
Under review as submission to TMLR

Continual Pre-training of MoEs: How robust is your router?

Anonymous authors
Paper under double-blind review

Abstract

Sparsely-activated Mixture of Experts (MoE) transformers are promising architectures for
foundation models. Compared to dense transformers that require the same amount of
floating-point operations (FLOPs) per forward pass, MoEs benefit from improved sample
efficiency at training time and achieve much stronger performance. Many closed-source and
open-source frontier language models have thus adopted an MoE architecture. Naturally,
practitioners will want to extend the capabilities of these models with large amounts of newly
collected data without completely re-training them. Prior work has shown that a simple
combination of replay and learning rate re-warming and re-decaying can enable the continual
pre-training (CPT) of dense decoder-only transformers with minimal performance degradation
compared to full re-training. In the case of decoder-only MoE transformers, however, it
is unclear how the routing algorithm will impact continual pre-training performance: 1)
do the MoE transformer’s routers exacerbate forgetting relative to a dense model?; 2) do
the routers maintain a balanced load on previous distributions after CPT?; 3) are the same
strategies applied to dense models sufficient to continually pre-train MoE LLMs? In what
follows, we conduct a large-scale study training a 500M parameter dense transformer and
four 500M-active/2B-total parameter MoE transformers, following the Switch Transformer
architecture and a granular DeepSeek-inspired architecture. Each model is trained for 600B
tokens. Our results establish a surprising robustness to distribution shifts for MoEs using
both Sinkhorn-Balanced and Z-and-Aux-loss-balanced routing algorithms, even in MoEs
continually pre-trained without replay. Moreover, we show that MoE LLMs maintain their
sample efficiency (relative to a FLOP-matched dense model) during CPT and that they can
match the performance of a fully re-trained MoE at a fraction of the cost.

1 Introduction
Sparsely-activated MoE transformers achieve significantly stronger performance than FLOP-matched dense
models (e.g., dense models requiring the same amount of floating point operations (FLOPs) per forward pass).
This is particularly advantageous in today’s foundation model lifecycle, where a model spends the majority of
its lifetime FLOPs being inferenced. Many closed-source and open-source frontier language models have thus
adopted an MoE architecture (Dai et al., 2024; DeepSeek-AI et al., 2024; Jiang et al., 2024; Abdin et al., 2024;
DeepSeek-AI et al., 2025b;a). Given the clear advantages of MoEs over dense transformers, practitioners will
certainly want to update MoEs on new data as is currently done for dense transformers.

Continual pre-training with replay, learning rate re-warming, and re-decaying has been shown to be a
simple but effective solution for updating pre-trained dense autoregressive transformers on large amounts
of new data (Ibrahim et al., 2024; Gupta et al., 2023; Parmar et al., 2024) and is competitive with full
re-training (Ibrahim et al., 2024), while being much cheaper. An open question is whether the same strategies
are sufficient to continually pre-train MoE LLMs? However, MoE pre-training has been notoriously difficult
due to instabilities introduced by the routing algorithm and the need to maintain a balanced load across
experts (Lepikhin et al., 2021; Shazeer et al., 2017; Fedus et al., 2022; Zoph et al., 2022). During continual
pre-training, these challenges may be exacerbated by the distribution shift.

Without proper care, MoE transformers learn greedy routing strategies that overutilize certain experts,
leading to poorer downstream performance and poorer accelerator utilization. During MoE pre-training,
load balancing strategies are used to prevent such negative outcomes (Fedus et al., 2022; Zoph et al., 2022;

1

Under review as submission to TMLR

Clark et al., 2022; Anthony et al., 2024; Dai et al., 2024). However, the load-balancing algorithms used in
SOTA MoEs were not specifically designed for the non-IID data distributions encountered during continual
pre-training. Adapting the router’s decisions to a new distribution during CPT may compromise the balanced
load on previous distributions, potentially leading to exacerbated forgetting and poor accelerator utilization.
Avoiding these failure modes is critical for successfully updating MoE foundation models without the need for
full re-training, but the continual pre-training of MoEs has not yet been thoroughly studied in the literature.

In this work, we fill the gap by providing a systematic study of MoE continual pre-training. Specifically, we
select two popular routing algorithms and two popular MoE architectures used in state-of-the-art existing
work (Dai et al., 2024; Muennighoff et al., 2024; Fedus et al., 2022; Clark et al., 2022) to yield four different
MoEs for our study. We then pre-train each MoE language model on 400B tokens of FineWeb and continually
pre-train them on 200B tokens of code data and German web crawl data. Taking the strongest MoE
architecture, we compare its performance to full re-training baseline on both datasets. Our contributions can
be summarized as follows.

• We establish the effect of replay and infinite learning rate (LR) schedules on the forgetting and
routing imbalance dynamics of MoE transformer LMs during CPT.

• We demonstrate that a Penalty-Balanced (e.g. with Z and Aux loss) MoE following the DeepSeek
architecture can successfully match the performance of a full re-training baseline, at a fraction of the
cost.

• We show that MoEs using either Penalty-Balanced or Sinkhorn-balanced routing algorithms are
surprisingly robust to distribution shifts in terms of 1) language modeling performance, 2) evaluation
benchmarks, and 3) maximum routing imbalance.

• We provide a comprehensive analysis of how routing decisions change during continual pre-training
that provides insight into how MoEs adapt to new distributions and forget previous ones.

2 Background

This section provides a concise summary of the relevant background for our study. A more detailed version
can be found in Section A of the appendix.

Continual Pre-training of LLMs. Continual pre-training (CPT) extends pre-training to one or more new
distributions. Concretely, continual pre-training occurs when a model is trained on a sequence of datasets
D0, D1, . . . , DN with different distributions, N ≥ 2, and each dataset is sufficiently large (e.g., > 100B
tokens in the case of language). Recently, Ibrahim et al. (2024) established that CPT LLMs can match the
performance of full re-training by simply repeating the pre-training schedule (cosine annealing) for CPT and
replaying previous data. However, if one has control over the initial pre-training, it is possible to further
improve CPT by using an infinite learning rate schedule (Janson et al., 2025).

Sparsely-activated MoE transformers differ from their dense counterparts by dynamically routing tokens
in a sequence. Algorithms for dynamically selecting among experts, known as routing algorithms, are therefore
central to MoEs and may play a crucial role during distribution shifts. In this work, we focus on studying
two prominent Top-k routing algorithms from recent state-of-the-art (SOTA) works: Penalty-Balanced
Top-k (PBTk) routing (Shazeer et al., 2017; Dai et al., 2024; Zoph et al., 2022; Fedus et al., 2022) and
Sinkhorn-Balanced Top-k (SBTk) routing (Clark et al., 2022; Anthony et al., 2024). PBTk methods
add a penalty term (Aux Loss) to the overall loss to encourage a balanced load across experts. In addition,
several recent SOTA works (Dai et al., 2024; Team, 2024) also include z-loss (Zoph et al., 2022) to penalize
large-magnitude router logits and promote stability. We use both in combination under the name of PBTk
routing. SBTk methods cast the assignment of tokens to experts as a linear assignment problem (Clark et al.,
2022). The Sinkhorn-knopp algorithm (Knopp & Sinkhorn, 1967) provides an approximate solution to this
problem which can be efficiently computed on GPUs and can be sped up by choosing a favourable initial
condition (Anthony et al., 2024). We refer to sinkhorn routing using the initialization of Anthony et al. (2024)
as SBTk in this work.

2

Under review as submission to TMLR

German
Dense

German
MoE

Stack
Dense

Stack
MoE

0

200

400

600

C
om

pu
te

 C
os

t
In

 T
ok

en
s

(B
)

200 200 200 200

600 600 600 600

(a) Compute Cost (↓)

German
Dense

German
MoE

Stack
Dense

Stack
MoE

0

2

4

6

M
ed

ia
n

La
ye

r-
w

is
e

M
R

I

0.0

4.05

0.0

3.84

0.0

4.84

0.0

3.59

(b) Median MRI, FineWeb (↓)

German
Dense

German
MoE

Stack
Dense

Stack
MoE

0

2

4

6

M
ed

ia
n

La
ye

r-
w

is
e

M
R

I

0.0

4.15

0.0

3.46

0.0

5.81

0.0

4.07

(c) Median MRI, Ger. & Stack (↓)

German
Dense

German
MoE

Stack
Dense

Stack
MoE

0

1

2

AV
G

 F
in

al
Va

lid
at

io
n

Lo
ss

2.16
1.9 1.98

1.81

2.16
1.9 1.96

1.78

(d) AVG Validation Loss (↓)

German
Dense

German
MoE

Stack
Dense

Stack
MoE

0

20

40

60

AV
G

 E
ng

lis
h

E
va

l.
Pe

rf
or

m
an

ce

48.15
53.61

49.21
53.7

48.42
53.94

49.57
54.79

(e) AVG English Eval. Acc. (↑)

German
Dense

German
MoE

Stack
Dense

Stack
MoE

0

10

20

30

AV
G

 D
ow

ns
tr

ea
m

E
va

l.
Pe

rf
or

m
an

ce 25.27
27.65

7.37 7.81

25.45
27.59

3.76
7.44

Continual
Pre-training
Full
Re-training

(f) AVG Task-2 Eval. Acc. (↑)

Figure 1: Continually pre-trained (CPT) MoEs match the performance of full re-training across
two dataset transitions: 400B English→ 200B German (40% replay) and 400B English→ 200B
Stack (30% replay). We compare the performance of a fully re-trained (e.g. trained on the union of
400B English and 200B stack or 200B German) Penalty-Balanced Top-k MoE and dense baseline, to their
CPT counterparts. Despite incurring only a third of the substantial full-retraining cost, the CPT MoEs
match the performance of the fully re-trained models, even achieving improvements in median Maximum
Routing Imbalance (MRI) in some cases. This shows that MoEs have CPT abilities on par with dense
transformers. Note that subfigures (b), (c), and (f) evaluate German and Stack models on different datasets
which correspond to their training domain.

3 Related work
This section provides a review of the most relevant literature, but we also provide a more detailed related
work section in Section B of the appendix.
Continual Pre-training of Dense Foundation Models Several existing works study continual learning
in settings relevant to CPT, finding that self-supervised pre-training benefits from reduced forgetting (Cossu
et al., 2022; Davari et al., 2022), that pre-trained models forget less than their randomly initialized counter-
parts (Mehta et al., 2023), that forgetting improves as model scale is increased (Ramasesh et al., 2022), and
that wider models tend to forget less than deeper models (Mirzadeh et al., 2022). In the context of large-scale
CPT of LLMs, Gupta et al. (2023) highlights the importance of re-warming the learning rate when models
are pre-trained from a checkpoint that has been decayed to a small learning rate. Following up on their work,
Ibrahim et al. (2024) establish the effectiveness of learning rate re-warming, LR re-decaying, and replay for
large-scale CPT of LLMs.
Continual Pre-training of MoE LLMs. To the best of our knowledge, only a single work exists exploring
the large-scale continual pre-training of MoEs LLMs, while the majority of the literature focuses on upcycling
or growing MoEs for continual pre-training. In a concurrent pre-print DeepSeek-CoderV2 (DeepSeek-AI et al.,
2024), shows that they can continue from a checkpoint the training of a MoE LLM. However, this is only
shown for one instance and the analysis of the MoE routing behavior is not discussed. Furthermore, there is
no comparison to a FLOP-matched dense model, making it challenging to assess whether the sample efficiency
of MoE LLMs is maintained during continual pre-training. Continual pre-training methods for MoEs that are
less related to our work generally focus on fine-tuning MoE LLMs on small amounts of data (Wang et al.,
2024c) or growing MoEs (Komatsuzaki et al., 2023; Zhu et al., 2024; Sukhbaatar et al., 2024; Gritsch et al.,
2024).

4 Method & Empirical Study
Given our goal of studying the large-scale continual pre-training of MoE LLMs, our main methodological
contribution involves identifying practically relevant MoE architectures to study, appropriately combining
them with SOTA CPT techniques (e.g. (Ibrahim et al., 2024)), and providing succinct guidelines for continual

3

Under review as submission to TMLR

MoE pre-training derived from our empirical results. In the following section, we will describe the key design
choices we made when constructing our study w.r.t. MoE architectures, datasets, and CPT techniques and
introduce a new metric for measuring latency in MoEs. Guidelines for the CPT of MoEs will be outlined in
the results section.

4.1 Selected architectures for our study
FLOP-matched Dense Baseline. We select a 24 layer 570M parameter dense decoder-only transformer
following the Llama3 architecture (except we use GeLU activations) and using the Llama3 tokenizer (Dubey
et al., 2024) (see Sec. F for details).

Granular MoEs. Given the recent popularity and strong performance of DeepSeek MoEs (DeepSeek-AI
et al., 2024; Dai et al., 2024; DeepSeek-AI et al., 2025b;a), we include an MoE architecture that activates
multiple granular experts and a shared expert. Specifically, each granular MoE has E = 31 total routed
experts, K = 3 active experts, and 1 shared expert. This model follows the same Llama3 architecture as
the dense model described above. Notably, its experts are GEGLU FFNs with an intermediate size that
is 1

4 the size used in the dense model. We train two granular MoEs utilizing the Penalty-Balanced and
Sinkhorn-Balanced Top-k routing algorithms, respectively. We do not drop tokens.

Switch MoEs. Given the historical use of full-sized FFNs in MoEs, our study also includes an architecture
similar to (Jiang et al., 2024; Fedus et al., 2022) with full-sized experts and no shared expert. We refer
to these as Switch MoEs and also train two utilizing the Penalty-Balanced and Sinkhorn-Balanced routing
algorithms, respectively. Each switch MoE has E = 8 total routed experts, K = 1 active experts, and no
shared expert. This model follows the same Llama3 architecture as the dense model described above. Notably,
its experts are GEGLU FFNs of the same size as the dense model’s FFNs. We do not drop tokens.

4.2 Continual pre-training strategy and Datasets
To initially pre-train and subsequently continually pre-train our models, we use three datasets:
FineWeb (Penedo et al., 2024), the Stack (Kocetkov et al., 2023), and German Common Crawl (Abadji et al.,
2022). We initially pre-train all models on FineWeb for 400B tokens (task 1) to mimic open and closed source
models often pre-trained on large-scale web-scraped English data. Subsequently, we continually pre-train
these base models on 200B tokens of Code or German data (task 2) using infinite learning rate schedules and
replay (30% & 40%, respectively) to mitigate forgetting. We select large amounts of replay for full continual
pre-training following previous SOTA work (DeepSeek-AI et al., 2024), but show the effect of modifying the
replay percentage in section 5.1. We chose distribution shifts to multilingual and code data as they represent
stark distribution shifts from the English pre-training data, while being realistic (e.g., the Llama3 tokenizer is
still viable for these domains). It should be noted that our total training budget of 600B tokens falls strictly
in the overtraining regime with respect to a chinchilla optimal token budget for dense models (Hoffmann
et al., 2022). For the Dense baseline, this corresponds to overtraining to roughly 40X the chinchilla optimal
recommendation, while for the MoEs, this corresponds to roughly 10X the compute optimal amount for
a 2B parameter dense model. For comparison, DeepSeekV3 (DeepSeek-AI et al., 2025b) trains to about
1.1X the Chinchilla optimal ratio for a 671B dense model and the popular Qwen3 series of models reaches
chinchilla-optimal training multipliers of 7.66-58.06X for the MoEs and 54.55-225X for the larger (8B +)
dense models. These models are frequently used as a starting point for continual pre-training, showing how
our 40x chinchilla-optimal for dense and 10x chinchilla-optimal for MoEs is representative of real application
settings.

Compute Equivalent Replay Replaying previous data has been a longstanding tool for mitigating
catastrophic forgetting (Wang et al., 2024b). In our experiments, we replay previously seen data for this
purpose, designating any model using the technique with the suffix “X% Replay". Here, X represents the
percentage of samples in a given batch that were replayed from the previous distribution. To match compute
across different replay budgets, we do not increase the token budget when increasing the amount of replay.
Instead, we decrease the amount of new data seen during CPT.

4.3 Training details

All models in our study (except re-training baselines) were pre-trained for 192, 720 gradient descent steps using
a batch size of 1024, a sequence length of 2048, the AdamW optimizer, and the Cosine Inf schedule (Ibrahim

4

Under review as submission to TMLR

0 20 40
Training Tokens (B)

2.75

3.00

3.25

3.50

3.75

4.00

Va
lid

at
io

n
Lo

ss
 F

in
eW

eb

(a) 0% Replay

0 20 40
Training Tokens (B)

2.75

3.00

3.25

3.50

3.75

4.00

Va
lid

at
io

n
Lo

ss
 F

in
eW

eb
(b) 40% Replay

Dense Baseline [D]
Dense Baseline
SB Switch MoE [D]
SB Switch MoE
PB Switch MoE [D]
PB Switch MoE
SB Granular MoE [D]
SB Granular MoE
PB Granular MoE [D]
PB Granular MoE

0 20 40
Training Tokens (B)

1.2

1.3

1.4

1.5

1.6

1.7

Va
lid

at
io

n
Lo

ss
 G

er
m

an

(c) 0% Replay

0 20 40
Training Tokens (B)

1.2

1.3

1.4

1.5

1.6

1.7

Va
lid

at
io

n
Lo

ss
 G

er
m

an

(d) 40% Replay

Figure 2: Ablating replay and decay strategy during continual pre-training on German data.
We CPT MoEs and a dense baseline from fully-decayed checkpoints (dotted curves, [D]) or a non-decayed
checkpoint (full curves). The figures report the performance on task 1 (FineWeb) and task 2 (German) while
CPT on task 2. We observe that adaptation to task 2 is similar within an architecture for both checkpoints,
that CPT from a non-decayed checkpoint improves forgetting, and that replay mitigates forgetting.

et al., 2024). For continual pre-training, each model in the main study follows a Cosine Inf schedule resuming
from the non-decayed checkpoint, while some models in the ablation section were continually pre-trained
from decayed checkpoints following a cosine decay schedule (e.g., replicating the setting from Ibrahim et al.
(2024)). We continually pre-train the models for 95, 370 gradient descent steps using the same batch size and
sequence length as during pre-training. Each model was trained across 64 A100 GPUs using data parallelism
and zero-1 (Rajbhandari et al., 2020). To accelerate the dropless MoE forward pass we use the Megablocks
kernel (Gale et al., 2023). More details of the exact schedules used for each experiment are provided in
section F of the appendix. Additionally, figure 22 illustrates learning rate schedules used for (a) pre-training,
(b) continual pre-training, (c) full re-training, and (d) rewarming ablation of Sec. 5.1.
4.4 Maximum Routing Imbalance: A proxy for worst-case latency in MoEs

While performance is one important axis of robustness to distribution shifts, maintaining a balanced load
across experts is just as important for MoE foundation models. Without a balanced load, MoE transformers
inferenced using expert parallelism without token dropping (e.g., as is done for SOTA models (DeepSeek-AI
et al., 2025b; Zhao et al., 2025)) could be bottlenecked by the speed of a single accelerator that receives all

5

Under review as submission to TMLR

the tokens, leading to underutilization of the hardware, lower throughput, and higher costs. To quantitatively
assess the effect of distribution shift on load balance, we propose the maximum routing imbalance (MRI):
the largest proportion of tokens routed to a single expert in a given MoE layer. Concretely, the MRI at a
training iteration t and MoE layer j is defined as

MRI(t, j) := max
i∈[1,...,E]

[∑
x∈B 1{i ∈ Ik(x)}

|B|

]
. (1)

Where B is a set containing all tokens in a given batch, 1 is the indicator function, E is the number of routed
experts, and k is the number of active experts. Since latency increases with computation, and, in an MoE
layer, the computation required by a given device increases with the load of experts on that device, then MRI
calculated with respect to routing decisions on a distribution is a proxy for the worst case latency of an MoE
layer on the distribution. We will use the MRI throughout the following sections to measure the effect of
algorithmic changes to continual pre-training on routing imbalance. In figure 3 we report the maximum MRI
across all layers in the MoE (e.g., maxj∈[L] MRI(t, j), where L is the number of layers) at training iterations
immediately preceding and immediately after the distribution shift. In figure 4 we report the MRI at each
layer of our MoE transformers before and after continual pre-training.

MRI v.s. Latency While MRI does not report latency, it is a faithful behavioural metric that can be used
as input to a latency model for estimating the latter. Unlike latency, which will always depend on specific
hardware and implementation, MRI is independent of these considerations and is ultimately more comparable
across different deployments.
5 Results
5.1 Ablating replay (%) and the checkpoint used for CPT
In the following section, we ablate the replay percentage used during continual pre-training and consider
continually pre-training from two distinct checkpoints: a checkpoint that (a) was decayed to ηmin during
pre-training (the case for most open-source MoEs) or (b) followed an infinite learning rate schedule and
was not decayed (the ideal case achievable when one has control over the pre-training phase). Models in
group (a) are continually pre-trained following a linear warmup and cosine decay schedule that rewarms the
learning rate to ηmax before re-decaying it (e.g., as in Ibrahim et al. (2024)), while the models in group (b)
are continually pre-trained starting from ηconst following an infinite LR schedule (exact values are provided
in Sec. F).

Validation Loss. Figure 2 reports the validation loss for these models during the first 50B tokens of continual
pre-training. While we only show the first 50B tokens due to resource constraints, the schedules were set to
decay at 200B tokens, mimicking the start of a longer continual pre-training. Subfigures (a) and (c) show
forgetting and adaptation plots using 0% replay, while subfigures (b) and (d) show analogous plots using 40%
replay. We observe that as the percentage of replay is increased, the forgetting as measured by FineWeb
validation loss is mitigated, while the adaptation to the downstream dataset is harmed. Turning our attention
to the checkpoints used, we observe that, for all replay values and all models, using non-decayed checkpoints
improves forgetting on the FineWeb without compromising adaptation. These results show that, similar to
dense transformers, MoEs can tradeoff forgetting for adaptation with replay and benefit from infinite LR
schedules

Routing Imbalance. Figure 3 (a,b) reports median MRI computed across all transformer blocks of SBTk
and PBTk Granular MoEs during CPT with 0% replay, subfigure (c) reports results across different replay
percentages and results for switch MoEs are reported in Figures 19 and 18 of the appendix. These figures
precisely study the distribution shift by reporting the MRI immediately before and after the transition
from English and German data. We observe that SBTk MoEs are consistently robust to the distribution
shift, showing only a small increase in MRI across different replay percentages and for decayed and non-
decayed checkpoints alike. This is likely attributable to the explicit balancing step in Sinkhorn routing. In
contrast, the non-decayed and decayed PBTk MoE checkpoints go through a period of high routing imbalance
immediately following the distribution shift. However, this period is short-lived: the PBTk checkpoints

6

Under review as submission to TMLR

190600
190700

190800
190900

191000
191100

191200

Training Iteration

5

10

15

20

25

30

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

) Continual Pre-training
Begins (Iter 190720)
Uniform Routing
SB Granular MoE 0% Replay
PB Granular MoE 0% Replay

(a) Non-decayed Granular MoE

190600
190700

190800
190900

191000
191100

191200

Training Iteration

5

10

15

20

25

30

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

) Continual Pre-training
Begins (Iter 190720)
Uniform Routing
SB Granular MoE 0% Replay [D]
PB Granular MoE 0% Replay [D]

(b) Decayed Granular MoE

190600
190700

190800
190900

191000
191100

191200

Training Iteration

5

10

15

20

25

30

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

)

Continual Pre-training
Begins (Iter 190720)
Uniform Routing
SB Granular MoE 40% Replay
SB Granular MoE 10% Replay
SB Granular MoE 0% Replay
PB Granular MoE 40% Replay
PB Granular MoE 10% Replay
PB Granular MoE 0% Replay

(c) Replay Ablation

Figure 3: FineWeb → German CPT checkpoint and replay ablation. We report the median Maximum
Routing Imbalance (MRI) across MoE layers with min/max error bars. Sinkhorn-Balanced (SBTk) MoEs
show a slight MRI increase during distribution shift, while PBTk MoEs experience a brief spike before
recovering to balanced MRI levels below SBTk, which approach the uniform baseline. The uniform routing
baseline (orange line) corresponds to the case where each expert across all layers receives the same number of
tokens; thus, it represents perfect balance.

recover to well-balanced MRI levels, better than those of SBTk, within 500 training steps. Subfigure (c)
shows that this MRI spike can be mitigated with replay, though the benefit is negligible, as even the no-replay
model recovers quickly. These results suggest that although SB is more robust to distribution shifts than PB,
this robustness limits the MRI attainable. We hypothesize that the generally higher MRI of PB models may
cause an uneven utilization of the MoE’s parameters during training. Such a difference in expert utilization
during training could possibly explain the differences in performance between PB and SB. Finally, the chaotic
phase undergone by PBTk checkpoints does not last long enough to forego the strong performance of these
models.

5.2 Language modeling performance

Having established the benefits of replay and infinite learning rate schedules for continually pre-training
MoEs, we now quantitatively verify the efficacy of these techniques by continually pre-training our MoEs on
200B tokens of Code and German Common Crawl data and evaluating their performance relative to two
baselines. Specifically, we will compare the performance of the four continually pre-trained MoEs in our study
to a FLOP-matched dense baseline and a fully re-trained PBTk Granular MoE Baseline (the best-performing
architecture in our study). Performance will be measured across 4 axes: validation loss on the pre-training
and CPT datasets, English evaluation benchmarks (task 1), German and Code evaluation benchmarks (task
2), and MRI of final checkpoints. Note that the main conclusions of this section are succinctly summarized in
Figure 1.

Validation Loss. Table 1 reports validation loss (e.g., log perplexity on a fixed held-out validation set)
results for the main models in our study, while extended results are reported in Table 6 of the appendix. We
observe that all MoEs outperform the FLOP-matched dense baseline during pre-training and CPT. Within
the MoEs, we observe that PBTk MoEs consistently outperform SBTk MoEs and that Granular MoEs
consistently outperform switch MoEs across pre-training and CPT. These findings are consistent with the
literature on Granular MoEs (Ludziejewski et al., 2024; Dai et al., 2024), but we believe this is the first time
that SBTk routing has been shown to underperform PBTk routing. Since the PBTk Granular MoE achieves
the best performance, we use it as our full re-training baseline. Compared to full re-training, our Granular
CPT MoEs consistently have higher FineWeb validation loss but achieve lower downstream validation loss
with a similar average validation loss. Similar results are found when comparing the CPT dense baseline to
its full re-training counterpart. These results demonstrate that the continual learning abilities of MoEs w.r.t.
validation loss are on par with dense models for adaptation and are slightly superior in terms of forgetting,
likely due to their larger total parameter count.

English Evaluation results. Table 1 presents average accuracy, while Table 4 details per-benchmark
results. We select benchmarks where models of our scale (570M active parameters) achieve non-trivial

7

Under review as submission to TMLR

Table 1: Aggregated benchmark results. MoEs consistently outperform FLOP-matched dense baselines
and exhibit less forgetting w.r.t. validation loss. Compared to the re-training baseline (blue), MoEs and the
dense model match or exceed their performance. These results show MoEs adapt as well as dense models but
forget less, likely due to their larger parameter count. All validation losses report log perplexity on a held-out
validation set, forgetting (equivalent to backward transfer in Lopez-Paz & Ranzato (2017)) is calculated using
validation loss, and downstream tasks report accuracy.

Final Validation Loss (↓) Downstream Evals. (↑)
Training Tokens Model FineWeb Stack German Forgetting AVG English German Stack

400B FineWeb

Dense Baseline 2.881 4.028 3.741 – – 49.84% 23.54% 0.00%
SB Switch MoE 2.711 3.861 3.495 – – 54.14% 23.11% 0.00%
PB Switch MoE 2.699 3.872 3.451 – – 54.45% 23.37% 0.00%
SB Granular MoE 2.664 3.690 3.404 – – 55.71% 22.83% 0.00%
PB Granular MoE 2.653 3.715 3.370 – – 55.59% 23.40% 0.00%

400B FineWeb → 200B
Stack

(30% Replay)

Dense Baseline 2.939 1.026 – 0.059 1.982 49.21% – 7.37%
SB Switch MoE 2.757 0.944 – 0.046 1.850 51.76% – 9.09%
PB Switch MoE 2.749 0.945 – 0.050 1.847 52.59% – 8.22%
SB Granular MoE 2.708 0.925 – 0.044 1.816 53.51% – 7.45%
PB Granular MoE 2.699 0.924 – 0.046 1.811 53.70% – 7.81%

400B FineWeb ∪ 200B Stack Dense Baseline 2.866 1.050 – – 1.958 49.57% – 3.76%
PB Granular MoE 2.630 0.935 – – 1.782 54.79% – 7.44%

400B FineWeb → 200B Ger-
man

(40% Replay)

Dense Baseline 2.946 – 1.367 0.066 2.157 48.15% 25.27% –
SB Switch MoE 2.749 – 1.142 0.039 1.946 51.99% 27.57% –
PB Switch MoE 2.741 – 1.129 0.042 1.935 51.25% 26.50% –
SB Granular MoE 2.701 – 1.118 0.037 1.910 53.35% 28.57% –
PB Granular MoE 2.690 – 1.099 0.037 1.895 53.61% 27.65% –

400B FineWeb ∪ 200B German Dense Baseline 2.938 – 1.390 – 2.164 48.42% 25.45% –
PB Granular MoE 2.669 – 1.120 – 1.895 53.94% 27.59% –

accuracy to maximize signal. Each model is evaluated zero-shot on benchmarks covering Commonsense
Reasoning, Reading Comprehension, Scientific Question Answering, and Math: HellaSwag (Zellers et al.,
2019), Winogrande (Sakaguchi et al., 2019), PIQA (Bisk et al., 2019), ARC-Easy, ARC-Challenge (Clark
et al., 2018), SWAG (Zellers et al., 2018), LAMBADA (OpenAI) (Storks et al., 2019), SciQ (Johannes Welbl,
2017), PubMedQA (Jin et al., 2019), and MathQA (Amini et al., 2019) (see Sec. D.1 for details). We find
that models trained solely on FineWeb outperform all others, including full re-training baselines. Granular
MoEs surpass switch MoEs. CPT models trained on Stack perform similarly to those trained on German.
Compared to full re-training, CPT models achieve nearly identical results (within ∼ 1%). The dense baseline
also matches its full re-training counterpart, indicating that MoEs have similar continual learning abilities on
pre-training evaluations while benefiting from improved sample efficiency.

German Evaluation results. Table 1 shows average German evaluation performance, while table 5
of the appendix provides a per-benchmark breakdown. We use GPT-3–translated German versions of
HellaSwag, ARC-Challenge, and TruthfulQA, evaluating each zero-shot (Plüster, 2023). German-trained
models outperform English-only ones, and German-trained MoEs surpass the FLOP-matched dense baseline.
Among MoEs, modules using the same training tokens perform similarly. CPT MoEs and the full re-training
baseline differ by < 1% accuracy, with no clear winner. The dense baseline also performs comparably to full
re-training, demonstrating that the continual learning abilities of MoEs w.r.t. German evaluations are on par
with dense models while benefiting from improved sample efficiency.

Code Evaluation results. Table 1 presents average Code evaluation performance, while Table 3 of the
appendix provides a pass@k breakdown (k ∈ {1, 10, 50, 100, 150, 200}). Our models are evaluated on Python
code-generation tasks from HumanEval (Chen et al., 2021), as Python is well-represented in our Stack CPT
dataset (Table 10). English-trained models can not solve any problem, whereas stack-trained models achieve
non-trivial accuracy. Unlike for other performance metrics, CPT switch MoEs slightly outperform their
granular counterparts. Compared to full re-training, all CPT MoEs perform marginally better, while the
CPT dense model exceeds its baseline by over 3%. We attribute this unexpected improvement to evaluation
noise and training variance, given the models’ similar validation loss. These results suggest MoEs match
dense models in continual learning for code evaluation when accounting for MoEs’ improved sample efficiency.

Routing imbalance during and after continual pre-training. Figure 4 shows the layer-wise Maximum
Routing Imbalance (MRI) for Granular MoEs across FineWeb (a), German (b), and stack (c), while Figure 16

8

Under review as submission to TMLR

0 5 10 15 20
Layer

0

2

4

6

8

10

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

)

(a) FineWeb

0 5 10 15 20
Layer

0

5

10

15

20

25

30

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

)

(b) German

0 5 10 15 20
Layer

0

5

10

15

20

25

30

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

)

(c) Stack

FineWeb
PB Granular MoE
German 0% Replay
PB Granular MoE
German 40% Replay
PB Granular MoE
Stack 30% Replay
PB Granular MoE
FineWeb U German
PB Granular MoE
FineWeb U Stack
PB Granular MoE

Figure 4: Layer-wise Maximum Routing Imbalance (MRI) for Granular MoEs. We report MRI
(eq. 1) on each dataset’s 20M-token test set. MRI is consistently lower for Penalty-Balanced MoEs than
Sinkhorn-Balanced MoEs. Continual pre-training on FineWeb incurs minimal MRI increase, even with
0% replay. MoEs are most unbalanced with out-of-distribution data (e.g., non-German models in (b) and
non-code models in (c)).

reports MRI for all MoEs. We include a 0% replay baseline for each MoE CPT on German to highlight
replay’s impact on MRI.

In subfigure (a), Penalty-Balanced MoEs consistently have lower MRI than Sinkhorn-Balanced MoEs across
all architectures, and granular MoEs exhibit lower and more stable MRI within architectures. On FineWeb,
continual pre-training causes only a slight MRI increase relative to the pre-trained checkpoint, even for the
0% replay model, except in its first layer. Interestingly, all German-trained MoEs show higher MRI on
FineWeb than their Stack-trained counterparts, with the full re-training baseline, surprisingly, having the
highest. This suggests there may be more routing interference between English and German datasets and
that continual pre-training may help reduce MRI across distributions, possibly due to the use of CosineInf
vs. Cosine Annealing schedules for CPT and re-training, respectively.

Granular MoEs also reduce routing imbalance on German (b) and Stack (c) datasets. MoEs become most
unbalanced with out-of-distribution data (e.g., non-German models in (b) and non-code models in (c)).
Similar trends hold for Switch MoEs, with an additional finding: high MRI is common in early layers of
Switch MoEs, independent of training/testing distributions, unlike Granular MoEs. These results show that
PBTk and SBTk MoEs are robust to distribution shifts w.r.t. MRI and can even outperform re-training
baselines, suggesting that continually pre-training MoEs should have no negative impact on inference latency.

In summary, we find that, across three measures of performance, MoEs continually pre-trained with replay
and infinite LR schedules can match the performance of a full re-training baseline and, thus, they have similar
CPT abilities to a FLOP-matched dense baseline without any inhibition from their routers. Moreover, we
show that continually pre-training MoEs has no negative impact on MRI compared to re-training.

5.3 Analyzing changes in routing behaviour due to CPT

In the following section, we analyze changes in routing behaviour resulting from continual pre-training.
Specifically, we record routing decisions of the MoE checkpoints before and after continual pre-training on
20, 000, 000 tokens of held-out test data from FineWeb, Stack, and German. To understand how routing
decisions change during CPT, we adapt three routing behavior metrics from Muennighoff et al. (2024) to
the continual pre-training setting: Router Saturation, Vocabulary specialization, and Expert co-activation.
We will provide brief descriptions of each in what follows, with formal definitions available in the appendix
(Sections D.3.1, D.3.2, and D.3.3).

Continual Router-Saturation Router Saturation (RS) is the percentage of routing decisions at iteration t
that match those of the final checkpoint (Muennighoff et al., 2024). We extend this metric to multiple training
phases for continual pre-training. Figure 5 (c) shows RS between the pre-training and CPT checkpoints for
Stack and German Granular PBTk MoEs. RS is lowest in early layers, peaks at layers 2 − 13, and slightly
drops after layer 13. The 0% replay German checkpoint has RS consistently 10 − 15% lower than the 40%
replay checkpoint across all layers. Note that despite adapting well to German, only the no-replay checkpoint
suffers significant forgetting on FineWeb. These results suggest that CPT adaptation is most pronounced in

9

Under review as submission to TMLR

0 5 10 15 20
Layer

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
ed

ia
n

C
o-

Ac
tiv

at
ed

E
xp

er
t C

ha
ng

e
(%

)

(a) Co-activated Expert Change

0 5 10 15 20
Layer

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

C
on

tin
ua

l
Vo

ca
bu

la
ry

 S
pe

ci
al

iz
at

io
n

(b) Continual Vocabulary Specialization

0 5 10 15 20
Layer

0

20

40

60

80

100

R
ou

te
r

Sa
tu

ra
tio

n
(%

)

FineWeb
PB Granular MoE
German 40% Replay
PB Granular MoE
German 0% Replay
PB Granular MoE
Stack 30% Replay
PB Granular MoE

(c) Continual Router-Saturation

Model Forgetting
FineWeb –
German 40% Replay 0.037
German 0% Replay 1.055
Stack 30% Replay 0.046

(d) Forgetting of the different MoEs

Figure 5: Layer-wise analysis of routing changes during CPT. Our goal is to understand how routing
decisions change from the pre-trained checkpoints to final checkpoints after continual pre-training. To this
end, we analyse changes in routing behaviour from 3 perspectives: which experts tend to be activated together
(a), the tendency for certain vocabulary tokens to be routed to certain experts (b), and how close routing
decisions of the pre-trained checkpoint are from CPT checkpoints (c). To provide context to these metrics,
we remind the reader of the forgetting (e.g., from table 1) for each model shown in the plots. We observe that
the no-replay baseline changes the most in early layers and forgets the most, suggesting that more drastic
changes in initial layers may be linked to forgetting.

layers 0 − 2 and 13 − 23 and that forgetting has the same pattern but is correlated with lower overall router
saturation.

Continual Vocabulary Specialization Vocabulary Specialization (VS) quantifies how often a token from
a dataset is routed to a specific MoE expert relative to its total occurrences (Muennighoff et al., 2024).
By assigning each token in the model’s vocabulary to the expert that processes it the most frequently, we
can create a one-to-many mapping between experts and vocabulary entries for an MoE layer. Then, we
can calculate the average VS of each expert by averaging its vocabulary specialization across its assigned
tokens. Vocabulary specialization within a layer is calculated by taking the mean average VS across experts
in that layer. To compare specialization across model checkpoints, we can re-use the one-to-many mapping
of a previous checkpoint and measure how the specialization w.r.t. this mapping has changed during CPT.
Figure 5 shows VS w.r.t. pre-training checkpoints using FineWeb data. VS is notably lower in layers 0-4
after CPT, while there is almost no discernible change in VS for layers 5 − 23. The zero-replay checkpoint
exhibits the lowest VS in layers 0-4, correlating with its weaker FineWeb performance and suggesting that
excessive VS shifts in early layers may contribute to forgetting.

Co-activated Expert Change Expert co-activation between two experts Ei and Ej is defined as the ratio
of times they are activated together to the total activations of Ei over a dataset (Muennighoff et al., 2024).
This metric applies only to MoEs with k ≥ 2 active experts. A co-activation matrix can be constructed
for each ordered expert pair in a layer. To compare expert co-activation across model checkpoints, we
compute co-activation matrices for all layers of two checkpoints (C(1), C(2)) and measure absolute changes by

10

Under review as submission to TMLR

computing statistics of the entries in their element-wise absolute differences matrix (|C(1) − C(2)|). Figure 5
(a) shows the median co-activation change between the pre-training and CPT checkpoints. Early layers
(0-1) exhibit the largest changes, with a consistent spike at layer 18 for all CPT models and slightly higher
median changes in layers 13 − 23. Among CPT checkpoints, the no-replay variant shows the most significant
co-activation shifts. Despite all checkpoints adapting well to new distributions, only the no-replay checkpoint
experiences substantial forgetting on FineWeb. These findings suggest that adaptation during CPT correlates
with co-activation changes in early (0 − 2) and later (13 − 23) MoE layers and that more pronounced changes
correlate with higher forgetting.

In summary, results across all three metrics reveal that routing decisions change most in the early layers of
Granular MoE transformers, while changes in other MoE layers are observed for expert co-activation and
router saturation but not for Vocabulary specialization. Of all models, the no-replay baseline changes the
most in early layers and forgets most, suggesting that more drastic changes in initial layers may be linked to
forgetting.

6 Conclusion
We have conducted a comprehensive empirical study on the continual pre-training of decoder-only MoE
transformer language models.Our large-scale experiments, involving 2B parameter MoEs trained on 600B
tokens, demonstrate that both Penalty-Balanced (PBTk) and Sinkhorn-Balanced (SBTk) routing algorithms
exhibit surprising system-level resilience to distribution shifts, maintaining balanced loads as measured by
the novel Maximum Routing Imbalance metric. We established that MoEs preserve their sample efficiency
advantage over FLOP-matched dense models during CPT and that, when using infinite LR schedules and
replay, a Granular PBTk MoEs can match the performance of fully re-trained baselines across German and
Code transitions, at a fraction of the computational cost. Finally, we saw that early MoE layers change the
most during CPT, suggesting that future work could investigate special treatment of these layers for improved
performance. Collectively, our findings establish MoEs as strong continual learners for text, comparable to
dense models, and underscore their potential as scalable, adaptable foundation models for language.

References
Julien Abadji, Pedro Javier Ortiz Suárez, Laurent Romary, and Benoît Sagot. Towards a cleaner document-

oriented multilingual crawled corpus. In Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid
Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph
Mariani, Hélène Mazo, Jan Odijk, and Stelios Piperidis (eds.), Proceedings of the Thirteenth Language
Resources and Evaluation Conference, LREC 2022, Marseille, France, 20-25 June 2022, pp. 4344–4355.
European Language Resources Association, 2022. URL https://aclanthology.org/2022.lrec-1.463.

Marah I Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat S. Behl, Alon Benhaim, Misha Bilenko, Johan
Bjorck, Sébastien Bubeck, Martin Cai, Caio César Teodoro Mendes, Weizhu Chen, Vishrav Chaudhary,
Parul Chopra, Allie Del Giorno, Gustavo de Rosa, Matthew Dixon, Ronen Eldan, Dan Iter, Amit Garg,
Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J. Hewett, Jamie Huynh,
Mojan Javaheripi, Xin Jin, Piero Kauffmann, Nikos Karampatziakis, Dongwoo Kim, Mahoud Khademi, Lev
Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Chen Liang, Weishung Liu, Eric Lin, Zeqi Lin, Piyush
Madan, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker,
Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Corby Rosset, Sambudha Roy, Olatunji
Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi
Sharma, Xia Song, Masahiro Tanaka, Xin Wang, Rachel Ward, Guanhua Wang, Philipp Witte, Michael
Wyatt, Can Xu, Jiahang Xu, Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu, Chengruidong Zhang,
Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and Xiren Zhou. Phi-3
technical report: A highly capable language model locally on your phone. CoRR, abs/2404.14219, 2024.
doi: 10.48550/ARXIV.2404.14219. URL https://doi.org/10.48550/arXiv.2404.14219.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Hajishirzi. Mathqa:
Towards interpretable math word problem solving with operation-based formalisms, 2019.

11

https://aclanthology.org/2022.lrec-1.463
https://doi.org/10.48550/arXiv.2404.14219

Under review as submission to TMLR

Alex Andonian, Quentin Anthony, Stella Biderman, Sid Black, Preetham Gali, Leo Gao, Eric Hallahan,
Josh Levy-Kramer, Connor Leahy, Lucas Nestler, Kip Parker, Michael Pieler, Jason Phang, Shivanshu
Purohit, Hailey Schoelkopf, Dashiell Stander, Tri Songz, Curt Tigges, Benjamin Thérien, Phil Wang, and
Samuel Weinbach. GPT-NeoX: Large Scale Autoregressive Language Modeling in PyTorch, 9 2023. URL
https://www.github.com/eleutherai/gpt-neox.

Quentin Anthony, Yury Tokpanov, Paolo Glorioso, and Beren Millidge. Blackmamba: Mixture of experts for
state-space models. CoRR, abs/2402.01771, 2024. URL https://doi.org/10.48550/arXiv.2402.01771.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about physical
commonsense in natural language, 2019.

Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on mixture of
experts. CoRR, abs/2407.06204, 2024. URL https://doi.org/10.48550/arXiv.2407.06204.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet,
Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati,
Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoffmann,
Bogdan Damoc, Blake A. Hechtman, Trevor Cai, Sebastian Borgeaud, George van den Driessche, Eliza
Rutherford, Tom Hennigan, Matthew J. Johnson, Albin Cassirer, Chris Jones, Elena Buchatskaya, David
Budden, Laurent Sifre, Simon Osindero, Oriol Vinyals, Marc’Aurelio Ranzato, Jack W. Rae, Erich
Elsen, Koray Kavukcuoglu, and Karen Simonyan. Unified scaling laws for routed language models. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.),
International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland,
USA, volume 162 of Proceedings of Machine Learning Research, pp. 4057–4086. PMLR, 2022. URL
https://proceedings.mlr.press/v162/clark22a.html.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge, 2018.

Ronan Collobert, Yoshua Bengio, and Samy Bengio. Scaling large learning problems with hard parallel
mixtures. Int. J. Pattern Recognit. Artif. Intell., 17(3):349–365, 2003. URL https://doi.org/10.1142/
S0218001403002411.

Andrea Cossu, Tinne Tuytelaars, Antonio Carta, Lucia Passaro, Vincenzo Lomonaco, and Davide Bacciu.
Continual pre-training mitigates forgetting in language and vision, 2022. URL https://arxiv.org/abs/
2205.09357.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng,
Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui, and
Wenfeng Liang. Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts language
models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok,
Thailand, August 11-16, 2024, pp. 1280–1297. Association for Computational Linguistics, 2024. URL
https://aclanthology.org/2024.acl-long.70.

MohammadReza Davari, Nader Asadi, Sudhir Mudur, Rahaf Aljundi, and Eugene Belilovsky. Probing repre-
sentation forgetting in supervised and unsupervised continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 16712–16721, 2022.

12

https://www.github.com/eleutherai/gpt-neox
https://doi.org/10.48550/arXiv.2402.01771
https://doi.org/10.48550/arXiv.2407.06204
https://proceedings.mlr.press/v162/clark22a.html
https://doi.org/10.1142/S0218001403002411
https://doi.org/10.1142/S0218001403002411
https://arxiv.org/abs/2205.09357
https://arxiv.org/abs/2205.09357
https://aclanthology.org/2024.acl-long.70

Under review as submission to TMLR

DeepSeek-AI, Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y. Wu, Yukun Li,
Huazuo Gao, Shirong Ma, Wangding Zeng, Xiao Bi, Zihui Gu, Hanwei Xu, Damai Dai, Kai Dong, Liyue
Zhang, Yishi Piao, Zhibin Gou, Zhenda Xie, Zhewen Hao, Bingxuan Wang, Junxiao Song, Deli Chen, Xin
Xie, Kang Guan, Yuxiang You, Aixin Liu, Qiushi Du, Wenjun Gao, Xuan Lu, Qinyu Chen, Yaohui Wang,
Chengqi Deng, Jiashi Li, Chenggang Zhao, Chong Ruan, Fuli Luo, and Wenfeng Liang. Deepseek-coder-v2:
Breaking the barrier of closed-source models in code intelligence. CoRR, abs/2406.11931, 2024. URL
https://doi.org/10.48550/arXiv.2406.11931.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang
Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao,
Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo,
Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian
Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong
Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng
Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin,
Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu,
Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei,
Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin
Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie,
Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K.
Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang
Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan
Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang,
Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren,
Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan,
Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang,
Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via
reinforcement learning, 2025a. URL https://arxiv.org/abs/2501.12948.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han
Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui
Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen,
Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin
Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang,
Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian,
Panpan Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi
Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng
Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao
Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng Liang,
Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu,
Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun,
Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan,
Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X.
Zhu, Yang Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui
Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi
Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu,
Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan,

13

https://doi.org/10.48550/arXiv.2406.11931
https://arxiv.org/abs/2501.12948

Under review as submission to TMLR

Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha,
Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou,
Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu,
Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical
report, 2025b. URL https://arxiv.org/abs/2412.19437.

Xianzhi Du, Tom Gunter, Xiang Kong, Mark Lee, Zirui Wang, Aonan Zhang, Nan Du, and Ruoming Pang.
Revisiting moe and dense speed-accuracy comparisons for LLM training. CoRR, abs/2405.15052, 2024.
URL https://doi.org/10.48550/arXiv.2405.15052.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron, Binh Tang, Bobbie Chern,
Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe
Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel
Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-
Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan,
Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis
Anderson, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar,
Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan
Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah,
Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang,
Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun,
Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Heafield, Kevin Stone, and et al. The llama 3 herd of models. CoRR, abs/2407.21783, 2024. URL
https://doi.org/10.48550/arXiv.2407.21783.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. J. Mach. Learn. Res., 23:120:1–120:39, 2022. URL http:
//jmlr.org/papers/v23/21-0998.html.

Robert M. French. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences, 3(4):
128–135, 1999. ISSN 13646613. doi: 10.1016/S1364-6613(99)01294-2. URL https://www.sciencedirect.
com/science/article/abs/pii/S1364661399012942.

Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. MegaBlocks: Efficient Sparse Training
with Mixture-of-Experts. Proceedings of Machine Learning and Systems, 5, 2023.

Saurabh Garg, Mehrdad Farajtabar, Hadi Pouransari, Raviteja Vemulapalli, Sachin Mehta, Oncel Tuzel,
Vaishaal Shankar, and Fartash Faghri. Tic-clip: Continual training of clip models. arXiv preprint
arXiv:2310.16226, 2023. URL https://arxiv.org/abs/2310.16226.

Nikolas Gritsch, Qizhen Zhang, Acyr Locatelli, Sara Hooker, and Ahmet Üstün. Nexus: Specialization meets
adaptability for efficiently training mixture of experts, 2024. URL https://arxiv.org/abs/2408.15901.

Kshitij Gupta, Benjamin Thérien, Adam Ibrahim, Mats Leon Richter, Quentin Gregory Anthony, Eugene
Belilovsky, Irina Rish, and Timothée Lesort. Continual pre-training of large language models: How to
re-warm your model? In Workshop on Efficient Systems for Foundation Models @ ICML2023, 2023. URL
https://openreview.net/forum?id=pg7PUJe0Tl.

Xu Owen He. Mixture of A million experts. CoRR, abs/2407.04153, 2024. URL https://doi.org/10.
48550/arXiv.2407.04153.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan,
Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre. Training compute-optimal large language
models. CoRR, abs/2203.15556, 2022. URL https://doi.org/10.48550/arXiv.2203.15556.

14

https://arxiv.org/abs/2412.19437
https://doi.org/10.48550/arXiv.2405.15052
https://doi.org/10.48550/arXiv.2407.21783
http://jmlr.org/papers/v23/21-0998.html
http://jmlr.org/papers/v23/21-0998.html
https://www.sciencedirect.com/science/article/abs/pii/S1364661399012942
https://www.sciencedirect.com/science/article/abs/pii/S1364661399012942
https://arxiv.org/abs/2310.16226
https://arxiv.org/abs/2408.15901
https://openreview.net/forum?id=pg7PUJe0Tl
https://doi.org/10.48550/arXiv.2407.04153
https://doi.org/10.48550/arXiv.2407.04153
https://doi.org/10.48550/arXiv.2203.15556

Under review as submission to TMLR

Adam Ibrahim, Benjamin Thérien, Kshitij Gupta, Mats Leon Richter, Quentin Gregory Anthony, Eugene
Belilovsky, Timothée Lesort, and Irina Rish. Simple and scalable strategies to continually pre-train
large language models. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=DimPeeCxKO.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures of local
experts. Neural Comput., 3(1):79–87, 1991. URL https://doi.org/10.1162/neco.1991.3.1.79.

Paul Janson, Vaibhav Singh, Paria Mehrbod, Adam Ibrahim, Irina Rish, Eugene Belilovsky, and Benjamin
Thérien. Beyond cosine decay: On the effectiveness of infinite learning rate schedule for continual pre-
training. arXiv preprint arXiv:2503.02844, 2025.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford,
Devendra Singh Chaplot, Diego de Las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel,
Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre
Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile Gervet, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mixtral of experts. CoRR, abs/2401.04088,
2024. URL https://doi.org/10.48550/arXiv.2401.04088.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. Pubmedqa: A dataset for
biomedical research question answering. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 2567–2577, 2019.

Matt Gardner Johannes Welbl, Nelson F. Liu. Crowdsourcing multiple choice science questions.
arXiv:1707.06209v1, 2017.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly supervised
challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan (eds.), Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1601–
1611, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1147.
URL https://aclanthology.org/P17-1147.

Paul Knopp and Richard Sinkhorn. Concerning nonnegative matrices and doubly stochastic matrices. Pacific
Journal of Mathematics, 21(2):343 – 348, 1967.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Yacine Jernite, Margaret Mitchell,
Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro von Werra, and Harm
de Vries. The stack: 3 TB of permissively licensed source code. Trans. Mach. Learn. Res., 2023, 2023.
URL https://openreview.net/forum?id=pxpbTdUEpD.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa, Joshua Ainslie,
Yi Tay, Mostafa Dehghani, and Neil Houlsby. Sparse upcycling: Training mixture-of-experts from dense
checkpoints. In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/forum?id=T5nUQDrM4u.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional computation and
automatic sharding. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=qrwe7XHTmYb.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. BASE layers: Simplifying
training of large, sparse models. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139
of Proceedings of Machine Learning Research, pp. 6265–6274. PMLR, 2021. URL http://proceedings.
mlr.press/v139/lewis21a.html.

Liyuan Liu, Jianfeng Gao, and Weizhu Chen. Sparse backpropagation for moe training. CoRR, abs/2310.00811,
2023a. URL https://doi.org/10.48550/arXiv.2310.00811.

15

https://openreview.net/forum?id=DimPeeCxKO
https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/10.48550/arXiv.2401.04088
https://aclanthology.org/P17-1147
https://openreview.net/forum?id=pxpbTdUEpD
https://openreview.net/forum?id=T5nUQDrM4u
https://openreview.net/forum?id=qrwe7XHTmYb
http://proceedings.mlr.press/v139/lewis21a.html
http://proceedings.mlr.press/v139/lewis21a.html
https://doi.org/10.48550/arXiv.2310.00811

Under review as submission to TMLR

Liyuan Liu, Young Jin Kim, Shuohang Wang, Chen Liang, Yelong Shen, Hao Cheng, Xiaodong Liu, Masahiro
Tanaka, Xiaoxia Wu, Wenxiang Hu, Vishrav Chaudhary, Zeqi Lin, Chengruidong Zhang, Jilong Xue, Hany
Awadalla, Jianfeng Gao, and Weizhu Chen. GRIN: gradient-informed moe. CoRR, abs/2409.12136, 2024.
URL https://doi.org/10.48550/arXiv.2409.12136.

Zeyu Liu, Tim Dettmers, Xi Lin, Veselin Stoyanov, and Xian Li. Towards A unified view of sparse feed-forward
network in pretraining large language model. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023,
Singapore, December 6-10, 2023, pp. 15038–15061. Association for Computational Linguistics, 2023b. URL
https://doi.org/10.18653/v1/2023.emnlp-main.930.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pp. 6467–6476, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
f87522788a2be2d171666752f97ddebb-Abstract.html.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=Skq89Scxx.

Jan Ludziejewski, Jakub Krajewski, Kamil Adamczewski, Maciej Pióro, Michal Krutul, Szymon Antoniak,
Kamil Ciebiera, Krystian Król, Tomasz Odrzygózdz, Piotr Sankowski, Marek Cygan, and Sebastian
Jaszczur. Scaling laws for fine-grained mixture of experts. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=yoqdlynCRs.

Sanket Vaibhav Mehta, Darshan Patil, Sarath Chandar, and Emma Strubell. An empirical investigation
of the role of pre-training in lifelong learning. J. Mach. Learn. Res., 24:214:1–214:50, 2023. URL
http://jmlr.org/papers/v24/22-0496.html.

Seyed-Iman Mirzadeh, Arslan Chaudhry, Dong Yin, Huiyi Hu, Razvan Pascanu, Dilan Görür, and Mehrdad
Farajtabar. Wide neural networks forget less catastrophically. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference on Machine
Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Ma-
chine Learning Research, pp. 15699–15717. PMLR, 2022. URL https://proceedings.mlr.press/v162/
mirzadeh22a.html.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia Shi, Pete
Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita Bhagia, Dustin Schwenk,
David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe Kiela, Ali Farhadi, Noah A. Smith,
Pang Wei Koh, Amanpreet Singh, and Hannaneh Hajishirzi. Olmoe: Open mixture-of-experts language
models. CoRR, abs/2409.02060, 2024. URL https://doi.org/10.48550/arXiv.2409.02060.

Ashwinee Panda, Vatsal Baherwani, Zain Sarwar, Benjamin Thérien, Stephen Rawls, Sambit Sahu, Supriyo
Chakraborty, and Tom Goldstein. Dense backpropagation improves routing for sparsely-gated mixture-
of-experts. In Workshop on Machine Learning and Compression, NeurIPS 2024, 2024. URL https:
//openreview.net/forum?id=9g285TLTM8.

Jupinder Parmar, Sanjeev Satheesh, Mostofa Patwary, Mohammad Shoeybi, and Bryan Catanzaro. Reuse,
don’t retrain: A recipe for continued pretraining of language models. CoRR, abs/2407.07263, 2024. URL
https://doi.org/10.48550/arXiv.2407.07263.

Guilherme Penedo, Hynek Kydlícek, Loubna Ben Allal, Anton Lozhkov, Margaret Mitchell, Colin Raffel,
Leandro von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the finest text data
at scale. CoRR, abs/2406.17557, 2024. URL https://doi.org/10.48550/arXiv.2406.17557.

16

https://doi.org/10.48550/arXiv.2409.12136
https://doi.org/10.18653/v1/2023.emnlp-main.930
https://proceedings.neurips.cc/paper/2017/hash/f87522788a2be2d171666752f97ddebb-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f87522788a2be2d171666752f97ddebb-Abstract.html
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=yoqdlynCRs
https://openreview.net/forum?id=yoqdlynCRs
http://jmlr.org/papers/v24/22-0496.html
https://proceedings.mlr.press/v162/mirzadeh22a.html
https://proceedings.mlr.press/v162/mirzadeh22a.html
https://doi.org/10.48550/arXiv.2409.02060
https://openreview.net/forum?id=9g285TLTM8
https://openreview.net/forum?id=9g285TLTM8
https://doi.org/10.48550/arXiv.2407.07263
https://doi.org/10.48550/arXiv.2406.17557

Under review as submission to TMLR

Björn Plüster. German Benchmark Datasets, 8 2023. URL https://github.com/bjoernpl/
GermanBenchmark.

Jack W. Rae, Katie Millican, Siddhant M. Jayakumar, David Menick, Asya Berglund, Tom Hennigan,
Roman Ring, Mandy Korpusik, Matthew Hechtman, Jacob Hilton, John S. Garcıa, James Norman, Sasha
Borgeaud, Trevor Cai, Jordan Hoffmann, Katarzyna Krawczyk, Arthur Mensch, Thomas Scialom, Eric
Alford, Jordan D. L. Ho, Daniel Hesslow, Thomas Gunter, Jason Phang, Beren Millidge, Fan Yang,
Marie-Anne Lachaux, Lorrayne de Souza Schmerling, Nat McAleese, Heidy Khlaaf, Simon Osindero, Oriol
Vinyals, Karol Hausman, Laurent Sifre, Andrew M. Dai, Geoffrey Irving, Michael C. Mozer, Jeff Dean, and
Koray Kavukcuoglu. Scaling language models: Methods, analysis & insights from training gopher. arXiv
preprint arXiv:2112.11446, 2021. URL https://arxiv.org/abs/2112.11446.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: memory optimizations toward
training trillion parameter models. In Christine Cuicchi, Irene Qualters, and William T. Kramer (eds.),
Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2020, Virtual Event / Atlanta, Georgia, USA, November 9-19, 2020, pp. 20. IEEE/ACM,
2020. URL https://doi.org/10.1109/SC41405.2020.00024.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Ammar Ahmad
Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts inference and training
to power next-generation AI scale. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári,
Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pp.
18332–18346. PMLR, 2022. URL https://proceedings.mlr.press/v162/rajbhandari22a.html.

Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic forgetting
in neural networks. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/forum?id=
GhVS8_yPeEa.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, and Jason Weston. Hash layers for large sparse models. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 17555–17566, 2021. URL https:
//proceedings.neurips.cc/paper/2021/hash/92bf5e6240737e0326ea59846a83e076-Abstract.html.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale, 2019.

Thomas Scialom, Tuhin Chakrabarty, and Smaranda Muresan. Fine-tuned language models are continual
learners. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
6107–6122, 2022.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and Jeff
Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=B1ckMDqlg.

Yikang Shen, Zhen Guo, Tianle Cai, and Zengyi Qin. Jetmoe: Reaching llama2 performance with 0.1m
dollars. CoRR, abs/2404.07413, 2024. URL https://doi.org/10.48550/arXiv.2404.07413.

Shane Storks, Qiaozi Gao, and Joyce Yue Chai. Recent advances in natural language inference: A survey
of benchmarks, resources, and approaches. arXiv: Computation and Language, 2019. URL https:
//api.semanticscholar.org/CorpusID:213613608.

Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma, Hu Xu, Xi Victoria Lin, Baptiste Rozière, Jacob Kahn,
Daniel Li, Wen-tau Yih, Jason Weston, and Xian Li. Branch-train-mix: Mixing expert llms into a mixture-
of-experts LLM. CoRR, abs/2403.07816, 2024. URL https://doi.org/10.48550/arXiv.2403.07816.

17

https://github.com/bjoernpl/GermanBenchmark
https://github.com/bjoernpl/GermanBenchmark
https://arxiv.org/abs/2112.11446
https://doi.org/10.1109/SC41405.2020.00024
https://proceedings.mlr.press/v162/rajbhandari22a.html
https://openreview.net/forum?id=GhVS8_yPeEa
https://openreview.net/forum?id=GhVS8_yPeEa
https://proceedings.neurips.cc/paper/2021/hash/92bf5e6240737e0326ea59846a83e076-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/92bf5e6240737e0326ea59846a83e076-Abstract.html
https://openreview.net/forum?id=B1ckMDqlg
https://doi.org/10.48550/arXiv.2404.07413
https://api.semanticscholar.org/CorpusID:213613608
https://api.semanticscholar.org/CorpusID:213613608
https://doi.org/10.48550/arXiv.2403.07816

Under review as submission to TMLR

Qwen Team. Qwen1.5-moe: Matching 7b model performance with 1/3 activated parameters", February 2024.
URL https://qwenlm.github.io/blog/qwen-moe/.

Lean Wang, Huazuo Gao, Chenggang Zhao, Xu Sun, and Damai Dai. Auxiliary-loss-free load balancing
strategy for mixture-of-experts. CoRR, abs/2408.15664, 2024a. URL https://doi.org/10.48550/arXiv.
2408.15664.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
Theory, method and application. IEEE Trans. Pattern Anal. Mach. Intell., 46(8):5362–5383, 2024b. URL
https://doi.org/10.1109/TPAMI.2024.3367329.

Zihan Wang, Deli Chen, Damai Dai, Runxin Xu, Zhuoshu Li, and Y. Wu. Let the expert stick to his last:
Expert-specialized fine-tuning for sparse architectural large language models. CoRR, abs/2407.01906, 2024c.
URL https://doi.org/10.48550/arXiv.2407.01906.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. SWAG: A large-scale adversarial dataset for
grounded commonsense inference. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii
(eds.), Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels,
Belgium, October 31 - November 4, 2018, pp. 93–104. Association for Computational Linguistics, 2018.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really
finish your sentence?, 2019.

Xiaofeng Zhang, Yikang Shen, Zeyu Huang, Jie Zhou, Wenge Rong, and Zhang Xiong. Mixture of attention
heads: Selecting attention heads per token. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang
(eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Abu
Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. URL https:
//aclanthology.org/2022.emnlp-main.278.

Chenggang Zhao, Shangyan Zhou, Liyue Zhang, Chengqi Deng, Zhean Xu, Yuxuan Liu, Kuai Yu, Jiashi
Li, and Liang Zhao. Deepep: an efficient expert-parallel communication library. https://github.com/
deepseek-ai/DeepEP, 2025.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Y. Zhao, Andrew M. Dai, Zhifeng
Chen, Quoc V. Le, and James Laudon. Mixture-of-experts with expert choice routing. In Sanmi Koyejo,
S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information
Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022,
New Orleans, LA, USA, November 28 - December 9, 2022, 2022. URL http://papers.nips.cc/paper_
files/paper/2022/hash/2f00ecd787b432c1d36f3de9800728eb-Abstract-Conference.html.

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan, Jingqi Tong, Conghui He, and Yu Cheng. Llama-moe:
Building mixture-of-experts from llama with continual pre-training. CoRR, abs/2406.16554, 2024. URL
https://doi.org/10.48550/arXiv.2406.16554.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and William
Fedus. St-moe: Designing stable and transferable sparse expert models. CoRR, 2022. URL https:
//arxiv.org/abs/2202.08906.

18

https://qwenlm.github.io/blog/qwen-moe/
https://doi.org/10.48550/arXiv.2408.15664
https://doi.org/10.48550/arXiv.2408.15664
https://doi.org/10.1109/TPAMI.2024.3367329
https://doi.org/10.48550/arXiv.2407.01906
https://aclanthology.org/2022.emnlp-main.278
https://aclanthology.org/2022.emnlp-main.278
https://github.com/deepseek-ai/DeepEP
https://github.com/deepseek-ai/DeepEP
http://papers.nips.cc/paper_files/paper/2022/hash/2f00ecd787b432c1d36f3de9800728eb-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/2f00ecd787b432c1d36f3de9800728eb-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2406.16554
https://arxiv.org/abs/2202.08906
https://arxiv.org/abs/2202.08906

Under review as submission to TMLR

Contents

1 Introduction 1

2 Background 2

3 Related work 3

4 Method & Empirical Study 3

4.1 Selected architectures for our study . 4

4.2 Continual pre-training strategy and Datasets . 4

4.3 Training details . 4

4.4 Maximum Routing Imbalance: A proxy for worst-case latency in MoEs 5

5 Results 6

5.1 Ablating replay (%) and the checkpoint used for CPT . 6

5.2 Language modeling performance . 7

5.3 Analyzing changes in routing behaviour due to CPT . 9

6 Conclusion 11

A Extended Background 20

A.1 Continual pre-training of LLMs . 20

A.2 Mixture of experts transformer language models . 20

B Extended related work 21

B.1 Mixture of experts language models . 21

B.2 Continual pre-training of dense foundation models . 22

B.3 Continual pre-training of MoE LLMs. 22

C Training timings 23

D Extended experimental results 24

D.1 Language model evaluation benchmarks . 24

D.2 Training and validation loss . 27

D.3 Qualitative analysis . 30

D.3.1 Continual routing saturation analysis . 30

D.3.2 Continual vocabulary specialization analysis . 33

D.3.3 Continual expert co-activation analysis . 37

D.3.4 Continual routing imbalance analysis . 41

D.4 Maximum routing imbalance of MoEs during continual pre-training. 44

19

Under review as submission to TMLR

E Dataset sizes and sampling proportions 49

F Model hyperparameters 50

A Extended Background
The following section is complementary to section 2 of the main manuscript, providing additional background
for our paper.

A.1 Continual pre-training of LLMs

Continual pre-training extends pre-training to multiple new distributions. Concretely, continual pre-training
occurs when a models is trained on a sequence of datasets D0, D1, . . . , DN with different distributions, N ≥ 2,
and each dataset is sufficiently large (e.g., > 100B tokens in the case of language) (Ibrahim et al., 2024).
Note that the large data scale, here, distinguishes this setting from supervised fine-tuning or instruction
tuning where the amount of data is much smaller. Typical application settings of continual pre-training are
adapting existing pre-trained models on newly available data or enhancing their capabilities in a specific
domain. We will now discuss well-established techniques for continually pre-training dense transformers.

LR Re-warming and Re-decaying. Many open-source LLMs follow a linear warmup and cosine annealing
schedule during pre-training, which reaches a large maximum learning rate, ηmax , early on in training and
subsequently decays the learning rate to a small minimum value, ηmin (Hoffmann et al., 2022; Loshchilov
& Hutter, 2017; Rae et al., 2021). Naively continuing training at ηmin or ηmax either leads to too little
adaptation or too much forgetting. Instead, Ibrahim et al. (2024) show that Re-warming and Re-decaying
the learning rate during CPT is critical for strong continual learning performance.

Infinite LR schedules. While Re-warming and Re-decaying the learning rate following a cosine decay
schedule was found to be a good solution when starting from a fully decayed checkpoint, Ibrahim et al. (2024)
remark that this strategy incurs forgetting, due to the large LR increase, even when continually pre-training
on the same distribution. To circumvent this, the authors propose infinite learning rate schedules that allow
for a smooth transition in learning rate between continual learning phases and are not bound to a fixed
number of training steps. These techniques were subsequently confirmed to work well in settings with multiple
distribution shifts (Janson et al., 2025).

Replay. Replaying previous data has been a longstanding tool for mitigating catastrophic forgetting (Wang
et al., 2024b). In our experiments, we replay previously seen data for this purpose, designating any model
using the technique with the suffix “X% Replay". Here, X represents the percentage of samples in a given
batch that were replayed from the previous distribution. To match compute across different replay budgets,
we do not increase the token budget when increasing the amount of replay. Instead, we decrease the amount
of new data seen during CPT.

A.2 Mixture of experts transformer language models

Sparsely-activated MoE transformers differ from their dense counterparts by dynamically routing tokens
in a sequence, X ∈ RS×H , to different experts {FFNi,j(·)}N

i=0 as opposed to a single FFN. Here S is the
sequence length, H is the transformer’s hidden dimension, j indexes over the transformer’s blocks, and N is
the number of experts per block. This is often referred to as an MoE layer (Shazeer et al., 2017). Typically,
these layers are used in place of Feed Forward Networks (FFN) in each transformer block (Fedus et al., 2022;
Dai et al., 2024), however, recent works (Shen et al., 2024; Zhang et al., 2022) have also replaced the query
and output matrices of multi-head self-attention layers with MoE layers. In what follows, we exclusively
study MoE transformers that replace FFNs at each block with MoE layers, similarly to state-of-the-art recent
work (Dai et al., 2024; Team, 2024; Muennighoff et al., 2024; DeepSeek-AI et al., 2025b;a). Moreover, we
also study the recent trend of using more granular experts and shared experts (Dai et al., 2024; Team, 2024;
Muennighoff et al., 2024; He, 2024; Liu et al., 2023b; Ludziejewski et al., 2024; Rajbhandari et al., 2022;
DeepSeek-AI et al., 2025b;a).

Algorithms for dynamically selecting among experts, known as routing algorithms (Roller et al., 2021; Shazeer
et al., 2017; Zoph et al., 2022; Clark et al., 2022; Lewis et al., 2021), are central to MoEs. A key consideration

20

Under review as submission to TMLR

for token-choice (we do not consider expert-choice as it is incompatible with autoregressive generation) routing
algorithms is achieving a balanced load across experts in a given layer. Without enforcing a balanced load,
the router may collapse to only choosing a single or a few experts, leading to poor parameter utilization and
higher latency proportional to the load of the most burdened expert (Zhou et al., 2022).

In this work, we focus on studying two prominent Top-k routing algorithms from recent state-of-the-art works,
which we refer to as Penalty-Balanced Top-k (PBTk) routing (Shazeer et al., 2017; Dai et al., 2024; Zoph
et al., 2022; Fedus et al., 2022) and Sinkhorn-Balanced Top-k (SBTk) routing (Clark et al., 2022; Anthony
et al., 2024). Both algorithms define the router R(x) = Wx : RH → Re to be a simple linear projection
to the space of experts. Expert probabilities are computed by applying a softmax to the router’s output:
p(x) = softmax(SB(R(x))). Where SB(·) is the Sinkhorn load balancing function in the case of SBTk
routing or the identity otherwise.

Ranked by p(x), the top-k experts are selected for each token, where k is a hyperparameter selected before
training. For a single token, the output of MoE layer j, fMoEj is computed as follows:

fMoEj
(x) = SFFNj(x) +

∑
i∈Ik(x) pi(x) · FFNi,j(x)∑

i∈Ik(x) pi(x) .

Where Ik(x) = {i | pi(x) ∈ Top k elements of p(x)} and SFFN is a shared expert (Rajbhandari et al., 2022;
Dai et al., 2024) if one is used or the identity otherwise. While they both route tokens to the top-k experts,
the PBTk and SBTk routing algorithms differ in how they balance the load across experts.

Penalty-Balanced Top-k Routing. PBTk methods in the literature (Shazeer et al., 2017; Fedus et al.,
2022; Zoph et al., 2022; Dai et al., 2024) add penalty terms to the overall loss to encourage a balanced load
across experts. The auxiliary loss has become the most popular such penalty and is used in conjunction
with the z-loss in several recent state-of-the-art MoEs (Dai et al., 2024; Team, 2024). Briefly, the auxiliary
loss is minimized when the router assigns an equal proportion of tokens in a given batch to each expert
in a given block, while the z-loss penalizes large-magnitude router logits. The latter has been shown to
promote numerical stability in larger models (Zoph et al., 2022). Given their combination in recent SOTA
MoE LLMs (Zoph et al., 2022; Dai et al., 2024), we exclusively study MoEs that combine both auxiliary loss
and z-loss, referring to them as PBTk MoEs.

Sinkhorn-Balanced Top-k Routing. SBTk routing casts the assignment of tokens to experts as a linear
assignment problem which corresponds to a well-studied problem in optimal transport, namely "the regularized
Kantorovich problem of optimal transport" (Clark et al., 2022). The Sinkhorn-knopp algorithm (Knopp &
Sinkhorn, 1967) provides an approximate solution to this problem, which can be efficiently computed on
GPUs. In practice, this corresponds to adjusting routing probabilities (e.g, according to SB(·), see (Clark
et al., 2022) section B.2.1 for details) such that a relatively balanced load is obtained without deviating too
much from greedy Top-k routing.

B Extended related work
The following section is complementary to section 3 of the main manuscript, providing a more comprehensive
summary of the related work.

B.1 Mixture of experts language models

Mixture of experts language models have a long history with fundamental ideas dating back several
decades (Collobert et al., 2003; Jacobs et al., 1991). More recently, in the context of large-scale lan-
guage modeling, the mixture-of-experts layer (Shazeer et al., 2017) was introduced to substantially increase
the capacity of an LSTM language model with little detriment to efficiency. The authors also introduced a
load-balancing penalty to encourage even utilization of experts. Subsequently, Fedus et al. (2022) refined
the penalty, renamed auxiliary loss, which has become a central component of modern MoEs. Follow-up
works have focused on massively scaling up MoE LLMs, improving the routing algorithms of these models,
improving the quality of the router’s gradient estimate, and making architectural improvements to these
models. Lepikhin et al. (2021) introduce the MoE layer into the transformer architecture, using two activated

21

Under review as submission to TMLR

experts (thought to be necessary for nontrivial router gradients) and scaling to an unprecedented 600B
parameter scale. Subsequently, Fedus et al. (2022) introduced the Switch Transformer, showing that it is
possible to scale MoEs beyond 1T parameters despite training them with only a single active expert.

Other works have focused on developing novel routing algorithms. Lewis et al. (2021) cast routing as a linear
assignment problem and leverage Hungarian matching in their routing algorithm. Clark et al. (2022) use
Sinkhorn’s algorithm to approximately solve the assignment problem on GPUs, resulting in a faster algorithm.
Anthony et al. (2024) introduce a favorable initial condition to improve the convergence of the iterative
Sinkhorn solver, further reducing the cost of Sinkhorn routing. Roller et al. (2021) introduces a deterministic
routing algorithm based on hash layers. Zoph et al. (2022) introduces a loss penalty to promote stability
in large-scale MoE routing. Wang et al. (2024a) introduces the first learned routing mechanism that uses
neither an entropy regularizer nor an assignment-based approach to balance expert utilization in token-choice
routing. Zhou et al. (2022) introduce Expert Choice Routing, a routing paradigm where each expert receives a
balanced load and the routing algorithm decides which tokens to send to each of the experts; while it obtains
strong performance and automatically achieves a balanced load, ECR is incompatible with autoregressive
generation so we don’t consider it in this work. Other works propose methods to better approximate the full
router gradient (Panda et al., 2024; Liu et al., 2024; 2023a).

Finally, a recent trend of using MoE experts with finer-grained intermediate sizes has shown notable
performance gains when compared to using the full intermediate FFN size, as was originally done (Shazeer
et al., 2017; Fedus et al., 2022; Lepikhin et al., 2021). Liu et al. (2023b) first observed that utilizing smaller
expert layers improves perplexity. Subsequently, researchers have explored scaling laws for fine-grained MoEs
at small scale (Ludziejewski et al., 2024), pre-trained and released SOTA MoEs that leverage the fine-grained
expert architecture (Dai et al., 2024; Team, 2024; Muennighoff et al., 2024), and pushed the idea of thinner
experts to its limit, exploring MoEs with millions of experts (He, 2024). While we have reviewed the most
relevant works to ours, there are many more works that we have not had the chance to mention here. We
refer the avid reader to a recent and comprehensive survey of the area (Cai et al., 2024).

B.2 Continual pre-training of dense foundation models

Continual pre-training of foundation models has the same objectives as continual learning (French, 1999),
except that it is applied to large-scale pre-training tasks, which are mainly self-supervised. Several existing
works study continual learning in settings relevant to continual pre-training. They find that self-supervised
pre-training benefits from reduced forgetting (Cossu et al., 2022; Davari et al., 2022), that pre-trained models
forget less than their randomly initialized counterparts (Mehta et al., 2023), that forgetting improves as
model scale is increased (Ramasesh et al., 2022), and that wider models tend to forget less than deeper
models (Mirzadeh et al., 2022). In the context of LLM fine-tuning, (Scialom et al., 2022) shows that little
replay is needed to prevent forgetting when fine-tuning on small amounts of instruction-tuning data. In the
context of large-scale (with respect to data) continual pre-training for LLMs, Gupta et al. (2023) highlights
the importance of rewarming the learning rate when models are pre-trained from a checkpoint that has
been decayed to a small learning rate. Following up on their work, Ibrahim et al. (2024) establish the
effectiveness of learning rate re-warming, LR re-decaying, and replay for large-scale continual pre-training of
LLMs. Concurrently, Garg et al. (2023) establishes the performance of the same techniques for CLIP models.
Shortly thereafter, Parmar et al. (2024) scale continual pre-training for dense decoder-only transformers
further, showing that a 15B parameter model pre-trained for 8T tokens can be effectively pre-trained on 1T
tokens of incoming data.

B.3 Continual pre-training of MoE LLMs.

To the best of our knowledge, only a single work exists exploring the large-scale continual pre-training of MoEs
LLMs, while the majority of the literature focuses on upcycling or growing MoEs for continual pre-training.

In a concurrent pre-print DeepSeek-CoderV2 (DeepSeek-AI et al., 2024), shows that they can continue from
a checkpoint the training of a MoE LLM. However, this is only shown for one instance and the analysis of
the MoE routing behavior is not discussed. Furthermore, there is no comparison to a FLOP-matched dense

22

Under review as submission to TMLR

model, making it challenging to assess whether the sample efficiency of MoE LLMs is maintained during
continual pre-training.

Continual pre-training methods for MoEs that are less related to our work generally focus on fine-tuning
MoE LLMs on small amounts of data (Wang et al., 2024c) or growing MoEs (Komatsuzaki et al., 2023; Zhu
et al., 2024; Sukhbaatar et al., 2024; Gritsch et al., 2024). Wang et al. (2024c) study MoE-specific techniques
for parameter-efficient fine-tuning (PEFT). Zhu et al. (2024) proposes a technique to create an MoE by
splitting the FFNs of an existing dense transformer and subsequently continually pre-training it. Sukhbaatar
et al. (2024) proposes to continually pre-train a dense LLM on multiple different datasets, gather the FFN
layers from different continually pre-trained models to form MoE layers, merge the parameter tensors other
than FFN layers, and subsequently continually pre-train the merged model to learn routing in the MoE part.
Gritsch et al. (2024) propose a similar method to train new expert layers that uses domain embeddings from
a pre-trained embedding model as the identifier for a domain’s experts, allowing the domain embeddings to
provide an inductive bias that can help with adding new experts. While these methods allow for improving
the capabilities of MoEs with new data, they focus on first upcycling dense models, whereas we focus on
updating MoEs pre-trained from scratch.

C Training timings

In the interest of completeness, we provide training timings for each model architecture in our study. We
would like to preface this section with the following disclaimer: all the step times that we report in our study
are specific to our code and the libraries that we use, but are not reflective of the best performance achievable.
Timings are subject to vary based on model size, interconnect speed, training precision, accelerator used,
implementation, etc. With this in mind, in table 2, we report the mean and standard deviation timing in
milliseconds (ms) of different operations across 1000 training steps on 64 A100 GPUs. Specifically, we time
the forward pass, backward pass, optimizer step, and dataloading time. An aggregate time is reported in
the last column. We also report the MFU achieved in TFLOPs and report the throughput in samples per
second. All our experiments use code from the GPT-NeoX library (Andonian et al., 2023) and leverage the
megablox grouped GEMM kernel1 (Gale et al., 2023). We observe that, in our specific implementation, all
MoEs take approximately twice as long per step as the dense model, that granular MoEs have slower forward
and backward times compared to Switch MoEs, and that Sinkhorn-balanced MoEs have slower forward and
backward times compared to Penalty-balanced MoEs. This reveals some non-negligible downsides (e.g. as
reflected in step times) to training MoEs compared to a FLOP-matched dense model, including: higher
memory, longer optimizer step, and higher communication costs. Despite these drawbacks, Du et al. (2024)
find that the performance benefits of MoEs still exceed those of dense models, even when accounting for the
additional overhead when training MoEs.

Table 2: Time of different operations during pre-training for each model architecture in our
study. We report the mean and standard deviation timing in milliseconds (ms) of different operations across
1000 training steps on 64 A100 GPUs. We use a global batch size of 1024 and a sequence length of 2048.
Specifically, we time the forward pass, backward pass, optimizer step, and dataloading time. An aggregate
time is reported in the last column. We also report the MFU achieved in TFLOPs and report the throughput
in samples per second. We observe that, in our specific implementation, all MoEs take approximately twice
as long per step as the dense model, that granular MoEs have slower forward and backward times compared
to Switch MoEs, and that Sinkhorn-balanced MoEs have slower forward and backward times compared to
Penalty-balanced MoEs.

Model Forward Backward Optimizer Data Samples/Sec. MFU(TFLOPs) Total Time(ms)
Dense Baseline 318.02 ± 1.86 518.60 ± 17.73 39.48 ± 5.55 3.72 ± 0.44 1156.88 ± 52.63 111.32 ± 5.06 879.83
PB Switch MoE 449.36 ± 14.97 963.53 ± 4.06 101.66 ± 0.69 2.42 ± 0.33 671.93 ± 24.63 86.21 ± 3.16 1516.97
SB Switch MoE 494.28 ± 11.35 1012.38 ± 6.87 101.58 ± 0.70 2.59 ± 1.36 631.14 ± 33.90 80.97 ± 4.35 1610.83
PB Granular MoE 485.05 ± 13.66 1091.38 ± 3.68 100.66 ± 3.08 2.42 ± 0.33 606.85 ± 21.53 77.86 ± 2.76 1679.50
SB Granular MoE 541.62 ± 7.14 1144.85 ± 5.72 100.27 ± 1.47 2.37 ± 0.33 569.72 ± 19.27 73.09 ± 2.47 1789.10

1https://github.com/tgale96/grouped_gemm

23

https://github.com/tgale96/grouped_gemm

Under review as submission to TMLR

D Extended experimental results

In the following section, we provide extended experimental results from the paper in a non-summarized
format to enhance the reproducibility of our manuscript and allow the reader to dive into whichever details
may most interest them.

D.1 Language model evaluation benchmarks

We evaluate the language models in our study on English, Code, and German evaluation tasks. Please note
that our goal is not to achieve SOTA performance on these benchmarks; none of our models have been aligned
or fine-tuned to improve performance. Instead, we seek to evaluate their performance within the context of
our controlled scientific study. Given the scale of our language models (at most 570M active parameters), we
carefully select evaluation tasks that show non-trivial evaluation results; that is, we choose tasks for which
the models in our suite achieve above random chance accuracy.

Selected English evaluation tasks:

• Commonsense Reasoning (0-shot): HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi
et al., 2019), PIQA (Bisk et al., 2019), ARC-Easy, ARC-Challenge (Clark et al., 2018), SWAG
(Zellers et al., 2018)

• Reading Comprehension (0-shot): LAMBADA (OpenAI) (Storks et al., 2019)
• Scientific Question Answering (0-shot): SciQ (Johannes Welbl, 2017), PubMedQA (Jin et al.,

2019)
• Math (0-shot): MathQA (Amini et al., 2019)

Selected German evaluation tasks translated from the corresponding English language tasks using the GPT
3.5 API (Plüster, 2023).

• Commonsense Reasoning (0-shot): HellaSwag-DE (Zellers et al., 2019), ARC-Challenge-DE
(Clark et al., 2018)

• Reading Comprehension (0-shot): TruthfulQA-DE (Joshi et al., 2017)

Code evaluation tasks

• Python: Human Eval (pass@1-200)

Tables 4, 3, and 5 report the performance of models in our study on English, Code, and German evaluation
benchmarks.

24

Under review as submission to TMLR

Table 3: Human Eval after pre-training on FineWeb and continual pre-training on Stack. We
report the percentage of problems for which at least one generated solution passes all tests. We observe that
all English-only models generate only incorrect solutions, while the models continually pre-trained on code
and the full re-training baselines achieve non-trivial accuracy. Interestingly, the SB Switch MoE performs
best of all across all pass thresholds. However, given the generally poor performance of the models overall,
we attribute differences within a dataset type to random chance.

Training Tokens Model pass@1 pass@10 pass@50 pass@100 pass@150 pass@200 Mean

400B FineWeb

Dense Baseline 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
SB Switch MoE 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
PB Switch MoE 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
SB Granular MoE 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
PB Granular MoE 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

400B FineWeb → 200B Stack

Dense Baseline 0.21% 1.94% 6.87% 9.96% 11.85% 13.41% 7.37%
SB Switch MoE 0.24% 2.19% 8.06% 12.15% 14.85% 17.07% 9.09%
PB Switch MoE 0.21% 1.93% 7.28% 11.10% 13.56% 15.24% 8.22%
SB Granular MoE 0.18% 1.69% 6.50% 10.01% 12.30% 14.02% 7.45%
PB Granular MoE 0.16% 1.51% 6.30% 10.40% 13.24% 15.24% 7.81%

400B FineWeb ∪ 200B Stack Dense Baseline 0.14% 1.20% 3.57% 4.99% 5.98% 6.71% 3.76%
PB Granular MoE 0.20% 1.82% 6.84% 10.21% 12.13% 13.41% 7.44%

Table 4: Languge models evaluation benchmarks after pre-training (English Web Data), continual
pre-training (Code & German Web Data), and full re-training. We report accuracy for all selected
benchmarks. We observe that all MoEs and the dense baselines maintain similar relative performance before
and after the distribution shift, showing that MoE LLMs’ continual pre-training dynamics are similar to dense
models with respect to forgetting on evaluation tasks. When comparing the mean evaluation performance of
PB granular MoE to the full re-training baseline, we observe that the final performance is nearly reached or
matched with a substantially smaller computational cost.

Training Tokens Model ARC-C ARC-E HellaSwag LAMBADA OAI MathQA PIQA PubMedQA SciQ SWAG WinoGrande Mean

400B FineWeb (Annealed)

Dense Baseline 23.55% 54.25% 39.99% 47.55% 23.52% 71.98% 51.80% 82.70% 47.59% 55.49% 49.84%
SB Switch MoE 26.79% 60.48% 45.60% 53.44% 24.52% 74.16% 62.00% 84.80% 50.31% 59.27% 54.14%
PB Switch MoE 28.75% 61.15% 46.16% 54.22% 25.86% 74.37% 58.20% 87.20% 50.67% 57.93% 54.45%
SB Granular MoE 26.19% 65.19% 48.10% 56.24% 24.66% 74.92% 61.10% 89.30% 51.35% 60.06% 55.71%
PB Granular MoE 28.75% 62.92% 48.45% 56.08% 24.62% 75.24% 60.00% 88.90% 51.36% 59.59% 55.59%

400B FineWeb (Non-Annealed)

Dense Baseline 22.35% 52.02% 39.12% 49.04% 23.15% 70.46% 52.50% 81.90% 47.09% 54.14% 49.18%
SB Switch MoE 24.23% 57.91% 44.26% 51.72% 24.52% 73.12% 60.30% 83.50% 49.32% 56.67% 52.55%
PB Switch MoE 26.54% 60.86% 44.59% 53.21% 23.99% 73.39% 52.30% 85.80% 49.98% 56.27% 52.69%
SB Granular MoE 26.54% 62.63% 46.85% 55.87% 24.56% 73.67% 58.60% 87.70% 50.72% 59.04% 54.62%
PB Granular MoE 27.82% 61.20% 46.52% 55.46% 24.36% 74.97% 58.80% 86.80% 50.87% 58.64% 54.54%

400B FineWeb → 200B German (40% Replay)

Dense Baseline 22.87% 51.43% 36.97% 46.75% 23.75% 70.18% 48.80% 80.70% 45.87% 54.22% 48.15%
SB Switch MoE 24.66% 56.90% 42.99% 52.94% 24.22% 73.07% 57.40% 83.50% 48.85% 55.41% 51.99%
PB Switch MoE 25.34% 56.94% 42.59% 53.43% 25.06% 73.23% 49.40% 84.20% 48.76% 53.51% 51.25%
SB Granular MoE 25.43% 60.02% 44.67% 55.23% 25.13% 73.01% 55.10% 84.60% 49.89% 60.46% 53.35%
PB Granular MoE 27.05% 60.52% 44.66% 54.43% 24.56% 73.88% 58.40% 85.70% 49.70% 57.22% 53.61%

400B FineWeb ∪ 200B German CC Dense Baseline 23.29% 51.35% 36.77% 46.17% 24.19% 70.08% 54.00% 80.30% 45.51% 52.57% 48.42%
PB Granular MoE 27.99% 60.06% 45.06% 55.23% 25.16% 73.50% 56.20% 86.20% 49.88% 60.14% 53.94%

400B FineWeb → 200B Stack (30% Replay)

Dense Baseline 22.01% 52.95% 37.49% 46.98% 22.91% 71.06% 55.40% 83.70% 45.76% 53.83% 49.21%
SB Switch MoE 22.87% 55.98% 42.51% 52.84% 24.12% 72.80% 55.80% 85.10% 48.78% 56.83% 51.76%
PB Switch MoE 26.28% 59.01% 42.78% 53.17% 24.32% 73.50% 55.10% 86.20% 49.07% 56.43% 52.59%
SB Granular MoE 26.54% 60.19% 44.57% 55.44% 24.39% 73.01% 55.60% 85.90% 49.83% 59.59% 53.51%
PB Granular MoE 25.43% 60.27% 44.88% 54.94% 25.36% 73.78% 56.90% 88.00% 49.62% 57.85% 53.70%

400B FineWeb ∪ 200B Stack Dense Baseline 22.18% 52.78% 38.68% 48.50% 24.49% 71.00% 51.70% 83.40% 47.01% 55.96% 49.57%
PB Granular MoE 27.82% 62.67% 46.43% 56.39% 25.66% 75.35% 56.60% 89.40% 50.85% 56.75% 54.79%

25

Under review as submission to TMLR

Table 5: German Language models evaluation benchmarks after pre-training (English Web
Data), continual pre-training (Code & German Web Data), and full re-training. We report
accuracy for all selected benchmarks. We observe that all MoEs and the dense baseline improve performance
on German after continual pre-training. When comparing to the full re-training baselines, we observe that
the average performance of our continually pre-trained models are on par.

Training Tokens Model Arc-C DE Hellaswag DE TruthfulQA DE (MC1) Mean

400B FineWeb

Dense Baseline 18.52% 26.78% 25.34% 23.54%
SB Switch MoE 18.60% 26.87% 23.87% 23.11%
PB Switch MoE 18.94% 26.56% 24.60% 23.37%
SB Granular MoE 18.34% 26.78% 23.38% 22.83%
PB Granular MoE 18.43% 27.05% 24.72% 23.40%

400B FineWeb → 200B German CC Dense Baseline 19.28% 32.53% 23.99% 25.27%
SB Switch MoE 21.76% 35.74% 25.21% 27.57%
PB Switch MoE 20.73% 35.77% 23.01% 26.50%
SB Granular MoE 22.61% 36.90% 26.19% 28.57%
PB Granular MoE 22.70% 37.23% 23.01% 27.65%

400B FineWeb ∪ 200B German CC Dense Baseline 20.05% 31.45% 24.85% 25.45%
PB Granular MoE 21.33% 35.74% 25.70% 27.59%

26

Under review as submission to TMLR

D.2 Training and validation loss

In the following sections, we present validation loss curves during and after pre-training and continual
pre-training for all models in our study. Specifically, we report final validation loss in Table 6 and validation
curves during training across figures 6, 7, and 8.

Table 6: Final validation loss of MoEs and dense model after pre-training (English Web Data)
and continual pre-training (Code & German Web Data). As expected, we observe that all MoE
transformers outperform the dense baseline during pre-training and continual pertaining with respect to
validation loss. Moreover, we observe that MoEs forget marginally less than their dense counterparts.
Together, these results show the continual learning abilities of MoEs are on par with dense models in terms of
adaptation and are slightly superior in terms of forgetting, possibly due to their larger total parameter count.

Final Validation Loss
Training Tokens Model FineWeb Stack German Forgetting AVG

400B FineWeb (non-annealed)

Dense Baseline 2.881 4.028 3.741 – –
SB Switch MoE 2.711 3.861 3.495 – –
PB Switch MoE 2.699 3.872 3.451 – –
SB Granular MoE 2.664 3.690 3.404 – –
PB Granular MoE 2.653 3.715 3.370 – –

400B FineWeb (annealed)

Dense Baseline 2.825 4.028 3.741 – –
SB Switch MoE 2.640 3.861 3.495 – –
PB Switch MoE 2.628 3.872 3.451 – –
SB Granular MoE 2.595 3.690 3.404 – –
PB Granular MoE 2.582 3.715 3.370 – –

400B FineWeb → 200B Stack 30% Replay

Dense Baseline 2.939 1.026 – 0.059 1.982
SB Switch MoE 2.757 0.944 – 0.046 1.850
PB Switch MoE 2.749 0.945 – 0.050 1.847
SB Granular MoE 2.708 0.925 – 0.044 1.816
PB Granular MoE 2.699 0.924 – 0.046 1.811

400B FineWeb ∪ 200B Stack Dense Baseline Union 2.866 1.050 – – 1.958
PB Granular MoE Union 2.630 0.935 – – 1.782

400B FineWeb → 200B German 0% Replay

Dense Baseline 4.028 – 1.279 1.399 2.654
SB Switch MoE 3.810 – 1.062 1.180 2.436
PB Switch MoE 3.782 – 1.059 1.152 2.420
SB Granular MoE 3.701 – 1.038 1.071 2.369
PB Granular MoE 3.685 – 1.028 1.055 2.356

400B FineWeb → 200B German 40% Replay

Dense Baseline 2.946 – 1.367 0.066 2.157
SB Switch MoE 2.749 – 1.142 0.039 1.946
PB Switch MoE 2.741 – 1.129 0.042 1.935
SB Granular MoE 2.701 – 1.118 0.037 1.910
PB Granular MoE 2.690 – 1.099 0.037 1.895

400B FineWeb ∪ 200B German Dense Baseline Union 2.938 – 1.390 – 2.164
PB Granular MoE Union 2.669 – 1.120 – 1.895

27

Under review as submission to TMLR

0 10 20 30 40 50
Training Tokens (B)

2.75

3.00

3.25

3.50

3.75

4.00

Va
lid

at
io

n
Lo

ss
 F

in
eW

eb

(a) FineWeb Validation Loss

0 10 20 30 40 50
Training Tokens (B)

1.2

1.4

1.6

1.8

Va
lid

at
io

n
Lo

ss
 G

er
m

an
(b) German Validation Loss

Dense Baseline 0% Replay
Dense Baseline 10% Replay
Dense Baseline 40% Replay
SB Switch MoE 0% Replay
SB Switch MoE 10% Replay
SB Switch MoE 40% Replay
PB Switch MoE 0% Replay
PB Switch MoE 10% Replay
PB Switch MoE 40% Replay
SB Granular MoE 0% Replay
SB Granular MoE 10% Replay
SB Granular MoE 40% Replay
PB Granular MoE 0% Replay
PB Granular MoE 10% Replay
PB Granular MoE 40% Replay

Figure 6: Penalty-Balanced (PB) and Sinkhorn-Balanced (SB) Top-k MoEs behave similarly to
the FLOP-matched Dense baseline when being continually pre-trained with varying amounts
of replay. We continually pre-train MoEs and a dense baseline using varying amounts of replay: 0% (dotted
curves), 10% (dashed curves), and 40% (full curves). We observe that replay substantially reduces forgetting
for all models while slightly harming adaptation; that is, the effect of replay is the same for MoEs as for
dense models.

0 50 100 150 200 250 300 350 400
Training Tokens (B)

2.6

2.8

3.0

3.2

3.4

Va
lid

at
io

n
Lo

ss
 F

in
eW

eb

(a) FineWeb Training Loss

Dense Baseline
SB Switch MoE
PB Switch MoE
SB Granular MoE
PB Granular MoE

Figure 7: Validation loss during initial pre-training on FineWeb with Infinite LR schedules. We
report decay and constant phases to completion. We observe that all MoE transformers stably decrease
validation loss throughout pre-training, with MoEs improving over the dense model as expected. Interestingly,
the PBTk MoEs shows an incremental improvement over SBTk.

28

Under review as submission to TMLR

0 25 50 75 100 125 150 175 200
Training Tokens (B)

2.60

2.65

2.70

2.75

2.80

2.85

2.90

2.95

3.00

3.05

Va
lid

at
io

n
Lo

ss
 F

in
eW

eb

(a) FineWeb Validation Loss

0 25 50 75 100 125 150 175 200
Training Tokens (B)

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Va
lid

at
io

n
Lo

ss
 S

ta
ck

Dense Baseline
SB Switch MoE
PB Switch MoE
SB Granular MoE
PB Granular MoE

(b) Stack Validation Loss

0 25 50 75 100 125 150 175 200
Training Tokens (B)

2.60

2.65

2.70

2.75

2.80

2.85

2.90

2.95

3.00

3.05

Va
lid

at
io

n
Lo

ss
 F

in
eW

eb

(c) FineWeb Validation Loss

0 25 50 75 100 125 150 175 200
Training Tokens (B)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Va
lid

at
io

n
Lo

ss
 G

er
m

an

(d) German Validation Loss

Figure 8: Validation Loss on CPT and PT datasets during CPT. Subfigures (a) and (c) report
FineWeb validation loss, while subfigures (b) and (d) report Stack and German validation loss respectively
for models trained on those datasets. We observe that all MoEs maintain their sample efficiency after the
distribution shift, reaching a lower loss in many fewer iterations than the FLOP-matched dense baseline.

29

Under review as submission to TMLR

D.3 Qualitative analysis

In the following section, we present new metrics for analyzing the routing decisions of MoEs in our study
and interpret how they change during continual pre-training. To accomplish this, we take checkpoints before
and after continual pre-training and record their routing decisions, loss, routing imbalance, and a number of
different metrics on 20M tokens of FineWeb test data (pre-training dataset), 20M tokens of German test data
(continual pre-training dataset), and 20M tokens of Stack test data (continual pre-training dataset). Our
results can be grouped into four main categories: 1) routing saturation analysis, 2) vocabulary specialization
analysis, 3) expert co-activation analysis, and 4) routing imbalance analysis.

D.3.1 Continual routing saturation analysis

We adapt the analysis of router saturation from Muennighoff et al. (2024) to the continual setting. Note that
we will directly reproduce and slightly modify some lines from Muennighoff et al. (2024)’s definition of router
saturation below for clarity and ease of passing from one paper’s notation to the other. Concretely, we define
continual Continual Router Saturation as:

Continual Router Saturation(t, h, j) = 1
N

N∑
i=1

|E(Th)
i ∩ E(Tj)

i |
k

, (2)

where:

• Th and Tj : The tasks being considered when selecting checkpoints. Note that h ≤ j. In our
case, j, h ∈ {0, 1, 2} , with T0 designating the pre-training task (FineWeb) and T1, T2 designating
German and Stack continual pre-training tasks, respectively. While our experiments only consider
one transition, in general, there may be many more.

• N : The total number of tokens in the dataset.

• k: The number of experts activated per input token.

• E(Th)
i : The set of k experts activated for the ith token at the final checkpoint of the hth task.

• E(Tj)
i : The set of k experts activated for the ith token at the final checkpoint of the jth task.

• |E(Th)
i ∩E(Tj)

i |: The number of common experts activated for the ith token between the final checkpoints
taken from the hth task and jth task.

Figures 9 and 10 consider h = 0 and j ∈ {0, 1} for Granular (31 routed experts, 3 active, 1 shared) and Switch
(8 routed experts, 1 active) MoEs respectively, thus comparing the checkpoint before continual pre-training
with the checkpoint obtained afterward. The subfigures on the right report router saturation across model
layers for PBTk MoEs, while the subfigures on the left report the same for switch SBTk MoEs. Each row
reports router saturation on a different dataset. We make the following observations:

(1) the first few layers are consistently among those with the lowest router saturation,

(2) router saturation is lower for checkpoints trained on a given task h when it is measured with respect
to tokens from h, and

(3) the router saturation of models tested on their continual pre-training dataset seems to consistently
decrease with a small slope as the layers index increases.

Observation (1) suggests that the early layers may undergo the most change during continual pre-training.
Note that the trend of the first few layers having low router saturation is especially pronounced in subfigures
(a) and (b), suggesting that most of the forgetting seen during continual pre-training may occur in the early
layers. Observation (2) shows that MoEs change their routing decisions more to the distribution they are
being trained on in the case of German and Stack, which is intuitive. Observation (3) suggests that layers
closer to the final layer of the MoE must change more to adapt to the new distribution.

30

Under review as submission to TMLR

0 5 10 15 20
Layer

0

20

40

60

80

100
R

ou
te

r
Sa

tu
ra

tio
n

(%
)

FineWeb
PB Granular MoE
German 40% Replay
PB Granular MoE
German 0% Replay
PB Granular MoE
Stack 30% Replay
PB Granular MoE

(a) FineWeb, PBTk Granular MoE

0 5 10 15 20
Layer

0

20

40

60

80

100

R
ou

te
r

Sa
tu

ra
tio

n
(%

)

FineWeb
SB Granular MoE
German 40% Replay
SB Granular MoE
German 0% Replay
SB Granular MoE
Stack 30% Replay
SB Granular MoE

(b) FineWeb, SBTk Granular MoE

0 5 10 15 20
Layer

0

20

40

60

80

100

R
ou

te
r

Sa
tu

ra
tio

n
(%

)

(c) German, PBTk Granular MoE

0 5 10 15 20
Layer

0

20

40

60

80

100

R
ou

te
r

Sa
tu

ra
tio

n
(%

)

(d) German, SBTk Granular MoE

0 5 10 15 20
Layer

0

20

40

60

80

100

R
ou

te
r

Sa
tu

ra
tio

n
(%

)

(e) Stack, PBTk Granular MoE

0 5 10 15 20
Layer

0

20

40

60

80

100

R
ou

te
r

Sa
tu

ra
tio

n
(%

)

(f) Stack, SBTk Granular MoE

Figure 9: Router saturation at the beginning of continual pre-training for Granular MoEs.
Subfigures (a,c,e) report layer-wise router saturation for PBTk MoEs, while subfigures (b,d,f) report router
saturation for SBTk MoEs. (a) and (b) measure routing saturation with respect to test tokens from FineWeb,
(c) and (d) measure router saturation with respect to test tokens from German, and (e) and (f) measure
router saturation with respect to test tokens from Stack. We observe a few trends: 1) the first few layers
are consistently among those with the lower router saturation, 2) router saturation is consistently lower for
checkpoints CPT on the testing distribution showing that these checkpoitns adapt more to that distribution,
3) the router saturation of models tested on their continual pre-training dataset seems to consistently decrease
with a small slope as the layers index increases, and 4) the no-replay checkpoint consistently has lower router
saturation than its 40% replay counterpart.

31

Under review as submission to TMLR

0 5 10 15 20
Layer

0

20

40

60

80

100
R

ou
te

r
Sa

tu
ra

tio
n

(%
)

FineWeb
PB Switch MoE
German 40% Replay
PB Switch MoE
German 0% Replay
PB Switch MoE
Stack 30% Replay
PB Switch MoE

(a) FineWeb, PBTk Switch MoE

0 5 10 15 20
Layer

0

20

40

60

80

100

R
ou

te
r

Sa
tu

ra
tio

n
(%

)

FineWeb
SB Switch MoE
German 40% Replay
SB Switch MoE
German 0% Replay
SB Switch MoE
Stack 30% Replay
SB Switch MoE

(b) FineWeb, SBTk Switch MoE

0 5 10 15 20
Layer

0

20

40

60

80

100

R
ou

te
r

Sa
tu

ra
tio

n
(%

)

(c) German, PBTk Switch MoE

0 5 10 15 20
Layer

0

20

40

60

80

100

R
ou

te
r

Sa
tu

ra
tio

n
(%

)

(d) German, SBTk Switch MoE

0 5 10 15 20
Layer

0

20

40

60

80

100

R
ou

te
r

Sa
tu

ra
tio

n
(%

)

(e) Stack, PBTk Switch MoE

0 5 10 15 20
Layer

0

20

40

60

80

100

R
ou

te
r

Sa
tu

ra
tio

n
(%

)

(f) Stack, SBTk Switch MoE

Figure 10: Router saturation at the beginning of continual pre-training for Switch MoEs.
Subfigures (a,c,e) report layer-wise router saturation for PBTk MoEs, while subfigures (b,d,f) report router
saturation for SBTk MoEs. (a) and (b) measure routing saturation with respect to test tokens from FineWeb,
(c) and (d) measure router saturation with respect to test tokens from German, and (e) and (f) measure
router saturation with respect to test tokens from Stack. We observe a few trends: 1) the first few layers
are consistently among those with the lower router saturation, 2) router saturation is consistently lower for
checkpoints CPT on the testing distribution showing that these checkpoitns adapt more to that distribution,
3) the router saturation of models tested on their continual pre-training dataset seems to consistently decrease
with a small slope as the layers index increases, and 4) the no-replay checkpoint consistently has lower router
saturation than its 40% replay counterpart.

32

Under review as submission to TMLR

D.3.2 Continual vocabulary specialization analysis

We adapt the analysis of vocabulary specialization from Muennighoff et al. (2024) to the continual setting.
Note that we will directly reproduce and slightly modify some lines from Muennighoff et al. (2024)’s definition
of vocabulary specialization below for clarity and ease of passing from one paper’s notation to the other.
Concretely, we define Vocabulary Specialization as:

Vocabulary Specialization(j, Ei, x) =
N

(k)
j,x,Ei

Nj,x
, (3)

where:

• Ei: The ith expert in an MoE layer.

• j: A task index specifying which final checkpoint to use (e.g., specifying the final checkpoint after
task 1, task 2,...).

• x: The token ID being analyzed.

• k: The number of experts considered (we use k=3 for Granular MoEs and k=1 for switch MoEs).

• N
(k)
j,x,Ei

: The number of times input data is routed to Ei for x when using the final checkpoint of
task j.

• Nj,x: The total number of times input data is routed across all experts for x and the final checkpoint
of task j.

Vocabulary Specialization can, therefore, be calculated for each expert at every layer of the model and
for each token in the model’s vocabulary. By assigning each token in the vocabulary to the expert that
processes it the most frequently, we can then create a one-to-many mapping between experts and vocabulary
entries for each layer of the MoE. Then, we can calculate the average vocabulary specialization of each expert
by averaging over its assigned tokens and averaging across experts to measure specialization within a layer.
To compare specialization across model checkpoints, we can re-use the one-to-many mapping of a previous
checkpoint and measure how the specialization with respect to this mapping has changed during continual
pre-training. Concretely, the continual vocabulary specialization (CVS) for an MoE layer l can be defined as
follows:

CVS(j, h) = 1
NE

∑
x∈V

Vocabulary Specialization(h, Eαj,x
, x) (4)

αj,x := arg max
i∈[NE]

{Vocabulary Specialization(j, Ei, x)} (5)

• NE : The number of experts in an MoE layer l.

• V: The set of tokens in the model’s vocabulary (we use the Llama3 tokenizer).

• h: A task index specifying the checkpoint from which to compute the mapping.

• j: A task index specifying a final checkpoint that is used to compute the continual vocabulary
specialization.

Note that the dataset of tokens used to compute the CVS is omitted for simplicity. However, the specialization
of experts will depend on the distribution of the tokens because the same input token may be routed to
different experts depending on the context within which it lives and the context will change depending on the
distribution. For instance, the hidden representation of the word “for" in an English language corpus and a
code corpus may differ wildly.

33

Under review as submission to TMLR

Figures 11 and 12 report the CVS of Granular and Switch MoEs, respectively. For each plot, the one-to-many
mapping, αj,x, is created from the checkpoint pre-trained on FineWeb (e.g., the checkpoint we start continual
pre-training from). All specializations are computed with respect to the input token. When evaluated on
FineWeb, we observe across all architectures and balancing strategies that the first few layers for continually
pre-trained models have lower continual vocabulary specialization than the pre-trained checkpoint, whereas
subsequent layers have vocabulary specialization that closely matches that of the pre-trained checkpoint.
This is even the case for the model that uses 0% replay, suggesting that MoEs learn routing policies during
pre-training that are relatively unaffected by continual pre-training. When evaluated on German and stack,
we observe that all MoEs continually pre-trained on those datasets have lower vocabulary specialization than
models not trained on those distributions, showing their adaptation. On German, the zero-replay model
has the smallest CVS. We hypothesize that this is the case because these models adapt the most to the
German distribution and happen to learn new routing patterns, distinct from the ones used on FineWeb.
Contrasting the results observed in subfigures (a) and (b) across Figures 11 and 12 to other subfigures, we
observe that the vocabulary specialization on the pre-training dataset only changes for the first few layers,
while it changes across all layers for the data seen during continual pre-training, even for the model that does
not utilize any replay. Contrasting this with the stronger performance of the no-replay model on German
and its poorer performance on FineWeb, the superior adaptation to German is correlated to the change in
vocabulary specialization throughout the model while the poorer performance on the previous distribution is
correlated with larger changes in vocabulary specialization in the first few layers.

34

Under review as submission to TMLR

0 5 10 15 20
Layer

0

5

10

15

20

25

30

C
on

tin
ua

l
Vo

ca
bu

la
ry

 S
pe

ci
al

iz
at

io
n

FineWeb
PB Granular MoE
German 40% Replay
PB Granular MoE
German 0% Replay
PB Granular MoE
Stack 30% Replay
PB Granular MoE

(a) PBTk Granular MoE, FineWeb

0 5 10 15 20
Layer

0

5

10

15

20

25

30

35

C
on

tin
ua

l
Vo

ca
bu

la
ry

 S
pe

ci
al

iz
at

io
n

FineWeb
SB Granular MoE
German 40% Replay
SB Granular MoE
German 0% Replay
SB Granular MoE
Stack 30% Replay
SB Granular MoE

(b) SBTk Granular MoE, FineWeb

0 5 10 15 20
Layer

0

5

10

15

20

25

30

C
on

tin
ua

l
Vo

ca
bu

la
ry

 S
pe

ci
al

iz
at

io
n

(c) PBTk Granular MoE, German

0 5 10 15 20
Layer

0

5

10

15

20

25

30

35

40

C
on

tin
ua

l
Vo

ca
bu

la
ry

 S
pe

ci
al

iz
at

io
n

(d) SBTk Granular MoE, German

0 5 10 15 20
Layer

0

5

10

15

20

25

30

C
on

tin
ua

l
Vo

ca
bu

la
ry

 S
pe

ci
al

iz
at

io
n

(e) PBTk Granular MoE, Stack

0 5 10 15 20
Layer

0

5

10

15

20

25

30

35

C
on

tin
ua

l
Vo

ca
bu

la
ry

 S
pe

ci
al

iz
at

io
n

(f) SBTk Granular MoE, Stack

Figure 11: Continual Vocabulary Specialization for Granular MoEs. We report CVS for each MoE
layer in the MoEs when testing models on FineWeb, German, and Stack. We observe that early layers deviate
most from the checkpoint after pre-training, while later layers in the continually pre-trained MoEs nearly
match the vocabulary specialization of their checkpoints after the first phase pre-training. This is even the
case for the checkpoint that does not replay previous data, suggesting that vocabulary specialization for
pre-training data is mostly determined during the initial pre-training phase.

35

Under review as submission to TMLR

0 5 10 15 20
Layer

0

5

10

15

20

C
on

tin
ua

l
Vo

ca
bu

la
ry

 S
pe

ci
al

iz
at

io
n

FineWeb
PB Switch MoE
German 40% Replay
PB Switch MoE
German 0% Replay
PB Switch MoE
Stack 30% Replay
PB Switch MoE

(a) PBTk Switch MoE, FineWeb

0 5 10 15 20
Layer

0

5

10

15

20

C
on

tin
ua

l
Vo

ca
bu

la
ry

 S
pe

ci
al

iz
at

io
n

FineWeb
SB Switch MoE
German 40% Replay
SB Switch MoE
German 0% Replay
SB Switch MoE
Stack 30% Replay
SB Switch MoE

(b) SBTk Switch MoE, FineWeb

0 5 10 15 20
Layer

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

C
on

tin
ua

l
Vo

ca
bu

la
ry

 S
pe

ci
al

iz
at

io
n

(c) PBTk Switch MoE, German

0 5 10 15 20
Layer

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

C
on

tin
ua

l
Vo

ca
bu

la
ry

 S
pe

ci
al

iz
at

io
n

(d) SBTk Switch MoE, German

0 5 10 15 20
Layer

0

5

10

15

20

C
on

tin
ua

l
Vo

ca
bu

la
ry

 S
pe

ci
al

iz
at

io
n

(e) PBTk Switch MoE, Stack

0 5 10 15 20
Layer

0

5

10

15

20

C
on

tin
ua

l
Vo

ca
bu

la
ry

 S
pe

ci
al

iz
at

io
n

(f) SBTk Switch MoE, Stack

Figure 12: Continual Vocabulary Specialization for Switch MoEs. We report CVS for each MoE layer
in the MoEs when testing models on FineWeb, German, and Stack. We observe that early layers deviate
most from the checkpoint after pre-training, while later layers in the continually pre-trained MoEs nearly
match the vocabulary specialization of their checkpoints after the first phase pre-training. This is even the
case for the checkpoint that does not replay previous data, suggesting that vocabulary specialization for
pre-training data is mostly determined during the initial pre-training phase.

36

Under review as submission to TMLR

D.3.3 Continual expert co-activation analysis

We adapt the analysis of expert co-activation from Muennighoff et al. (2024) to the continual setting. Note
that we will directly reproduce and slightly modify some lines from Muennighoff et al. (2024)’s definition of
expert co-activation below for clarity and ease of passing from one paper’s notation to the other. Concretely,
we define Expert Co-activation as:

Expert co-activation(Ei, Ej) =
NEi,Ej

NEi

, (6)

where:

• Ei: The first expert.

• Ej : The second expert.

• NEi,Ej
: The number of times experts Ei and Ej are activated together.

• NEi
: The total number of times expert Ei is activated.

The co-activation matrix C for any layer in the MoE can, therefore, be created by setting Ci,j =
Expert co-activation(Ei, Ej). Then, we can define the co-activation difference as follows:

Co-activation Difference(p, q) = |C(p) − C(q)|. (7)

Where | · | is the coordinate-wise absolute value function. Each coordinate i, j of the co-activation difference
measures the change in expert co-activation for experts i, j between final MoE checkpoints after tasks p and
q, respectively. Taking statistics of the entries of the co-activation difference matrix allows us to measure how
expert co-activation changes globally at each layer during continual pre-training.

In Figure 13, we report the median of the coordinates of the co-activation difference matrix between each
continually pre-trained Granular MoE in our study (the switch MoEs only activate a single expert so they
have no co-activation) and its checkpoint after the initial pre-training phase. We observe that when evaluated
on the FineWeb test set, the Penalty-Balanced MoEs have the largest median differences overall and that
they are most pronounced in the first two layers and layer 18. When evaluated on the German test set, we
observe that the models continually pre-trained on German have the largest median differences and that the
tendency for Penalty-Balanced MoEs to have large differences is maintained. When evaluated on the Stack
test set, similar trends are observed.

In Figures 14 and 15, we visualize a subset of the full expert co-activation matrices for Penalty-Balanced
and Sinkhorn-Balanced MoEs, respectively. Specifically, we show expert co-activations for the 16 experts
with the largest co-activation values. The left-most plots show the co-activation matrix of the checkpoint
continually pre-trained on FineWeb without decaying, the middle plots show the co-activation matrix of the
checkpoint after continually pre-training on Stack, and the rightmost figures show the co-activation difference
matrix. Subfigure (a) shows layer 0, (b) shows layer 11, and (c) shows the final layer. We observe that the
co-activation difference is the largest for layer 0 for both Penalty-Balanced and Sinkhorn-Balanced MoEs.
Notably, for the Sinkhorn-Balanced granular MoE’s pre-trained checkpoint, most of the co-activation weight
is placed on the expert 15. However, this strong weighting on expert 15 is attenuated during continual
pre-training. In contrast, the co-activations are more dispersed in the Penalty-Balanced MoE. For layers 11
and 23, there is minimal change between pre-training and continual pre-training.

37

Under review as submission to TMLR

0 5 10 15 20
Layer

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
ed

ia
n

C
o-

Ac
tiv

at
ed

E
xp

er
t C

ha
ng

e
(%

)

FineWeb
PB Granular MoE
German 40% Replay
PB Granular MoE
German 0% Replay
PB Granular MoE
Stack 30% Replay
PB Granular MoE

(a) PBTk, FineWeb

0 5 10 15 20
Layer

0

2

4

6

8

10

12

M
ed

ia
n

C
o-

Ac
tiv

at
ed

E
xp

er
t C

ha
ng

e
(%

)

(b) PBTk, German

0 5 10 15 20
Layer

0

1

2

3

4

5

6

7

8

M
ed

ia
n

C
o-

Ac
tiv

at
ed

E
xp

er
t C

ha
ng

e
(%

)

(c) PBTk, Stack

0 5 10 15 20
Layer

0.0

0.5

1.0

1.5

2.0

2.5

M
ed

ia
n

C
o-

Ac
tiv

at
ed

E
xp

er
t C

ha
ng

e
(%

)

FineWeb
SB Granular MoE
German 40% Replay
SB Granular MoE
German 0% Replay
SB Granular MoE
Stack 30% Replay
SB Granular MoE

(d) SBTk, FineWeb

0 5 10 15 20
Layer

0

1

2

3

4

M
ed

ia
n

C
o-

Ac
tiv

at
ed

E
xp

er
t C

ha
ng

e
(%

)

(e) SBTk, German

0 5 10 15 20
Layer

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ed

ia
n

C
o-

Ac
tiv

at
ed

E
xp

er
t C

ha
ng

e
(%

)

(f) SBTk, Stack

Figure 13: Layer-wise Median Router Co-activation Difference for Granular MoEs. We report the
median of the coordinates of the co-activation difference matrix between each model in the legend and its
corresponding pre-trained checkpoint. We observe that on FineWeb, the Penalty-Balanced MoEs have the
largest median differences overall and that they are most pronounced in the first two layers and layer 18. On
German, we observe that the models continually pre-trained on German have the largest median differences
and that the tendency for Penalty-Balanced MoEs to have large differences is maintained. On Stack, similar
trends are observed.

38

Under review as submission to TMLR

9 11 13 14 15 16 18 19 20 21 22 23 25 26 27 28

9
11
13
14
15
16
18
19
20
21
22
23
25
26
27
28

FineWeb
PB Granular MoE (x1)

9 11 13 14 15 16 18 19 20 21 22 23 25 26 27 28

9
11
13
14
15
16
18
19
20
21
22
23
25
26
27
28

Stack
PB Granular MoE (x2)

9 11 13 14 15 16 18 19 20 21 22 23 25 26 27 28
9

11
13
14
15
16
18
19
20
21
22
23
25
26
27
28

Absolute Difference
|x1 x2|

0

5

10

15

20

25

30

(a) Layer 0

0 1 11 12 15 16 19 20 21 22 23 24 25 26 29 30

0
1

11
12
15
16
19
20
21
22
23
24
25
26
29
30

FineWeb
PB Granular MoE (x1)

0 1 11 12 15 16 19 20 21 22 23 24 25 26 29 30

0
1

11
12
15
16
19
20
21
22
23
24
25
26
29
30

Stack
PB Granular MoE (x2)

0 1 11 12 15 16 19 20 21 22 23 24 25 26 29 30

0
1

11
12
15
16
19
20
21
22
23
24
25
26
29
30

Absolute Difference
|x1 x2|

0

10

20

30

40

50

(b) Layer 11

0 13 14 15 17 18 20 21 22 23 24 25 26 28 29 30

0
13
14
15
17
18
20
21
22
23
24
25
26
28
29
30

FineWeb
PB Granular MoE (x1)

0 13 14 15 17 18 20 21 22 23 24 25 26 28 29 30

0
13
14
15
17
18
20
21
22
23
24
25
26
28
29
30

Stack
PB Granular MoE (x2)

0 13 14 15 17 18 20 21 22 23 24 25 26 28 29 30

0
13
14
15
17
18
20
21
22
23
24
25
26
28
29
30

Absolute Difference
|x1 x2|

0

10

20

30

40

50

60

70

(c) Layer 23

Figure 14: FineWeb Router Co-activation Matrix for PB Granular MoE Continually Pre-trained
on Stack. The left-most plots show the Co-activation matrix of the checkpoint continually pre-trained on
FineWeb without decaying, the middle plots show the Co-activation matrix of the checkpoint after continually
pre-training on Stack, and the rightmost figures show the co-activation difference matrix. Subfigure (a) shows
layer 0, (b) shows layer 11, and (c) shows the final layer. We observe that the co-activation difference is the
largest layer 0, while the other layers change minimally.

39

Under review as submission to TMLR

0 1 7 9 15 17 19 21 22 23 25 26 27 28 29 30

0
1
7
9

15
17
19
21
22
23
25
26
27
28
29
30

FineWeb
SB Granular MoE (x1)

0 1 7 9 15 17 19 21 22 23 25 26 27 28 29 30

0
1
7
9

15
17
19
21
22
23
25
26
27
28
29
30

Stack
SB Granular MoE (x2)

0 1 7 9 15 17 19 21 22 23 25 26 27 28 29 30
0
1
7
9

15
17
19
21
22
23
25
26
27
28
29
30

Absolute Difference
|x1 x2|

0

10

20

30

40

(a) Layer 0

0 1 2 3 14 15 19 20 21 22 23 24 25 26 27 30

0
1
2
3

14
15
19
20
21
22
23
24
25
26
27
30

FineWeb
SB Granular MoE (x1)

0 1 2 3 14 15 19 20 21 22 23 24 25 26 27 30

0
1
2
3

14
15
19
20
21
22
23
24
25
26
27
30

Stack
SB Granular MoE (x2)

0 1 2 3 14 15 19 20 21 22 23 24 25 26 27 30

0
1
2
3

14
15
19
20
21
22
23
24
25
26
27
30

Absolute Difference
|x1 x2|

0

10

20

30

40

50

60

70

(b) Layer 11

1 2 3 4 5 6 8 10 19 22 23 26 27 28 29 30

1
2
3
4
5
6
8

10
19
22
23
26
27
28
29
30

FineWeb
SB Granular MoE (x1)

1 2 3 4 5 6 8 10 19 22 23 26 27 28 29 30

1
2
3
4
5
6
8

10
19
22
23
26
27
28
29
30

Stack
SB Granular MoE (x2)

1 2 3 4 5 6 8 10 19 22 23 26 27 28 29 30

1
2
3
4
5
6
8

10
19
22
23
26
27
28
29
30

Absolute Difference
|x1 x2|

0

10

20

30

40

50

60

(c) Layer 23

Figure 15: FineWeb Router Co-activation Matrix for SB Granular MoE Continually Pre-trained
on Stack. The left-most plots show the Co-activation matrix of the checkpoint continually pre-trained on
FineWeb without decaying, the middle plots show the Co-activation matrix of the checkpoint after continually
pre-training on Stack, and the rightmost figures show the co-activation difference matrix. Subfigure (a) shows
layer 0, (b) shows layer 11, and (c) shows the final layer. We observe that the co-activation difference is the
largest layer 0, with most of the weight placed on expert 15. We observe that this strong weighting on expert
15 attenuated during continual pre-training. For layers, there is minimal change between pre-training and
continual pre-training.

40

Under review as submission to TMLR

D.3.4 Continual routing imbalance analysis

While performance is one important axis of robustness to distribution shifts, maintaining a balanced load
across experts is just as important for MoE foundation models. Without a balanced load, MoE transformers
inferenced using expert parallelism without token dropping (e.g., as is done for SOTA models (DeepSeek-AI
et al., 2025b; Zhao et al., 2025)) could be bottlenecked by the speed of a single accelerator that receives all
the tokens, leading to underutilization of the hardware, lower throughput, and higher costs. To quantitatively
assess the effect of distribution shift on load balance, we propose the maximum routing imbalance (MRI):
the largest proportion of tokens routed to a single expert in a given MoE layer. Concretely, the MRI at a
training iteration t and MoE layer j is defined as

MRI(t, j) := max
i∈[1,...,E]

[∑
x∈B 1{i ∈ Ik(x)}

|B|

]
. (8)

Where B is a set containing all tokens in a given batch, 1 is the indicator function, E is the number of routed
experts, and k is the number of active experts. Since latency increases with computation, and, in an MoE
layer, the computation required by a given device increases with the load of experts on that device, then MRI
calculated with respect to routing decisions on a distribution is a proxy for the worst case latency of an MoE
layer on the distribution. We will use the MRI throughout the following sections to measure the effect of
algorithmic changes to continual pre-training on routing imbalance.

In Figures 16 and 17, we set t to be the final iteration of training for each model during pre-training and
continual pre-training where it is applicable. The figures plot the layer identity on the x-axis and the MRI on
the y-axis. The left column plots report the MRI of PBTk MoEs, while the right column plots report MRI
for SBTk MoEs. Figures 16 shows Granular MoEs, while Figure 17 shows switch MoEs. For Granular MoEs,
we observe that the MRI for Penalty-Balanced MoEs is consistently lower than for Sinkhorn-Balanced MoEs,
that little increase in MRI on FineWeb is incurred during continual pre-training, even for the 0% replay
model, and that MoEs become most unbalanced when seeing out-of-distribution data (e.g., see non-german
models in (b) and non-code models in (c)). For Switch MoEs, we observe the MRI for Penalty-Balanced
MoEs is similarly consistently lower than for Sinkhorn-Balanced MoEs, that similar to Granular MoEs little
increase in MRI on FineWeb is incurred during continual pre-training, even for the 0% replay model, that
switch MoEs become most unbalanced when seeing out-of-distribution data (e.g., see non-german models in
(c,d) and non-code models in (e,f)), and that high MRI is prevalent in early layers independent of the training
and testing distributions used, unlike for Granular MoEs. Contrasting these differences with the superior
language modeling performance of granular MoEs, one could hypothesize that the unstable MRI observed
in early layers for switch models that is not present in Granular MoEs may be a cause of the performance
difference.

41

Under review as submission to TMLR

0 5 10 15 20
Layer

0

2

4

6

8

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

) FineWeb
PB Granular MoE
German 40% Replay
PB Granular MoE
German 0% Replay
PB Granular MoE
Stack 30% Replay
PB Granular MoE
FineWeb U German
PB Granular MoE
FineWeb U Stack
PB Granular MoE

(a) PBTk Granular MoE, FineWeb

0 5 10 15 20
Layer

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

) FineWeb
SB Granular MoE
German 40% Replay
SB Granular MoE
German 0% Replay
SB Granular MoE
Stack 30% Replay
SB Granular MoE

(b) SBTk Granular MoE, FineWeb

0 5 10 15 20
Layer

0

5

10

15

20

25

30

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

)

(c) PBTk Granular MoE, German

0 5 10 15 20
Layer

0

5

10

15

20

25

30

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

)

(d) SBTk Granular MoE, German

0 5 10 15 20
Layer

0

5

10

15

20

25

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

)

(e) PBTk Granular MoE, Stack

0 5 10 15 20
Layer

0

5

10

15

20

25

30

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

)

(f) SBTk Granular MoE, Stack

Figure 16: Layer-wise Maximum Routing Imbalance (MRI) for Granular MoEs. We report the
MRI for each layer in the MoE as a percentage of all routing decisions made on a given dataset’s 20M token
test set ((a,b)FineWeb, (c,d)German, and (e,f) Stack). The left column PBTk MoEs, while the left column
reports results for SBTk MoEs. We observe that the MRI for Penalty-Balanced MoEs is consistently lower
than for comparable Sinkhorn-Balanced MoEs, that little increase in MRI on FineWeb is incurred during
continual pre-training, even for the 0% replay model (except for its first layer), and that MoEs become most
unbalanced when seeing out-of-distribution data (e.g., see non-german models in (e,f) and non-code models
in (c,d)).

42

Under review as submission to TMLR

0 5 10 15 20
Layer

0

10

20

30

40

50

60

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

) FineWeb
PB Switch MoE
German 40% Replay
PB Switch MoE
German 0% Replay
PB Switch MoE
Stack 30% Replay
PB Switch MoE

(a) PBTk Switch MoE, FineWeb

0 5 10 15 20
Layer

0

10

20

30

40

50

60

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

) FineWeb
SB Switch MoE
German 40% Replay
SB Switch MoE
German 0% Replay
SB Switch MoE
Stack 30% Replay
SB Switch MoE

(b) SBTk Switch MoE, FineWeb

0 5 10 15 20
Layer

0

10

20

30

40

50

60

70

80

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

)

(c) PBTk Switch MoE, German

0 5 10 15 20
Layer

0

20

40

60

80

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

)

(d) SBTk Switch MoE, German

0 5 10 15 20
Layer

0

10

20

30

40

50

60

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

)

(e) PBTk Switch MoE, Stack

0 5 10 15 20
Layer

0

10

20

30

40

50

60

70

80

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

)

(f) SBTk Switch MoE, Stack

Figure 17: Layer-wise Maximum Routing Imbalance (MRI) for Switch MoEs. We report the MRI
for each layer in the MoE as a percentage of all routing decisions made on a given dataset’s 20M token test
set ((a,b) FineWeb, (c,d) German, and (e,f) Stack). The left column PBTk MoEs, while the left column
reports results for SBTk MoEs. We observe that the MRI for Penalty-Balanced MoEs is consistently lower
than for comparable Sinkhorn-Balanced MoEs, that little increase in MRI on FineWeb is incurred during
continual pre-training, even for the 0% replay model (except for its first layer), that MoEs become most
unbalanced when seeing out-of-distribution data (e.g., see non-german models in (e,f) and non-code models
in (c,d)), and that high MRI is prevalent in early layers of Switch MoEs independent of the training and
testing distributions used.

43

Under review as submission to TMLR

D.4 Maximum routing imbalance of MoEs during continual pre-training.

In the following section, we report on the maximum routing imbalance of MoEs during CPT. Specifically,
Figures 18 and 19 report routing immediately before and after the distribution shift, while Figures 20 and
21 report MRI during training for Granular and switch MoEs.

Routing imbalance during training By sparsely activating their weight matrices, MoEs experience
performance benefits over FLOP-matched dense models. However, this comes at the cost of increased latency
when the model’s forward pass is bottlenecked by the latency of a single expert. This can become a problem
if a router at any layer of the MoE chooses to dispatch a majority of the token load to a particular expert.
Therefore, we can estimate the impact of continual pre-training on MoE latency by tracking the worst load
imbalance at each layer of the MoE, which is the definition of the maximum routing imbalance equation 1.

In figures 20, and 21, we plot the MRI throughout pre-training (FineWeb) and continual pre-training (German
CC) for Switch and Granular MoEs, respectively. Subfigure (a) show the training time and inference time
MRI for PB MoEs, while subfigure (b) shows the training time MRI for SB MoEs and subfigure (c) show the
inference time MRI for SB MoEs. We distinguish between Sinkhorn Balanced training and inference because
the Sinkhorn Balancing algorithm is incompatible with autoregressive generation, so in subfigure (c) we show
MRI for SB models without the balancing step (e.g., what would be used during autoregressive generation).

For all MoEs, early layers (0-6) seem to have the largest MRI. For Switch and Granular MoEs alike, we
observe that SB routing follows a very similar pattern all throughout pre-training. During the continual
pre-training phase, we observe that this pattern changes slightly, actually becoming more balanced throughout
continual pre-training for both inference time and training time routing imbalance. Turning our attention to
the PB MoEs, we observe that Switch MoEs suffer from much greater routing imbalance than their dense
Granular counterparts in early layers. However, for most layers of the PB switch MoE and all layers of the
PB Granular MoE, the MRI quickly reaches a smaller value than their SB counterparts during pre-training
and continual pre-training showing that PB MoEs are also robust to distribution shifts, but that the Granular
MoE architecture is favorable for continual pre-training

In summary, both PB and SB Top-k routing algorithms are robust to distribution shifts, with PB initially
being more perturbed by the distribution shifts, but recovering quickly to a better balance then SB. These
results demonstrate that using infinite LR schedules and replay is enough to continually pre-train MoE LLMs
without incurring a large increase in MRI.

44

Under review as submission to TMLR

190600
190700

190800
190900

191000
191100

191200

Training Iteration

5

10

15

20

25

30

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

) Continual Pre-training
Begins (Iter 190720)
Uniform Routing
PB Granular MoE 0% Replay
PB Granular MoE 10% Replay
PB Granular MoE 40% Replay

(a) Granular Penalty Balanced MoE

190600
190700

190800
190900

191000
191100

191200

Training Iteration

10

20

30

40

50

60

70

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

) Continual Pre-training
Begins (Iter 190720)
Uniform Routing
PB Switch MoE 0% Replay
PB Switch MoE 10% Replay
PB Switch MoE 40% Replay

(b) Switch Penalty Balanced MoE

190600
190700

190800
190900

191000
191100

191200

Training Iteration

3

4

5

6

7

8

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

) Continual Pre-training
Begins (Iter 190720)
Uniform Routing
SB Granular MoE 0% Replay
SB Granular MoE 10% Replay
SB Granular MoE 40% Replay

(c) Granular Sinkhorn Balanced MoE

190600
190700

190800
190900

191000
191100

191200

Training Iteration

12

14

16

18

20

22

24

26

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

) Continual Pre-training
Begins (Iter 190720)
Uniform Routing
SB Switch MoE 0% Replay
SB Switch MoE 10% Replay
SB Switch MoE 40% Replay

(d) Switch Sinkhorn Balanced MoE

Figure 18: Sinkhorn-Balanced (SB) and Penalty-balanced (PB) Top-k MoEs show little change
in training-time maximum routing imbalance as a result of adjusting the replay percentage. We
report the median MRI observed across MoE layers with min and max error bars shortly before and following
the distribution shift when continually pre-training the MoEs on German CC. We observe that independent
of the replay percentage used, the MoEs recover pre-training level median MRI within 1000 iterations of
continual pre-training. However, replay does mitigate the increase in MRI caused by the distribution shift to
a small extent in PB MoEs. In contrast, the SB MoEs are quite robust to the distribution shift and their
routing patterns seem to be invariant to the replay percentage used.

45

Under review as submission to TMLR

190600
190700

190800
190900

191000
191100

191200

Training Iteration

5

10

15

20

25

30

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

) Continual Pre-training
Begins (Iter 190720)
Uniform Routing
SB Granular MoE 0% Replay
PB Granular MoE 0% Replay

(a) Non-decayed Granular MoE

190600
190700

190800
190900

191000
191100

191200

Training Iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ax

im
um

 R
ou

tin
g

Im
ba

la
nc

e

Continual Pre-training
Begins (Iter 190720)
Uniform Routing
SB Switch MoE 0% Replay
PB Switch MoE 0% Replay

(b) Non-decayed Switch MoE

190600
190700

190800
190900

191000
191100

191200

Training Iteration

5

10

15

20

25

30

M
ax

im
um

R
ou

tin
g

Im
ba

la
nc

e
(%

) Continual Pre-training
Begins (Iter 190720)
Uniform Routing
SB Granular MoE 0% Replay [D]
PB Granular MoE 0% Replay [D]

(c) Decayed Granular MoE

190600
190700

190800
190900

191000
191100

191200

Training Iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ax

im
um

 R
ou

tin
g

Im
ba

la
nc

e

Continual Pre-training
Begins (Iter 190720)
Uniform Routing
SB Switch MoE 0% Replay [D]
PB Switch MoE 0% Replay [D]

(d) Decayed Switch MoE

Figure 19: Decayed Penalty-Balanced (PB) Top-k MoEs have slightly higher MRI during
distributions shifts than their non-decayed counterparts. We report the median MRI observed across
MoE layers with min and max error bars shortly before and following the distribution shift when continually
pre-training the MoEs on German CC. We observe that all SB MoE keep a stable MRI throughout the
distribution shift, showing that they are mostly unaffected. In contrast, the PB checkpoints suffer from strong
routing imbalance after the distribution shift but recover quickly, with the decayed checkpoints reaching a
marginally higher MRI.

46

Under review as submission to TMLR

0
50000

100000
150000

200000
250000

300000

Training Iteration

0.030

0.035

0.040

0.045

0.050

0.055

0.060
M

ax
im

um
 R

ou
tin

g
Im

ba
la

nc
e

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

Layer 13
Layer 14
Layer 15
Layer 16
Layer 17
Layer 18
Layer 19
Layer 20
Layer 21
Layer 22
Layer 23
Uniform Routing
Continual Pre-training
Begins (Iter 190740)

(a) Inference time & train time MRI, PB Granular MoE

0
50000

100000
150000

200000
250000

300000

Training Iteration

0.00

0.05

0.10

0.15

0.20

0.25

M
ax

im
um

 R
ou

tin
g

Im
ba

la
nc

e

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

Layer 13
Layer 14
Layer 15
Layer 16
Layer 17
Layer 18
Layer 19
Layer 20
Layer 21
Layer 22
Layer 23
Uniform Routing
Continual Pre-training
Begins (Iter 190740)

(b) Inference time MRI, SB Granular MoE

0
50000

100000
150000

200000
250000

300000

Training Iteration

0.00

0.05

0.10

0.15

0.20

0.25

M
ax

im
um

 R
ou

tin
g

Im
ba

la
nc

e

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

Layer 13
Layer 14
Layer 15
Layer 16
Layer 17
Layer 18
Layer 19
Layer 20
Layer 21
Layer 22
Layer 23
Uniform Routing
Continual Pre-training
Begins (Iter 190740)

(c) Train time MRI, SB Granular MoE

Figure 20: Training time and inference time MRI for Granular MoEs throughout pre-training and
continual pre-training. We show layer-wise maximum routing imbalance during pre-training and continual
pre-training. While Penalty-Balanced MoEs have the same routing dynamics at training and inference time,
Sinkhorn balancing is incompatible with autoregressive generation, so we show both inference-time and
train-time MRI for SB models. We observe that early layers in the MoE consistently have the largest MRI
for both PB and SB MoEs, the MRI of PB MoEs is much better behaved, and after the distribution shift,
the MRI of SB models becomes more stable.

47

Under review as submission to TMLR

0
50000

100000
150000

200000
250000

300000

Training Iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7
M

ax
im

um
 R

ou
tin

g
Im

ba
la

nc
e

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

Layer 13
Layer 14
Layer 15
Layer 16
Layer 17
Layer 18
Layer 19
Layer 20
Layer 21
Layer 22
Layer 23
Uniform Routing
Continual Pre-training
Begins (Iter 190740)

(a) inference time & train time MRI, PB Switch MoE

0
50000

100000
150000

200000
250000

300000

Training Iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ax

im
um

 R
ou

tin
g

Im
ba

la
nc

e

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

Layer 13
Layer 14
Layer 15
Layer 16
Layer 17
Layer 18
Layer 19
Layer 20
Layer 21
Layer 22
Layer 23
Uniform Routing
Continual Pre-training
Begins (Iter 190740)

(b) inference time MRI, SB Switch MoE

0
50000

100000
150000

200000
250000

300000

Training Iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ax

im
um

 R
ou

tin
g

Im
ba

la
nc

e

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

Layer 13
Layer 14
Layer 15
Layer 16
Layer 17
Layer 18
Layer 19
Layer 20
Layer 21
Layer 22
Layer 23
Uniform Routing
Continual Pre-training
Begins (Iter 190740)

(c) Train time MRI, SB Switch MoE

Figure 21: Training time and inference time MRI for Switch MoEs throughout pre-training and
continual pre-training.We show layer-wise maximum routing imbalance during pre-training and continual
pre-training. While Penalty-Balanced MoEs have the same routing dynamics at training and inference time,
Sinkhorn balancing is incompatible with autoregressive generation, so we show both inference-time and
train-time MRI for SB models. We observe that early layers in the MoE consistently have the largest MRI
for both PB and SB MoEs, the MRI of PB MoEs is much better behaved, and after the distribution shift,
the MRI of SB models becomes more stable.

48

Under review as submission to TMLR

E Dataset sizes and sampling proportions

In the following section, we report the training tokens used, training dataset sizes, and sampling proportions.
Specifically, Table 7 reports the amount of data and its exact composition used for different pre-training
phases. Tables 8, 9, and 10 report the amount of training tokens and sampling proportions used for FineWeb,
Germand, and Stack, respectively.

Table 7: Pre-training and Continual Pre-training Tokens. We report the training tokens for all different
model training configurations in this paper. During continual pre-training, each batch contains a proportion
of replay tokens from the pre-training dataset and new tokens from the continual pre-training dataset.

Phase Training Tokens New Tokens Replay Tokens
Pre-training 400B FineWeb 400B –

Continual Pre-training 400B FineWeb → 200B Stack 30% Replay 140B 60B
400B FineWeb → 200B German 40% Replay 120B 80B
400B FineWeb → 200B German 0% Replay 200B –

Table 8: FineWeb CC: Train, Val, and Test dataset sizes used in our experiments. For the purposes
of our study, we create a more manageable subset of FineWeb by subsampling each Common Crawl dump
within FineWeb into smaller subsets. We then sample proportional to the sizes of each subset. We report the
full size of the subset we sample from during training (note, we only train on 400B tokens of this subset).
The exact sizes and sampling proportions of each split are committed as they span more than a page, but
can be made available upon request.

Source Train Tokens (B) Test Tokens (B) Val. Tokens (B) Sampling Weight
FineWeb CC 2916.650 26.442 26.426 1.000

Table 9: German CC: Train, Val, and Test dataset sizes used in our experiments.

Source Train Tokens (B) Test Tokens (B) Val. Tokens (B) Sampling Weight
German CC 169.291 0.489 0.491 1.000

Table 10: Stack: Train, Val, and Test dataset sizes used in our experiments.

Source Training Tokens (B) Test Tokens (B) Val. Tokens (B) Sampling Weights
YAML 9.039 0.613 0.609 0.017
Java 19.730 0.587 0.587 0.174
C 17.988 0.594 0.597 0.159
Markdown 21.699 0.477 0.474 0.017
PHP 16.660 0.450 0.447 0.146
C# 9.245 0.552 0.553 0.084
JSON 120.669 0.709 0.695 0.017
TypeScript 6.892 0.418 0.414 0.063
C++ 13.998 0.538 0.539 0.124
Python 15.898 0.458 0.457 0.200
Total 251.819 5.396 5.372 1.000

49

Under review as submission to TMLR

F Model hyperparameters

The following section outlines the hyperparameters used to train the MoEs and dense transformers in our
study. Specifically, Table 11 reports the hyperparameters of the schedules and Table 12 reports the model
hyperparameters. We also show an example infinite learning rate schedule in Figure 22.

0 50 100 150 200 250 300 350 400
Training Tokens (B)

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

Le
ar

ni
ng

 R
at

e

(a) Pre-training

0 25 50 75 100 125 150 175 200
Training Tokens (B)

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

Le
ar

ni
ng

 R
at

e
(b) Continual Pre-training

0 100 200 300 400 500 600
Training Tokens (B)

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

Le
ar

ni
ng

 R
at

e

(c) Full Re-training

0 10 20 30 40 50
Training Tokens (B)

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

Le
ar

ni
ng

 R
at

e

(d) Ablation (Sec. 5.1)

Figure 22: Illustrated Learning rate schedules used for (a) pre-training, (b) continual pre-training,
(c) full re-training, and the (d) rewarming ablation of Sec. 5.1. The exact hyperparameters of these
schedules are reported in table 11.

50

Under review as submission to TMLR

Table 11: Hyperparameters of LR schedules.
All models used the same LR schedule hyperparam-
eters. We refer the readers to Ibrahim et al. (2024)
section 7.2 for a more thorough explanation of these
schedules.

Description Value
Pre-training
Schedule Type CosineInf
Total Iterations 192720
Max learning rate (ηmax) 3 · 10−4

Min learning rate (ηmin) 3 · 10−5

Constant learning rate (ηconst) 1.65 · 10−4

Warmup percent (Twarmup) 1
Cooldown iters percent (Tcd) 70
Constant iters percent (Tann) 0.10
Continual Pre-training
Schedule Type CosineInf
Total Iterations 95370
Max learning rate (ηmax) 3 · 10−4

Min learning rate (ηmin) 3 · 10−5

Constant learning rate (ηconst) 1.65 · 10−4

Warmup percent (Twarmup) 1
Cooldown iters percent (Tcd) 0
Constant iters percent (Tann) 80
Full re-training
Schedule Type Cosine Annealing
Total Iterations 288090
Max learning rate (ηmax) 3 · 10−4

Min learning rate (ηmin) 3 · 10−5

Warmup percent (Twarmup) 1
Continual Pre-training Ablation (Section 5.1)
Schedule Type Cosine Annealing
Total Iterations 95370
Max learning rate (ηmax) 3 · 10−4

Min learning rate (ηmin) 3 · 10−5

Warmup percent (Twarmup) 1

Table 12: Hyperparameters of our Moes and
Dense Transformer.

Description Value
MoE Transformers Common
Active Parameters 571, 148, 288
Parameters 2, 025, 236, 480
Non-Embedding Parameters 1, 893, 902, 336
MoE SM-FFN
Shared Experts 1
Active Experts 3
Routed Experts 31
Total Experts 32
FFN Intermediate Size 704
MoE R-FFN
Shared Experts 0
Active Experts 1
Routed Experts 8
Total Experts 8
FFN Intermediate Size 2816
Top-k
Z-loss Coeff. 0.001
AUX-loss Coeff. 0.01
Sinkhorn
Tolerance 0.01
Dense Transformer
Parameters 571, 148, 288
Non-Embedding Parameters 439, 814, 144
Num attention heads 16
Common
Num layers 24
Hidden size 1024
FFN Hidden size 2816
FFN Type GeGLU
Optimizer AdamW
β1,β2 0.9, 0.95
Batch size 1024
Sequence length 2048
Hidden activation GeLU
Weight decay 0.1
Gradient clipping 1.0
Decay Cosine
Positional embedding Rotary
GPT-J-Residual True
Weight tying False
Vocab Size 128000
Rotary PCT 0.25

51

	Introduction
	Background
	Related work
	Method & Empirical Study
	Selected architectures for our study
	Continual pre-training strategy and Datasets
	Training details
	Maximum Routing Imbalance: A proxy for worst-case latency in MoEs

	Results
	Ablating replay (%) and the checkpoint used for CPT
	Language modeling performance
	Analyzing changes in routing behaviour due to CPT

	Conclusion
	Extended Background
	Continual pre-training of LLMs
	Mixture of experts transformer language models

	Extended related work
	Mixture of experts language models
	Continual pre-training of dense foundation models
	Continual pre-training of MoE LLMs.

	Training timings
	Extended experimental results
	Language model evaluation benchmarks
	Training and validation loss
	Qualitative analysis
	Continual routing saturation analysis
	Continual vocabulary specialization analysis
	Continual expert co-activation analysis
	Continual routing imbalance analysis

	Maximum routing imbalance of MoEs during continual pre-training.

	Dataset sizes and sampling proportions
	Model hyperparameters

