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Abstract: Developing robots that possess a diverse repertoire of behaviors and ex-1

hibit generalization in unknown scenarios requires progress on two fronts: efficient2

collection of large-scale and diverse datasets, and training of high-capacity policies3

on the collected data. While large and diverse datasets unlock generalization ca-4

pabilities, like that observed in computer vision and natural language processing,5

collection of such datasets is particularly challenging for physical systems like6

robotics. In this work, we propose a framework to bridge this gap and scale robot7

learning, under the lens of multi-task, multi-scene robot manipulation in kitchen8

environments. Our framework, named CACTI, has four stages that separately han-9

dle data collection, data augmentation, visual representation learning, and imitation10

policy training. We demonstrate that, in a simulated kitchen environment, CACTI11

enables training a single policy on 18 semantic tasks across up to 50 layout varia-12

tions per task. When instantiated on a real robot setup, CACTI results in a policy13

capable of 5 manipulation tasks involving kitchen objects, and robust to varying14

distractor layouts. The simulation task benchmark and augmented datasets in both15

real and simulated environments will be released to facilitate future research.16

1 Introduction17

Inspite of recent advances in learning based control, developing a general-purpose embodied agent18

with human-level abilities for generalizable skills is still a distant goal. Since the internet generates19

quality datasets, not random sets of words or images, and so large-scale internet data has shown20

significantly improved results even with the same underlying algorithm in natural language processing21

(NLP) and computer vision (CV) [1, 2, 3]. However, in embodied AI, especially robotics, not just22

quality data, but even random data is not possible to collect at scale due to operational challenges:23

unlike the abundant textual data from the internet and single-image annotations, tele-operating robots24

to collect demonstrations is much more laborious and time-consuming. Another challenge lies in25

incorporating diversity to the data: in robot manipulation, for example, covering a wide range of26

objects and scenes demands a large amount of physical resources.27

In this work, we set out to address the above challenges by developing a framework for a single28

embodied agent to learn to solve a repertoire of tasks in multiple-scenes. We instantiate the framework29

in a robot manipulation setting with visual observations instead of state-based representations in30

order to help with generalization to changing scenes during deployment, where the states of objects31

might not be precisely available. There are several design decisions with respect to data collection,32

and learning policies to operate in scenes based on the collected data. End-to-end approaches like33

reinforcement learning (RL) that interleave data collection with policy learning are not ideal as they34

rely on deploying sub-optimal policies to collect data. On the other extreme, imitation learning (IL)35

by collecting a large dataset of expert demonstrations is infeasible due to constraints on availability36

of diverse experts, and challenges in fitting end-to-end neural networks to diverse datasets. Instead of37

Submitted to the 6th Conference on Robot Learning (CoRL 2022). Do not distribute.



developing monolithic frameworks based on traditional RL and IL, we develop a four staged approach38

that breaks down monolithic blocks into manageable pieces in accordance with their expense.39

Figure 1: Framework overview. Schematic represen-
tation of the proposed framework, CACTI ’s four stages.

Incorporating the above considerations, we pro-40

pose a framework, namely CACTI , that can be41

divided into four stages, with the following de-42

composition: Collect - gather data with task spe-43

cific experts, Augment - multiply data to boost44

experience diversity, Compress - project to a45

informative but low dimensional latent space,46

and TraIn – recover a general multi-task agent.47

Concretely, the four stages involve limited col-48

lection of data by either a human expert or a49

task-specific learned expert, data multiplication50

by augmenting the expert data with visual scene51

and layout variations, out-of-domain visual em-52

bedding learning, and training a single policy53

that utilizes the visual embeddings to imitate54

expert behavior on augmented data across multiple tasks. Figure 1 shows a schematic overview of55

the framework. We demonstrate in section 2 that it is possible to instantiate this framework both in56

sim and in real world using standard techniques.57

In summary, we present a framework for large-scale, vision-based multi-task imitation learning with58

the following contributions: 1) fast limited in-domain data collection with in-domain experts, 2)59

efficient multiplication of data with diverse augmentations, 3) single visual policy learning with60

compressed representations, that generalizes across diverse task and scene variations, 4) multi-layout61

multi-task simulation framework with different benchmarks that we open-source to the community62

2 A framework for Multi-Task Multi-Scene Visual Imitation Learning63

Conceptually, CACTI involves four stages, as illustrated in Fig. 1: Collect - gather limited in-domain64

data with task specific experts, Augment - multiply data to boost the number of trajectories and65

diversity across them, Compress - project to an informative but low dimensional latent space that66

disentangles some factors of variations in the observations, and TraIn - recover a general muti-task67

agent on the augmented dataset, using compressed observation representations with a single policy.68

The subsequent subsections elaborate on each of the four stage in CACTI and their implementation69

in both simulation and the real world.70

2.1 Collect: Small in-domain expert data collection71

The goal of this stage is to collect a limited amount of expert demonstrations, while minimizing the72

cost of data collection in terms of both human labor (tele-operationg real robot) and computational73

cost (training RL experts in simulation).74

We set up a toy kitchen tabletop with a Franka robot arm; the objects we use are shown in Fig. 6. Since75

it is much more cost expensive to train RL expert policies on the real robot, we opt to incorporate76

kinesthetic teaching by a human expert as a means of collecting trajectories. We define 5 tasks that77

involve manipulating the tabletop objects, and expert demonstrations are collected in a single-object,78

single-task setting. A human holds the robot and guides it to perform a task, and we save the joint pose79

and end-effector information of the robot at each time-step. For each of the 5 tasks, the demonstrator80

collects 8 trajectories of kinesthetic demonstrations.81

Please see Appendix for details on data collection in our simulation environment.82



2.2 Augment: Semantic scene variations for augmentation83

In this stage, we aim to increase the diversity of data collected in stage one before using it for visual84

policy learning. To do so, we introduce two types of augmentations, visual and semantic. Visual85

augmentations involve changing attributes like color and texture of all the objects, and scene lighting.86

Semantic augmentations involve changing the layout of objects in the scene, namely their positions87

and orientations. Together, these augmentations help significantly multiply the limited data Dτ88

collected by task-specific experts in stage one, and yield the augmented dataset D′
τ∀τ .89

For augmenting the real-robot kinesthetic demos collected by experts, we replay the trajectories while90

varying different attributes of the scene, and recording per-timestep image observations during the91

replays. We develop a novel method for incorporating automatic semantic scene variations, without92

physically modifying objects in the scene. We use latest advances in generative modeling [2, 4],93

specificially the open-sourced Stable Diffusion trained model [4], and run inference through it.94

The model takes as input an image of the scene, and a region for modification, specified in pixel95

coordinates. Controlled generation lets us keep the rest of the scene unchanged, and introduce new96

plausible objects in the region specified. The generated images place plausible objects like mugs,97

cups, and glasses on locations of the white-colored table that are unoccupied. Please refer to Appendix98

section A.2 for details of augmentations in simulation and the real-world.99

2.3 Compress: Representations pre-trained on internet data100

“a coffee mug on a white tabletop" “a small load of bread on a white tabletop”“a coffee mug on a white tabletop"

Original Image + Mask “cups on a white tabletop" “a kitchen tabletop with fruits” “a kitchen tabletop with plates”

Original Image + Mask

Figure 2: In-painting augmentations. Visualization of automatic data aug-
mentation based on controlled generation on a scene from our real-robot
environment. We specify a region of the image to be edited (a mask), and a
text prompt, and sample several resulting model generations. We use the latest
stable-diffusion model [5] that’s fine-tuned specifically for image inpainting.

The Compress stage of101

our framework involves en-102

coding image observations103

into low-dimensional em-104

beddings, which makes it105

easier for the downstream106

policy to learn across com-107

plex semantic variations108

in the scene, and poten-109

tially generalize to new110

scenes with different at-111

tributes. This also helps112

to decouple representation113

and policy learning, and in-114

dependently optimizing for115

each component through separate methods and architectures. We explore the use of representation116

networks trained with large-scale out-of-domain internet data, as well as representation models117

trained with only in-domain data from the simulator. For the former case, we use the R3M model [6]118

which has demonstrated strong empirical performance in various imitation learning tasks. For the119

latter, we train a ResNet-50 model using MoCo [7] on the in-domain data.120

2.4 Multi-Task Multi-Scene Visual Policy Learning121

The final stage is about learning a single policy with the visual backbone from stage three, trained122

on the entire multi-task multi-scene data respectively in simulation and the real environment. The123

overall goal-conditioned policy architecture, and the deployment protocol after stage 4 is shown in124

Fig. 8. During training, the goals og are sampled from the last 10 steps in each augmented trajectory,125

and during deployment, are provided by the experimenters. At time-step t, the input observation ot126

and goal observation og are respectively embedded to latent representations zt, zg by the encoder127

from stage three. The embeddings are concatenated and fed to an MLP that eventually outputs the128

mean and co-variance of a Gaussian action distribution. The policy training loss is the usual behavior129

cloning loss that maximizes log-likelihood of the policy under the data distribution.130



3 Experiments131

Through experiments on simulated and real-robot environments, we aim to understand the following132

research questions: 1) How effective is CACTI in learning task behaviors for diverse scenes, compared133

to monolithic approaches? 2) How do variations in instantiation details of the different stages of134

CACTI affect the behavior of the final policy? 3) How do the learned policies in CACTI generalize135

to scenes with different objects, and variations compared to the training datasets?136

3.1 Environment and Evaluation details137

We setup a simulated kitchen environment with 18 tasks involving eight objects: four burner knobs,138

one light switch, one kettle, one cabinet with sliding door, one cabinet with a left and a right door,139

and one microwave. A multi-task agent gets communicated about which task to execute through a140

task embedding that contains both the targeted object pose and the object arrangement information141

that’s unique to each layout. We have a similar real-robot setup as the simulated kitchen but on a142

smaller scale. Fig. 6 shows all the objects we have in the real scene, that include toasters, plates,143

mugs, strainers, cans, ketchup bottles, and several fruits. Based on these objects, we define each task144

to be the manipulation of an object from an initial location to a goal location. We define five tasks in145

this environment described visually in Fig. 7. Additional details are in the Appendix.146

3.2 Framework Ablations and policy baselines147

In the real robot environment, we evaluate the novel in-painting based semantic augmentation, by148

training two visual multi-task policies: one with data augmented with in-painted trajectory images,149

and the other without this augmentation. For the real robot experiments, we use the out-of-domain150

pre-trained R3M model, which we fine-tune during stage 4 of learning the policy.151

Additional details about the variants and experiment settings for simulation, and real environments152

are mentioned in Appendix section A.5.153

3.3 Results154

Figure 3: Real world evaluation. We report
results from the real robot environment tasks
using the evaluation setup described in sec-
tion 3.1. The two compared multi-task poli-
cies were both evaluated for 30 episodes on
each of the 5 tasks. The bar chart (left) shows
success rates averaged within each task, and
the final results in the Table show (right) are
averaged over all episodes in all 5 tasks.

Fig. 3 shows results for the real-robot experiments, where155

both the evaluated variants achieve reasonable success156

rates across all the tasks, demonstrating utility of the over-157

all framework . We observe that the policy trained with158

in-painted data augmentations achieves on average around159

20% absolute and 60% relative higher success rates com-160

pared to the one trained without these augmentations. This161

shows the importance of the in-painted augmentations in162

scaling up useful data without human hours being used,163

and potentially opens up interesting research directions at164

the intersection of generative modeling and robot learning.165

4 Discussion and Conclusion166

In this paper, we developed a framework for multi-task multi-scene visual imitation learning, and in-167

stantiated it both in simulation and in the real world. Our framework incorporates several components168

like fast and efficient data collection, novel data augmentation, compressed visual representations, and169

a single control policy trained over augmented datasets. We demonstrate efficacy of the framework in170

a large-scale simulated kitchen environment with several variations in the tasks, type of objects, and171

randomizations in the scene, and in the real-world tasks, we show the efficacy of novel augmentations172

like in-painting images based on prompting a deep generative model.173
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A More details on framework design301

A.1 Stage 1: Details302

We create a simulated environment that supports 18 semantic tasks and randomly-generated layout303

variations. Each layout has a different arrangement of the main kitchen objects (for example, placing304

the microwave next to the sink v.s. in the top shelf next to the cabinet). We use a standard on-policy305

RL algorithm, namely NPG [8], to train single-task, single-layout expert policies π(st) from state-306

based input observations st. For each of the 18 tasks, we gather 50 expert policies each corresponding307

to a different layout, hence a total of 900 policies. In implementation, we initialize a large batch308

of parallel RL training runs, and use a threshold of 90% success rate to filter converged policies as309

experts. In simulation, during the collect phase, we obtain 50 expert policies per task, corresponding310

to different layouts, so a total of 900 task and layout specific policies, which can be replayed in stage311

2.312

For the real robot environment, we collect 8 trajectories per task through kinesthetic demonstration,313

so a total of 40 expert trajectories, which can be replayed.314

A.2 Stage 2: Details315

For augmenting the real-robot kinesthetic demos collected by experts, we replay the trajectories316

while varying different attributes of the scene, and recording per-timestep image observations during317

the replays. The visual augmentations in the real-robot setting correspond to color jitters of the318

observation images. In addition, we incorporate three different semantic augmentations. The first319

is action noise during replays to ensure wider coverage in mitigating covariate shift issues. Second,320

we manually shuffle the positions of distractor objects across the scene, and swap some objects in321

and out of the scene. Finally, we develop a novel method for incorporating automatic semantic scene322

variations, without physically modifying objects in the scene. We use latest advances in generative323

modeling [2, 4] that lets us perform controlled scene re-generations. This is at the dataset level, and324

doesn’t require additional robot operation hours. We specifically consider the open-sourced Stable325

Diffusion trained model [4], and run inference through it. The model takes as input an image of the326

scene, and a region for modification, specified in pixel coordinates. Controlled generation lets us327

keep the rest of the scene unchanged, and introduce new plausible objects in the region specified. By328

automating this process, we can obtain several visually augmented demos with zero extra human329

effort for data collection. Fig. 2 shows a visualization of what controlled generation looks like for a330

scene from our real robot environment. The generated images place plausible objects like mugs, cups,331

and glasses on locations of the white-colored table that are unoccupied.332

A.3 Stage 3: Details333

The pre-trained visual representations for R3M are obtained through training on egocentric human334

videos [9], with a combination of time-contrastive loss, and losses for video-language alignment. We335

use the exact pre-trained model from the original paper, and do not introduce any additional loss for336

fine-tuning with our own collected data. Fine-tuning simply corresponds to backpropagating through337

the layers of the pre-trained encoder to update its weights, while performing imitation learning in338

stage 4.339

A.4 Stage 4: Details340

For visual goals, the embeddings obtained from stage 3 are 1024x1 dimensional, and are concatnetaed341

with the observation embedding, which is also of the same dimensions, is concatenated, before342

feeding the concatenated vector to the policy MLP. In additon, we also concatenate the roobt joint343

velocity, and joint pose vectors (each of dimension 8x1), so the combined embedding that goes344

as input to the policy MLP is of dimension 2064x1. The output of the policy MLP is a mean and345

standard deviation vector, such that they represent a Gaussian action distribution of 8x1 dimension.346



Figure 4: CACTI -Sim-10 Benchmark results. The bar plot shows evaluation success rates on each
of the 18 semantic simulated kitchen tasks with 10 layout variations per task. The table shows results
averaged over all the tasks for CACTI -Sim-10 and CACTI -Sim-50 respectively. Detailed results of
CACTI -Sim-50 are in Appendix section A.6.

A.5 Experiment setup details347

A.5.1 Simulation environment348

For the simulation benchmark, we compare against a state-based agent (simulator states as input349

instead of scene images) that is trained through the stage four procedure across all 18 tasks, in 10350

layouts per task (CACTI -Sim-10) and 50 layouts per task (CACTI -Sim-50). By design, this policy351

is agnostic to visual scene augmentations, but must learn to generalize across the semantic layout352

variations. The performance of this agent is an approximation of the upper bound on visual policy353

learning behavior in this benchmark. We evaluate two different choices for stage three, namely354

out-of-domain embeddings, in-domain embeddings [7] trained on the augmented data. In addition,355

we evaluate CACTI against a monolithic framework of end-to-end RL training across the same set356

of task and layout variations. We use a REDQ agent [10] for RL training, and report results after357

training across 1M environment steps per-task.358

Each episode is evaluated for a horizon length of 100, and success criteria is determined by checking359

whether the final pose of the target object is within a 5% error bound from the specified goal-pose360

during evaluation.361

A.5.2 Real-robot environment362

Each episode is evaluated for a horizon length of 100 time-steps. At the beginning of each evaluation363

episode, a goal image is first collected by manually setting the target object to a fixed goal location364

with organic variations; then, the target object is set back and the agent takes in both the captured365

goal image and current visual observations as input. We define an episode as success when the robot366

is able to move the target object to within a range of 3cm error from the given goal location.367

A.6 Additional results368

Fig. 5 shows detailed results for the CACTI -Sim-50 Benchmark that was forward referenced, with369

aggregate values in Fig. 6 of the main paper.370

B Results on Simulation Benchmark371

Fig. 4 shows results of the different variants on the CACTI -Sim-10 benchmark (bar graph) and also372

average results across tasks in the Table. We see that the state-based visual imitation policy achieves373

an average success rate of 65-70% across all the tasks. This oracle serves as an upper bound for the374

the visual policy variants. The policy trained with in-domain embeddings achieves on average 40%375

success rate in CACTI -Sim-10 while the policy with out-of-domain embeddings achieves around376

18%. The out-of-domain embedding version is comparable to in-domain for CACTI -Sim-50 that377

requires generalization to more diverse variations. Interestingly, both these variants significantly378

outperform the monolithic RL baseline, trained from scratch for upto 1M environment steps per task,379



Figure 5: CACTI -Sim-50 Benchmark results. The bar plot shows evaluation success rates on each
of the 18 semantic simulated kitchen tasks with 50 layout variations per task. Fig. 6 in the main paper
shows aggregate results, and detailed results for CACTI -Sim-10 Benchmark.

which obtains a success rate of 0. This also suggests the non-triviality of the CACTI -Sim benchmark,380

which we will open-source to the community for future frameworks to evaluate their approaches.381

C Related Work382

Scaling robot learning frameworks. Prior works on scaling robot learning have largely focused383

on the RL paradigm, either through multi-task RL [11] or meta-RL [12, 13] and shown that shared384

learning among tasks amortizes the cost of acquiring diverse behaviors compared to training single385

policies for individual tasks [14, 15, 16]. The main reason for success in these settings has been that386

most tasks share some common structure (for example reaching and grasping behavior components),387

and such structures can be discovered through the learning of shared policy. This is useful from388

the perspective of designing frameworks that are scalable with efficient re-use of data across tasks.389

Recent work [17] has found that learning pre-trained representations and simple multi-task learning390

outperforms most meta RL approaches. There have been similar findings on IL from large offline391

datasets [18]. CACTI is inspired by these findings where we collect offline data, and use pre-trained392

visual representations for multi-task IL on the offline data, but instead of collecting all the data by393

experts [18] (which is expensive in robotics), we have an efficient data augmentation scheme for394

multiplying a small set of expert data. In the next paragraphs, we discuss CACTI ’s four stages in395

relation with respective prior works.396

Visual policy learning. Learning control policies from visual observations helps amortize the cost of397

learning representations of recurring objects and scenes [19, 20, 21, 22, 23, 24, 25]. However several398

prior works have looked at visual policy learning in simple simulated environments like the DM399

Control Suite [26] that involves stick agents locomoting [27, 28, 22] or in simplified manipulation400

environments like MetaWorld that involves only a few objects in the scene with a robot arm [29, 30].401

Other works have tackled policy learning in much more complex settings like a simulated realistic402

looking kitchen with several objects, but assume ground-truth simulator state observations instead403

of visual inputs [31, 32]. In contrast, CACTI (sim) is based on a simulated kitchen similar to [31]404

but with much more diversity of visual observations and layouts, and incorporates only visual405

observations as inputs to the multi-task multi-scene agents making it readily amenable for real-world406

environments where it is not possible to obtain ground-truth states of objects in the scene.407

Domain randomization. Domain randomization [33, 34, 35, 36, 37, 38, 39] bridges the reality gap408

by leveraging rich variations of the simulation environment during training. The hope is that by409

adding random variability in the simulator, the real data distribution will be within that of the training410

data. This has been useful in recent advances for visual navigation and manipulation in real-world411

environments [40]. Inspired by similar ideas, we go beyond simple domain randomization like412

color jitters, camera motions, texture changes, to more semantic augmentations based on distractor413

objects, and layout variations, through hindsight relabeling of limited expert demonstrations. We also414

incorporate a novel image in-painting [41] based data augmentation that lets us add different realistic415

objects in the scene by running inference through trained generative models [2, 4].416



Figure 6: Environment variations. Visualization from random scene variations in the simulated
kitchen environment (left) and the set of all objects in the real robot environment (right). The scenes
in simulation have randomized object layouts, with different colors, textures, and lighting conditions.
Both the simulation and the real environment have a Franka Emika Panda arm that is operated through
joint position control.

Figure 7: Real robot tasks. Illustration of the five real robot tasks, namely: drag mug, close toaster,
place can on the plate, place can on the table, put watermelon in strainer. The colored arrows
approximate the task trajectories.

Representation learning for control. Recent progress in video prediction and self-supervised417

learning, such as developing suitable lower bounds to mutual information (MI) based objectives [42,418

43, 44, 22, 45, 46, 47, 48, 49], have enabled learning of visual representations that are useful for419

downstream tasks. Prior work have examined pretraining on large datasets like ImageNet [50]420

and Ego4D [9], and using the frozen representation for doing downstream robot control [51, 6].421

CACTI leverages such frameworks for learning compressed visual representations, both with out of422

domain internet data of human videos, and with in-domain augmented dataset that is generated as423

part of the framework.424



Figure 8: Policy deployment pipeline. Schematic of the deployment setup for the final multi-task
multi-scene visual imitation policy.
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