are proving by induction — it will not be enough to just show that after one attention layer,
the last vectors stay sufficiently close. We will also have to maintain that sequences of vectors stay
sufficiently close to each other “globally”. We will establish this through a lemma, staying roughly
the following: for any attention layer L, if two input sequences of vectors are sufficiently close
globally, and their last vectors are also sufficiently close, then the output sequences stay sufficiently
close globally, and the last output vector stay sufficiently close as well.

We define “global similarity” between two sequences of vectors as follows. Given x = (x1,...,2,) €
(R and Z = (T4, ...,%,) € (R?)", define sim(x, 7) as the minimal § > 0 such that ||z; —7;|| < 6
for at least (1 — &)n positions i € {1,...,n}.

Observe that for input sequences in (3), we have sim(x,Z) < § (just because they coincide in at least
(1 — 6)n positions). The following lemma finishes the proof of the theorem, establishing that global
similarity + last-position similarity is preserved through an attention layer.

Lemma 1. Let L be a decoder-only attention layer with compact positional encoding, and let
K C R? be a compact set. Then for any € > 0 there exists § > 0 such that the following holds. For
any n € N, and for any two sequences of vectors x,T € K", we have:

S’Lm(gjv'/f) S 53 H:CTL - En” S 5 = S’Lm(ya@\) S &, Hyﬂ - /y\n“ S g,

where

W1 un) = L(2), (G-, 9n) = L(T).

The only thing it remains to note, besides the proof of Lemmal[I} is why after any number of layers,
the vectors y(t), @@ belong to some compact set K, depending solely on the transformer but not on

n,U, . Thislis proved by induction over layers by continuity of the value and activation functions
val and F. The output in the n-th position of an attention layer is computed as y,, = F(an, z,),
where x,, is the input vector to the attention layer in the n-th position, and a,, is the attention vector
in that position. All vectors ,, come from a compact K. Value vectors v,, = val(z,,) thus belong to
val(K), which is a compact set by continuity of val. Take now any closed ball B containing both K
and val(K). Vectors a,,, as convex combinations of v,,’s, belong to B. It remains to observe that

F(B x B) is compact by continuity of F'.

A.1.1 Proof of Lemmall]

It turns out that it is enough to establish the following weaker version of Lemma|I] where we forget
about global similarity of output sequences y, 9.
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Lemma 2. Let L be a decoder-only attention layer with compact positional encoding, and let
K C R? be a compact set. Then for any € > 0 there exists § > 0 such that the following holds. For
any n € N, and for any two sequences of vectors ©,T € K™, we have:

sim(z,Z) <0, |len —Znl| <0 = [lyn —nl <e,

where
y=(y1,---,Yn) = L(z), y="1,--,Un) = L(T).

Let us start by deriving LemmaI]from Lemma 2] We have to derive that if § is small enough, then
not only the last two output vectors .,,, J,, are e-close (as Lemma says), but at least (1 — &)n output
vectors are e-close.

Imagine we start with two sequences of vectors x, 7 € K™ such that sim(z,7) < ¢ and ||z, — T || <
J. Let E C {1,...,n} be the set of “bad positions” (where ||z; — Z;|| > ¢). By definition of the
similarity distance, its “relative size” (the fraction |E|/n) is at most . Next, for any §; > 0, by
choosing § to be small enough, we can achieve that the relative size of E in the restriction to the
first j positions, for any j > en/2, does not exceed d;. For instance, by setting § = (d1¢)/2, we can

bound: )
E0{l ) Bl on _

J j T en/2

In particular, we can do that for ; with which the conclusion of Lemma [2]is true for €. As we
are free to choose 6, we can also assume that § < §;. We claim now that ||y; — ;|| < ¢ for any
j >en/2,j ¢ E. This is because all input vectors in positions not from E are d;-close (because they
are even d-close), this includes x;,2; as j ¢ E, and the number of the first j positions not from E is
at least (1 — 61)j.

As a result, we can have |ly; — y;|| > € only for j € E or for j < en/2. Thus, we can bound the
number of such positions by en/2 + dn. By making sure that § < £/2, we obtain that sim(y,y) < €.

It remains to establish Lemmal[2l

Proof of Lemmal[2] Take a closed ball B with the center at 0 that contains K, val(K), and p(4, j) for
all 4, j € N. Such B exists because K is compact, val is continuous which means that val(K) is
compact, and because the positional encoding is compact meaning that p(4, j) all belong to some
fixed compact for 4, j € N. Observe that on both inputs, a;’s (attention vectors), also belong to B as
convex combinations of values vectors. Let R be the radius of B.

We have
Yn = F(an,xn), Yn = F(amxn)v
where F is the activation function of L, and a,,, a,, are the n-th attention vectors on inputs = and ,
respectively. By uniform continuity of F' on the compact B x B, there exists ; > 0 such that
||an _anH < 517 ||17n - En” <6 = ||F(anaxn) - F(an,a'/r\n)|| <e.
It now suffices to show the existence of 0 < § < §; such that

sim(z,T) <6, ||lzn —Tn|| <0 = |lan — anl| < 1.

Let w: (R?)® — (0,+00) be the weight function of L. We apply it only to inputs from a fixed
compact set B>. Hence, we can assume that for some universal constants 0 < ¢ < C, the function w
takes values in [c, C]. Moreover, by the uniform continuity of w on B3, if we change each of 3 inputs
by at most ¢ in the norm, the output value changes by at most cg, for some c¢5 — 0 as d — 0.

Similarly, there exists ds with ds — 0 as & — 0 such that |[val(z) — val(Z)|| < ds forall 2,7 € K
with ||z — Z|| < 6.
The norm of the difference a,, — @,, can be bounded as:

—~ n
< i=1

i=1

‘U)lnifZWn - winviWn

lan —anll =

w, W, - W, W,
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where

v; = val(x;), U; = val(Z;),
Win :w(xi,xn,p(i,n)), 7jl}in :w(ih/x\n:p(ian))a i = 17-”7”’

o~

Wyo =win + ... + Wpp, W, =W, + ...+ Wnn-

Let E denote the set of positions ¢ € {1,...,n} with ||z; — Z;|| > J. Since sim(x,Z) < d, we have
|E| < dn. Since we are additionally given that ||z, — Z, | < d, by definition of ¢s, we have:
|wm — ’L/l}”l| < Cs for ¢ ¢ E. (5)

In turn, by definition of ds, we have:

[[vi — 05| < ds fori ¢ E. (6)

Now, since the function w takes values in the interval [c, C], we obtain the following bound:
|win — Win| < 2C fori € E. @)
From , using the bound |E| < dn, we derive:
Wy — W < |win — @in| + - + |Wnn — @1n] < csn + 2C|E| < (cs +2C8)n  (8)
(importantly, the coefficient before n in the last upper bound goes to 0 as § — 0).

We now upper bound the right-hand side of (@). First, the denominator there is at least c?n?, because
the weight function is at least ¢ for inputs under consideration. It remains to upper bound the
numerator by an expression f(§)n? for some function f(§) — 0 as § — 0. Each term in the
numerator we bound using the triangle inequality:

Hwianvi - {U\anniJ\zH S ||(wzn - {U\zn)anzH
+ (| Win W (vi — 05) |-
We have w;,,, W;, < C, W, Wn < Cn, and ||v; ], ||0;]] < R (the weight function is bounded from

above by C, and value vectors v;, U; come from B, the ball of radius R with the center at the origin).
Overall, we get:

win Wt — Gin Wi < (|win — @in| - CR+ [Wa/n — Wy /n|- CR+ |v; — 5] - C*)n

For i ¢ E, this expression is bounded by o(1)n as 6 — oo by (), (6), and ). For i € FE, this
expression is O(n). Overall, the numerator in (@) is upper bounded by o(1)n? + |E| - O(n) <
o(1)n? + O(6n?) = o(1)n? as § — 0, as required. O

O

Remark 1. Since for Encoders the proportion of exceptions does not change with the iterations (as
in the decoder-only), the Theorem also holds for them (and the argument is actually simpler).

A.2  Proof of Proposition

We show that if a compact decoder-only transformer 7" eventually learns «, and & differs from « in
finitely many places, then 7" eventually learns @ too. By definition, there exist € > 0 and ng such that
for all n > ng, we have:

T(ay...an)(ant1) = T(ay...an)(0) +¢ )

forany o € ¥\ {ay,+1}. We show that the same holds for @ and for all large enough n with £ /2. By
Theorem(I] there exists & > 0 such that on any two sequences of tokens with the same length, the same
last token, and of relative Hamming distance at most d, the output distributions of T" are (¢/10)-close
in £,-norm. Since « and & differ just in finitely many places, we have a,, = G, Q11 = Q1 and
di(aq ..., Qy ... 0,) < ¢ for all large enough n. For such n, if we replace every occurrence of
a by @ in (9), the left-hand and the right-hand side change by at most £/10, preserving the inequality
with £/2, as required.
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A.3 Proof of Theorem 2|

If « is eventually learnable by T', by definition, there exist € > 0 and n( such that for all n > ng, we
have:

T(og...0n)(nt1) > T(ay...0n)(0) +¢ (10)
forany o € ¥\ {1} By Theorem[l] there exists § > 0 such that for any two finite sequences of
tokens that have the same length, the same last token, and are of relative Hamming distance at most 6,
the output distributions of T on them are £ /3-close in the .,-norm. We now take an arbitrary infinite
sequence [ that differs from « in infinitely many places and satisfies d g (v, 5) < § = min{6/3,1/3},
and show that 3 is not eventually learnable by 7.

To this end, it is enough to show that

T(ﬁl ---ﬁn)(an-‘rl) > T(ﬁlﬁn)(ﬁn-‘rl)a (11)

for infinitely many n. This would contradict eventual learnability of 3 by T as [3,,41 has to be the
top-probability token of T'(3; . .. §,,) starting from some 7.

We take an arbitrary Ny € N and show the existence of n > Ny for which holds. Since

di(a, ) = liminfdg (ay ... om, B1...Bn) <9,
n— oo

there exists m > max{2Ny, 2n¢} such that dg (o ...m,B1...5m) < 1.16. The sequences
Q1 ...y and By ... B, cannot differ in all positions of the second half of these sequences because
their relative Hamming distance is bounded by 1.1§ < 1.1 - (1/3) < 1/2. Hence, we have oy = 3¢
for some ¢ € [m/2, m]. The relative Hamming distance between «; ...y and 3y ... 3, is at most
twice the relative Hamming distance between v . . . au, and 31 .. . By, Indeed, the first pair can only
have fewer differences, and the length of sequences in the first pair (that goes into the denominator in
the relative Hamming distance) is at most twice smaller than in the second pair. This gives us

di(ay .. op, Br...Be) <226 <2.2(5/3) <4

for some ¢ > m/2 > max{Ny,ng} such that ay = Sy. Take the smallest n > ¢ such that
Qi1 7 Bry1 Which exists because « and 3 have infinitely many differences. Observe that:

d(aq...an,f1...0n) <dpg(ar...apBr...0e) <6

because oy . .., and 3y . .. 3, are obtained from «; . ..y and 3y . . . B¢ by appending some number
of equal tokens. By definition of 4, the distributions T'(c; ... ;) and TSy . . . 5,,) are (£/3)-close in
the /,.-norm (observe that o,, = [3,, as otherwise we could take smaller n, so the last tokens coincide
and continuity can be used). Since n > £ > ng, we have for n. If we replace T'(y ... o)
by T'(8 ... Bn), both the left-hand and the right-hand sides change by at most £/3, meaning strict
inequality is preserved for any o, in particular for 0 = f3,,+.1. We thus obtain forn > ¢ > Ny,
as required.

A.4  Proofs of Corollary 2]

For Corollary [2] assume for contradiction there is a decoder-only compact transformer 7" that
eventually learns all periodic sequences. In particular, it learns the all-0 sequence, and by Theorem 2]
there exists § > 0 such that no sequences 3, having infinitely many 1s and satisfying dg (o, 8) < 6
is eventually learnable by 7. On the other hand, there is a periodic sequence [, satisfying these
restrictions, namely
8=00...0100...0100...01...
k k k
for any k > 1/4. It has infinitely many 1s, but dg (o, ) = 1/k < §, a contradiction.

B Supporting figures

B.1 Visualization of Decoder-only Architecture

Figure [6|presents a high-level visualization of a standard decoder-only transformer, illustrating how
an input string « is processed through k attention layers in a causal and sequential manner. Each
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token is first embedded via a function e, and then transformed layer by layer—respecting the prefix-
monotonicity of the architecture, where the output at position j depends only on the first j tokens.
This structure enforces the autoregressive property fundamental to decoder-only transformers. The
final layer produces a vector y,,, which is mapped to a probability distribution over the vocabulary
via a projection function P. This figure serves to clarify the computational assumptions underlying
our theoretical results.

Vi [ Output Probabilities (P) \
| *

. . Attention Layer (Lk) Next-token Probabilities
Activation Function () T J -
Attention (a)) Attention Layer (L2) | 0123456789 .
Weight Function (w) > - S
Positional Encoding (p) L Attention Layer (L1)

Value Function (val)

trtrttt trtttt
Input embedding (e)

0000010..010000

X1, X2, . X1 Xj

Figure 6: Schematic of a decoder-only transformer.

B.2 Visualization of Continuity

du Input Sequence Next-token Probabilities

0 v 0000000..000000— [}
1/100 v 0001000..000000}— t
5> 2100 v 0000010..010000—— [}

5<gi0 x 0010001..010000—» S

0123 ..

Figure 7: Tllustration of continuity in decoder-only transformers under small input perturbations.

Figure[7) visualizes the continuity property established in Corollary [T} which shows that decoder-only
transformers are stable under small input perturbations. In this example, we compare two sequences:
«, consisting of 100 zeros, and 3, which is derived from « by flipping some zeros to ones. The relative
Hamming distance dy (v, 8) determines whether the perturbation is within a predefined threshold
0. When this threshold is satisfied, the transformer’s next-token output distribution remains within
a small ¢ distance of the original. The figure highlights both perturbed sequences that respect the
d-constraint and those that do not, illustrating how small input changes can result in correspondingly
small or large changes in the output distribution.

B.3 Effect of Divergent Positions

We explore how the sensitivity of models varies with the position of input perturbations. Specifically,
we measure the behavior of the model when a fraction of the symbols in a sequence of zeros are
flipped to ones. To parametrically control where these flips occur along the input sequence, we
sample discrete positions using the Beta-Binomial distribution, whose probability mass function is
given by

BETABINOMIAL (K | 1, u, v) = (n) B(k+u,n—k+v)

k B(u,v) ’
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where k € {0,1,...,n} denotes the position index, n is the sequence length (equal to 189 in our
experiments), B(-, -) denotes the Befa function, and u, v are the shape parameters. These parameters
control the positional bias of the perturbations: toward the beginning (v < v), center (v = v, with
u,v > 1), or end (u > v) of the sequence.

The plots in Figure |8 show the next-token sensitivity NTS,, over 8 different positional biases of the
perturbed tokens. We observe a clear trend across models: perturbations near the end of the input
have a significantly greater impact on the model’s output compared to those near the beginning or
middle. This reflects a position-dependent sensitivity, where later tokens carry more influence over
the model’s immediate prediction.

Model
gpt2 gemma-2b llama-2-7b-hf phi-1
gpt2-large gemma-2-2b Meta-Llama-3-8B phi-1_5
gpt2-xI gemma-3-4b-it Meta-Llama-3-8B-Instruct phi-4
u=0.999,v=0.999 (0.5,0.5) (2,2) (5,5)
100 i J ~ A
>
2 50
b=
0
(5,0.5) (5,2) (2,5) (0.5,5)
1
% A ~~ -
50
0

011 .2 3 4.5 01.1 .2 3 45 01.1 .2 .3 4.5 .01.1 .2 3 45
Prop. of
differing symbols (y)

Figure 8: Sensitivity of decoder-only language models to input perturbations, visualized across
different Beta-Binomial settings. The corresponding shape parameters are provided in the title and
the probability mass function is displayed in the upper left corner of each panel.

B.4 Boosting sensitivity

We investigate how modifications to the attention aggregation function affect a model’s sensitivity to
small input perturbations in the setup described in Section[3.1} In particular, we compare the standard
softmax attention with ssmaxE], a variant designed to increase sensitivity. Originally introduced
as log-length scaled attention by Chiang and Cholak [4] and later revisited as scalable softmax
by Nakanishi [14], this formulation amplifies differences in logits based on sequence length. As
illustrated in Figure 9] replacing softmax with ssmax significantly increases next-token variability
under small input changes.

B.5 Visualization of Code Syntax Verification

Figure [I0)illustrates the SYNTAX VERIFICATION task, where the model is presented with a sequence
of Python function snippets and asked to determine whether the final snippet is syntactically correct.
Each prompt consists of two small examples (F; and Fs) with correctness annotations, followed by
a third large example (F3), which is the target for prediction. We construct two versions of each
prompt—one where F3 is correct and one where it contains a subtle syntax error (e.g., incorrect use
of a keyword such as for). These two prompts differ by only a few tokens, allowing us to evaluate
whether the model is sensitive to small but meaningful syntactic changes.

We extend our analysis for SYNTAX VERIFICATION task for multiple models versions (see Figure
[TT). As expected, instruct-tuned models perform significantly better on this task than base models,

’SSMAX;(2) = SOFTMAX((slogn) z), where z denotes logits of length n, and s € (0, 1] is a scaling factor,
defaulting to 1

24



With Softmax With SSMax
100 L] Model
80 ,s openai-community/gpt2
: openai-community/gpt2-large
>~ 60 °%: ; google/gemma-2b
%] P00 05 1 15
[ google/gemma-2-2b
= 40 : meta-llama/Llama-2-7b-hf
20 | meta-llama/Meta-Llama-3-8B
H : microsoft/phi-1
0 ¢ d microsoft/Phi-3-mini-4k-instruct

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
Prop. of differing symbols (y)

Figure 9: Next-token sensitivity of decoder-only language models to input perturbations. Each line
shows the number of sample sequences (out of 100) that produce a different next-token than zero, as
a function of the proportion of differing symbols. Left: Models with standard softmax in attention
layers. Right: Models replaced with ssmax in attention layers.

( N\
Prornpts Instruct: Read the following python code and

answer the question.
' “python
def foo(b):

a =10

return a > b

Question: Does the Python code compile
without syntax errors? If no error is
detected, return 1; otherwise, return 0.
Answer:

Instruct: Read the following python code and
answer the question.
' “python
def foo(b):
a for 10

if du(a,p) <3, then:

Prompt

aorf

Language
Model

return a > b

Question: Does the Python code compile
without syntax errors? If no error is

detected, return 1; otherwise, return 0.

Answer:
- J

Figure 10: Visualization of the SYNTAXVERIFICATION task. The model is prompted with Python
code snippets and must predict whether the final function contains a syntax error. MI refers to the
main instruction in the prompt: You are a Python expert. Read the following instructions carefully
and respond to the questions.

consistent with their enhanced ability to follow instructions and answer questions. Surprisingly, even
for relative simple prompts E| error rates remain high. Instruct models still display levels of errors
above 15%, while base models above 80%.

B.6 Syntax Code Verification on Reasoning Models

We extend our analysis for SYNTAXVERIFICATION task for reasoning models 03-mini and 04-mini,
trained with long instances of CoT (Figure[T2). Unsurprisingly, we observe that these models are
much better at solving the task. Strikingly, we observe that for such simple task prompts, these
powerful models still display levels of errors greater or equal to 20%. These result suggest that CoT
cannot always escape continuity, which continues to affect the performance at scales of practical
relevance, even for advanced reasoning models.

Here we consider a smaller function dataset compared to standard dataset used for models in Section
and reasoning models in Section [B-6]
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Figure 11: Sensitivity in the SYNTAX VERIFICATION task. This figure illustrates the sensitivity of five
models to subtle syntactic changes in Python functions for pairs of input prompts. Each dot represents
the model’s probability assigned to a target token o under two prompts, « and 3. Blue dots indicate
sensitive cases where the model’s output changed in response to the syntactic errors, as expected.
Orange dots mark non-sensitive cases where the model failed to adapt its prediction, despite the
change in input. Percentages in each subplot indicate the proportion of samples where the model
exhibited sensitivity. For this analysis, we consider a simpler function dataset (i.e functions with less
than 100 tokens) in contrast to the main experiment, which involves longer functions (over 100 tokens)
for gemma-3-4b-it, gemma-3-12b-it, phi-4 and Meta-Llama-3-8B-Instruct and reasoning
models.

79

03-mini

N
o

74

o4-mini e
_ 25 mmm Sensitivity

mmm No Sensitivity

o

20 40 60 80
Number of Samples

Figure 12: Sensitivity in the SYNTAXVERIFICATION task for reasoning models 03-mini and
o4-mini. Each bar represents frequency of samples where the model was either sensitivity or not to
syntactic changes, under two prompts, o and 3 which differ by a small number of token that change
the expected output. Blue bars represent the sensitive cases where the model’s output changed in
response to the syntactic errors, as expected. Orange bars represent non-sensitive cases where the
model failed to adapt its prediction, despite the change in input.



B.7 Effect of Different Models for Periodic Generation

We extend our analysis of periodic pattern generation, evaluating how various decoder-only language
models perform when tasked with completing structured, periodic sequences 3, = (0P=11)"0.This

prefix is defined as r = 10 repetitions of a base pattern 0P~ '1 plus a token zero.

Figure[I3|presents results for several CPE transformer models of varying sizes. We observe that each
model exhibits a critical period—a threshold value of p beyond which the model fails to reliably
complete the pattern. For smaller periods (e.g., p < 10), models achieve perfect or near-perfect
extrapolation, while performance degrades as the period increases, eventually resulting in complete
failure for periods beyond the model-specific threshold. Notably, all models show this limitation
except some of them: for examples gemma-2b and gemma-2-2b.

C Prompt formatting

We present the prompt format used for test sensitivity in models for SYNTAX VERIFICATION task.
Here we follow the same intruction structure for all model adapting this to each specific special
tokens. For reasoning model, we consider the same structure in order to ensure comparable results.

<bos><start_of_turn>user

You are a Python expert. Carefully read the following python codes and answer to the
questions.<end_of_turn>

<start_of_turn>model

OK.<end_of_turn>

<start_of_turn>user

Instruct: Read the following python code and answer the question.

¢ ¢ ‘python

{{python_shot_functionl}}

ccc

Question: Does the Python code compile without syntax errors? If no error is detected, return 1; other
wise, return 0.<end_of_turn>

<start_of_turn>model

Instruct: Read the following python code and answer the question.

Answer: 1<end_of_turn>

<start_of_turn>user

¢ ¢ ‘python

{{python_shot_function2}}

ccc

Question: Does the Python code compile without syntax errors? If no error is detected, return 1; other
wise, return 0.<end_of_turn>

<start_of_turn>model

Answer: O<end_of_turn>

<start_of_turn>user

Instruct: Read the following python code and answer the question.

¢ ¢‘python

{{python_test_function}}

ccc

Question: Does the Python code compile without syntax errors? If no error is detected, return 1; other
wise, return 0.<end_of_turn>

<start_of_turn>model

Answer:
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Figure 13: Evaluation of periodic sequence generation using diverse models. Rows correspond to fix
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<|im_start|>system<|im_sep|>

You are a Python expert. Carefully read the following python codes and answer to the questions.<|im_end|
<|im_start|>user<|im_sep|>

Instruct: Read the following python code and answer the question.

¢ ¢¢python

{{python_shot_functioni}}

cce

Question: Does the Python code compile without syntax errors? If no error is detected, return 1; other
wise, return 0.<|im_end|>

<|im_start|>assistant<|im_sep|>

Answer: 1<|im_end|>

<|im_start|>user<|im_sep|>

Instruct: Read the following python code and answer the question.

¢ ¢‘python

{{python_shot_function2}}

(X1

Question: Does the Python code compile without syntax errors? If no error is detected, return 1; other
wise, return 0.<|im_end|>

<|im_start|>assistant<|im_sep|>

Answer: 0<|im_end|>

<|im_start|>user<|im_sep|>

Instruct: Read the following python code and answer the question.

¢ ¢‘python

{{python_test_function}}

(X1

Question: Does the Python code compile without syntax errors? If no error is detected, return 1; other
wise, return 0.<|im_end|>

<|im_start|>assistant<|im_sep|>

Answer:

Meta-Llama-3-Instruct

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a Python expert. Read the following instructions carefully and respond to the
questions.<|eot_id|><|start_header_id|>user<|end_header_id|>

Instruct: Read the following python code and answer the question.

{{python_shot_functionil}}

Question: Does the Python code compile without syntax errors? If no error is detected, return 1; other
wise, return 0.<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Answer: 1<|start_header_id|>user<|end_header_id|>

Instruct: Read the following python code and answer the question.

{{python_shot_function2}}

Question: Does the Python code compile without syntax errors? If no error is detected, return 1; other
wise, return 0.<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Answer: 0<|eot_id|><|start_header_id|>user<|end_header_id|>

Instruct: Read the following python code and answer the question.

{{python_test_function}}

Question: Does the Python code compile without syntax errors? If no error is detected, return 1; other

wise, return 0.<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Answer:
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