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ABSTRACT
Temporal abstraction, frequently modeled using the options frame-
work, enables agents to perform temporally extended actions, opti-
mizing intrinsic policies, termination functions, and policies over
optionswithout the need for assigning extra rewards. In this context,
the deliberation cost emerges as a crucial component, as it penalizes
the premature termination of options, promoting more efficient use
of computational resources and accelerating the agent’s response
in dynamic environments. We propose a flexible and adaptable
approach to the deliberation cost, dynamically adjusting it based
on the termination decisions of the options. Our results indicate
that this approach not only improves learning efficiency but also
contributes to the specialization and effectiveness of the options,
enabling superior performance.
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1 INTRODUCTION
Reinforcement learning stands as one of the pillars of artificial
intelligence, aiming to establish a mapping from states to actions
[12]. This is achieved through trial-and-error processes, utilizing
the concept of increasing a numerical reward derived from these
attempts. When considering that actions may have consequences
that are not necessarily immediate and that future situations can
be affected and alter the outcome of the desired reward, it becomes
crucial for the agent to understand different time scales.

One way to describe different temporal scales involves the con-
cept of temporal abstraction. A challenge associated with reinforce-
ment learning in the context of temporal abstraction is how an
agent can autonomously discover these abstractions. Among the
possible approaches, the options framework serves as a model for
representing and learning temporally extended actions [14]. By
using the options model alongside the simultaneous learning of
intra-option policies (actions), termination functions, and policies
over options, it became possible to achieve results without the need
to establish sub-goals, additional rewards, or other incentives and
resources.

Related to option-based learning, the deliberation cost [4] repre-
sents an opportunity to enhance both computational efficiency and
the results obtained. By penalizing the premature termination of
options, computational cost is reduced, as the temporal structure of
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these options allows for a more efficient allocation of computational
resources, while also promoting faster decision-making.

In this study, we propose a flexible and adaptive approach to the
deliberation cost, adjusting it dynamically based on the duration
of an option rather than relying on a fixed penalty value. Unlike
previous approaches that either set deliberation costs arbitrarily or
required additional neural networks to regulate them, our method
introduces a cost that decreases over time as the agent remains
within the same option. This encourages stability by discouraging
excessive option switching while still allowing the agent to adapt
when necessary. To implement this, we modified the option-critic
architecture by incorporating a deliberation cost term inversely
proportional to the time spent in a given option. These modifica-
tions not only eliminate the challenge of tuning a sensitive hyper-
parameter but also enhance computational efficiency. Experimental
results demonstrate that this approach enables effective training
without fixed hyper-parameters, leading to better option specializa-
tion and preventing their degeneration into primitive actions. This
is evidenced by the superior rewards achieved when comparing
the original Option-Critic Architecture to the version with flex-
ible deliberation cost. In the MuJoCo Ant environment, rewards
increased significantly. Moreover, our method enhances learning
performance, as evidenced by increased rewards during training,
while preserving a structured and interpretable decision-making
process based on options.

The main contributions of this paper can be summarized as:

• We introduce a flexible deliberation cost operator. In partic-
ular, we define the penalty factor as a function of the time
spent on a given option. As a consequence, our approach
becomes dynamic and prevents option degeneration.
• We modify the option-critic architecture to incorporate the
dynamic deliberation cost, adapting the option termination
function to account for the new penalty mechanism.
• We conduct an experimental evaluation in both discrete and
continuous action spaces, demonstrating that the flexible de-
liberation cost increases rewards during training, promotes
option specialization, prevents degeneration into primitive
actions across diverse environments, and in several cases
leads to more stable learning dynamics, as reflected by re-
duced variance across runs.

This paper is organized as follows. Section 2 presents the basic
concepts upon which this work was elaborated. Section 3 overviews
the related literature. Section 4 introduces our flexible approach to
the deliberation cost. The experimental evaluation is described and
discussed in Section 5. Concluding remarks are then presented in
Section 6.



2 BACKGROUND
In this chapter, we present fundamental concepts of reinforcement
learning, including Markov Decision Processes (MDPs) and policy
gradients, as well as the structure of hierarchical learning based on
options.

2.1 Markov Decision Processes
When considering a Markov Decision Process (MDP), we have a
classical formalization for decision-making in which actions influ-
ence not only immediate rewards but also future states and their
corresponding rewards [12]. While a Markov Process (MP) can be
defined by the tuple (S,P), and aMarkov Reward Process (MRP) by
(S,P,R, 𝛾), an MDP is characterized by the tuple (S,A,P,R, 𝛾),
which includes the additional component A, representing a finite
set of actions (𝑎1, 𝑎2, . . .).1 [3]

MDPs serve as modeling tools for sequential decision-making
problems, where an agent interacts with the system in a sequential
manner [15]. Considering a finite MDP, the random variables 𝑅𝑡
and 𝑆𝑡 are defined by discrete probability distributions that depend
only on the previous state and action. Thus, for a given value of
these random variables 𝑠′ ∈ S and 𝑟 ∈ R, there is a probability
that these values will occur at time 𝑡 , given the preceding state and
action:

𝑝 (𝑠0, 𝑟 | 𝑠, 𝑎) � Pr{𝑆𝑡 = 𝑠0, 𝑅𝑡 = 𝑟 | 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎}, (1)

for all 𝑠′, 𝑠 ∈ S, 𝑟 ∈ R, and 𝑎 ∈ A(𝑠). In the notation above
the equality sign (�) serves as a reminder that this is more of a
definition of the function 𝑝 rather than a consequence of previous
definitions [12].

Given their abstraction and flexibility, MDPs can be applied
to various problems and in different ways, framing goal-directed
learning as an interaction process that reduces the problem to three
signals exchanged between the agent and the environment: actions,
states, and rewards [12].

2.2 Policy Gradients
Methods that use policy gradients do not necessarily depend on
action-value methods. While these methods learn the values of
actions and make decisions based on these estimates, methods that
use policy gradients learn through a parameterized policy and,
depending on the algorithm, make decisions without relying on a
value function.

According to Sutton and Barto [12], the representation of policy
parameter vectors is given by 𝜃 ∈ R𝑑 ′ , where the probability of a
specific action 𝑎 being taken at time 𝑡 when a state 𝑠 is given at
time 𝑡 with parameter 𝜃 is represented by the equation:

𝜋 (𝑎 |𝑠, 𝜃 ) = 𝑃𝑟 {𝐴𝑡 = 𝑎 |𝑆𝑡 = 𝑠, 𝜃𝑡 = 𝜃 } (2)

Assuming 𝐽 (𝜃 ) is a scalar measure of performance on which
the learning of the policy parameter is based, the methods aim to
maximize performance by updating a gradient ascent in 𝐽 [12].

Proposed for stochastic policies by Sutton et al. [13], the policy
gradient theorem provides a way to compute the gradient of perfor-
mance 𝑝 (𝜋) with respect to the parameters 𝜃 , so that the gradient
1According to [15], an MDP is called finite when the set of states S and the set of
actions A are finite. Similarly, [12] express this, although they add the finiteness of R
as a criterion.

of the average reward concerning the policy parameters can be
calculated by summing the contribution of each state s and action
a, weighted by the probability of visiting state s and taking action
a.

The policy gradient theorem provides a theoretical foundation
for all policy gradient-based methods [12], as it offers an exact
formula for how a model’s performance is affected by the policy
parameter without involving derivatives associated with the state
distribution.

2.3 Options Framework
The model based on options formalizes the concept associated with
temporally extended actions. By proposing the concept of options
as a reinforcement learning model involving temporal abstraction,
Sutton et al. [14] emphasize that time is used to generalize the
concept of actions, but they are not to be confused with actions
themselves, which are formally considered primitive choices.

MDPs, as seen in Subsection 2.1, are based on discrete actions
where a single action at time 𝑡 affects a state and a reward at time 𝑡 +
1. This formulation prevents actions from persisting over a variable
period of time, making it difficult for MDPs to take advantage of the
benefits that would arise from higher levels of temporal abstraction.

To enable the application of temporal abstraction, an option 𝜔 ∈
Ω is defined as a tuple consisting of three components (𝐼𝜔 , 𝜋𝜔 , 𝛽𝜔 ),
where 𝐼𝜔 ⊆ S is the initiation set of states, 𝜋𝜔 : S × A → [0, 1]
is the intra-option policy, and 𝛽𝜔 : S → [0, 1] is the termination
function with a stochastic terminal condition following a Bernoulli
distribution. An option 𝜔 is available in a state 𝑠 if and only if
𝑠 ∈ I𝜔 . An agent selects an option using a policy over options and
observes it until its termination, at which point a new policy over
options is selected. Once a specific option 𝜔 is selected, actions are
chosen according to 𝜋𝜔 until the option terminates [14][3].

The SMDP (semi-Markov decision process) is an option-to-option
learning method defined by Theorem 1 proposed by Sutton et al.
[14]: given an MDP and a set of options, the decision-making pro-
cess that selects among the options and executes them until comple-
tion is an SMDP. An SMDP is an MDP with an additional element
F , S,A,P,R, F [14], where F (𝑡 |𝑠, 𝑎) represents2 the transition
probability for time 𝑡 , given a state 𝑠 and an action 𝑎. It is notewor-
thy that from an SMDP, one can derive an optimal value function
over options 𝑉Ω (𝑠) and an optimal option-value function 𝑄Ω (𝑠, 𝜔).

In addition to the approach involving a hybrid strategy between
options and primitive actions, Hauskrecht et al. [6] proposed the
concept of options3 as a hierarchical solution to MDPs. According
to the authors, options are treated as local policies that operate
within specific regions of the state space, while an abstract MDP
considers only the states at the boundaries of these regions. This
abstraction significantly reduces the effective size of the state space,
simplifying the overall solution process. The authors developed a
framework to generate transition models for options in MDPs based
on two concepts. First, they introduce the augmented MDP, denoted
𝑀𝑎 , where the original action space A is expanded to include a set
of available options O = {𝐴1, 𝐴2, . . . , 𝐴𝑛}, resulting in an extended

2The notation follows the formalization presented by Ding et al. [3].
3The authors use the term "macro-action," but the terminology of options is retained
here, as it refers to temporally extended or abstract actions.



action spaceA∪O. This augmented MDP can then be solved using
traditional methods such as value iteration, where each option in O
is treated as a high-level action with its own transition and reward
model. Second, they define a reduced MDP, denoted𝑀𝑟 , in which
the primitive actions A are replaced entirely by the set of options
O. While𝑀𝑎 prioritizes optimality by retaining all primitive actions
and adding options,𝑀𝑟 sacrifices optimality in favor of flexibility.

The model proposed by Hauskrecht et al. [6] considers a hierar-
chical approach for solving MDPs, abstracting the original problem
into a reduced system of options and peripheral states of regions.
The goal is to reduce computational complexity without disregard-
ing essential components required for a convergent solution.

3 RELATEDWORK
The state of the art in learning with options is marked by the de-
velopment of the option-critic architecture by Bacon et al. [1]. This
study focuses on temporal abstraction in reinforcement learning,
allowing the agent to learn at different temporal scales more ef-
ficiently regarding scalability, temporality, and data volume than
traditional methods that find subgoals and learn policies to reach
them. The approach integrates the discovery and learning of options
with policy gradient theorems, enabling simultaneous learning of
intra-option policies and termination functions alongside an overall
policy. It is applicable to both discrete and continuous state and
action spaces and supports linear and non-linear function approxi-
mators.

A continuous perspective is adopted for learning options, where
experiences are continuously integrated into each system compo-
nent, including the value function, the policy over options, intra-
option policies, and termination functions [1]. The Intra-Option
Policy Gradient Theorem states that, given a set of Markov options
with stochastic intra-option policies differentiable with respect to
their parameters 𝜃 , the gradient of the expected discounted return
with respect to (𝑠0, 𝜔0) is defined as:∑︁

𝑠,𝜔

𝜇Ω (𝑠, 𝜔 |𝑠0, 𝜔0)
∑︁
𝑎

𝜕𝜋𝜔,𝜃 (𝑎 |𝑠)
𝜕𝜃

𝑄𝑈 (𝑠, 𝜔, 𝑎). (3)

Here,
∑
𝑠,𝜔 indicates the summation over all possible states 𝑠 and op-

tions𝜔 , with 𝜇Ω (𝑠, 𝜔 |𝑠0, 𝜔0) representing the discounted weighting
of state-option pairs. The gradient 𝜕𝜋𝜔,𝜙 (𝑎 |𝑠 )

𝜕𝜃
captures the deriva-

tive of the policy with respect to parameters, while 𝑄𝑈 (𝑠, 𝜔, 𝑎) is
the action-value function estimating the expected return of action
𝑎 within option 𝜔 from state 𝑠 . This theorem enables adjustments
to intra-option policies and termination functions by maximizing
returns, facilitating continuous learning, in contrast to subgoal
models that do not propagate to the overall objective.

The second theorem introduced by Bacon et al. [1], known as
the Termination Gradient Theorem, states that the gradient of the
expected discounted return with respect to the termination function
parameters 𝜗 , given an initial state-option pair (𝑠1, 𝜔0), is given by:

−
∑︁
𝑠′,𝜔

𝜇Ω (𝑠′, 𝜔 |𝑠1, 𝜔0)
𝜕𝛽𝜔,𝜗 (𝑠′)

𝜕𝜗
𝐴Ω (𝑠′, 𝜔), (4)

where
∑
𝑠′,𝜔 is the sum over all possible states 𝑠′ and options 𝜔 ,

𝜇Ω (𝑠′, 𝜔 |𝑠1, 𝜔0) is the discounted weighting of state-option pairs,
which calculates the importance of the pair 𝑠′, 𝜔 along trajectories

starting from (𝑠1, 𝜔0), 𝜕𝛽𝜔,𝜗 (𝑠′ )
𝜕𝜗

represents the gradient of the ter-
mination function 𝛽𝜔 (𝑠′), and 𝐴Ω (𝑠′, 𝜔) is the advantage function.
Thus, the advantage function is a direct consequence of the deriva-
tion and is intuitively interpreted such that if an option is not the
best possible, the gradient is adjusted to increase its termination
probability.

The second theorem of the option-critic architecture adjusts the
termination probability of options based on their advantage over
the default policy, leading to their degeneration into primitive ac-
tions during training. To address this, Harb et al. [4] introduce the
deliberation cost as a regularizer in the advantage function, pro-
moting longer options and reflecting the costs of decision-making
and computation.

The deliberation cost enables efficient planning and execution
by allowing the agent to amortize this cost over prolonged op-
tion use, aiming to maximize return while minimizing frequent
option switches. By penalizing the agent for interrupting options,
the method encourages more continuous behavior. Additionally,
Harb et al. [4] employ Lagrangian optimization to model the MDP
with adjusted rewards, where the deliberation cost reduces reward
values upon switching options. A margin 𝜂 is used to adjust the
advantage function, helping the agent navigate uncertainty. Increas-
ing 𝜂 reduces the advantage difference, thus favoring longer option
retention over frequent terminations.

Following the formulation proposed by Harb et al. [4], the ter-
mination gradient shown in Equation 4, which incorporates a de-
liberation cost 𝜂, is given by:

−
∑︁
𝑠′,𝜔

𝜇Ω (𝑠′, 𝜔 |𝑠1, 𝜔0)
𝜕𝛽𝜔,𝜗 (𝑠′)

𝜕𝜗

(
𝐴Ω (𝑠′, 𝜔) + 𝜂

)
, (5)

Here, 𝜂 represents the deliberation cost and introduces a margin
that determines how advantageous an option must be to justify its
continuation. A larger value of 𝜂 reduces the likelihood of prema-
ture terminations by promoting greater persistence in the current
option. This, in turn, encourages more stable usage of options and
helps mitigate the effects of noisy or uncertain value estimates
during training.

Building on the study by Harb et al. [4], Klissarov et al. [9]
enhance learning with temporally extended actions through the
option-critic architecture and deliberation cost, integrating proxi-
mal policy optimization. Their tests in continuous environments
show that adding the deliberation cost accelerates learning, al-
though its performance is not directly proportional to the parameter
𝜂. They suggest exploring adaptive adjustments to the deliberation
cost based on environmental contexts. Furthermore, they discuss
the importance of option usage, proposing initiation sets to deter-
mine when and how many options to employ.

Alongside the previous study, various adaptations to the option-
critic architecture have emerged. For instance, Harutyunyan et al.
[5] reformulate the neural network architecture to define termi-
nation objectives in a reward-independent manner, guided by an
informational criterion for option compression. Their framework,
termed the termination critic, optimizes termination by connecting
the gradient of the option transition model with the termination
gradient, preventing uniform behavior across options even when
trained on the same reward. Other studies include the simultaneous



updating of multiple options via importance sampling [10], the
use of interest functions with generalized option initiation sets for
interpretable and reusable options in multi-task learning [8], and
the safe option-critic architecture, which emphasizes controllability
and safe exploration in uncertain environments, facilitating learn-
ing about variability within complex state spaces using non-linear
function approximation [7].

In the option-critic architecture, as considered in its original
model, all options are deemed available in every state. Theoreti-
cally, the agent is allowed to select any option, irrespective of the
context or how this equation adheres to the current state. In com-
plex environments, this approach becomes a challenge and may
lead to infeasibility due to the computational and performance ca-
pacities required, as the agent is permitted to waste time evaluating
options that would be considered irrelevant. Furthermore, the un-
restricted availability of options may lead to interference between
options and result in suboptimal behaviors.

The choice of the deliberation cost, which adds a penalty to
training when there is excessive switching between options, en-
courages the agent to maintain options for a longer period and
reduce changes that are deemed unnecessary. With the adoption
of the deliberation cost, the agent’s training becomes significantly
dependent on the selected cost hyperparameter. If a very high value
is chosen, the agent avoids switching options even when necessary,
compromising learning. Conversely, if the parameter is set too low,
switches will be frequent, and learning will revert to the problem
of the option-critic architecture nullifying the benefits of learning
with options.

4 PROPOSED METHOD
In the previouslymentioned study [4], the deliberation cost operates
with a fixed penalty value, which should be considered since, as
addressed by Harutyunyan et al. [5], training the agent presents
challenges due to the high sensitivity of the hyperparameter being
adopted. Seeking to propose an alternative to fixing a value for
the deliberation cost, this study proposes the adoption of a flexible
deliberation cost.

In our approach, the penalty for the deliberation cost ceases to
depend on an arbitrary definition or an additional neural network
and becomes dynamically adjusted according to the time spent
in a given option. Thus, the penalty is inversely proportional to
the duration of the option, providing an incentive for stability,
as the penalty decreases over time due to remaining in the same
option. The agent is directed to avoid excessive option changes,
even though it can make changes when necessary. Additionally,
there is computational efficiency in the algorithm, as no additional
neural networks are required.

The changes highlighted in red in Algorithm 1 reflect on the
option-critic architecture concerning the deliberation cost. Firstly,
by replacing the fixed cost with a dynamic value, the deliberation
cost 𝜂 is adjusted based on the duration of the option 𝜅 . This change
allows the agent to have greater flexibility and incentive to remain
in an option longer, reducing unnecessary penalties. Furthermore,
the inclusion of a continuous adjustment mechanism for the delib-
eration cost based on the agent’s decisions over options 1

1+𝜅 enables
a more refined customization of the learning process. This not only

Algorithm 1: Option-Critic Architecture with Flexible De-
liberation Cost
1 𝑠 ← 𝑠0;
2 Choose 𝜔 according to an 𝜖-soft policy over options 𝜋Ω (𝑠);
3 repeat
4 Choose 𝑎 according to 𝜋𝜔,𝜃 (𝑎 | 𝑠);
5 Take action 𝑎 in state 𝑠 , observe 𝑠′, 𝑟 ;
6 1. Option Evaluation;
7 𝛿 ← 𝑟 −𝑄𝑈 (𝑠, 𝜔, 𝑎);
8 if 𝑠′ is not terminal then
9 𝛿 ← 𝛿 + 𝛾 (1 − 𝛽𝜔,𝜗 (𝑠′))𝑄Ω (𝑠′, 𝜔) +

𝛾𝛽𝜔,𝜗 (𝑠′)max�̃� 𝑄Ω (𝑠′, �̃�);
10 end
11 𝑄𝑈 (𝑠, 𝜔, 𝑎) ← 𝑄𝑈 (𝑠, 𝜔, 𝑎) + 𝛼𝛿 ;
12 2. Option Improvement;
13 𝜃 ← 𝜃 + 𝛼𝜃

𝜕 log𝜋𝜔,𝜃 (𝑎 |𝑠 )
𝜕𝜃

𝑄𝑈 (𝑠, 𝜔, 𝑎)
14 if 𝛽𝜔,𝜗 terminates at 𝑠′ then
15 if 𝜔 ≠ 𝜔previous then
16 𝜅 ← 0;
17 else
18 𝜅 ← 𝜅 + 1;
19 end
20 𝜂 ← 1

1+𝜅 ;
21 Choose a new 𝜔 according to 𝜖-soft (𝜋Ω (𝑠′));
22 end
23 𝜔previous ← 𝜔 ;
24 𝑠 ← 𝑠′;
25 𝜗 ← 𝜗 + 𝛼𝜗

𝜕𝛽𝜔,𝜗 (𝑠′ )
𝜕𝜗

(𝑄Ω (𝑠′, 𝜔) −𝑉Ω (𝑠′) + 𝜂);
26 until 𝑠′ is terminal;

improves the computational efficiency of the algorithm but also
ensures that the agent can adapt more quickly to the environmen-
tal conditions. These changes aim to maximize performance and
stability in learning over time.

The introduction of the variable 𝜅, which counts the number of
times the agent switches options, allows for even more refined adap-
tation to the environment. If the agent frequently changes between
options, the value of 𝜂 adjusts, increasing the cost of switching and
promoting stability. Even in situations where multiple options are
available, the agent learns how to identify advantageous strategies
over time, which leads to superior overall performance.

It is important to consider that the modifications aim not only
to maximize reward outcomes but also to ensure the stability of
learning. A primary intuition behind the implementation of the
flexible deliberation cost is to promote efficient learning that favors
the specialization of options, encouraging exploration of the bene-
fits of decisions while avoiding abrupt changes that could fragment
learning or make it ineffective.

For example, consider a robot designed to navigate a room with
a wall blocking its path. If the deliberation cost is fixed and set too
large, it might lead the robot to stick to a suboptimal option. If the
cost is set too small, the robot could frequently switch between op-
tions, potentially resulting in inefficient movements and collisions



Table 1: Comparative Results of Option-Critic and Option-
Critic with Flexible Deliberation Cost

Environment Original Flexible Deliberation Cost

Cart Pole 328.586 415.418
Lunar Lander 191.286 225.70
MuJoCo Ant 680.717 1287.45
MuJoCo Half Cheetah 1738.108 2001.45

with the wall. However, with a dynamic deliberation cost, when
the robot opts to go around the wall, the penalty for staying in that
option would decrease over time. This might encourage the robot
to explore thoroughly for the best route to bypass the wall before
deciding to change, ultimately allowing it to find the most efficient
path and reducing decision-making time with fewer errors.

In the algorithm, this is reflected when the termination condition
is met. If the option 𝛽𝜔,𝜗 terminates at state 𝑠′, the algorithm checks
whether the current option 𝜔 is the same as the previous one. If
it is not, the variable 𝜅 resets to zero; if it is, 𝜅 increments, which
in turn adjusts the deliberation cost 𝜂 as 𝜂 = 1

1+𝜅 . This dynamic
adjustment allows the robot to stay in a successful option longer,
promoting stability in its decision-making process. After evaluating
the termination conditions, the robot then chooses a new option
according to an 𝜖-soft policy, ensuring it balances exploration and
exploitation effectively.

5 EXPERIMENTS
The use of a flexible deliberation cost, inversely proportional to
the duration of options, was grounded in the pursuit of computa-
tional efficiency and improvements in training specialized options,
without relying on a fixed and highly sensitive hyperparameter.
We aimed to reduce excessive deliberation on subsequent options,
stabilize the training process, and provide robust results regarding
the permanence of options, as well as to promote an increase in
rewards by favoring longer and more specialized options.

The experiments focus on modifying the option-critic architec-
ture to evaluate the impact of flexible deliberation costs. To establish
a solid foundation, the approaches of Bacon et al. [1] and Harb et al.
[4] were considered as baselines, along with other relevant research
and advancements in the field, since they represent a structural
component of the algorithm’s development for future studies. This
choice is also justified as an alternative to the additional neural
network proposed by Harutyunyan et al. [5]. Additionally, in the
study by Klissarov et al. [9], the use of PPO within the option-critic
architecture was based on fixed deliberation costs in continuous
action environments. This context provided an opportunity to re-
consider this approach, as well as the studies mentioned in [10],
[7], and [8], and to explore alternatives to fixed deliberation costs
while evaluating their potential benefits and limitations.

Our evaluation focuses on three key aspects: the termination of
options, the obtained rewards, and the average option alternation.
We aim to demonstrate that the use of a flexible deliberation cost
leads to higher rewards by fostering the development of longer
options. Additionally, our analysis of option terminations provides

Figure 1: Recovery after goal change in Four-Room

evidence supporting the intuition of specialization, while the re-
duction in the average frequency of option alternation highlights
the stability and efficiency gains achieved with this approach.

5.1 Methodology
Our experiments were conducted in three distinct domains: tabular,
discrete actions, and continuous actions. In all cases, the results
were satisfactory and promising regarding the adopted approach.
The tests in the tabular domain were conducted in the Four-Rooms
environment, as proposed by Sutton et al. [14]. However, unlike the
authors’ approach, the options were independently discovered by
the agent through training focused on minimizing the number of
steps to reach the goal. Two different learning rates were employed
for the option termination function, with 10 executions carried
out for each rate. After 1000 steps, the goal was changed to a new
random location.

The flexible deliberation cost approach was tested in a discrete
action space, involving two environments: Cart Pole and Lunar
Lander. The Cart Pole environment, is based on the problem de-
scribed by [2] and represents a pendulum attached by a joint to a
small cart, with the objective of balancing the pendulum by moving
left and right. The tests were conducted with different seeds for a
total of 10 runs, considering both the original architecture and the
modifications with the flexible deliberation cost. The training was
performed with a learning rate of 1 × 10−4, 1700 episodes and a
maximum of 500 steps per episode.

In the Lunar Lander environment, which represents a rocket
trajectory optimization challenge, the main objective is to safely
land the spacecraft on a landing pad. The discrete action space of
the environment is based on whether the engine is on or off, with
the possibility of activating the left, right, or main engine, as well as
the action of doing nothing. The training was conducted 10 times
with different seeds, a learning rate of 7 × 10−4, 2000 episodes and
a maximum of 1000 steps per episode.

For continuous action spaces, two environments from MuJoCo
(Multi-Joint dynamics with Contact) were used, a physics engine
with simulations characterized by precision and aimed at scenarios
involving physical contacts between robots and the environment.
Since these are continuous actions, the algorithm was adapted to
operate with Gaussian distribution policies. In the Ant environment,
Based on the problem developed by [11], a quadruped robot consists



Figure 2: (Top) Termination map for each option in the Four-
Roomenvironment, where thewalls are highlighted in bright
yellow, and lighter colors indicate higher probabilities of
termination. (Bottom) Agent’s trajectory in the Four-Room
environment, illustrating the paths taken for each option
and the complementarity between options 0, 1, and 2.

of a torso (free rotational body) with four legs, each divided into two
parts. The goal is to coordinate the four legs to move forward (right)
by applying torque to the eight joints that connect the two parts
of each leg to the torso, totaling nine body parts and eight joints.
Tests were conducted over 4000 episodes, repeated 10 times with
different seeds, using a learning rate of 1 × 10−4, and a maximum
of 1000 steps per episode.

In another tested environment, Half Cheetah, following the prob-
lem developed by [16], the goal is to apply torque to 6 of the 8
connected joints of the robot, making it move, with the reward as-
sociated with the distance traveled. Learning tests were performed
10 times with different seeds, considering 1000 episodes, with 1000
steps per episode and a learning rate of 1 × 10−4.

5.2 Numerical Results
With the tests conducted in three different types of environments,
it was possible to verify that the results involving the adoption of
the flexible deliberation cost achieved higher rewards throughout
the training process. The results presented in Table 1 illustrate a
comparative analysis of the original Option-Critic algorithm and
the Option-Critic algorithm with a flexible deliberation cost across
various environments. The average rewards achieved during train-
ing highlight a marked improvement with our flexible deliberation
cost approach. In each environment, the flexible deliberation cost
not only enhanced the overall performance of the agent but also
demonstrated its effectiveness in promoting better decision-making
strategies. The data indicate that this approach allows agents to
adapt more effectively to the specific challenges of each environ-
ment, leading to improved learning efficiency and specialization
of options under varying conditions. These findings suggest that
employing a flexible deliberation cost can significantly optimize
the learning process, resulting in higher rewards and better perfor-
mance across diverse tasks.

Considering Four-Room domain, in addition to demonstrating
better performance in the first 1000 steps, after the goal change, the
learning with flexible deliberation cost showed a faster recovery

Figure 3: Comparative learning curves for the Cart Pole (top)
and Lunar Lander (bottom) environments. The graphs il-
lustrate the performance of the learning algorithms over
training episodes, highlighting the differences in efficiency
and effectiveness in each environment.

than the original architecture, which can be seen in Figure 1, where
the steps needed to reach the goal in each episode are visualized
on the vertical axis.

In the evaluation of the termination regions of options in Figure
2, where the goal is located at the rightmost door, represented as
a blank quarter, it is interesting to observe how the termination
of options in the environment trained with a flexible deliberation
cost shows a higher probability of completion when deviating from
the specific route defined in option 0. The walls are highlighted
in yellow, while lighter colors indicate higher termination prob-
abilities. The white door in the figure represents a goal that has
been reached, symbolizing a subgoal the agent needs to achieve to
progress toward the final objective. The variation in routes, along
with the adjustments made by options 1, 2, or 3 depending on the
agent’s position, reinforces the intuition that relevant subgoals can
emerge in the learning process, allowing the agent to develop more
effective strategies for navigating the environment.

In domains with discrete, Figure 3 and continuous action spaces,
Figure 4, the application of a flexible deliberation cost resulted in
superior performance compared to the original architecture. The
highlight is in continuous domains, especially in the MuJoCo Ant
environment, where this approach proved advantageous. In this
scenario, the agent’s need to learn sequences of coordinated and
efficient movements is crucial, and maintaining an option for a
longer period seems to favors the execution of more stable and
natural locomotion patterns.



Figure 4: Comparative learning curves for the MuJoCo Ant
(top) andMuJoCoHalf Cheetah (bottom) environments, illus-
trating the performance across training episodes. The curves
highlight the differences in learning efficiency and effective-
ness for each environment.

The reduction in option alternation, as can be seen in Figure 5
when using the flexible deliberation cost, also demonstrates the
associated computational efficiency, as it eliminates the need to
consume resources for deliberating on the policy over options.

The results obtained demonstrate that it is possible to train agents
using options and deliberation cost without the need to apply a
fixed hyperparameter. The flexibility of the deliberation cost, in-
corporated into the original architecture of the algorithm, favored
the agent’s learning, allowing for the specialization of options and
eliminating additional computational costs that could arise from
deliberating on the choice of new options. The advantages of this
approach are evidenced by the increase in rewards during training
and the preservation of options, preventing their degeneration into
primitive actions.

A potential problem arising from the inversely proportional con-
dition to the duration of the options relates to abrupt changes that
may occur due to a rapid increase in the persistence of a single
option, leading the agent to become overly dependent on that op-
tion. This condition can be mitigated by smoothing the increment
of the value of 𝜅, as defined in Algorithm 1. In this regard, it is
possible to test approaches such as moving averages or consider
their application in conjunction with return values.

6 CONCLUSIONS
The introduction of a flexible and adaptable deliberation cost, in-
versely proportional to the duration of options in reinforcement

Figure 5: Option changes per episode for the Lunar Lander
(top) and MuJoCo Half Cheetah (bottom) environments. The
graphs illustrate the frequency of option alternation through-
out training, highlighting the decision-making dynamics in
each environment.

learning based on options, has shown significant and promising
results, ensuring both efficiency and performance. By making the
deliberation cost dynamic and proportional to the termination deci-
sions of options, limitations associated with fixed hyperparameters
are overcome, promoting a more flexible approach. The obtained re-
sults demonstrate that this strategy not only improves the stability
of the option-critic architecture but also mitigates the degeneration
of options into primitive actions throughout training.

Despite the advances provided by the proposed approach, a limi-
tation concerns the possibility of abrupt changes in the deliberation
cost due to a sudden increase in the duration of a specific option,
making the agent overly dependent on it. To mitigate this issue,
smoothing strategies such as applying a moving average or incor-
porating return values into the adjustment of 𝜅 can be explored.
Additionally, the generalization of the approach to different types
of environments still requires further investigation to ensure its
effectiveness in more diverse and complex contexts. It is also es-
sential to assess when the use of the options framework is truly
justified, considering scenarios in which temporal abstraction pro-
vides concrete benefits in terms of performance and computational
efficiency.

Future work includes exploring multiple deliberation cost hy-
perparameters combined via averaging, and testing alternative for-
mulations beyond inverse proportionality to control how the cost
evolves with option duration.
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