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ABSTRACT

Group symmetries provide a powerful inductive bias for reinforcement learning
(RL), enabling efficient generalization across symmetric states and actions via
group-invariant Markov Decision Processes (MDPs). However, real-world envi-
ronments almost never realize fully group-invariant MDPs; dynamics, actuation
limits, and reward design usually break symmetries, often only locally. Under
group-invariant Bellman backups for such cases, local symmetry-breaking intro-
duces errors that propagate across the entire state–action space, resulting in global
value estimation errors. To address this, we introduce Partially group-Invariant
MDP (PI-MDP), which selectively applies group-invariant or standard Bellman
backups depending on where symmetry holds. This framework mitigates error
propagation from locally broken symmetries while maintaining the benefits of
equivariance, thereby enhancing sample efficiency and generalizability. Build-
ing on this framework, we present practical RL algorithms – Partially Equivariant
(PE)-DQN for discrete control and PE-SAC for continuous control – that combine
the benefits of equivariance with robustness to symmetry-breaking. Experiments
across Grid-World, locomotion, and manipulation benchmarks demonstrate that
PE-DQN and PE-SAC significantly outperform baselines, highlighting the impor-
tance of selective symmetry exploitation for robust and sample-efficient RL.

1 INTRODUCTION

Group symmetries provide a powerful inductive bias in machine learning, enabling models to gener-
alize efficiently. In robotics and continuous control, leveraging equivariance has been shown to im-
prove data efficiency in both behavior cloning (Zeng et al., 2021; Ryu et al., 2023; 2024; Wang et al.,
2024; Tie et al., 2024; Huang et al., 2024; Zhao et al., 2025; Seo et al., 2023b;a; 2025a;b), where
the data collection is costly, and reinforcement learning (RL) (Van der Pol et al., 2020; Kohler et al.,
2024; Wang et al., 2022a;b; Tangri et al., 2024; Nguyen et al., 2023; Finzi et al., 2021a; Park et al.,
2024), where exploration can be inefficient. Most existing equivariant RL methods are grounded
in the notion of a group-invariant Markov Decision Process (MDP) (Wang et al., 2022b;c), where
invariance of the reward and transition functions implies symmetry in the optimal policy.

In practice, however, these symmetry assumptions rarely hold exactly. Real-world environments
introduce symmetry-breaking factors such as dynamics, actuation limits, or reward shaping. Under
the Bellman backups based on the group-invariant MDP, even local violations of symmetry can
introduce errors that propagate across the state–action space, leading to degraded value estimates,
suboptimal policies, or even training failure. Prior works on approximate equivariance (Finzi et al.,
2021a; Park et al., 2024) attempt to mitigate this challenge by relaxing equivariance globally, e.g., by
modifying architectures to tolerate violations. While effective to some extent, these methods often
lose the sample efficiency benefits of strict equivariance and can become unstable when symmetry-
breaking is extensive, since equivariance is still applied indiscriminately across the entire space.

To overcome this limitation, we introduce the framework of the Partially group-Invariant MDP
(PI-MDP), which selectively applies the group-invariant structure only in regions where symmetry
is preserved (Fig. 1). Our approach builds on the derivation that local symmetry-breaking leads to
one-step backup errors that propagate globally. By routing updates to the standard updates under
the true MDP, we limit the propagation of one-step backup errors across the space. In particu-
lar, we detect symmetry-breaking regions via dynamics model disagreement outliers between an
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Figure 1: Overview of partial equivariance in reinforcement learning. Equivariant networks
provide strong inductive bias and sample efficiency in environments with exact symmetry. Left: In
the symmetric case, the equivariant policy πE exploits this structure and learns an optimal action a to
reach the goal. Right: When the agent and goal are rotated by 90◦ but the obstacle remains fixed, the
symmetry is broken. An exactly equivariant policy is forced to output the rotated action ga, which is
invalid due to the obstacle in some cases, thereby corrupting training. Our framework introduces a
gating function λζ that detects such symmetry-breaking and activates the non-equivariant policy πN ,
preserving robustness while retaining the sample efficiency benefits of equivariance in symmetric
regions.

equivariant and an unconstrained one-step dynamics model, and apply standard rather than equivari-
ant updates on those outliers while retaining equivariance elsewhere. Building on this framework,
we develop practical reinforcement learning algorithms for both discrete and continuous control
that retain the benefits of equivariance in symmetric regions while remaining robust to substantial
symmetry-breaking. The conceptual overview of our approach is depicted in Fig. 1.

The contributions of our work are summarized as follows: 1) We analyze how local symmetry
violations induce global value error via one-step backups, clarifying when selective symmetry is
beneficial. 2) We introduce the Partially group-Invariant MDP (PI-MDP) and a practical RL for-
mulation that uses equivariance where symmetry holds and falls back to standard updates where
it breaks. 3) Across state-based discrete and continuous control experiments, we show that our
method retains the sample efficiency gains of equivariance in symmetric regions and remains robust
as symmetry-breaking increases, outperforming strict and approximate-equivariant baselines.

2 RELATED WORK

Group equivariance in continuous control. Recent works have applied group equivariance to
imitation learning and classical control (Zeng et al., 2021; Ryu et al., 2023; 2024; Wang et al., 2024;
Tie et al., 2024; Huang et al., 2024; Zhao et al., 2025; Seo et al., 2023b;a; 2025a), demonstrat-
ing high data efficiency and generalization over baseline models. Parallel efforts have investigated
group equivariance in reinforcement learning (RL) (Van der Pol et al., 2020; Kohler et al., 2024;
Wang et al., 2022a;b; Tangri et al., 2024; Nguyen et al., 2023), showing improved sample efficiency
compared to the conventional RL approaches. However, the effectiveness of equivariant RL remains
limited in more general settings, such as robotic control tasks, where inherent symmetry-breaking
often arises from factors including occlusions, environmental asymmetries, kinematic singularities,
and complex dynamics.

Approximate equivariance. Recent studies have proposed relaxing strict group equivariance to
handle symmetry breaking in data (Finzi et al., 2021a; Park et al., 2024; Wang et al., 2022d; Romero
& Lohit, 2022; van der Ouderaa et al., 2022; Hofgard et al., 2024). Such approaches introduce
approximate equivariance, enabling models to remain robust when exact symmetries do not hold. In
reinforcement learning, approximate equivariant architectures have also shown improved robustness
and efficiency against symmetry-breaking (Finzi et al., 2021a; Park et al., 2024). For instance, Finzi
et al. (2021a) introduced residual pathways to the equivariant linear layers, while Wang et al. (2022d)
proposed a relaxed equivariant convolutional layer with expanded kernel parameterizations, which
were later adopted in the RL setting by Park et al. (2024). However, these methods primarily focus
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on global relaxations of equivariance at the representation level. In contrast, our approach addresses
symmetry-breaking by minimizing local equivariance errors during the Bellman backup, thereby
preventing their global propagation through value updates.

3 PRELIMINARIES

Reinforcement learning. We consider a Markov decision process (MDP) defined as M =
(S,A, P,R, γ) where S is the state space, A is the action space, R : S × A → R is the reward
function, P (· | s, a) is the transition kernel, and γ ∈ (0, 1) is the discount factor. The agent learns
a policy π to maximize the expected return, J = Eπ,P

[∑∞
t=0 γ

trt

∣∣∣ s0 = s, a0 = a
]
. The Bellman

operator under a policy π is (T πQ)(s, a) = R(s, a) + γ Es′∼P (·|s,a)

[
Ea′∼π(·|s′)[Q(s′, a′)]

]
, while

the optimal (hard) Bellman operator is (T Q)(s, a) = R(s, a) + γ Es′∼P (·|s,a)
[
maxa′ Q(s′, a′)

]
.

Group equivariance. A symmetry is a transformation that preserves certain properties of a system
(Bronstein et al., 2021). The set of all symmetries forms a group, which satisfies associativity,
identity, inverses, and closure. A group representation is a homomorphism ρ : G → GL(n)
that maps each group element g ∈ G to an invertible n × n matrix. A function f : X → Y is
equivariant if ρY (g)f(x) = f(ρX(g)x), ∀g ∈ G, x ∈ X , where ρX and ρY are the group
representations acting on X and Y respectively. If instead f(x) = f(ρX(g)x), the function is called
group-invariant. With a slight abuse of notation, we will often write g directly for its action on the
relevant space (state, action, or next state).

Group-invariant MDP. A group-invariant MDP (Wang et al., 2022b;c) is an abstract MDP based
on MDP homomorphisms (Ravindran & Barto, 2001; 2004), denoted asMG(S,A, P,R, γ). The
optimal policy and optimal Q-function of the original MDP are recoverable from the abstract MDP
provided the reward and transition kernel are group-invariant:

R(s, a) = R(gs, ga), P (s′ | s, a) = P (gs′ | gs, ga), ∀g ∈ G.

4 SYMMETRY-BREAKING IN GROUP-INVARIANT MDPS

Most equivariant RL approaches assume the existence of a group-invariant MDP (Sec. 3) (Wang
et al., 2022c;b; Mondal et al., 2022; Van der Pol et al., 2020; Tangri et al., 2024). However,
many continuous control tasks (e.g., robotics) violate these assumptions in certain regions of the
state–action space. We begin by analyzing how such symmetry-breaking perturbs Bellman back-
ups and subsequently propagates into the learned value function.

Let MN (S,A, RN , PN , γ) denote the standard environment, and let ME(S,A, RE , PE , γ) be a
group-invariant MDP defined on the same spaces. To construct such a group invariant MDP from
MN , we average the original rewards and dynamics over the symmetry group G:

RE(s, a) =

∫
G

RN (s, a) dµ(g) PE(s
′|s, a) =

∫
G

PN (gs′|gs, ga) dµ(g),

where dµ(g) is the normalized Haar measure on G (uniform measure for finite groups). This av-
eraging ensures that RE and PE satisfy the group-invariance condition, thereby making ME the
canonical group-invariant approximation ofMN . For (s, a) ∈ S × A, define pointwise discrepan-
cies

ϵR(s, a) := |RN (s, a)−RE(s, a)|,

ϵP (s, a) :=
1
2

∫
S

∣∣PN (s′ | s, a)− PE(s
′ | s, a)

∣∣ ds′, (1)

where ϵR is the absolute reward difference and ϵP is the total-variation distance between next-state
kernels. Let Ti denote the Bellman optimality operator in MDP i ∈ {N,E}. Assume rewards are
bounded as |Ri(s, a)| ≤ Rmax and discount γ ∈ (0, 1). Define Vmax := Rmax/(1− γ).

We analyze the effect on a single Bellman backup and the induced value function gap. The follow-
ing result bounds the one-step discrepancy between the optimality operators via local reward and
transition mismatches.
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Lemma 1 (One-step Bellman error). For any bounded Q and any (s, a) ∈ S ×A,∣∣(TNQ)(s, a)− (TEQ)(s, a)
∣∣ ≤ ϵR(s, a) + 2γ ∥VQ∥∞ ϵP (s, a).

Here VQ(s
′) = maxa′ Q(s′, a′) and ∥VQ∥∞ ≤ ∥Q∥∞. If Q is an action–value function, then

∥Q∥∞ ≤ Vmax, hence ∥VQ∥∞ ≤ Vmax and we define the pointwise bound

δ(s, a) := ϵR(s, a) + 2γVmaxϵP (s, a).

We next show that this local error lifts to a global bound on the optimal action–value functions via
contraction.
Proposition 1 (Value-function gap). Let Q∗

i be the optimal action–value function in MDP i. Then

∥Q∗
N −Q∗

E∥∞ ≤
1

1− γ
sup
s,a

δ(s, a).

The proofs of Lemma 1 and Proposition 1 are provided in Appendix A.1

Intuition. Local symmetry-breaking introduces a one-step Bellman backup error δ(s, a) which prop-
agates through repeated backups and is amplified by the factor (1− γ)

−1 due to contraction. This
results in a global deviation bounded by 1

1−γ sups,a δ(s, a), which can cause suboptimal policies or
unstable training. We visualize this propagation in a Grid-World example, and show that a strictly
equivariant policy can fail to learn (Appendix D). Prior works mitigate such errors with global re-
laxations (Finzi et al., 2021a; Park et al., 2024), whereas our approach employs local corrections
that are less conservative and effective when symmetry holds only piecewise.

5 PARTIAL GROUP-INVARIANCE IN MARKOV DECISION PROCESSES

In what follows, we present an efficient method for handling local symmetry-breaking. Specifically,
we propose a Partially group-Invariant MDP (PI-MDP) that interpolates, for each state–action
pair, between a group-invariant MDP and the true environment.

5.1 PARTIALLY GROUP-INVARIANT MDP

Definition 1 (PI-MDP). Let the true MDP beMN = (S,A, RN , PN , γ) and the group-invariant
MDP beME = (S,A, RE , PE , γ), sharing the same (S,A, γ). Define a Partially group-Invariant
MDP (PI-MDP) MH = (S,A, RH , PH , λ, γ) with a measurable gating function λ : S × A →
[0, 1],

RH(s, a) := (1− λ(s, a))RE(s, a) + λ(s, a)RN (s, a),

PH(· | s, a) := (1− λ(s, a))PE(· | s, a) + λ(s, a)PN (· | s, a).

Since 0 ≤ λ(s, a) ≤ 1 for all (s, a) and both (RE , PE) and (RN , PN ) are valid, (RH , PH) defines
a valid MDP.

Remark 1 (Hard gating). When λ(s, a) ∈ {0, 1}, the PI-MDP routes pointwise to (RE , PE) on
symmetric pairs and (RN , PN ) otherwise. All results below hold for any measurable gating function
λ : S ×A → [0, 1]. In our algorithms, we use hard gating for simplicity and interpretability.

We first characterize the partially group-invariant optimality operator induced by the gating function.

Theorem 1 (Partially group-invariant optimality operator). Let Ti denote the (hard) Bellman opti-
mality operator in MDP i ∈ {E,N,H}, (TiQ)(s, a) = Ri(s, a)+γ Es′∼Pi(·|s,a)[maxa′ Q(s′, a′)] .
For any bounded Q : S ×A → R and all (s, a),

(THQ)(s, a) = (1− λ(s, a)) (TEQ)(s, a) + λ(s, a) (TNQ)(s, a). (2)

If |RE |, |RN | ≤ Rmax and γ ∈ (0, 1), then TH is a γ-contraction and admits a unique fixed point
Q∗

H .

4
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We next bound the deviation of the fixed point from the true optimum.

Corollary 1 (Proximity bound). Let Q∗
N be the optimal action–value of the true MDPMN , and let

VN (s) = maxa Q
∗
N (s, a). Then

∥Q∗
H −Q∗

N∥∞ ≤ 1

1− γ

∥∥∥(1− λ)
[
ϵR(s, a) + 2γϵP (s, a)Vmax

]∥∥∥
∞
. (3)

Moreover, the right-hand side of Eq. (3) is zero whenever, at every (s, a), either λ(s, a) = 1 (the
gating function routes to the true MDP) or the group-invariant MDP coincides with the true MDP
at (s, a), that is, RE(s, a) = RN (s, a) and PE(· | s, a) = PN (· | s, a). Consequently, symmetric
pairs contribute zero via MDP coincidence, and symmetry-breaking pairs contribute zero when λ
correctly gates to 1. The proofs of Theorem 1 and Corollary 1 can be found in Appendix A.2.

Intuition. By gating the reward and transition kernels, the PI-MDP is itself a valid MDP. Its opti-
mality operator satisfies the affinity identity in Eq. (2). Since a convex combination of γ-contraction
is again a γ-contraction, TH admits a unique fixed point Q∗

H . Corollary 1 bounds the deviation
from the true optimum: the gap ∥Q∗

H − Q∗
N∥∞ is controlled by the gated mismatch term on the

right-hand side of Eq. (3), scaled by (1−γ)−1. The bound vanishes whenever, at every (s, a), either
the gating function routes to the true MDP (λ = 1) or the group-invariant and true MDPs coin-
cide. Thus, when λ correctly localizes symmetry-breaking, Q∗

H closely tracks Q∗
N while reverting

to the group-invariant MDP where symmetry holds. We provide the extension of the PI-MDP to the
entropy-regularized (soft) setting in Appendix A.3.

6 PARTIALLY EQUIVARIANT REINFORCEMENT LEARNING

This section introduces partially equivariant reinforcement learning (Algorithm 1) for the PI-MDP
setting (Sec. 5.1). We (i) learn a gating function λ(s, a) ∈ [0, 1] that localizes symmetry breaking,
and (ii) couple λ to equivariant and unconstrained value/policy heads.

6.1 LEARNING λ(s, a) VIA DISAGREEMENT SUPERVISION

By Corollary 1, the value gap vanishes when λ(s, a) = 1 on symmetry-breaking pairs and λ(s, a) =
0 where the proxy and true MDPs coincide (assuming an oracle binary gate under local symmetry).
To approximate this behavior, we train a gating function λω(s, a) ∈ [0, 1] using the disagreement
between two one-step predictors: an equivariant regressor P̂E : S ×A → Rd constrained to respect
ME , and an unconstrained regressor P̂N : S ×A → Rd trained freely on data fromMN .

Both predictors are trained on transitions (s, a, s′) to minimize mean-squared error (MSE) on the
state increment ∆s := s′− s. In regions where the environment is group-invariant, P̂E is consistent
with the group-averaged dynamics PE , which coincide with the true dynamics PN . Therefore, the
predictor disagreement

d(s, a) = ∥∆ŝE(s, a)−∆ŝN (s, a)∥22
remains small. At symmetry-breaking pairs, however, the equivariance constraint is misspecified:
P̂E is forced toward the group-averaged surrogate PE , while the unconstrained predictor P̂N can
track PN . This induces a systematic discrepancy of order ϵP (s, a) in the learned predictions. Con-
sequently, the prediction gap ∥∆ŝE − ∆ŝN∥ is biased upward in precisely those regions where
(RE , RN ) or (PE , PN ) disagree, providing an indirect detector of symmetry-breaking via the dis-
agreement d(s, a). We assume those symmetry-breaking disagreements as outliers in the online dis-
tribution of d(s, a). We label outliers with y(s, a)∈{0, 1} using an online detector (Appendix B.1)
and train λω with binary cross-entropy:

Lλ(ω) = E(s,a)∼D
[
− y log λω(s, a)− (1− y) log(1− λω(s, a))

]
, (4)

where D is the replay buffer. The gating function is trained concurrently via Eq. (4). During each
critic and actor update, we recompute and cache the binary gate λ̃(s, a) ∈ {0, 1} from the gating
network’s output λω(s, a) (see implementation details in Appendix B.1). We treat λ̃ as constant
within the update (stop-gradient).

5
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Algorithm 1 Partially Equivariant Reinforcement Learning (PERL)
Require: Replay buffer D, critics QE , QN , policies πE , πN

Require: Dynamics predictors P̂E , P̂N , gating functions λω, λζ , targets Q̄, λ̄ω

1: Initialize all networks
2: Initialize running statistics (µ, σ) for disagreement
3: for t = 1 to T do
4: Sample at ∼ πϕ(· | st) ▷ gated policy from Eq. (6)
5: Store (st, at, rt, st+1) in D
6: Train dynamics P̂E and P̂N to minimize the predictive loss Ldyn ▷ see App. B.1
7: Compute disagreement d(s, a) = D

(
P̂E(· | s, a), P̂N (· | s, a)

)
▷ see Sec. 6.1, App. B.1

8: Update the running statistics (µ, σ) over the disagreement d(s, a)
9: Update λω with BCE-loss (Eq. (4))

10: Update λζ with expectile regression loss (Eq. (7))
11: Update the critics with the objective (Eq. (8))
12: Update the actor with the objective (Eq. (9)) ▷ SAC only; DQN uses greedy argmax
13: Soft update Q̄ and λ̄ω

14: end for

6.2 PARTIALLY EQUIVARIANT REINFORCEMENT LEARNING

We couple the learned gating function to the critic and the actor, thereby implementing the PI-MDP
framework under function approximation while training entirely in the true environmentMN .

Gated value mixtures under the true MDP. We parameterize the critic as a gated mixture:

Qθ(s, a) =
(
1− λω(s, a)

)
QE,θ(s, a) + λω(s, a)QN,θ(s, a), (5)

where QE is an equivariant critic constrained by group symmetries and QN is an unconstrained
critic with no symmetry bias. The gate λω : S × A → [0, 1] interpolates between the two net-
works. Conditioned on the binary gating λ̃ (cached per minibatch and used with stop-gradient),
our TD-based critic (e.g., DQN, SAC) learns underMN the best approximation within this mixed
hypothesis class. With binary gating, the mixture reduces to a hard switch, activating either QE or
QN depending on whether the state–action lies in a symmetric or symmetry-breaking region.

Idealized compatibility (binary oracle gating). If λ(s, a) ∈ {0, 1} perfectly separates symmet-
ric from broken regions and, on symmetric regions, the averaged dynamics coincide (PE , RE) =
(PN , RN ), then the partially group-invariant operator TH is identical to the true operator TN . In this
idealized case, our TD targets exactly match (THQ)(s, a) and the mixture recovers the interpolating
solution in Theorem 1. This motivates the use of λ as a “local oracle” for symmetry-breaking. In
practice, we approximate this oracle by the learned gating function λω , producing binary decisions
as described above.

Gated policy and actor gating function. For the policy, we employ a state-only gating function
λζ : S → [0, 1] and define a product-of-experts (PoE) blend

πϕ(· | s) ∝ πE,ϕ(· | s) 1−λζ(s) πN,ϕ(· | s)λζ(s). (6)

This form naturally arises from SAC policy improvement: given the critic mixture Qθ = (1 −
λω)QE + λωQN , the information projection in SAC yields a PoE between the energy models
exp(QE/α) and exp(QN/α) (see Appendix A.4 for details). While a fully state–action gate in
π would be theoretically appealing, it is intractable in practice because the normalization constant
of Eq. (6) would depend on a. We therefore restrict to a state-only gate λζ(s), aligned with the
critic gating function via a conservative aggregation loss. This conservativeness is crucial: since
symmetry-breaking may occur only for a subset of actions, λζ(s) should activate whenever any ac-
tion at state s is flagged by λω(s, a). This conservative choice does not compromise optimality, as
taking the maximum ensures that any critical symmetry-breaking is accounted for while leaving the
optimal policy unchanged.

Lλ(ζ) = E(s,a)∼D

[
Lτ

(
λω(s, a)− λζ(s)

)]
, (7)

6
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FetchReachHopper AntGrid World

(a) Discrete space (b) Continuous space

(locomotion)
(c) Continuous space

(manipulation)

Swimmer UR5eReach

Figure 2: Benchmark environments. We evaluate our method across both discrete and continuous
control tasks under symmetry-breaking conditions. Specifically, we use the Grid-World environment
for the discrete case, and locomotion and manipulation tasks for the continuous case.

where Lτ is the expectile loss (Kostrikov et al., 2021). Taking τ → 1 approximates the maxa
operator, ensuring that λζ(s) conservatively reflects the maximum symmetry-breaking signal across
actions. During sampling the actions, we obtain a binary gate λ̃ζ(s) ∈ {0, 1} by using λζ(s) (details
in Appendix B.2). Per sample, Eq. (6) thus collapses to a hard switch between πE and πN , retaining
interpretability and computational tractability.

Training. We train Qθ and πϕ using standard objectives from deep RL: DQN (Mnih et al., 2013)
for value-based methods and SAC (Haarnoja et al., 2018) for actor–critic methods, substituting in
our gated parameterizations. In this way, the partially equivariant framework is realized within
standard off-the-shelf algorithms, while the gates λω and λζ provide adaptive control over when
equivariance is exploited and when it is suppressed.

JQ(θ) = E(s,a,r,s′)∼D
1
2

(
Qθ(s, a)− r + γmax

a′
Qθ̄(s

′, a′)
)2

, (8)

where θ̄ denotes target parameters and, Qθ(s, a) = (1−λω(s, a))QE,θ(s, a)+λω(s, a) QN,θ(s, a).

Jπ(ϕ) = E s∼D
ϵ∼N (0,I)

[
α log πϕ(a | s) − mini=1,2 Qθi(s, a)

]
, a = tanh

(
gϕ(s, ϵ)

)
. (9)

where log πϕ(a | s) = (1 − λζ(s)) log πE,ϕ(a | s) + λζ(s) log πN,ϕ(a | s). Please refer to
Algorithm 1 for the pseudocode, and Appendix B for more details.

7 EXPERIMENTS

Our experiments aim to answer two main questions: (1) How does our method compare in terms of
sample efficiency against the conventional RL and strictly equivariant methods? (2) How robust is
our method to symmetry-breaking, relative to the state-of-the-art approximate equivariant approach?

7.1 EXPERIMENTAL SETUP

We evaluate across three categories of environments: (1) a discrete Grid-World for intuitive anal-
ysis, and (2) continuous-control locomotion benchmarks in MuJoCo with state-based observations
(Brockman et al., 2016), and (3) robotic manipulation tasks adapted from the Fetch manipulation
(Plappert et al., 2018) and a DeepMind Control Suite (DMC) (Tassa et al., 2018)-based UR5e manip-
ulator (Chuang, 2023). We compare our DQN-based (PE-DQN) and SAC-based (PE-SAC) methods
against vanilla RL, strictly equivariant method, and one of the state-of-the-art models among ap-
proximate equivariant RL approaches, RPP (Finzi et al., 2021a). All experiments use state-based
observations and continuous control (except for Grid-World), and we report mean performance with
standard error over five random seeds. Fig. 2 provides an overview of environments, with additional
details in Appendix C.
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0 Obstacles 10 Obstacles 20 Obstacles

30 Obstacles 40 Obstacles

Figure 3: Performance comparison in the discrete space (Grid-World) environment. We eval-
uate the average performance over 3000 episodes with five random seeds. Shaded regions denote
standard error. We vary the number of obstacles, which act as symmetry-breaking factors. PE-DQN
consistently outperforms the baselines, and the performance gap widens as symmetry-breaking in-
creases, demonstrating both robustness and sample efficiency.

Grid-World. We use a discrete C4 symmetric Grid-World as a lightweight testbed for analyzing
robustness to symmetry-breaking. Symmetry-breaking is introduced by placing obstacles that dis-
rupt transitions implied by rotation symmetry, and we vary the number of obstacles to control the
degree of breaking. This environment allows us to clearly examine how PE-DQN adapts as the
extent of symmetry-breaking increases.

Locomotion. We evaluate on continuous-control MuJoCo benchmarks using the same symmetry
specifications as RPP (Finzi et al., 2021a), which include both exact and approximate symmetries.
This setting allows us to test whether PE-SAC can extend the sample-efficiency benefits of equivari-
ance from discrete Grid-World to challenging continuous-control tasks, while remaining robust to
symmetry-breaking factors such as external forces or reward perturbations. All baselines are trained
with SAC.

Manipulation. We evaluate in manipulation settings, considering two reach tasks with SO(3)
symmetry. Fetch Reach serves as a simpler case, where the end-effector is constrained perpendicular
to the floor and the goal is specified only by (x, y, z) position. In contrast, UR5e Reach allows free
end-effector orientation in addition to position, with a goal specified as an SE(3) pose that includes
both position and orientation. The inclusion of orientation control makes the task more represen-
tative of real-world manipulators. This progression from Fetch to UR5e enables us to test whether
PE-SAC scales from constrained to more realistic manipulation scenarios. Symmetry-breaking nat-
urally arises from collisions, floor contacts, and kinematic singularities. All methods use the same
SAC backbone for comparability.

7.2 ANALYSIS

In Fig. 3, we present the reward graphs from the Grid-World experiment across varying obstacle
counts. When no symmetry-breaking factors are present, PE-DQN converges to λ ≈ 0, effectively
using only the equivariant Q-network. In this strictly symmetric setting, performance matches the
exact equivariant approach and surpasses both vanilla DQN and RPP. The lag of RPP arises because
its residual non-equivariant pathways cannot be completely suppressed, introducing noise that slows
convergence. As obstacle counts increase, vanilla DQN and RPP degrade markedly, while PE-DQN
maintains high performance, demonstrating robustness to localized symmetry-breaking and aligning
with the theoretical prediction that the value gap is controlled by ϵR, ϵP under partial invariance.

In Fig. 4, we show results on locomotion and manipulation tasks. PE-SAC attains higher sample
efficiency in Hopper and Ant, while matching performance in Swimmer and Fetch Reach. These
differences reflect how the gate adapts to symmetry: in Hopper, equivariance speeds early learning

8
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Hopper Swimmer

FetchReach

Ant

UR5e

Figure 4: Performance comparison in the continuous space environments. Results are averaged
over 1M training steps in MuJoCo tasks and 20k steps in the Fetch environment, using five random
seeds. Shaded regions denote standard error. For RPP (Finzi et al., 2021a), we re-ran the official
code. Discrepancies with the reported numbers arise because RPP reports “max over steps” rather
than average performance. PE-SAC consistently outperforms all baselines across these tasks.

but PE-SAC later relies on QN as joint limits break symmetry; in Ant, fourfold symmetry aids
exploration but leg collisions cause exact-equivariant SAC to fail, where PE-SAC remains stable.
Swimmer is nearly perfectly symmetric, so both methods converge similarly, while Fetch Reach is
dominated by goal asymmetries, offering little benefit from equivariance.

The UR5e manipulator, with realistic dynamics and unconstrained end-effector orientation, high-
lights robustness under significant symmetry-breaking. Exact-equivariant SAC initially learned effi-
ciently but soon collapsed as non-symmetric transitions violated equivariance assumptions, destabi-
lizing training. In contrast, PE-SAC shifted to the non-equivariant head in these regions, maintaining
stable and sample-efficient performance—a robustness not matched by exact-equivariant or purely
non-equivariant baselines.

Overall, these results confirm that selectively mitigating local equivariance errors enables our
method to retain the benefits of symmetry exploitation while avoiding its pitfalls, yielding both
sample efficiency and robustness across a spectrum of symmetric and symmetry-broken environ-
ments.

8 CONCLUSION

In this work, we introduced the PI-MDP, a framework that mitigates global error propagation from
local symmetry-breaking. Building on this foundation, we developed Partially Equivariant RL
(PE-RL) algorithms—PE-DQN for discrete control and PE-SAC for continuous control—that con-
sistently improved sample efficiency and robustness over conventional RL, exact-equivariant meth-
ods, and approximate baselines.

The main limitation is additional computation: training requires auxiliary models, increasing
wall-clock cost (roughly 2× in Grid-World and up to 5× in MuJoCo). In environments with
global symmetry-breaking (e.g., gravity) or reward-only symmetry-breaking, the gate defaults to
non-equivariant networks, reducing the method to standard RL. Still, in scenarios with localized
symmetry-breaking—common in practice—the method yields clear benefits.

Future work includes extending PE-RL to pixel-based control, advancing the practicality of
symmetry-aware reinforcement learning for real-world continuous control.

9
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A THEORETICAL PROOFS

A.1 PROOF OF LEMMA 1 AND PROPOSITION 1

Lemma 1 (One-step Bellman error). For any bounded Q and any (s, a) ∈ S ×A,∣∣(TNQ)(s, a)− (TEQ)(s, a)
∣∣ ≤ ϵR(s, a) + 2γ ∥VQ∥∞ ϵP (s, a).

Proof. By the triangle inequality,∣∣(TNQ)(s, a)− (TEQ)(s, a)
∣∣

=
∣∣∣RN (s, a)−RE(s, a) + γ

(
Es′∼PN (·|s,a)[VQ(s

′)]− Es′∼PE(·|s,a)[VQ(s
′)]
)∣∣∣

≤ ϵR(s, a) + γ
∣∣∣EPN

[VQ]− EPE
[VQ]

∣∣∣.
Using the total-variation inequality

∣∣EP [f ] − EQ[f ]
∣∣ ≤ 2∥f∥∞ TV(P,Q) with TV(PN , PE) =

ϵP (s, a) and f = VQ, ∣∣EPN
[VQ]− EPE

[VQ]
∣∣ ≤ 2∥VQ∥∞ ϵP (s, a).

Combining the bounds leads to the lemma.

Proposition 1. (Value-function gap). Let Q∗
i be the optimal action–value function in MDP i. Then,

∥Q∗
N −Q∗

E∥∞ ≤
1

1− γ
sup
s,a

δ(s, a).

Proof. Since Q∗
N = TNQ∗

N and Q∗
E = TEQ∗

E , we have

∥Q∗
N −Q∗

E∥∞ = ∥TNQ∗
N − TEQ∗

E∥∞ ≤ ∥TNQ∗
N − TNQ∗

E∥∞ + ∥TNQ∗
E − TEQ∗

E∥∞.

The Bellman optimality operator is a γ-contraction in the sup norm, so

∥TNQ∗
N − TNQ∗

E∥∞ ≤ γ∥Q∗
N −Q∗

E∥∞.

By Lemma 1 applied with Q = Q∗
E and the bounded ∥VQ∗

E
∥∞ ≤ Vmax, we have

∥TNQ∗
E − TEQ∗

E∥∞ ≤ sup
s,a

δ(s, a).

Combining the two inequalities gives

∥Q∗
N −Q∗

E∥∞ ≤ γ∥Q∗
N −Q∗

E∥∞ + sup
s,a

δ(s, a).

Rearranging results in

∥Q∗
N −Q∗

E∥∞ ≤
1

1− γ
sup
s,a

δ(s, a),

which completes the proof.

A.2 PROOF OF THEOREM 1 AND COROLLARY 1

Theorem 1 (Partially group-invariant optimality operator). Let Ti denote the (hard) Bellman opti-
mality operator in MDP i ∈ {E,N,H}, (TiQ)(s, a) = Ri(s, a)+γ Es′∼Pi(·|s,a)[maxa′ Q(s′, a′)] .
For any bounded Q : S ×A → R and all (s, a),

(THQ)(s, a) = (1− λ(s, a)) (TEQ)(s, a) + λ(s, a) (TNQ)(s, a). (10)

If |RE |, |RN | ≤ Rmax and γ ∈ (0, 1), then TH is a γ-contraction and admits a unique fixed point
Q∗

H .
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Proof. Identity Eq. (10). By Definition 1, for any (s, a),

(THQ)(s, a) = (1− λ)
(
RE(s, a) + γ Es′∼PE(·|s,a)

[
max
a′

Q(s′, a′)
])

+ λ
(
RN (s, a) + γ Es′∼PN (·|s,a)

[
max
a′

Q(s′, a′)
])

,

which equals (1− λ)TEQ+ λTNQ pointwise.

Contraction. Let Q1, Q2 be bounded. Using Eq. (2) and that TE , TN are γ-contractions,∣∣THQ1(s, a)− THQ2(s, a)
∣∣

=
∣∣∣(1− λ(s, a))

(
TEQ1(s, a)− TEQ2(s, a)

)
+ λ(s, a)

(
TNQ1(s, a)− TNQ2(s, a)

)∣∣∣
≤ (1− λ(s, a)) ∥TEQ1 − TEQ2∥∞ + λ(s, a) ∥TNQ1 − TNQ2∥∞
≤ γ ∥Q1 −Q2∥∞.

Taking the supremum over (s, a) gives
∥THQ1 − THQ2∥∞ ≤ γ ∥Q1 −Q2∥∞.

Bounded rewards ensure TH maps bounded Q into bounded Q. By Banach’s fixed point theorem,
TH has a unique fixed point Q∗

H .

Corollary 1 (Proximity bound). Let Q∗
N be the optimal action–value of the true MDPMN , and let

VN (s) = maxa Q
∗
N (s, a). Then

∥Q∗
H −Q∗

N∥∞ ≤ 1

1− γ

∥∥∥(1− λ)
[
ϵR(s, a) + 2γϵP (s, a)Vmax

]∥∥∥
∞
. (11)

Proof.

∥Q∗
H −Q∗

N∥∞ = ∥THQ∗
H − TNQ∗

N∥∞
≤ ∥THQ∗

H − THQ∗
N∥∞ + ∥THQ∗

N − TNQ∗
N∥∞

≤ γ∥Q∗
H −Q∗

N∥∞ + ∥(1− λ) (TEQ∗
N − TNQ∗

N )∥∞.

Expanding pointwise,

(TEQ∗
N−TNQ∗

N )(s, a) = (RE−RN )(s, a)+γ
(
Es′∼PE(·|s,a)[VN (s′) ]−Es′∼PN (·|s,a)[VN (s′) ]

)
.

By the definition of total variation distance,∣∣EPE
[VN ]− EPN

[VN ]
∣∣ ≤ 2 ϵP (s, a)Vmax,

where Vmax = Rmax/(1− γ), ϵP (s, a) = 1
2

∫
S |PN (s′|s, a)− PE(s

′|s, a)| ds′ (Eq. (1)).

Rearranging gives Eq. (11)

A.3 PARTIAL GROUP-INVARIANCE IN SOFT MDPS

Since the PI-MDP defined in Definition 1 is a valid MDP, the soft policy iteration framework
(Haarnoja et al., 2018) applies unchanged. We show the evaluation identity and the standard im-
provement step for completeness.

Policy evaluation. For a fixed policy π, define the soft state value V π
Q (S) := Ea∼π(·|s)

[
Q(s, a)−

α log π(a | s)
]

with temperature α > 0. The soft Bellman operator underMH is

(T π
HQ)(s, a) = RH(s, a) + γ Es′∼PH(·|s,a)

[
V π
Q (s′)

]
.

Writing λ := λ(s, a) for brevity, RH and PH (Definition 1) leads to the pointwise identity
(T π

HQ)(s, a) = (1− λ)RE(s, a) + λRN (s, a)

+ γ
(
(1− λ)Es′∼PE(·|s,a)

[
V π
Q (s′)

]
+ λEs′∼PN (·|s,a)

[
V π
Q (s′)

])
= (1− λ) (T π

EQ)(s, a) + λ (T π
NQ)(s, a).

Thus, soft evaluation underMH is the same convex combination of the component evaluation as in
hard (max) case.
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Policy improvement. Treating λ as fixed, the soft policy improvement step follows the SAC for-
mulation:

πk+1(· | s) = argmin
π

DKL

(
π(· | s)

∥∥∥∥ exp
(
Qπk(s, ·)/α

)
Zk(s)

)
, (12)

where Zk(s) is the normalizing constant. Alternating evaluation under (T π
H ) and the update Eq. (12)

is exactly soft policy iteration onMH . Under the standard assumptions of Haarnoja et al. (2018),
this admits a unique soft fixed point and corresponding policy.

A.4 POLICY PARAMETERIZATION AND TRACTABILITY FOR PE-SAC

PoE from SAC policy improvement. For a fixed gating function λ : S × A → [0, 1] and Qθ =
(1− λ)QE + λQN , the SAC information projection (for each s)

π∗(· | s) = argmin
π

DKL

(
π(· | s)

∥∥∥∥ exp
(
Qθ(s, ·)/α

)
Zθ(s)

)
has a unique solution

π∗(a | s) ∝ exp
(

(1−λ)QE(s,a)+λQN (s,a)
α

)
=
[
exp
(
QE(s, a)/α

)] 1−λ(s,a) [
exp
(
QN (s, a)/α

)]λ(s,a)
.

If λ is state-only, λ = λ(s), then the normalizers of exp(QE/α) and exp(QN/α) are constant in a
and factor out, leading to the geometric mixture of normalized policies:

π∗(· | s) ∝ πE(· | s) 1−λ(s) πN (· | s)λ(s)

where
πE(· | s) ∝ exp

(
QE(s, ·)/α

)
, πN (· | s) ∝ exp

(
QN (s, ·)/α

)
.

Why an action-dependent gating function breaks reparameterization. Write the energies
fE := QE/α and fN := QN/α. Define the unnormalized density

uϕ(a | s) := exp
{
(1− λ(s, a)) fE(s, a) + λ(s, a) fN (s, a)

}
, Zϕ(s) :=

∫
A
uϕ(a | s) da.

When λ = λ(s, a), the normalizer Zϕ(s) has no closed form and its gradient with respect to the
parameters inside λ, fE , fN is intractable. Therefore,

log πϕ(a | s) = (1− λ)fE(s, a) + λfN (s, a) − logZϕ(s)

cannot be evaluated with a tractable pathwise sampler a = gϕ(s, ϵ), so the reparameterized SAC
actor objective

J(ϕ) = Es,ϵ

[
α log πϕ(a | s)−Qθ(s, a)

]
is not tractable. This motivates a state-only gating function in the actor.

Gaussian policy with squashing (state-only gating). Following SAC, we use an unbounded
Gaussian for a pre-squash variable u ∈ RD and apply an elementwise tanh to obtain bounded
actions a = tanh(u). Let the two pre-squash Gaussian densities be

pE(u | s) = N
(
u; µE(s),ΣE(s)

)
, pN (u | s) = N

(
u; µN (s),ΣN (s)

)
,

and let the gating function be state-only, λ = λ(s) ∈ [0, 1]. Define the unnormalized product

p̃H(u | s) := pE(u | s) 1−λ(s) pN (u | s)λ(s).
Since the exponents are constants for fixed s, p̃H is proportional to a Gaussian. In particular,

pH(u | s) = N
(
u; µH(s),ΣH(s)

)
,

Σ−1
H (s) = (1− λ(s)) Σ−1

E (s) + λ(s) Σ−1
N (s), (13)

µH(s) = ΣH(s)
(
(1− λ(s)) Σ−1

E (s)µE(s) + λ(s) Σ−1
N (s)µN (s)

)
.
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With a = tanh(u) and the change-of-variables formula (cf. SAC(Haarnoja et al., 2018), Eqs.
(20)–(21)),

πH(a | s) = pH(u | s)
∣∣∣det(∂a

∂u

)∣∣∣−1

log πH(a | s) = log pH(u | s) −
D∑
i=1

log
(
1− tanh2(ui)

)
,

where u = arctanh(a) and the Jacobian ∂a/∂u is diagonal with entries 1 − tanh2(ui). When the
gating is binary, λ(s) ∈ {0, 1}, Eq. (13) reduces to the corresponding expert.

B IMPLEMENTATION DETAILS

B.1 DETAILS FOR LEARNING λ(s, a)

We train two one-step dynamics predictors on replay, P̂E : (s, a) 7→ ∆ŝE(s, a) and P̂N : (s, a) 7→
∆ŝN (s, a), intended to approximate the transition dynamics ofME andMN , respectively. Each
predictor minimizes mean squared error on the state increment ∆s := s′ − s:

L(i)
dyn = E(s,a,s′)∼D

[∥∥∆ŝi(s, a) − ∆s
∥∥2
2

]
, i ∈ {E,N}.

The dynamics disagreement is the squared difference between predicted increments

d(s, a) =
∥∥∆ŝE(s, a) − ∆ŝN (s, a)

∥∥2
2
.

Online thresholding and labels (for supervision). We maintain running statistics (µt, σt) of
d(s, a) via the Welford algorithm (Chan et al., 1983), form a raw threshold τ̂t = µt + k σt with
k > 0 (symmetry breaking assumed sporadic), and exponentially smooth it

τt ← β τt−1 + (1− β) τ̂t.

Binary supervision is then y(s, a) = 1{d(s, a) > τt}.1

Gating function training and stochastic gating. We train the gate network λω : S × A→ [0, 1]
with the binary cross-entropy loss (Eq. equation 4) on minibatches from D. During each critic and
actor update, we recompute and cache the gate probability on the sampled minibatch and use a
stochastic hard gate obtained by Bernoulli sampling:

p(s, a) := λω(s, a), λ̃(s, a) ∼ Bernoulli
(
p(s, a)

)
.

We then form Qθ = (1− λ̃)QE + λ̃QN for the critic update and use λ̃ for the actor-side alignment
(Sec. 6.2). Gradients from Q/π do not flow into ω (stop-gradient through both p and λ̃).

Target gate to reduce variance. To mitigate non-stationarity and variance from stochastic gating,
we maintain an EMA of probabilities

p̄ ← τλ p+ (1− τλ) p̄,

and draw the RL gate from p̄ instead of p:

λ̃(s, a) ∼ Bernoulli
(
p̄(s, a)

)
.

Warm-start. To avoid noisy labels before the dynamics predictors stabilize, we use a warm-up
period W steps during which the gate loss is disabled (i.e., y ≡ 0 and ω is not updated). A small
prior routing is used by clamping λ̃=1 with probability pwarm during warm-up.

1As a robust alternative one may use running quantiles or median/MAD; we keep kσ in main experiments.
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B.2 DETAILS FOR LEARNING λζ(s)

We train a state-only actor gate λζ : S → [0, 1] to conservatively aggregate the action-dependent
critic gate via

λζ(s) ≈ max
a

λω(s, a).

To do so we adopt expectile regression with a high expectile level τ → 1, which approximates the
max while remaining stable on in-distribution actions. Concretely, for each state s we draw M
candidate actions {ai}Mi=1 (from current policies; see sampling details below) and minimize

Lλ(ζ) = Es∼D

[
1

M

M∑
i=1

Lτ

(
λω(s, ai)− λζ(s; ζ)

)]
, Lτ (u) = |τ − 1{u < 0}|u2.

This objective encourages λζ(s) to match the upper tail of {λω(s, ai)}Mi=1, leading to a conservative
state-level gate.

Bernoulli actor gating (training & inference). At both training and inference, we use a binary
actor gating sampled from the probability λζ(s):

λ̃ζ(s) ∼ Bernoulli
(
λζ(s)

)
.

For RL updates we cache λ̃ζ per minibatch and apply stop-gradient through the sample.

Action sampling for expectiles. We form the candidate set {ai}Mi=1 per state by drawing from
a mixture of current policies (e.g., πE , πN ). This increases the chance of including symmetry-
breaking actions. We use the same M across tasks (see the hyperparameters Table 8).

Warm-start. To avoid noisy supervision before λω stabilizes, we apply a short warm-up period
W steps where Lλ(ζ) is disabled; We use a small prior bias by clamping λ̃ζ=1 with probability
pwarm during warm-up.

Gradient isolation. Gradients from the RL losses do not flow into λζ ; the gate is updated only via
the expectile objective above.

B.3 NETWORKS

For the Grid-World experiments, we implemented πE and P̂E using equivariant linear layers from
escnn(Weiler & Cesa, 2019). In all other settings, we used EMLP layers (Finzi et al., 2021b) for
πE and P̂E . The remaining networks, including πN , P̂N , λω , λζ , and the critics, were implemented
as standard MLPs.

B.4 IMPLEMENTATION FRAMEWORK

Our implementation builds on the Residual Pathway Priors (RPP) codebase (Finzi et al., 2021a),
which provides flexible infrastructure for combining equivariant and non-equivariant components.
We extend this framework with our gated Q-networks, gated policies, and disagreement-based λ
supervision, while keeping the training loops and optimization settings consistent with RPP.

C EXPERIMENTAL DETAILS

In this section, we introduce the group symmetries, environment details, and the hyperparameters
used in each environment. The implemented group symmetries used in each environment are sum-
marized in Table 1, and the corresponding group representations for each state and action space are
summarized in Table 2, 3, 4, 5, 6. We summarize the common hyperparameters for DQN used in
Grid-World, including those for PE-DQN in Table 7. For SAC, we use the default hyperparameters
(Haarnoja et al., 2018), which are listed in Table 8, including those for PE-SAC. All the experiments
were run on NVIDIA RTX 4090 GPUs.
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Table 1: Symmetries of environments used in the experiments.

Env Implemented Symmetries

Grid-World C4

Hopper Z2

Ant Z4

Swimmer Z2

Fetch SO(3)
UR5e SO(3)

Grid-World. The symmetry used in Grid-World is the Cyclic group C4, as summarized in Table 1.
It consists of a 15 × 15 grid, with observations given by the concatenated agent and goal positions
[xagent, yagent, xgoal, ygoal]. The action space is {↑,←, ↓,→}. Group representations are implemented
as two concatenated 2D rotation matrices on the state space and a 4 × 4 permutation matrix on the
action space. Rewards are defined as +1 for reaching the goal and −0.01 per step otherwise.

Locomotion. The symmetries used in each environment are summarized in Table 1. The state and
action space representations, as well as the hyperparameters, are adopted from RPP (Finzi et al.,
2021a). For Swimmer-v2, Finzi et al. (2021a) reports using the approximate symmetry Z2 × Z2

(left-right, front-back symmetries), but the official code does not provide a correct implementation
of this. Therefore, we instead use the exact symmetry Z2 (left-right symmetries) in our Swimmer
experiments.

Manipulation. The symmetries used in each environment are summarized in Table 1. In Fetch
Reach, the agent is trained to move the end-effector to a randomly sampled target position in
each episode. The corresponding state and action spaces, together with their representations of
the exploited symmetries, are provided in Table 5. A dense reward is given at every timestep as
the negative Euclidean distance between the current end-effector and the goal position. In UR5e
Reach, the agent is trained to reach a randomly sampled SE(3) target pose in each episode. The
corresponding state and action spaces with the representations of the exploited symmetries are
provided in Table 6. A dense reward is given at every timestep as the negative weighted sum of
the Euclidean distance (translational error) and the geodesic distance (rotational error) between the
current end-effector and the goal poses. A weight of 0.19098621461 is applied to the geodesic
distance term so that a 15◦ rotational error is treated as equivalent to a 0.05m translational error.
We scale action of translation by 0.05 m for both tasks, and rotation by 0.2618 rad (15°) for UR5e
Reach task.

Overall. The state and action representations used for the equivariant networks in each environ-
ment except Grid-World are shown in Table 2, 3, 4, 5, 6 (last column). In these tables, V denotes
an n-dimensional base representation, transformed by permutations for Zn and by rotation matrices
for SO(3). R denotes a 1-dimensional scalar representation which is invariant under these group
actions. P denotes a 1-dimensional pseudoscalar representation, which is transformed by the sign
of the permutation. (e.g., for Swimmer-v2, P flips sign under left-right reflection of the body.) Note
that powered representations such as V n indicate the direct sum of n instances of the representation;
this is given here as an example:

V n =

n⊕
i=1

V.

Hyperparameters used for locomotion and manipulator (SAC) experiments are shown in Table 8.
Those are shared across all tasks, unless specified in the table.
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Table 2: Hopper-v2 state and action spaces with their representations

Name Description Dim Rep

State

Torso z z-coordinate of the torso 1 R
Orientation Torso pitch angle 1 P
Thigh angle Thigh joint angle 1 P
Leg angle Leg joint angle 1 P
Foot angle Foot joint angle 1 P
Torso velx Linear velocity of torso (x) 1 P
Torso velz Linear velocity of torso (z) 1 R
Torso angvel Angular velocity of torso (y) 1 P
Thigh angvel Angular velocity of thigh hinge 1 P
Leg angvel Angular velocity of leg hinge 1 P
Foot angvel Angular velocity of foot hinge 1 P

Action
Thigh Torque applied on thigh joint 1 P
Leg Torque applied on leg joint 1 P
Foot Torque applied on foot joint 1 P

Table 3: Ant-v2 state and action spaces with their representations

Name Description Dim Rep

State

Torso z z-coordinate of the torso 1 R
Torso quat Orientation of the torso (quaternion) 4 R4

Hip 1 angle Angle between torso and front-left link 1

V
Hip 2 angle Angle between torso and front-right link 1
Hip 3 angle Angle between torso and back-left link 1
Hip 4 angle Angle between torso and back-right link 1

Ankle 1 angle Angle between two front-left links 1

V
Ankle 2 angle Angle between two front-right links 1
Ankle 3 angle Angle between two back-left links 1
Ankle 4 angle Angle between two back-right links 1

Torso vel Linear velocity of torso (x, y, z) 3 R3

Torso angvel Angular velocity of torso (x, y, z) 3 R3

Hip 1 angvel Angular velocity of front-left hip joint 1

V
Hip 2 angvel Angular velocity of front-right hip joint 1
Hip 3 angvel Angular velocity of back-left hip joint 1
Hip 4 angvel Angular velocity of back-right hip joint 1

Ankle 1 angvel Angular velocity of front-left ankle joint 1

V
Ankle 2 angvel Angular velocity of front-right ankle joint 1
Ankle 3 angvel Angular velocity of back-left ankle joint 1
Ankle 4 angvel Angular velocity of back-right ankle joint 1

Action

Hip 1 Torque on front-left hip joint 1

V
Hip 2 Torque on front-right hip joint 1
Hip 3 Torque on back-left hip joint 1
Hip 4 Torque on back-right hip joint 1

Ankle 1 Torque on front-left ankle joint 1

V
Ankle 2 Torque on front-right ankle joint 1
Ankle 3 Torque on back-left ankle joint 1
Ankle 4 Torque on back-right ankle joint 1
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Table 4: Swimmer-v2 state and action spaces with their representations

Name Description Dim Rep

State

Orientation angle Front tip angle 1 P
Head joint angle First rotor angle 1 P
Tail joint angle Second rotor angle 1 P

x, y velocities Tip velocities along x, y 2 R2

Orientation angvel Front tip angular velocity 1 P
Head joint angvel First rotor angular velocity 1 P
Tail joint angvel Second rotor angular velocity 1 P

Action Head joint Torque on first rotor 1 P
Tail joint Torque on second rotor 1 P

Table 5: Fetch Reach state and action spaces with their representations

Name Description Dim Rep

State
EE pos End-effector position (x, y, z) 3 V
EE vel End-effector velocity (vx, vy, vz) 3 V
Goal pos Goal position (x, y, z) 3 V

Action EE rel trans Relative translation (∆x,∆y,∆z) 3 V
Gripper cmd Gripper open/close control 1 R

Table 6: UR5e Reach state and action spaces with their representations

Name Description Dim Rep

State

EE pos End-effector position (x, y, z) 3 V
EE rot6d End-effector orientation (6D rep.) 6 V 2

EE velp End-effector linear velocity (vx, vy, vz) 3 V
EE velr End-effector angular velocity (ωx, ωy, ωz) 3 V
Goal pos Goal position (x, y, z) 3 V
Goal rot6d Goal orientation (6D rep.) 6 V 2

Action EE rel trans Relative translation (∆x,∆y,∆z) 3 R3

EE rel rot Relative rotation (axis–angle) (ax, ay, az) 3 R3
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Table 7: Hyperparameters used in Grid-World (DQN) experiments.

Hyperparameter Value

Optimizer Adam (Kingma et al., 2015)
Learning rate 1× 10−4

Hidden size [256, 256]
Batch size 256
Discount factor γ 0.99
Target network update rate τ 0.005
Replay buffer size 1× 105

ε-greedy schedule 1.0→ 0.05 (15k steps)

λ, P̂E , P̂N batch size 256
λ, P̂E , P̂N learning rate 1× 10−4

#λ warm-start steps 30,000
λ prior bias 0.5
λ hidden size [256, 256]
λ gradient clipping 1.0
P̂E , P̂N hidden size [256, 256]

P̂E , P̂N gradient clipping 1.0
Disagreement coefficient k 1.5
# Threshold update interval steps 100
Threshold EMA β 0.05

Table 8: Hyperparameters used in locomotion and manipulation (SAC) experiments.

Hyperparameter Value

Optimizer Adam (Kingma et al., 2015)
Actor learning rate 3× 10−4

Critic learning rate 3× 10−4

Temperature learning rate 3× 10−4

Entropy coefficient auto-adjust (Haarnoja et al., 2018)
Batch size 256
Discount factor γ 0.99
Target network update rate τ 0.005 (0.004 for RPP Swimmer-v2)
Target entropy −0.5× dim(action)
Hidden size [256, 256]
Gradient clipping 0.5

λω, λ hidden size [128, 128]

P̂E , P̂N hidden size [256, 256]

λω, λζ , P̂E , P̂N batch size 256
# P̂E , P̂N gradient steps 2
λω, λζ learning rate 1× 10−4

λω, λζ gradient clipping 0.5
λω, λζ prior bias 0.7685
# Threshold update interval steps 100
Threshold EMA β 0.1
Expectile regression coefficient τexp 0.8
# Expectile action samples M 4
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D EQUIVARIANCE ERROR AND ITS PROPAGATION UNDER
SYMMETRY-BREAKING

(a) 𝑽𝑽∗ (b) 𝑽𝑽∗ with rotated goal

(d) Trained Policy(c) Relative 𝑽𝑽∗ Error

: Greedy action
: Suboptimal action

Equivariance Error
Propagation

Rotate the 
Goal by 90⁰ 

Stabilized Goal
Local

Equivariance Error

Fixed Obstacle
(Symmetry-breaking)

Goal

Figure 5: Equivariance error under symmetry-breaking. We assess rotational equivariance by
comparing the base optimal value function V ∗ with the value obtained after rotating the goal by 90◦

(red star) while keeping obstacles fixed (black cells), thereby breaking the symmetry. (a) Baseline
optimal value V ∗. (b) V ∗ with the goal rotated by 90◦ while obstacles (black) remain fixed. (c)
Per-state relative equivariance error (

∣∣V ∗(s)− V ∗(gs)
∣∣/∣∣V ∗(s)

∣∣) with the goal stabilization. The
sky-blue cells bordered by a red line coincide with the overlap between the original obstacle and
its image under g, creating large local errors. The error then propagates outward, as reflected by
the surrounding regions whose shading gradually darkens. This non-local propagation occurs for
all g ∈ G and has broader implications for equivariant RL training. (d) Greedy actions from an
equivariant DQN. Red arrows denote suboptimal moves, illustrating that the learned policy inherits
errors in symmetry-broken regions.

E THE USE OF LARGE LANGUAGE MODELS

In this paper, we used LLMs solely for text polishing and generating code snippets. Study design,
theoretical results, algorithmic contributions, and all experiments/analyses were conceived and im-
plemented by the authors. All code generated with LLM assistance was reviewed and verified by
the authors.
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