
Tree Ensemble Explainability through the Hoeffding
Functional Decomposition and TreeHFD Algorithm

Clément Bénard
Thales cortAIx-Labs - SINCLAIR AI Lab

1 avenue Augustin Fresnel, 91120 Palaiseau, France
clement-l.benard@thalesgroup.com

Abstract

Tree ensembles have demonstrated state-of-the-art predictive performance across
a wide range of problems involving tabular data. Nevertheless, the black-box
nature of tree ensembles is a strong limitation, especially for applications with
critical decisions at stake. The Hoeffding or ANOVA functional decomposition is a
powerful explainability method, as it breaks down black-box models into a unique
sum of lower-dimensional functions, provided that input variables are independent.
In standard learning settings, input variables are often dependent, and the Hoeffding
decomposition is generalized through hierarchical orthogonality constraints. Such
generalization leads to unique and sparse decompositions with well-defined main
effects and interactions. However, the practical estimation of this decomposition
from a data sample is still an open problem. Therefore, we introduce the TreeHFD
algorithm to estimate the Hoeffding decomposition of a tree ensemble from a data
sample. We show the convergence of TreeHFD, along with the main properties
of orthogonality, sparsity, and causal variable selection. The high performance
of TreeHFD is demonstrated through experiments on both simulated and real
data, using our treehfd Python package (https://github.com/ThalesGroup/treehfd).
Besides, we empirically show that the widely used TreeSHAP method, based on
Shapley values, is strongly connected to the Hoeffding decomposition.

1 Introduction

Tree ensembles have demonstrated remarkable predictive performance to tackle supervised learning
problems with tabular data, over the past two decades. In particular, gradient boosted trees (Friedman,
2001; Chen and Guestrin, 2016) and random forests (Breiman, 2001) are probably the most successful
algorithms to build tree ensembles. Recently, the extensive benchmark of Grinsztajn et al. (2022) has
shown that tree ensembles still outperform deep neural networks on tabular data, and are therefore
state-of-the-art on a wide range of problems. However, tree ensembles suffer from a major limitation
with their lack of interpretability. Indeed, the prediction mechanism of a tree ensemble typically
computes thousands of operations for a single prediction, making impossible to grasp how inputs
are combined to generate predictions. Such black-box problem is shared by most machine learning
algorithms, and is a serious obstacle when critical decisions are at stake, which is the case for
industrial or healthcare applications, for example. The field of eXplainable AI, often called XAI,
develops methods to explain predictions of learning algorithms, and has raised a strong interest in the
community over the past few years (Guidotti et al., 2018; Speith, 2022; Amoukou, 2023). The two
main approaches to obtain explainable algorithms are transparent models and post-hoc explanations.
In the first case, the model structure is constrained to have a limited complexity, in order to keep
a clear relation between the inputs and the output of the algorithm. However, transparent models
usually have a limited accuracy, because of the strong constraints on their structure. The second
type of methods provides explanations through post-treatments of the initial black-box model. A

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/ThalesGroup/treehfd

popular example is variable importance, which quantifies the influence of each input variable on the
algorithm output (Lundberg and Lee, 2017; Williamson et al., 2021). Although variable importance
often provides highly relevant insights, it only gives partial information about the relation between the
inputs and the output of the black box. On the other hand, functional decompositions have recently
gained considerable momentum as an alternative approach to obtain more precise explainable methods
than transparent models or variable importance (Bordt and von Luxburg, 2023; Hiabu et al., 2023;
Idrissi et al., 2025). The principle is to break down a black-box model into a sum of functions with
subsets of input variables as arguments. All functional components of one or two variables can be
represented, and are therefore intrinsically transparent, while the accuracy of the initial black box is
preserved. However, numerous functional decompositions can be obtained for the same black-box
model, leading to different representations and interpretations. Therefore, the theoretical formulation
of a functional decomposition must be clearly stated, to provide representations of the initial black
box with clear properties, and enable precise conclusions about the underlying relation between
the inputs and the output of the studied model. The Hoeffding decomposition (Hoeffding, 1948),
extended by Stone (1994) and Hooker (2007), and Shapley values (Lundberg and Lee, 2017; Bordt
and von Luxburg, 2023) provide theoretical frameworks to obtain such well-defined decompositions.

Hoeffding functional decomposition. The Hoeffding functional decomposition (HFD) breaks
down a regression function into a sum of functions with variable subsets as arguments, and involves
one functional component for each possible variable subset. Originally introduced in the seminal
article of Hoeffding (1948) for independent input variables, the decomposition is unique and all
functions are orthogonal. In the case of dependent input variables, a major breakthrough was done
by Stone (1994) and Hooker (2007) to generalize the Hoeffding decomposition through hierarchical
orthogonality constraints, which imply that two functions are orthogonal if one of the two variable
subset arguments is included in the other one. Hence, the decomposition is still unique for dependent
inputs, and a functional component is null if it is possible to break down the target function using only
lower-order terms. This property provides a clear definition of interactions following the reluctance
principle (Yu et al., 2019), and often leads to sparse decompositions essentially involving main
effects and second-order interactions, which are intrinsically transparent. Later, Chastaing et al.
(2012) and Idrissi et al. (2025) extended the validity of the decomposition for unbounded supports of
the input distribution. Unfortunately, the practical estimation of the Hoeffding decomposition is a
notoriously difficult problem (Hooker, 2007; Chastaing et al., 2012), and consequently, the HFD has
long remained an abstract theoretical tool. Recently, Lengerich et al. (2020) proposed an algorithm to
estimate this decomposition when the target function is a tree ensemble, and the input distribution is
known. However, only a data sample is often available in practice, and the estimation of the input
distribution for moderate or large dimensions is a very difficult task.

Shapley values. Shapley values build on game theory to define variable importance algorithms
with attractive properties. Initially introduced by Owen (2014) and Lundberg and Lee (2017) for
machine learning applications, Shapley values are now widely used to interpret both tree ensembles
and neural networks. In particular, TreeSHAP (Lundberg et al., 2020; Yu et al., 2022; Muschalik et al.,
2024b) is a fast algorithm to compute Shapley values for tree ensembles, and is implemented in the
highly popular xgboost package. Recently, Herren and Hahn (2022), Bordt and von Luxburg (2023),
and Hiabu et al. (2023) made strong connections between functional decompositions of black-box
models and Shapley values—see the Supplementary Material. However, all these approaches inherit
the estimation obstacles of Shapley values (Kumar et al., 2020), and heuristics with approximations
are required to recover tractable algorithms, such as TreeSHAP with interactions, in the case of tree
ensembles. Although TreeSHAP has become a highly popular and successful XAI method, it is also
criticized for the lack of theoretical understanding of the estimated values (Amoukou, 2023, Chap. 3).

Contributions. The goal of this article is to introduce the TreeHFD algorithm to precisely estimate
the Hoeffding decomposition of a tree ensemble, when only a data sample is available and the input
distribution is unknown. Importantly, the theoretical analysis of TreeHFD shows the algorithm
convergence, and exhibits the main properties of the obtained decomposition, providing a clear
understanding of the resulting representation. To our best knowledge, TreeHFD is the first algorithm
to provide accurate estimates of the Hoeffding functional decomposition in standard machine learning
settings, where input variables are dependent and the input distribution is unknown. Additionally, we
show that the functional decomposition induced by TreeSHAP is closely related to the HFD, through
several experiments on both simulated and real data. This new result mitigates the main flaw of

2

TreeSHAP, since we connect the estimated values to well-defined theoretical quantities. However,
TreeSHAP generates quite noisy functional components, and main effects can be entangled with
interactions, which undermines the provided explanations. In the second section, the Hoeffding
decomposition is formalized in the case of tree ensembles through a discretization of the orthogonality
constraints, which enforces that the decomposition components are also unique and piecewise constant.
These two characteristics are the cornerstone to build efficient estimates of the decomposition, without
the input distribution. Then, we state the main properties of the HFD for tree ensembles, mainly
about the component orthogonality, the sparsity of the decomposition, the causal variable selection,
and its accuracy to approximate the HFD of the underlying regression function. In the third section,
we introduce the TreeHFD algorithm, defined as a least square problem with a linear complexity with
respect to the sample size, and implemented in the treehfd Python package. Then, we show the
convergence of TreeHFD. Finally, we conduct extensive experiments in the last section, to show the
high performance of TreeHFD, and the close connections between TreeSHAP and the HFD.

2 Hoeffding functional decomposition of tree ensembles

We first formalize the original Hoeffding decomposition of a square-integrable function in Theorem
1. While this decomposition has many valuable theoretical properties, its practical estimation from
a data sample is still an open question, as explained in the introduction. However, Lengerich et al.
(2020) take advantage of the piecewise constant form of tree ensembles to introduce an estimate of
the HFD, provided that the distribution of the input variables is known. We overcome this limitation
by introducing the Hoeffding decomposition of tree ensembles. We first formalize this decomposition
in Theorem 2, and then derive its main theoretical properties.

2.1 Mathematical definition

We consider a standard supervised learning setting with a real random input vector X of dimension
p ∈ N?, and a real random output Y , defined in the following assumptions. We also denote by
Vp = {1, . . . , p} the variable index, by X(J) the subvector of X with only the components in J ⊂ Vp,
and by Pp the set of all subsets of Vp. Initially, Stone (1994) and Hooker (2007) defined the HFD
for distributions of input variables with a hyperrectangle as support. In fact, it coincides with
the theoretical analyses of tree ensembles, which also often assume this type of support for input
distributions (Scornet et al., 2015; Wager and Athey, 2018), and is a mild assumption in practice. We
therefore focus on such hyperrectangle supports, and take [0, 1]p without loss of generality.
Assumption 1. The input vector X takes values on [0, 1]p, and admits a density f that is bounded by
strictly positive constants c1, c2 > 0, that is, for all x ∈ [0, 1]p, c1 ≤ f(x) ≤ c2.

Assumption 2. The output Y is defined by Y = m(X) + ε, where m : [0, 1]p → R is a square-
integrable function, and ε is an independent noise.

The underlying regression function m is estimated using a tree ensemble. More precisely, we denote
by T the prediction function of a tree ensemble built with M ∈ N? trees, from a given realization of a
training dataset of fixed sample size, and from a realization of the tree randomizations. In the sequel,
the function T is thus considered as a deterministic function of a new query point X, which avoids
the repetitions that theoretical results are stated conditional on the training dataset. Furthermore,
we define T (X) =

∑
` T`(X), where T` is the prediction function of the `-th tree, multiplied by an

aggregation coefficient. Such coefficient is typically the learning rate for boosted tree ensembles, or
1/M for random forests. We also denote by TM = {1, . . . ,M} the tree index. Now, we state the
original HFD introduced by Stone (1994) and Hooker (2007) in the context of Assumption 1.
Theorem 1 (Hoeffding Decomposition (Stone, 1994; Hooker, 2007)). If Assumption 1 is satisfied,
and ν is a square-integrable real function defined on [0, 1]p, then there exists a unique set of functions
{ν(J)}J∈Pp , such that for all J ∈ Pp, I ⊂ J with I 6= J , E[ν(J)(X(J))|X(I)] = 0, and

ν(X) =
∑
J∈Pp

ν(J)(X(J)).

In particular, if the input variables are further assumed to be mutually independent, the components
of the decomposition take an explicit form as the Möbius transform of the conditional expectations,
that is ν(J)(X(J)) =

∑
I⊂J(−1)|J|−|I|E[ν(X)|X(I)], for all J ∈ Pp. However, this formula does

3

https://github.com/ThalesGroup/treehfd

X(1)

X(2)

X(1)

X(2)

A
(1)
1 A

(1)
2 A

(1)
3 A

(1)
4

A
(2)
1

A
(2)
2

A
(2)
3

A
(1,2)
k

Figure 1: Example of the partition of [0, 1]2 by a tree T` (left side), and the associated Cartesian tree
partitions A(1)

` = {A(1)
1 , A

(1)
2 , A

(1)
3 , A

(1)
4 }, A

(2)
` = {A(2)

1 , A
(2)
2 , A

(2)
3 }, and A(1,2)

` (right side).

not hold in the general case of dependent inputs, which makes the estimation of the Hoeffding
decomposition especially difficult. In this general setting, Theorem 1 provides the HFD of the
regression function m(X) and the tree ensemble T (X), respectively denoted by {m(J)}J∈Pp and
{T (J)}J∈Pp , which also depend on the distribution f of the input variables X. However, both
decompositions are unknown in practice, since m and f are unknown, while only a data sample
is available, and estimating f is a very difficult problem. Our main goal is to provide an efficient
explainability method of the tree ensemble T through the HFD of the function T for dependent
input variables. Additionally, T often estimates m with a high accuracy, and therefore, the HFD of
T also approximates the HFD of the function m, which is highly valuable to explain the relation
between X and Y . Hence, we build an adaptation of the HFD tailored for tree ensembles. By
construction, each tree of an ensemble is a piecewise constant function, and therefore discard the
variability of the underlying regression function within each cell of the tree partition. Obviously,
such approximation is necessary to obtain a good accuracy, since the trees are learned from a finite
sample, which cannot capture the data patterns with an arbitrary high accuracy. In the same spirit,
we apply a piecewise constant approximation to the distribution f of the inputs X. However, we use
a more fine-grained partition than the original tree partition to efficiently handle the orthogonality
constraints: the Cartesian tree partition, introduced in Definition 1 and illustrated in Figure 1.
Definition 1 (Cartesian Tree Partition). For a tree ` ∈ TM and a variable X(j) with j ∈ Vp, the
values of the node splits involving X(j) are collected over all tree nodes to build a sequence of
intervals A(j)

` , which forms a partition of [0, 1]. Then, for any J ∈ Pp, A(J)
` =

⊗
j∈J A

(j)
` is the

partition of [0, 1]|J|, defined as the Cartesian product of the one-dimensional partitions. Clearly, the
function T` is piecewise constant over A(Vp)

` (to lighten notations, A(Vp)
` is written A` in the sequel).

For a tree ` ∈ TM , we define the tree HFD as the original HFD applied to the tree prediction
function T`, but with the density f averaged over each cell of the Cartesian tree partition, instead of
f . Theorem 2 below shows four critical properties of the tree HFD. First, the decomposition can still
be written with the input vector X of distribution f , with a discretized version of the orthogonality
constraints. More importantly, such a decomposition is unique for a given pair of tree T` and density
f , the components of the decomposition are also piecewise constant over the Cartesian tree partitions,
and the decomposition is independently defined for each tree. These three ingredients enable the
design of consistent estimates of the tree HFD from a data sample, as we will see in the next section.
Notice that all proofs are gathered in the Supplementary Material (S-Mat).
Theorem 2 (HFD for Tree Ensembles). Let Assumption 1 be satisfied, T =

∑
` T` be the prediction

function of a tree ensemble, and {A(J)
` }J∈Pp,`∈TM the associated Cartesian tree partitions of

Definition 1. Then, T has a unique decomposition into a sum of functions {η(J)
` }J∈Pp,`∈TM , such

that η(J)
` is piecewise constant over A(J)

` for all J ∈ Pp, ` ∈ TM , and

T (X) =
∑
J∈Pp

η(J)(X(J)), with η(J)(X(J)) =
∑
`∈TM

η
(J)
` (X(J)) and T`(X) =

∑
J∈Pp

η
(J)
` (X(J)),

and for all ` ∈ TM , J ∈ Pp, I ⊂ J with I 6= J , A ∈ A(I)
` , E[η

(J)
` (X(J))|X(I) ∈ A] = 0.

Besides, Theorem 2 also holds when Assumption 1 is not satisfied. Indeed, since the number of
terminal leaves is finite, the tree ensemble is constant in each direction outside an hyperrectangle,

4

and the tree HFD is also constant in this area. Therefore, even if the input distribution f does not
have a bounded support, Theorem 1 can be applied within this hyperrectangle, and the decomposition
is simply extended outside with constant values. Furthermore, if the distribution f takes null values,
its average over each cell of a tree partition is strictly positive, as all terminal leaves contain as least
one data point, and Theorem 1 can also be applied in this context to state the tree HFD.

2.2 Theoretical properties

Orthogonality. One of the main characteristics of the original HFD defined in Theorem 1 is that
functions are hierarchically orthogonal, that is Cov[ν(J)(X(J)), ν(I)(X(I))] = 0 for I ⊂ J and
I 6= J . In particular, this property clearly differentiates interaction terms from main effects in
the decomposition. For example with p = 2, E[ν(X)|X(1)] = ν(1)(X(1)) + E[ν(2)(X(2))|X(1)],
and ν(1,2) vanishes by construction. Therefore, ν(1,2) does not contain main effects, and is a pure
interaction, as explained in Lengerich et al. (2020), and this property is obviously also true for higher-
order interactions. In Theorem 3 below, we show that hierarchical orthogonality still holds for the
tree HFD of a given tree of the ensemble, whereas it is not necessary the case for the global tree HFD
components of the ensemble, because of the discretization across various tree partitions. However, we
prove that orthogonality is almost satisfied, provided that the density f of X does not vary too much
within each cell of the tree partitions. We will show in the experimental section that orthogonality is
almost satisfied in practice. To formalize the result, we denote by ‖ν‖∞ the usual infinite norm of a
function ν, and ∆A,f the maximum variability of f within each cell of the Cartesian tree partitions
A = {A(J)

` }J∈Pp,`∈TM . More precisely, we write ∆A,f = supA∈∪`A` supx,x′∈A |f(x)− f(x′)|.
Theorem 3. Let Assumption 1 be satisfied, T =

∑
` T` be the prediction function of a tree ensemble,

A = {A(J)
` }J∈Pp,`∈TM the associated Cartesian tree partitions, and {η(J)

` }J∈Pp,`∈TM the tree HFD
defined in Theorem 2. We also consider J ∈ Pp, and I ⊂ J with I 6= J . Then, we have

(i) ∀` ∈ TM , Cov[η
(J)
` (X(J)), η

(I)
` (X(I))] = 0,

(ii)
∣∣Cov[η(J)(X(J)), η(I)(X(I))]

∣∣ < c2 − c1
c21

‖η(I)‖∞
(M∑
`=1

‖η(J)
` ‖∞

)
∆A,f .

Sparsity. The HFD is sparse, since a functional component is included in the decomposition only
if terms of lower orders are not sufficient to break down the target model. Therefore, we say that the
HFD complies with the reluctance principle (Yu et al., 2019; Lengerich et al., 2020), and this is a
consequence of hierarchical orthogonality. Theorem 4 below shows that the tree HFD preserves this
important property, which often leads to sparse decompositions with essentially main effects and
second-order interactions, which are intrinsically transparent.
Theorem 4. Under the same assumptions as Theorem 3, if the functions T` can be written
T`(X) = g`(X(I)) + h`(X(I′)) for a pair of variable sets I, I ′ ∈ Pp, with real functions g`, h`
for all ` ∈ TM , then for all J ∈ Pp such that J 6⊂ I and J 6⊂ I ′, we have η(J)(X(J)) = 0 a.s.

Causal variable selection. We show that the tree HFD achieves the same causal variable selection
than the decomposition induced by interventional Shapley values. Such decomposition is introduced
by Bordt and von Luxburg (2023), through the generalization of Shapley values to all groups of
variables. More precisely, Theorem 4 in Bordt and von Luxburg (2023) shows that each Shapley
value function also defines a specific functional decomposition, called Shapley-GAM, which is in fact
the Möbius transform of the value function (Osgood, 1957). The two most popular value functions
are v(obs)(J, x(J)) = E[T (X)|X(J) = x(J)] for J ∈ Pp, defining observational SHAP (Lundberg
and Lee, 2017), and v(int)(J, x(J)) = E[T (x(J),X(−J))], defining interventional SHAP (Datta et al.,
2016; Janzing et al., 2020). While v(obs)(J, x(J)) is the original proposal from Lundberg and Lee
(2017), Janzing et al. (2020) show that interventional SHAP provides the causal effects of the input
variables on the output Y , provided quite mild assumptions on the causal structure of the problem.
However, Kumar et al. (2020) argue that both observational and interventional SHAP have strong
drawbacks. For example, Theorem 4 does not hold for observational SHAP, since the dependence
within input variables may result in non-null components for a variable X(j), even if T is constant
with respect to X(j). On the other hand, interventional SHAP may be a poor approximation of the
true data patterns, even if T is highly accurate for a new dataset distributed as the training data.
Indeed, because of the dependence between variables, some regions of the input space may have
almost no data, and consequently, T (X) may extrapolates with a low accuracy in these areas, on

5

which v(int)(J, x(J)) highly relies through the marginal expectation (Hooker et al., 2021). In practice,
a functional decomposition rarely involves all possible variable subsets, but rather a fraction of them.
We define by Γ the set of exogenous variables, which only have null components in a decomposition
{ν(J)}J∈Pp , that is Γ = {j ∈ Vp : ∀J ∈ Pp, ν(J∪{j}) = 0}. In the following Theorem 5, we show
that the set of exogenous variables is the same for tree HFD and interventional SHAP, which therefore
achieves the same causal variable selection.
Theorem 5. Under the same assumptions as Theorem 3, if Γh is the set of exogenous variables for
the tree HFD of T` with ` ∈ TM , and Γs for the decomposition of T` induced by interventional SHAP,
then we have Γh = Γs.

HFD of the regression function. Our main goal is to provide a functional decomposition of the
tree ensemble T with clear properties, as provided in the previous paragraphs. Furthermore, according
to Assumption 2, the output Y is defined by Y = m(X) + ε, where m is the underlying regression
function. Therefore, T is an estimate of m, and the tree HFD of T also provides an approximation of
the original HFD of the function m. In fact, Theorem 6 below shows that such approximation is of
high accuracy if the Mean Square Error (MSE) of T with respect to m is small, and the distribution
f does not vary too much over each cell of the Cartesian tree partitions, that is ∆A,f is small. Tree
ensembles often have a high accuracy in practice, as shown in the benchmark of Grinsztajn et al.
(2022) for example, and the HFD of T is thus often a good approximation of the HFD of m.
Theorem 6. Let Assumptions 1 and 2 be satisfied, and {m(J)}J∈Pp be the HFD of m(X). Then,
there exists two constants K1,K2 > 0, such that for any tree ensemble T =

∑
` T` of Cartesian tree

partitions A and tree HFD {η(J)}J∈Pp , we have for J ∈ Pp,
E[(η(J)(X(J))−m(J)(X(J)))2] ≤ K1E[(m(X)− T (X))2] +K2∆2

A,f

(M∑
`=1

√
E[T`(X)2]

)2

.

In Corollary 1, we derive asymptotic conditions on the training of the tree ensemble T to obtain
a vanishing error of the tree HFD with respect to the HFD of m, inspired from (Meinshausen and
Ridgeway, 2006). We recall that T is a deterministic function, trained with a realization of the training
dataset of fixed sample size, throughout the article. Here only, we denote by nT the size of this
training dataset, and analyze the tree HFD accuracy when nT grows for a random training dataset.
Corollary 1. Under the same assumptions as Theorem 6, if the input distribution f is further
assumed to be a Lipschitz function, the tree ensemble T is L2-consistent, all trees are bounded, the
tree depth grows to infinity with the sample size nT , the split of all tree nodes leaves at least a fraction
γ > 0 of the observations in each child node, and the optimization of each node split is slightly
randomized to have a positive probability to split with each variable, then we have for J ∈ Pp,
E[(η(J)(X(J))−m(J)(X(J)))2] −→

nT→∞
0.

3 TreeHFD algorithm

We first show that the tree HFD of Theorem 2 can be parametrized with a set of real coefficients,
and is in fact the minimum of a convex loss function for each tree. Then, the TreeHFD algorithm is
defined from an empirical version of this least square problem using a data sample. Finally, we prove
the convergence of TreeHFD.

A least square problem. The tree HFD functions are piecewise constant on the Cartesian tree
partitions. For each tree, such partition is easily constructed by collecting the split values of the tree
nodes, and deriving the corresponding intervals. Then, for ` ∈ TM , J ∈ Pp, we estimate η(J)

` by a
piecewise constant function µ(J)

` of the form µ
(J)
` (x(J)) =

∑KJ
k=1 β

(J)
k 1x(J)∈A(J)

k

, for x(J) ∈ [0, 1]|J|,
where β(J)

1 , . . . , β
(J)
KJ
∈ R and {A(J)

k }k are the KJ cells of the Cartesian partition A(J)
` . Next, we

define a loss function to quantify the violation of the orthogonality constraints and the error of the
decomposition with respect to each tree of the ensemble. We use Lemma 4.1 from Hooker (2007) to
simplify the conditions of orthogonality, transformed into the following constraints: for all j ∈ J and
A ∈ A(J\j)

` , E[η
(J)
` (X(J))|X(J\j) ∈ A] = 0. Then, we define the theoretical loss function L? by

L?({µ(J)
` }) = E

[(
T`(X)−

∑
J∈Pp

µ
(J)
` (X(J))

)2]
+
∑
J∈Pp

∑
j∈J

∑
A∈A(J\j)

E[µ
(J)
` (X(J))1{X(J\j)∈A}]

2,

and the tree HFD is the unique minimum of L?, where L? = 0. Given the form of the functions µ(J)
` ,

minimizing such loss function with respect to {β(J)
k }k,J clearly boils down to a least square problem.

6

Algorithm description. The loss function L? defined above has a number of terms growing
exponentially with the dimension p, and seems intractable in practice. In fact, only few variables are
involved in the splits of a shallow tree of a boosted ensemble. Consequently, only the associated
subsets of variables are considered in the loss Ln for each tree, and the other components of the
tree HFD are null by definition. Additionally, we only consider HFD components involving variable
interactions of limited order, and denote by dI this hyperparameter. While interactions of order
two often occur in practice, it is rarely the case for interactions of higher orders. Therefore, dI is
typically set to two by default, but it is obviously possible to set greater values in TreeHFD. Then,
we define P(`)

p ⊂ Pp, the set of all possible variable sets collected along the paths of the `-th tree,
and of maximum size dI . Overall, only a small fraction of the variable subsets are involved in the
loss function of each tree, which can therefore be optimized at a small computational cost. Next, we
assume that we have access to a data sample Dn = {(Xi, Yi)}i=1,...,n, independent of the training
dataset of T . We define Ln, the empirical counterpart of L? estimated with Dn for each tree—see
proof of Lemma 6, by

Ln =
1

n

n∑
i=1

(
T`(Xi)−

∑
J∈P(`)

p

KJ∑
k=1

β
(J)
k 1X(J)

i ∈A
(J)
k

)2

+
∑

J∈P(`)
p

∑
j∈J

KJ\j∑
k=1

[(1

n

n∑
i=1

1{
X(J\j)
i ∈A(J\j)

k

})− 1
2
KJ∑
k′=1

β
(J)
k′

1

n

n∑
i=1

1{
X(J)
i ∈A

(J)

k′
⋂

X(J\j)
i ∈A(J\j)

k

}]2.
Notice that for J ∈ P(`)

p with |J | = 1, we get J \ j = ∅. In these cases, we set by convention that
the involved indicator functions always take value one, and the corresponding terms in Ln simply
enforce that all HFD components have zero mean. Hence, the set of functions {µ(J)

n,`}J is defined as
the minimum of Ln through the optimization of the parameters {β(J)

k }k,J . Although the loss Ln has
a quite complex form, its computation only requires to collect the list of cells in which each data point
falls. Then, simple counts give all the necessary coefficients to express Ln as a quadratic function of
the parameters {β(J)

k }k,J . In practice, we can use the available efficient software to solve quadratic
programs. Indeed, the parameters {β(J)

k }k,J are stacked together to form a single vector β. Then, the
loss Ln is translated into a constraint matrix Cn, where each square term gives a row of Cn, and
each element of the row is the coefficient of the corresponding β(J)

k in the square term of Ln. The
target vector Zn is defined by T`(Xi) for the constraints of the first part of Ln, and by the null value
for the orthogonality constraints. Also notice that many constraint rows are identical for the first
part of Ln, since many data points fall in the same collection of cells, where T` is constant. These
rows can thus be deduplicated and multiplied with appropriate weights to compact Cn. Finally, the
functions {µ(J)

n,`}J are defined from the parameters β?n, which solve β?n = argminβ ‖Zn −Cnβ‖22,
where ‖ · ‖2 is the Euclidean distance. Then, the least square problem is solved for each tree of the
ensemble, and the estimated tree HFD component µ(J)

n of T is given by µ(J)
n =

∑M
`=1 µ

(J)
n,` .

Computational complexity. The computational complexity of solving the above least square
problem depends on the number of cells and variable subsets, and thus on the tree depth, but not
on the sample size n or directly on the dimension p. Additionally, the construction of the matrix
Cn has a linear complexity with respect to the sample size n, and Cn is highly sparse by design,
which greatly reduces the cost of the least square problem. Overall, the computational complexity of
TreeHFD is linear with respect to n, does not depend on p for shallow trees, and grows exponentially
with the tree depth for large p. Therefore, TreeHFD is highly efficient for ensembles of shallow trees,
such as boosted tree ensembles.

Additional algorithm details. We specify four additional details and extensions for TreeHFD
algorithm. First, we can increase the efficiency of TreeHFD for deep trees that are typically involved
in random forests, by introducing two hyperparameters dT and dV to control tree depth and the
number of variable subsets. Since deep splits in random forest trees are often not significant (Duroux
and Scornet, 2018), we use a preprocessing step before computing the Cartesian tree partitions,
where node splits are pruned whenever they exceed a given tree depth threshold, provided by the
hyperparameter dT . Then, the original tree predictions are averaged in each cell of the new partition
to define the new prediction function of the tree. Additionally, when the tree depth is large, the
number of variable subsets P(`)

p may become very high. Consequently, only the variable subsets at
the first dV levels of the tree are extracted to build P(`)

p , to control its size, and thus the computational
complexity of TreeHFD for deep trees, while focusing on the most influential variables. Secondly,
by construction of the Cartesian tree partitions, some cells may contain no training data, since the

7

Figure 2: Main effects of the decompositions for X(1) and X(2). Solid lines provide the theoretical
functions, with the HFD in green, int. SHAP in red, and obs. SHAP in orange. Green and red points
are respectively the values provided by TreeHFD and TreeSHAP with interactions for xgboost.

Cartesian partitions are finer than the original tree ones. Hence, Ln does not depend on the β(J)
k

parameters of such empty cells. Once the reduced β?n is computed, the parameter of each empty
cell is set to the same value as the largest neighboring nonempty cell. For this specific reason, it is
critical to break down the decomposition by tree, whereas merging all tree partitions with a unique
cost function is highly inefficient. Thirdly, TreeHFD can also easily handle categorical and discrete
variables, as fully explained in the S-Mat. Finally, TreeHFD algorithm also applies to classification
problems for boosted tree ensembles, where the logit of each class is a continuous output that can be
handled as the regression case. TreeHFD also applies to binary classification for all tree ensembles.

Algorithm convergence. We show the convergence of the TreeHFD algorithm towards the theoret-
ical tree HFD formalized in Theorem 2, when the sample size grows. Therefore, TreeHFD provides a
clear decomposition of the initial tree ensemble, which satisfies all the properties of orthogonality,
sparsity, causal variable selection, and accuracy, stated in the theorems of the previous section. In the
sequel, we show that these properties are satisfied in practice, through several batches of experiments.
We highlight that Theorem 7 is stated for a deterministic tree ensemble T , trained with a fixed set of
points, and for a growing size of Dn, used to fit TreeHFD from T .
Theorem 7. If Assumption 1 is satisfied, the hyperparameters dI , dT , and dV are set to the tree
depth, {µ(J)

n,`}J∈Pp is the minimum of Ln over a compact set for ` ∈ TM , and {η(J)
` }J∈Pp is the tree

HFD of T`(X) defined in Theorem 2, then for all J ∈ Pp, we have µ(J)
n,`

p−→ η
(J)
` .

4 Experiments

We first analyze an analytical case to better understand the behavior of TreeHFD, and then evaluate
TreeHFD performance with real datasets, using treehfd package. The main competitor of TreeHFD
is the decomposition induced by Shapley values, which is implemented in xgboost as an extension
of TreeSHAP (Lundberg et al., 2020; Bordt and von Luxburg, 2023). Although the proposal of
Lengerich et al. (2020) is a major step to estimate the HFD of tree ensembles, it requires to know the
input distribution, and is therefore not adapted to our setting where only a data sample is available.

Analytical case. We consider a Gaussian random vector X of dimension p = 6, where each
component has unit variance and all pairs of variables have the same correlation ρ = 1/2. Then,
the output Y is defined by Y = m(X) + ε, where m(X) = sin(2πX(1)) +X(1)X(2) +X(3)X(4),
and ε ∼ N (0, 0.52). We study this analytical case because sinusoidal and linear functions are quite
difficult to approximate with piecewise constant estimates, and it is possible to compute the analytical
decompositions and introduce strong correlations within input variables, in the case of a Gaussian
input vector. In the S-Mat, we state the analytical functional decompositions of m(X) provided by the
HFD, interventional SHAP, and observational SHAP. Notice that for the HFD, the correlation between
X(1) and X(2) (respectively X(3) and X(4)) introduces main effects for these variables, to purify
interactions. As expected from Theorem 5, the same functional components are null for the HFD and
interventional SHAP, whereas observational SHAP have non-null components for all variable subsets,
because of the input dependence. It is clear that all components of observational SHAP mix all terms

8

https://github.com/ThalesGroup/treehfd

Table 1: MSE for TreeHFD and TreeSHAP with respect to the specified target decompositions.
Algorithm Target η(1) η(2) η(3) η(4) η(5) η(6) η(1,2) η(3,4) Others

TreeHFD - xgboost HFD 0.02 0.01 0.02 0.02 0.002 0.002 0.04 0.04 ≤ 0.01
TreeHFD - RF HFD 0.15 0.02 0.01 0.03 0.004 0.003 0.10 0.29 ≤ 0.01

TreeSHAP - xgboost HFD 0.06 0.23 0.13 0.12 0.002 0.002 0.35 0.27 ≤ 0.02
TreeSHAP - xgboost int. SHAP 0.49 0.16 0.24 0.25 0.002 0.002 0.77 0.82 ≤ 0.01
TreeSHAP - xgboost obs. SHAP 0.35 0.73 0.51 0.51 0.50 0.50 0.68 0.60 NA

Table 2: Dataset characteristics and performance of TreeHFD and TreeSHAP.
Dataset n p Accuracy Residual MSE Orthogonality Local Variability

xgboost TreeHFD TreeHFD TreeSHAP TreeHFD TreeSHAP
Abalone 4176 9 50% 1% 0.05 0.85 0.009 0.09
Airfoil 1503 5 95% 2% 0.02 0.24 2.10−5 0.04

Bike Sharing 17389 8 87% 3% 0.004 0.13 3.10−4 0.1
Housing 20640 8 83% 1% 0.05 0.55 7.10−4 0.05
Concrete 1030 8 94% 0.4% 0.003 0.33 0.01 0.05
Nutrition 2278 7 20% 3% 0.03 0.43 0.01 0.06
Parkinson 5875 19 96% 1% 0.07 0.18 0.02 0.1

Power Plant 9568 4 97% 0.1% NA 0.9 0.006 0.02
Superconduc. 21263 81 92% 1% NA NA 0.007 0.2

of the original function m, and it is therefore difficult to understand the influence of each input from
such a decomposition. Next, we fit a boosted tree ensemble on a training dataset Dn of size n = 5000,
using xgboost with M = 100 trees, and the default value for the other parameters. Then, we fit
TreeHFD on the tree ensemble using Dn, and display the result in Figure 2. Finally, we estimate
the Mean Square Error (MSE) of each TreeHFD component, using the analytical formulas and an
independent testing dataset. Besides, we perform the same experiment with TreeSHAP, and also using
random forests (RF) instead of xgboost. Results are averaged over ten repetitions, and reported in
Table 1, where standard deviations are negligible and thus omitted. Hence, it is clear from Table 1
that TreeHFD based on xgboost provides highly accurate estimates of the HFD, and outperforms the
decomposition provided by TreeSHAP. This result is quite expected since TreeSHAP is not explicitly
designed to target the HFD. However, Table 1 also highlights a surprising phenomenon: TreeSHAP
more accurately estimates the HFD than the theoretical decompositions induced by interventional
SHAP and observational SHAP. This implies that TreeSHAP has strong connections with the HFD,
and the real data cases will further confirm this trend. Importantly, the obtained TreeHFD components
are almost hierarchically orthogonal, with correlation coefficients between interactions and the
associated main effects of about 0.05 or smaller. We provide all experimental settings in the S-Mat,
including additional experiments with various sample sizes, tree depths, and comparisons with glex
(Hiabu et al., 2023) and EBM (Nori et al., 2019). In particular, we show that TreeHFD is not very
sensitive to tree depth, and thus remains highly efficient for shallow trees.

Real data cases. We assess the performance of TreeHFD using nine real public datasets from the
UCI repository (Kelly et al., 2024), with the main characteristics summarized in Table 2—see the
S-Mat for all details about the displayed metrics. We first show that TreeHFD with interactions of
second order (i.e. dI = 2) successfully estimates the HFD of the fitted xgboost models, since the
TreeHFD residual MSE is about 1% of the output variance for all tested datasets, as reported in
Table 2, and hierarchical orthogonality is well approximated by TreeHFD. Indeed, we compute the
correlation coefficients between the interaction components and their associated main effects, and
report the maximum absolute value for each dataset in Table 2, for both TreeHFD and TreeSHAP.
Hence, the results show that the maximum absolute correlation for each dataset is about 0.05
for TreeHFD or smaller, whereas it is frequently above 0.5 for TreeSHAP. Therefore, TreeHFD
components are almost hierarchical orthogonal, whereas main effects and interactions can be strongly
entangled for TreeSHAP. By construction, TreeHFD inherits the eventual overfitting of the initial tree
ensemble, as for the “Nutrition” dataset. Furthermore, we show that TreeSHAP generates quite noisy
decompositions, which can be problematic for local interpretations. Indeed, a slight perturbation of

9

Figure 3: For the “Housing” dataset, main effects of “Longitude” and “Latitude” in the decompositions
of respectively TreeHFD in blue and TreeSHAP with interactions in red.

the input may result in a large change in the output decomposition values. This phenomenon clearly
undermines the local explanations provided by TreeSHAP. We quantify local variability as the mean
variance of a functional component over the nearest neighbors of each point, and averaged over all
main components—see the S-Mat for a formal definition. The obtained metric is reported in Table 2
and shows that TreeHFD is locally much more stable than TreeSHAP for all tested cases.

Housing dataset. We focus on the California Housing dataset (Kelly et al., 2024), which gathers
housing prices with various characteristics. We fit xgboost and TreeHFD, and display the main
resulting components in Figure 3. We see that the “Longitude” component of TreeHFD clearly
identifies the peak in housing prices, corresponding to the San Francisco Bay Area (-122◦25’),
whereas TreeSHAP does not really detect it. Indeed, TreeSHAP decomposition is quite noisy, and
the main effect of the “Longitude” variable is entangled with the interaction between “Longitude”
and “Latitude” variables. For TreeSHAP, this interaction function has a variance of 16% of the total
variance V[T (X)] of the tree ensemble output, whereas it is only 4% in the case of TreeHFD, because
interactions are purified. From another perspective, the absolute correlation coefficients between the
two main effects and the interaction are about 0.05 for TreeHFD, close to the targeted null value of
hierarchical orthogonality, whereas it is about 0.20 for TreeSHAP. Additionally, TreeSHAP hides in
this interaction that house prices are lower in northern and eastern California, as shown by TreeHFD.

Additional datasets. The same analysis for the “Bike Sharing” and “Superconductivity” datasets
(Kelly et al., 2024) is provided in the S-Mat. In the first case, the dataset gathers the number of bikes
rented by hour from a US bike renting system, along with time and weather information. TreeHFD
and TreeSHAP generate close decompositions of the bike rentals, but SHAP values are quite noisy,
and can therefore be misleading when predictions are analyzed one by one. The identified patterns
can be easily interpreted. For example, there are renting peaks at the beginning and the end of the day,
when people commute to work, and a strong interaction between the variables “Hour” and “Week
day”, since the peak of bike rentals is in the middle of the day during the weekend. There is also
a drop of bike rentals when it is too hot or too cold, as expected. Finally, the “Superconductivity”
dataset shows the high performance of TreeHFD for a quite large input dimension of 81.

5 Conclusion

We have introduced the TreeHFD algorithm to estimate the Hoeffding decomposition of a tree
ensemble from a data sample, which therefore provides an efficient explainability method. To our
best knowledge, TreeHFD is the first algorithm to accurately estimate the HFD in standard machine
learning settings, where only a data sample is available. Furthermore, we have empirically established
strong connections between TreeSHAP and the HFD. In future work, conducting a theoretical analysis
of this connection will deepen the understanding of the widely used TreeSHAP method.

Limitations. The main limitation of TreeHFD is the high computational complexity for large
tree depths, which can be efficiently mitigated using pruning, controlled by two hyperparameters.
Additionally, TreeHFD requires the access to the internal tree structures, as provided by most open
source software, but not always by proprietary tools.

10

Acknowledgments and Disclosure of Funding

We thank the reviewers for their insightful comments and suggestions. Clément Bénard has received
support from the GATSBII project (ref. ANR-24-CE23-6645), funded by the ANR (french National
Research Agency), and the FaRADAI project (ref. 101103386), funded by the European Commission
under the European Defence Fund (EDF-2021-DIGIT-R).

References
Amoukou, S. I. (2023). Trustworthy machine learning: explainability and distribution-free uncer-

tainty quantification. PhD thesis, Université Paris-Saclay.

Bénard, C., Da Veiga, S., and Scornet, E. (2022). Mean decrease accuracy for random forests:
inconsistency, and a practical solution via the Sobol-MDA. Biometrika, 109:881–900.

Bordt, S. and von Luxburg, U. (2023). From Shapley values to generalized additive models and back.
In International Conference on Artificial Intelligence and Statistics, pages 709–745. PMLR.

Breiman, L. (2001). Random forests. Machine Learning, 45:5–32.

Chastaing, G., Gamboa, F., and Prieur, C. (2012). Generalized Hoeffding-Sobol decomposition for
dependent variables - application to sensitivity analysis. Electronic Journal of Statistics, 6:2420 –
2448.

Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
785–794, New York. ACM.

Datta, A., Sen, S., and Zick, Y. (2016). Algorithmic transparency via quantitative input influence:
Theory and experiments with learning systems. In 2016 IEEE symposium on security and privacy
(SP), pages 598–617. IEEE.

Duroux, R. and Scornet, E. (2018). Impact of subsampling and tree depth on random forests. ESAIM:
Probability and Statistics, 22:96–128.

Friedman, J. (2001). Greedy function approximation: A gradient boosting machine. Annals of
Statistics, pages 1189–1232.

Grinsztajn, L., Oyallon, E., and Varoquaux, G. (2022). Why do tree-based models still outperform
deep learning on typical tabular data? Advances in Neural Information Processing Systems,
35:507–520.

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pedreschi, D. (2018). A survey
of methods for explaining black box models. ACM Computing Surveys, 51:1–42.

Herren, A. and Hahn, P. R. (2022). Statistical aspects of shap: Functional anova for model interpreta-
tion. arXiv preprint arXiv:2208.09970.

Hiabu, M., Meyer, J. T., and Wright, M. N. (2023). Unifying local and global model explanations by
functional decomposition of low dimensional structures. In International Conference on Artificial
Intelligence and Statistics, pages 7040–7060. PMLR.

Hoeffding, W. (1948). A Class of Statistics with Asymptotically Normal Distribution. The Annals of
Mathematical Statistics, 19:293 – 325.

Hooker, G. (2007). Generalized functional anova diagnostics for high-dimensional functions of
dependent variables. Journal of Computational and Graphical Statistics, 16:709–732.

Hooker, G., Mentch, L., and Zhou, S. (2021). Unrestricted permutation forces extrapolation: variable
importance requires at least one more model, or there is no free variable importance. Statistics and
Computing, 31:1–16.

11

Idrissi, M. I., Bousquet, N., Gamboa, F., Iooss, B., and Loubes, J.-M. (2025). Hoeffding decom-
position of functions of random dependent variables. Journal of Multivariate Analysis, page
105444.

Janzing, D., Minorics, L., and Blöbaum, P. (2020). Feature relevance quantification in explainable
ai: A causal problem. In International Conference on Artificial Intelligence and Statistics, pages
2907–2916. PMLR.

Kelly, M., Longjohn, R., and Nottingham, K. (2024). The UCI machine learning repository.

Kumar, I. E., Venkatasubramanian, S., Scheidegger, C., and Friedler, S. (2020). Problems with
Shapley-value-based explanations as feature importance measures. In International Conference on
Machine Learning, pages 5491–5500. PMLR.

Lengerich, B., Tan, S., Chang, C.-H., Hooker, G., and Caruana, R. (2020). Purifying interaction
effects with the functional anova: An efficient algorithm for recovering identifiable additive models.
In International Conference on Artificial Intelligence and Statistics, pages 2402–2412. PMLR.

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J.,
Bansal, N., and Lee, S.-I. (2020). From local explanations to global understanding with explainable
ai for trees. Nature Machine Intelligence, 2:56–67.

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances
in Neural Information Processing Systems, 30.

Meinshausen, N. and Ridgeway, G. (2006). Quantile regression forests. Journal of machine learning
research, 7(6).

Muschalik, M., Baniecki, H., Fumagalli, F., Kolpaczki, P., Hammer, B., and Hüllermeier, E. (2024a).
shapiq: Shapley Interactions for Machine Learning. In The Thirty-eight Conference on Neural
Information Processing Systems Datasets and Benchmarks Track.

Muschalik, M., Fumagalli, F., Hammer, B., and Hüllermeier, E. (2024b). Beyond TreeSHAP: Efficient
computation of any-order Shapley interactions for tree ensembles. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pages 14388–14396.

Nori, H., Jenkins, S., Koch, P., and Caruana, R. (2019). Interpretml: A unified framework for machine
learning interpretability. arXiv preprint arXiv:1909.09223.

Osgood, C. E. (1957). The measurement of meaning. Urbana: University of Illinois Press.

Owen, A. B. (2014). Sobol’indices and Shapley value. SIAM/ASA Journal on Uncertainty Quantifi-
cation, 2:245–251.

Scornet, E., Biau, G., and Vert, J.-P. (2015). Consistency of random forests. The Annals of Statistics,
43:1716 – 1741.

Speith, T. (2022). A review of taxonomies of explainable artificial intelligence (XAI) methods. In
Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency, pages
2239–2250.

Stone, C. J. (1994). The use of polynomial splines and their tensor products in multivariate function
estimation. The Annals of Statistics, 22:118–171.

Van der Vaart, A. (2000). Asymptotic Statistics, volume 3. Cambridge University Press.

Wager, S. and Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using
random forests. Journal of the American Statistical Association, 113:1228–1242.

Williamson, B., Gilbert, P., Simon, N., and Carone, M. (2021). A general framework for inference on
algorithm-agnostic variable importance. Journal of the American Statistical Association, pages
1–38.

Wright, M. N. and Ziegler, A. (2017). ranger: A fast implementation of random forests for high
dimensional data in C++ and R. Journal of Statistical Software, 77:1–17.

12

Yang, Z., Zhang, A., and Sudjianto, A. (2021). GAMI-Net: An explainable neural network based on
generalized additive models with structured interactions. Pattern Recognition, 120:108192.

Yu, G., Bien, J., and Tibshirani, R. (2019). Reluctant interaction modeling. arXiv preprint
arXiv:1907.08414.

Yu, P., Bifet, A., Read, J., and Xu, C. (2022). Linear TreeShap. In Advances in Neural Information
Processing Systems, volume 35, pages 25818–25828. Curran Associates, Inc.

13

Supplementary Material (S-Mat)

A Categorical and discrete variables

Discrete and categorical variables are straightforward to handle in TreeHFD algorithm, even if we
focus on continuous inputs for the sake of clarity. Indeed, discrete variables are considered as numeric
ones by the initial tree ensemble. For example, if a variable X(1) takes values in {0.2, 0.4, 0.8}, a tree
can typically build the partition {[0, 0.3], [0.3, 0.6], [0.6, 1]}, with splits at the middle of two values
of X(1). Then, the associated distribution is constant in each cell, and the values are given by the
weights of the initial discrete distribution. For categorical variables, we follow the approach of two of
the main tree ensemble implementations, xgboost (Chen and Guestrin, 2016) for boosted trees and
ranger (Wright and Ziegler, 2017) for random forests, using one-hot-encoding to get binary discrete
variables, naturally handled by TreeHFD as explained before.

B Additional experiments and settings

Experiments were conducted with a standard computer machine with Ubuntu OS and the following
main characteristics: Intel Core i5 CPU (2.30 GHz) with 6 cores and 16 GB of RAM. Notice that we
use xgboost software in the experiments, in accordance with its Apache License 2.0.

B.1 Competitors

Shapley values. As mentioned in the introduction, Herren and Hahn (2022), Bordt and von Luxburg
(2023), and Hiabu et al. (2023) made strong connections between functional decompositions of black-
box models and Shapley values. In particular, Bordt and von Luxburg (2023) introduce n-Shapley
values as a generalization to all subgroups of variables, which then induces a functional decomposition.
On the other hand, Herren and Hahn (2022) and Hiabu et al. (2023) respectively show how to connect
observational SHAP and interventional SHAP to functional decompositions with practical estimates.
Additionally, Linear TreeSHAP (Yu et al., 2022) and TreeSHAP-IQ (Muschalik et al., 2024b,a)
improve the computational complexity of the original TreeSHAP implementation (Lundberg et al.,
2020), and target the same quantities. TreeSHAP-IQ can also provide high-order interactions.

Overall, these algorithms target observational SHAP or interventional SHAP, but not the Hoeffding
functional decomposition, and are therefore not direct competitors of TreeHFD, with the notable
exception of TreeSHAP, as discussed in the article. Although SHAP values have demonstrated great
success to explain machine learning algorithms, Kumar et al. (2020) show that both observational
SHAP and interventional SHAP have quite strong limitations, while the HFD is an interesting al-
ternative to overcome these problems. In particular, TreeHFD shares the causal variable selection
of interventional SHAP, but is based on the original distribution of the inputs, whereas interven-
tional SHAP may extrapolate in areas where the tree ensemble has a low accuracy. Furthermore,
observational SHAP introduces functional components for exogenous variables because of the input
dependence, and can thus generate decompositions with a very high number of components, which
are hardly interpretable.

In the next section, we run the analytical case with the algorithm from Hiabu et al. (2023), imple-
mented in the R-package glex available online, which provides efficient estimates of the functional
decompositions induced by interventional SHAP, as we will see. We do not run experiments with
the promising TreeSHAP-IQ algorithm because it computes the same quantities as TreeSHAP im-
plemented in xgboost for main effects and second-order interactions, and the computational time
of TreeSHAP-IQ is high. Indeed, although its computational complexity is highly improved over
the original TreeSHAP, TreeSHAP-IQ is designed to explain a specific prediction, and consequently,
predictions are not vectorized in shapiq implementation (Muschalik et al., 2024a), which does
not use a compiled language. Therefore, shapiq is efficient to compute a single prediction, which
takes only a few seconds for the analytical case (with the machine described at the beginning of the
section), but running all predictions one by one with n = 5000 takes several hours for one of the ten
repetitions, while it takes less than one minute with our treehfd implementation or TreeSHAP with
xgboost.

14

Table 3: Analytical functional decompositions (C = exp(−2π2(1− ρ2))). For |J | = 1, functions
have x as arguments, and (x, z) for |J | = 2.

J HFD Interventional
SHAP Observational SHAP

∅ 2 ρ 2ρ 2ρ
{1} sin(2πx) + ρ

1+ρ2 (x2 − 1) sin(2πx)− ρ sin(2πx) + ρ(1 + ρ)(x2 − 1)

{2}, {3}, {4} ρ
1+ρ2 (x2 − 1) −ρ C sin(2πρx) + ρ(1 + ρ)(x2 − 1)

{5}, {6} 0 0 C sin(2πρx) + 2ρ2(x2 − 1)

{1, 2}, {3, 4} ρ 1−ρ2
1+ρ2 −

ρ
1+ρ2 (x2 + z2) + x× z ρ+ x× z φ(1,2), φ(3,4) 6= 0

Others 0 0 φ(J) 6= 0

Generalized additive models. The scope of the article is to estimate the HFD of black-box tree
ensembles from a data sample, to provide an efficient post-hoc XAI method. Therefore, generalized
additive models (GAMs) are out of the article scope, since they build transparent models in the first
place. However, they also provide models in the same form of sums of low-order functions of the
input variables. Hence, we mention two powerful and widely used GAMs: Explainable Boosting
Machines (EBM) (Nori et al., 2019), and GAMI-NET (Yang et al., 2021). Both methods exhibit high
predictive performance, quite often on par with boosted tree ensembles, but their targeted theoretical
decomposition is unknown, which makes their interpretation more difficult.

EBM also takes advantage of boosted trees to provide GAMs with interactions of order two. In the
next section, we run experiments to show that EBM can also estimate the HFD with a high accuracy.
In a similar way as TreeSHAP, EBM seems to have strong connections with the HFD. However, we
will see in the analytical case that EBM can introduce functional components for exogenous variables,
because of the input dependence. Therefore, EBM does not share the sparsity and causal variable
selection properties of TreeHFD and TreeSHAP. EBM can also generate different decompositions
than TreeHFD, and also face instability issues when the input dimension is quite large, as shown in
the experiments with the “Superconductivity” dataset in Subsection B.3.

GAMI-NET uses neural networks to also provide GAMs with second-order interactions. However,
interactions are included only if variables have main effects. Although experiments show that GAMI-
NET is highly accurate (Yang et al., 2021), it often does not target the HFD. For example, in the
analytical case, if the Gaussian input vector is slightly modified to make X(3) and X(4) independent,
then these two variables do not have main effects, and their interaction term will be set as null in
GAMI-NET, instead of X(3)X(4) in the updated HFD.

B.2 Analytical case

Analytical decompositions. In Table 3, we provide the analytical functional decompositions of
m(X) provided by the HFD, interventional SHAP, and observational SHAP (Bordt and von Luxburg,
2023, Theorem 4). For the sake of clarity, some formulas are not displayed in the table and are
given below. As mentioned in the article, the correlation between X(1) and X(2) introduces a main
effect for these two variables in the HFD, which is of increasing magnitude with the correlation ρ,
whereas the variability of η(1,2) reduces as ρ increases. This is a consequence of the orthogonality
constraints leading to pure interactions in the HFD, since X(1) or X(2) alone can partially estimate
the term X(1)X(2), because of their correlation. Symmetrically, variables X(3) and X(4) have the
same behavior. Notice that constant main effects are also introduced for these variables in the case of
interventional SHAP. As claimed in the article, the decomposition of observational SHAP is hard to
interpret, since all components mix all terms of the initial function, because of the input dependence.

The main interactions of observational SHAP decomposition are given by

φ(1,2)(x, z) = C0 + Cmain(x2 + z2) + Cinterx× z − Cρ sin(2πρx)

φ(3,4)(x, z) = C0 + Cmain(x2 + z2) + Cinterx× z + C ′ρ sin
(2πρ

1 + ρ
(x+ z)

)
− Cρ sin(2πρx)− Cρ sin(2πρz),

15

Figure 4: For the analytical case, main effects of the decompositions for X(3) and X(6). Solid lines
provide the theoretical functions, with the HFD in green, int. SHAP in red, and obs. SHAP in
orange. Green and red points are respectively the values provided by TreeHFD and TreeSHAP with
interactions for xgboost.

Table 4: Cumulated MSE of the HFD components for TreeHFD and TreeSHAP with increasing
sample sizes, for the analytical case (with the standard deviations in brackets).

Sample size n 100 500 1000 2000 3000 5000 10000
TreeHFD 1.94 (0.4) 0.79 (0.1) 0.55 (0.05) 0.37 (0.03) 0.28 (0.02) 0.21 (0.02) 0.14 (0.007)

TreeSHAP 2.38 (0.7) 1.32 (0.2) 1.26 (0.09) 1.20 (0.09) 1.20 (0.08) 1.24 (0.10) 1.27 (0.08)

where

C0 = 2ρ2 +
ρ

1 + 2ρ

(
1− 2ρ2

1 + ρ

)
, Cmain =

ρ2

(1 + ρ)2
− ρ(1 + ρ),

Cinter = 1 +
2ρ2

(1 + ρ)2
, Cρ = e−2π2(1−ρ2), C ′ρ = e−2π2(1− 2ρ2

1+ρ).

We do not provide the other high-order interaction terms for observational SHAP to avoid tedious
formulas, since these functions are not really meaningful and take the same form as φ(1,2) and φ(3,4).

Additional figures. We provide additional figures for the main case of TreeHFD combined with
xgboost, presented in the article in Section 4 for n = 5000, M = 100 trees, and the default values
for the other xgboost parameters. Notice that the obtained tree ensemble has a proportion of output
explained variance of 90% (noise variance is 5% of V[Y]), and that the TreeHFD residual MSE is
2% of V[T (X)]. Hence, Figure 4 provides the main effects estimated by TreeHFD and TreeSHAP for
X(3) and X(6), and Figure 5 gives the interaction function of X(1) and X(2) estimated by TreeHFD.
We finally specify that one run of TreeHFD for this analytical case with n = 5000 and M = 100
trees takes less than 1 minute with our treehfd implementation.

Sample size. We repeat the same experiments for the analytical case of Section 4 with the sample
size varying from n = 100 to n = 10000. We report the results in Table 4, which displays the
cumulated MSE over all components for TreeHFD and TreeSHAP based on xgboost, for each
sample size. In the case of TreeHFD, the cumulated MSE decreases as the sample size increases,
as expected from the convergence result of Theorem 7, whereas TreeSHAP MSE is quite constant
for n ≥ 1000. This suggests that TreeSHAP does not converge towards the HFD, although it more
accurately estimates the HFD than the decomposition induced by observational and interventional
SHAP.

Tree depth. TreeHFD relies on the discretization provided by the Cartesian tree partitions. The
number of cells for each tree is a direct consequence of the tree depth. Hence, we analyze the
cumulated MSE for the analytical case with xgboost and the settings of Section 4, but varying tree
depths (instead of the default value of 6 used in the article). The results are displayed in Table 5, and

16

Figure 5: For the analytical case, interaction function of X(1) and X(2) estimated by TreeHFD.

Table 5: Cumulated MSE of the HFD components for TreeHFD with xgboost for various tree depths,
for the analytical case (with the standard deviations in brackets).

Tree depth 1 2 3 4 5 6 7
Cumulated MSE 1.49 (0.05) 0.34 (0.02) 0.26 (0.2) 0.20 (0.02) 0.19 (0.01) 0.20 (0.01) 0.26 (0.02)

show that even for very shallow trees (a depth of 3 for example), TreeHFD performance is high, and
is overall not very sensitive to the tree depth. Only in the case of a tree depth of 1, interactions are
not estimated and the cumulated MSE is strongly degraded.

TreeHFD with random forests. As briefly stated in the article, we perform the same experiment
using random forests with the ranger implementation instead of xgboost, combined with TreeHFD,
and results are reported in Table 1. The number of trees is still set to 100, and tree depth is limited to
ten, i.e. dT = dV = 10 in TreeHFD, since the reduction of the forest accuracy is small compared
to fully grown trees for this value. We observe that the accuracy is reduced in the case of TreeHFD
based on random forests compared to xgboost for the main effect of X(1) involving a sinusoidal
function and also for the interaction components. Such behavior is not very surprising because of the
greedy forest construction, which considers variable one by one for the split optimizations.

Comparisons with glex. We run the analytical case with the same settings than in the article
using the algorithm from Hiabu et al. (2023), implemented in the R-package glex. The results are
displayed in Table 6, along with the values of Table 1 obtained for TreeHFD and TreeSHAP to enable
comparisons. We do not display standard deviations, since they are negligible compared to the raw
MSE values, as in Table 1. As expected, glex is an efficient estimate of the decomposition induced
by interventional SHAP, and strongly outperforms TreeSHAP for this specific task. Consequently,
glex does not provide good estimates of the HFD. The MSE of glex for interventional SHAP is
similar to the MSE of TreeHFD for the HFD for main effects. However, the MSE of glex is higher
for interaction components than the MSE of TreeHFD. As already mentioned, interventional SHAP is
more difficult to estimate accurately than the HFD, because the value function involves expectations
with respect to input distributions that are different from the original one (Kumar et al., 2020).

Comparisons with EBM. We run the analytical case with the same settings than in the article,
using the EBM algorithm (Nori et al., 2019) with the default parameters. The results are displayed in
Table 6, and show that EBM has an accuracy close to TreeHFD to estimate the HFD, even slightly

17

Table 6: MSE for glex, EBM, TreeHFD, and TreeSHAP with respect to the specified target decom-
positions, for the analytical case.

Algorithm Target η(1) η(2) η(3) η(4) η(5) η(6) η(1,2) η(3,4) Others
TreeHFD - xgboost HFD 0.02 0.01 0.02 0.02 0.002 0.002 0.04 0.04 ≤ 0.01

EBM HFD 0.03 0.01 0.01 0.01 0.02 0.01 0.03 0.03 ≤ 0.01
glex - xgboost HFD 0.49 0.47 0.46 0.47 0.003 0.003 1.2 1.2 ≤ 0.02

TreeSHAP - xgboost int. SHAP 0.49 0.16 0.24 0.25 0.002 0.002 0.77 0.82 ≤ 0.01
glex - xgboost int. SHAP 0.03 0.01 0.01 0.01 0.003 0.003 0.13 0.12 ≤ 0.02

Figure 6: For the analytical case, main effects of EBM decompositions for X(5) and X(6). Solid
lines provide the theoretical functions, with the HFD in green and obs. SHAP in orange (int. SHAP
is also null and hidden by the HFD). Blue points are the values provided by EBM decomposition.

better for several components, but uses 25000 boosting rounds instead of the arbitrary number of
100 rounds for the xgboost model, broken down by TreeHFD. More importantly, the two main
effect components of X(5) and X(6) that are null in the analytical HFD, have a MSE ten times higher
for EBM than for TreeHFD and TreeSHAP. The components generated by EBM are displayed in
Figure 6, which shows that EBM introduces non-null functions for these components, because of
the correlation between X(5) and X(6) and the other input variables. We deepen this analysis by
running the analytical case with EBM for increasing sample sizes. Table 7 provides the cumulated
MSE for X(5) and X(6) components for both EBM and TreeHFD for these various sample sizes,
averaged over ten repetitions. While the MSE of TreeHFD decreases as the sample size increases as
expected from Theorems 4, 5, and 7, the MSE of EBM is quite constant. Therefore, it seems that
EBM does not converge towards the HFD, and does not share the properties of sparsity and causal
variable selection that TreeHFD and TreeSHAP exhibit.

B.3 Real data cases

We first provide the definitions of the metrics involved in Table 2. Then, we analyze the “Supercon-
ductivity” and “Bike sharing” datasets. The first one shows the high performance of TreeHFD with a
quite large input dimension, while the second dataset is an example where TreeHFD and TreeSHAP
generate close decompositions. Therefore, the decompositions of the two algorithms can be similar
or different depending on the data properties.

Table 7: Cumulated MSE of X(5) and X(6) components for EBM and TreeHFD with respect to the
HFD, for the analytical case with an increasing sample size (standard deviations in brackets).

Sample size n 10000 20000 30000 40000
TreeHFD - xgboost 0.0020 (4.10−4) 0.0011 (1.10−4) 6.1× 10−4

(1.10−4) 5.5× 10−4
(1.10−4)

EBM 0.029 (0.006) 0.025 (0.002) 0.024 (0.002) 0.025 (0.002)

18

Figure 7: For the “Housing” dataset, main effects of the number of rooms and population in the house
block in the decompositions of respectively TreeHFD in blue and TreeSHAP in red.

B.3.1 Definition of performance metrics

Accuracy. The accuracy of xgboost models are the proportion of output explained variance,
estimated by 10-fold cross-validation.

Residual MSE. The residual error of TreeHFD is defined as the MSE of TreeHFD predictions with
respect to the tree ensemble predictions, normalized by the output variance V[T (X)]. This ratio gives
the magnitude of TreeHFD errors with respect to the original tree ensemble.

Hierarchical orthogonality. We evaluate the hierarchical orthogonality of the functional decom-
positions provided by TreeHFD and TreeSHAP, through the nine real data cases. For each dataset,
we consider interaction components with a non-negligible influence in the decomposition, and thus
select components with a variance of at least 1% of the output variance V[T (X)]. Then, we compute
the correlation coefficients between the interaction components and their associated main effects, and
report the maximum absolute value for each dataset in Table 2, for both TreeHFD and TreeSHAP.
We only consider interactions with a non-null variance, since the correlation coefficient is undefined
otherwise. When there is no interaction component above the threshold of 1%, we display “NA” in
Table 2. We also recall that a functional decomposition is hierarchically orthogonal when all these
correlations are null.

Local variability. We quantify the local variability of the two algorithms using the following
procedure. We consider a given input variable, and for each observation of the dataset, we retrieve the
ten nearest neighbors with respect to this variable, and compute the variance of the predictions from
the associated component of the decomposition over these ten points. Then, the average variance
over all observations of the dataset is derived, and normalized by the global variance of the functional
component. Finally, this metric is averaged across all main effects. The obtained metric is reported
in Table 2 in the “Local Variability” columns, and shows that TreeHFD is locally much more stable
than TreeSHAP for all tested datasets. Notice that the metric is not very sensitive to the number of
neighbors, and we get similar results using 5 or 20 instead of 10.

B.3.2 Analysis of additional datasets

Housing dataset. For the “Housing” dataset presented in the article, we provide the additional
Figure 7 for the main effects of the number of rooms and population in the house block, estimated by
TreeHFD and TreeSHAP. We observe quite strong differences between the two algorithms.

Superconductivity dataset. The “Superconductivity” dataset (Kelly et al., 2024) is built from the
extraction of 81 features from the chemical formula of 21263 superconductors, based on various
characteristics, such as thermal conductivity, atomic radius, valence, electron affinity, and atomic
mass. The output to be predicted is the superconducting critical temperature. We first fit a xgboost
model with all default parameters and 100 trees, and then, TreeHFD is run with dI = 2 to estimate the

19

Figure 8: For the “Superconductivity” dataset, main effects of X(28) and X(68) in the decompositions
of respectively TreeHFD in blue and TreeSHAP in red.

Figure 9: For the “Superconductivity” dataset, interaction between X(10) and X(68) in the decompo-
sition, obtained with TreeHFD on the left, and TreeSHAP on the right.

HFD of the resulting ensemble. The xgboost model has a proportion of output explained variance of
92% in this case, and the TreeHFD residual MSE is 1% of V[T (X)]. Then, we display the resulting
decomposition in Figures 8 and 9. Again, we observe that TreeSHAP decomposition is quite noisy.
On the other hand, TreeHFD exhibits clear functional relations for both main effects and interactions,
although the input dimension of is quite large with 81 variables. We also observe that TreeHFD and
TreeSHAP provide quite different decompositions, and the targeted quantities are only clearly defined
for TreeHFD.

Finally, we run a last experiment to illustrate that EBM and TreeHFD can also generate different
decompositions, and EBM can be unstable. We randomly split the dataset in two halves, and compute
both EBM and TreeHFD decompositions with each subsample. Figure 10 shows the resulting
component for X(68), with EBM on the left and TreeHFD on the right. While the obtained TreeHFD
component is stable across the two subsamples, it is not the case for EBM, which provides different
functions.

Bike Sharing dataset. The “Bike sharing” dataset (Kelly et al., 2024) gathers data from a US bike
renting system in 2011 and 2012. The number of bikes rented by hour is collected, along with time
(hour, week day, holiday, season) and weather information (normalized feeling temperature, humidity,
wind speed, weather conditions). We apply the same procedure than for the other datasets, and
the proportion of output explained variance of the boosted tree ensemble is 87%, and the TreeHFD
residual MSE is 3% of the output variance V[T (X)]. Finally, predictions are computed for all HFD
components, and displayed in Figures 11 and 12, along with comparisons with the decomposition

20

Figure 10: For the “Superconductivity” dataset, main effect of X(68) in the decompositions of
respectively EBM on the left and TreeHFD on the right. The components obtained for the two
subsamples are displayed in orange and brown on the same graph.

Figure 11: For the “Bike Sharing” dataset, main effects of “Hour” and “Temperature” in the decom-
positions of respectively TreeHFD in blue and TreeSHAP in red.

induced by TreeSHAP with interactions. We see that TreeHFD and TreeSHAP generate close
decompositions, but SHAP values are quite noisy, and can therefore be misleading when predictions
are analyzed one by one. Besides, the identified patterns can be easily interpreted. Indeed, there are
renting peaks at the beginning and the end of the day, when people commute to work. Regarding
the temperature, there is a drop of bike rentals when it is too hot or too cold, as expected. The main
interaction term is between the variables “Hour” and “Week day”, and is illustrated in Figure 12:
During the weekend (days 0 and 6), the peak of bike rentals is in the middle of the day, instead of the
morning and the evening for working days.

Figure 12: For the “Bike Sharing” dataset, interaction between “Hour” and “Week day”, for TreeHFD
on the left, and TreeSHAP on the right, both based on xgboost.

21

C Proofs of theorems

C.1 Proof of Theorem 2

For J ∈ Pp, we denote by f (J) the marginal density of X(J). For ` ∈ TM , we also introduce the
density f (J)

` , defined as the density f (J) averaged over each cell of the partition A(J)
` , and then the

random vector Z(J)
` that admits density f (J)

` . For J = Vp, we simply write Z` and f` to lighten
notations.

The cornerstone of the proof of Theorem 2 is to apply the HFD of Theorem 1 to each tree T`(Z`),
and to show that the discretized orthogonality constraints can also be written using X.
Lemma 1 (Tree HFD). If Assumption 1 is satisfied, then for ` ∈ TM , the tree prediction function
T`(Z`) has a unique decomposition as the sum of the functions {η(J)

` }J∈Pp , defined by

T`(Z`) =
∑
J∈Pp

η
(J)
` (Z(J)

`),

and such that for all J ∈ Pp, I ⊂ J with I 6= J , E[η
(J)
` (Z(J)

`)|Z(I)
`] = 0. Additionally, for J ∈ Pp,

the function η(J)
` is piecewise constant over the partition A(J)

` .

Lemma 2. If Assumption 1 is satisfied, and for ` ∈ TM and J ∈ Pp, µ(J)
` is a function defined on

[0, 1]|J| and is piecewise constant on A(J)
` , then for I ⊂ J such that I 6= J and A ∈ A(I)

` , we have

E[µ
(J)
` (X(J))|X(I) ∈ A] = E[µ

(J)
` (Z(J)

`)|Z(I)
` ∈ A].

Proof of Theorem 2. Let Assumption 1 be satisfied. We proceed in two steps, to first show the
existence of the decomposition, and then its uniqueness.

Existence. For each tree ` ∈ TM , we apply Lemma 1 to get the HFD for T`(Z`), i.e., a unique
decomposition as the sum of the piecewise constant functions {η(J)

` }J∈Pp , defined by

T`(Z`) =
∑
J∈Pp

η
(J)
` (Z(J)

`),

and such that for all J ∈ Pp, I ⊂ J with I 6= J , E[η
(J)
` (Z(J)

`)|Z(I)
`] = 0. Next, recall that the

random vectors Z(J)
` have the same distribution support [0, 1]|J| as the vectors X(J), and consequently

{η(J)
` (X(J))}J are well-defined. Then, according to Lemma 2, the orthogonality constraints implies

that, for I ⊂ J with I 6= J and A ∈ A(I)
` ,

E[η
(J)
` (X(J))|X(I) ∈ A] = 0.

Therefore, we obtain the existence of the decomposition

T (X) =
∑
J∈Pp

η(J)(X(J)),

with η(J)(X(J)) =

M∑
`=1

η
(J)
` (X(J)), T`(X) =

∑
J∈Pp

η
(J)
` (X(J)),

and such that for all ` ∈ TM , J ∈ Pp, I ⊂ J with I 6= J , A ∈ A(I)
` , E[η

(J)
` (X(J))|X(I) ∈ A] = 0,

and where {η(J)
` (X(J))} are piecewise constant on the associated partitions.

Uniqueness. Notice that if the functions {η(J)
` }J are not required to be piecewise constant, the

decomposition is not unique in the general case, because the orthogonality constraints are weakened
compared to the original HFD formulation. Indeed, we can directly apply Theorem 1 to the function
T (X) to get another decomposition, where the resulting components may not be piecewise constant,
depending on the variations of the density f .

On the other hand, if the functions {η(J)
` } satisfy the decomposition and are piecewise constant, then

according to Lemma 1, the functions {η(J)
` } are also the HFD of the trees for the vectors Z(J)

` , where
the orthogonality constraints are transformed thanks to Lemma 2. Since each HFD tree decomposition
is unique, the target global decomposition is unique.

22

Proof of Lemma 1. We consider a given tree ` ∈ TM . Since, the tree prediction function T` is
piecewise constant on [0, 1]p, T` is square-integrable. Then, we can directly apply Theorem 1 from
Chastaing et al. (2012) to the function T`(Z`) to get the existence of a unique set of functions
{η(J)
` }J∈Pp , such that the Hoeffding decomposition holds, i.e.,

T`(Z`) =
∑
J∈Pp

η
(J)
` (Z(J)

`), (1)

and for all J ∈ Pp, I ⊂ J with I 6= J , E[η
(J)
` (Z(J)

`)|Z(I)
`] = 0.

Now, we show that the functions η(J)
` are constant over A(J)

` . Let A be a cell of A`. Using the HFD
above, we have

E[T`(Z`)|Z` ∈ A] =
∑
J∈Pp

E[η
(J)
` (Z(J)

`)|Z` ∈ A].

By definition T` is constant over the cell A, and therefore

E[T`(Z`)|Z` ∈ A] = T`(x),

with x ∈ A. On the other hand, Z` has density f`, which is constant over A. Consequently, the density
of Z` conditional on Z` ∈ A takes the value 1/Vol[A], where the operator Vol[.] gives the volume of
a given cell. Then, we have for J ∈ Pp,

E[η
(J)
` (Z(J)

`)|Z` ∈ A] =

∫
A

η
(J)
` (x(J))

1

Vol[A]
dx =

Vol[A(−J)]

Vol[A]

∫
A(J)

η
(J)
` (x(J))dx(J)

=
1

Vol[A(J)]

∫
A(J)

η
(J)
` (x(J))dx(J) = E[η

(J)
` (Z(J)

`)|Z(J)
` ∈ A(J)].

Then, we have another decomposition of T` as the sum of the functions µ(J)
` , defined as

µ
(J)
` (x(J)) =

∑
A∈A(J)

`

E[η
(J)
` (Z(J)

`)|Z(J)
` ∈ A]1x(J)∈A.

Indeed, combining the above equations, we have

T`(x) =
∑
J∈Pp

µ
(J)
` (x(J)).

Next, we can show that for all I ⊂ J with I 6= J , E[µ
(J)
` (Z(J)

`)|Z(J)
`] = 0, since

E[µ
(J)
` (Z(J)

`)|Z(I)
`] =

∑
A∈A(J)

`

E[η
(J)
` (Z(J)

`)|Z(J)
` ∈ A]P(Z(J)

` ∈ A|Z(I)
`)

= E[η
(J)
` (Z(J)

`)|Z(I)
`] = 0,

by definition of the HFD. Finally, since this decomposition is unique, we have for all J ∈ Pp,
η

(J)
` = µ

(J)
` , and therefore, the functions η(J)

` are piecewise constant over A(J)
` .

Proof of Lemma 2. Let Assumption 1 be satisfied. For ` ∈ TM and J ∈ Pp, we consider a square-
integrable function µ(J)

` defined on [0, 1]p and piecewise constant on A(J)
` . With f (J) the marginal

distribution of X(J), we can expand

E[µ
(J)
` (X(J))|X(I) ∈ A(I)] =

1

P(X(I) ∈ A(I))
E[µ

(J)
` (X(J))1X(I)∈A(I)]

=
1

P(X(I) ∈ A(I))

∫
[0,1]|J|−|I|×A(I)

µ
(J)
` (x(J))f (J)(x(J))dx(J)

=
1

P(X(I) ∈ A(I))

∑
A∈A(J\I)

`

∫
A×A(I)

µ
(J)
` (x(J))f (J)(x(J))dx(J).

23

We introduce a list of vector points x(J)
A ∈ A × A(I), for A ∈ A(J\I)

` . Since µ(J)
` is piecewise

constant over the partition A(J)
` , we can write

E[µ
(J)
` (X(J))|X(I) ∈ A(I)] =

1

P(X(I) ∈ A(I))

∑
A∈A(J\I)

`

µ
(J)
` (x(J)

A)

∫
A×A(I)

f (J)(x(J))dx(J)

=
1

P(X(I) ∈ A(I))

∑
A∈A(J\I)

`

µ
(J)
` (x(J)

A)f
(J)
` (x(J)

A)Vol[A×A(I)],

where the last equality follows from the definition of f (J)
` as the average of f (J) over each cell of the

partition. Similarly, P(X(I) ∈ A(I)) = P(Z(I)
` ∈ A(I)), and we get

E[µ
(J)
` (X(J))|X(I) ∈ A(I)] =

1

P(Z(I)
` ∈ A(I))

∑
A∈A(J\I)

`

µ
(J)
` (x(J)

A)P(Z(J)
` ∈ A×A(I))

=
∑

A∈A(J\I)
`

µ
(J)
` (x(J)

A)P(Z(J)
` ∈ A×A(I)|Z(I)

` ∈ A
(I))

=E[µ
(J)
` (Z(J)

`)|Z(I)
` ∈ A

(I)],

which gives the final result.

C.2 Proof of Theorem 3

Proof of Theorem 3. We apply Theorem 2 to get the tree HFD {η(J)
` }J∈Pp,`∈TM of T (X). We

consider a tree ` ∈ TM , a variable set J ∈ Pp, and an additional set I ⊂ J with I 6= J .

For the first result of Theorem 3, we have

Cov[η
(J)
` (X(J)), η

(I)
` (X(I))] =E[η

(J)
` (X(J))η

(I)
` (X(I))]

=
∑

A∈A(I)
`

E[η
(J)
` (X(J))η

(I)
` (X(I))|X(I) ∈ A]P(X(I) ∈ A).

Since η(I)
` is constant over each cell of A(I)

` by construction, the above covariance writes

Cov[η
(J)
` (X(J)), η

(I)
` (X(I))] =

∑
A∈A(I)

`

η
(I)
` (A)E[η

(J)
` (X(J))|X(I) ∈ A]P(X(I) ∈ A),

with η(I)
` (A) the value of η(I)

` (x) for x ∈ A. Finally, using the discretized orthogonality constraints,
we conclude that η(J)

` and η(I)
` are orthogonal, i.e., Cov[η

(J)
` (X(J)), η

(I)
` (X(I))] = 0.

For the second part of Theorem 3, we consider a given point x(I)
0 ∈ [0, 1]|I|. The cell of A(I)

`

containing x(I)
0 is denoted by A(I). Since η(J)

` is constant over each cell A of A(J)
` , we write η(J)

` (A)
this constant value.

Then, we can write

E[η
(J)
` (X(J))|X(I) = x(I)

0] =
∑

A∈A(J\I)
`

η
(J)
` (A×A(I))P(X(J\I) ∈ A|X(I) = x(I)

0),

E[η
(J)
` (X(J))|X(I) ∈ A(I)] =

∑
A∈A(J\I)

`

η
(J)
` (A×A(I))P(X(J\I) ∈ A|X(I) ∈ A(I)).

According to Theorem 2, the second equation is null, since η(J)
` satisfy the hierarchical orthogonality

constraints. Therefore, we can write

E[η
(J)
` (X(J))|X(I) = x(I)

0] =
∑

A∈A(J\I)
`

η
(J)
` (A×A(I))

[
P(X(J\I) ∈ A|X(I) = x(I)

0)

− P(X(J\I) ∈ A|X(I) ∈ A(I))
]
,

24

and get

E[η
(J)
` (X(J))|X(I) = x(I)

0] =
∑

A∈A(J\I)
`

η
(J)
` (A×A(I))

P(X(I) ∈ A(I))

[
P(X(J\I) ∈ A|X(I) = x(I)

0)P(X(I) ∈ A(I))

− P(X(J) ∈ A×A(I))
]
. (2)

Next, we expand the involved probabilities using the density f (J) of the vector X(J) to obtain

P(X(J) ∈ A×A(I)) =

∫
A×A(I)

f (J)(x(J))dx(J),

P(X(I) ∈ A(I)) =

∫
A(I)×[0,1]|J\I|

f (J)(x(J))dx(J),

P(X(J\I) ∈ A|X(I) = x(I)
0) =

∫
A
f (J)(x(J\I), x(I)

0)dx(J\I)∫
[0,1]|J\I|

f (J)(x(J\I), x(I)
0)dx(J\I)

.

We recall that the maximum variability of the density f over a cell of the tree partitions is defined by

∆A,f = sup
A∈∪`A`

sup
x,x′∈A

|f(x)− f(x′)|.

Since f (J) is a marginal density of f , we have ∆A,f(J) ≤ ∆A,f . Additionally, f is bounded by
positive constants c1, c2 > 0 according to Assumption 1, i.e c1 ≤ f (J)(x(J)) ≤ c2. Then, we can
bound the above integrals as follows. First,

1∫
[0,1]|J\I|

f (J)(x(J\I), x(I)
0)dx(J\I)

≤ 1/c1,

and

P(X(I) ∈ A(I)) =

∫
A(I)×[0,1]|J\I|

f (J)(x(J))dx(J) ≤ c2Vol(A(I)).

Then, we separate the variables x(J\I) and x(I) in the integral of the right hand side of the following
line to get

Vol(A(I))

∫
A

f (J)(x(J\I), x(I)
0)dx(J\I) =

∫
A×A(I)

f (J)(x(J\I), x(I)
0)dx(J)

≤
∫
A×A(I)

f (J)(x(J))dx(J) +

∫
A×A(I)

|f (J)(x(J\I), x(I)
0)− f (J)(x(J))|dx(J)

≤
∫
A×A(I)

f (J)(x(J))dx(J) + ∆A,fVol(A×A(I))

≤ P(X(J) ∈ A×A(I)) + ∆A,fVol(A×A(I)).

Similarly, we also have

Vol(A(I))

∫
[0,1]|J\I|

f (J)(x(J\I), x(I)
0)dx(J\I) =

∑
A∈A(J\I)

`

∫
A×A(I)

f (J)(x(J\I), x(I)
0)dx(J)

≤
∑

A∈A(J\I)
`

∫
A×A(I)

f (J)(x(J))dx(J) + ∆A,fVol(A×A(I))

≤
∫
A(I)×[0,1]|J\I|

f (J)(x(J))dx(J) + ∆A,fVol(A(I))

≤ P(X(I) ∈ A(I)) + ∆A,fVol(A(I)).

25

Overall, we obtain∣∣∣P(X(J\I) ∈ A|X(I) = x(I)
0)P(X(I) ∈ A(I))− P(X(J) ∈ A×A(I))

∣∣∣
=

1∫
[0,1]|J\I|

f (J)(x(J\I), x(I)
0)dx(J\I)

∣∣∣ ∫
A

f (J)(x(J\I), x(I)
0)dx(J\I)P(X(I) ∈ A(I))

− P(X(J) ∈ A×A(I))

∫
[0,1]|J\I|

f (J)(x(J\I), x(I)
0)dx(J\I)

∣∣∣
≤ 1

c1Vol(A(I))

∣∣∣[P(X(J) ∈ A×A(I)) + ∆A,fVol(A×A(I))
]
P(X(I) ∈ A(I))

− P(X(J) ∈ A×A(I))
[
P(X(I) ∈ A(I)) + ∆A,fVol(A(I))

]∣∣∣
≤ 1

c1Vol(A(I))

∣∣∣∆A,fVol(A×A(I))P(X(I) ∈ A(I))− P(X(J) ∈ A×A(I))∆A,fVol(A(I))
∣∣∣

≤∆A,f
c1

∣∣∣Vol(A)P(X(I) ∈ A(I))− P(X(J) ∈ A×A(I))
∣∣∣

≤c2 − c1
c1

Vol(A×A(I))∆A,f ,

where the last step follows from c1Vol(A(I)) ≤ P(X(I) ∈ A(I)) ≤ c2Vol(A(I)). Finally, using
Equation (2),

E[η
(J)
` (X(J))|X(I) = x(I)

0] ≤
∑

A∈A(J\I)
`

|η(J)
` (A×A(I))|
c1Vol(A(I))

c2 − c1
c1

Vol(A×A(I))∆A,f

≤ ∆A,f
c2 − c1
c21

∑
A∈A(J\I)

`

|η(J)
` (A×A(I))|Vol(A)

≤ ∆A,f
c2 − c1
c21

E[|η(J)
` (U)| | U(I) ∈ A(I)],

where U is a uniform variable on [0, 1]|J|. Therefore, we have∣∣E[η
(J)
` (X(J))|X(I)]

∣∣ ≤ c2 − c1
c21

‖η(J)
` ‖∞∆A,f .

We now conclude the proof by the analysis of the targeted covariance using Jensen’s inequality, the
triangle inequality, and the above inequality,∣∣Cov[η(J)(X(J)), η(I)(X(I))]

∣∣ =
∣∣E[η(J)(X(J))η(I)(X(I))]

∣∣ =
∣∣E[E[η(J)(X(J))η(I)(X(I))|X(I)]]

∣∣
=
∣∣E[η(I)(X(I))E[η(J)(X(J))|X(I)]]

∣∣
≤ ‖η(I)‖∞

M∑
`=1

∣∣E[η
(J)
` (X(J))|X(I)]

∣∣
≤ c2 − c1

c21
‖η(I)‖∞

(M∑
`=1

‖η(J)
` ‖∞

)
∆A,f ,

which concludes the proof.

C.3 Proof of Theorem 4

Proof of Theorem 4. We consider a pair of variable sets I, I ′ ∈ Pp and the prediction function of
a tree ensemble T =

∑
` T`, such that T` has a decomposition T`(X) = g`(X(I)) + h`(X(I′)) for

a pair of functions g`, h`. Since T` is piecewise constant over A`, we can average the functions
g` and h` over each cell of A`, and the decomposition of T` still holds. Therefore, we have

26

T`(X) = g`(X(I)) + h`(X(I′)), with g` and h` two piecewise constant functions over A`. Now, we
can apply the tree HFD of Theorem 2 to the functions g` and h`, to get

g`(X(I)) =
∑
J⊂I

η
(J)
` (X(J)),

h`(X(I)) =
∑
J⊂I′

η
′(J)
` (X(J)),

where {η(J)
` }J⊂I and {η′(J)

` }J⊂I′ are piecewise constant functions over the Cartesian tree partitions
of T , and satisfy the orthogonality constraints. By construction, we have

T`(X) =
∑
J⊂I

η
(J)
` (X(J)) +

∑
J⊂I′

η
′(J)
` (X(J)),

which defines the tree HFD of T`(X) using the uniqueness property of the tree HFD. In particular, for
J ⊂ I ∩ I ′, the tree HFD component associated with J is given by η(J)

` + η
′(J)
` . Then, we conclude

that for all J ∈ Pp such that J 6⊂ I and J 6⊂ I ′, the tree HFD component η(J) of T satisfies almost
surely

η(J)(X(J)) = 0.

C.4 Proof of Theorem 5

Proof of Theorem 5. Let ` ∈ TM , {η(J)
` }J∈Pp be the tree HFD defined in Theorem 2, and

{φ(J)
` }J∈Pp the Shapley-GAM decomposition induced by the interventional SHAP value function

v(int) (Bordt and von Luxburg, 2023), defined by the marginal expectation as

v(int)(J, x(J)) = E[T`(x(J),X(−J))].

Then, we can define the sets of exogenous variables for the two functional decompositions as

Γh = {j ∈ Vp : ∀J ∈ Pp, η(J∪{j})
` = 0}

Γs = {j ∈ Vp : ∀J ∈ Pp, φ(J∪{j})
` = 0}.

By definition, we have

T`(X) =
∑

J⊂Vp\Γs

φ
(J)
` (X(J)).

We directly apply Theorem 4 to get that for J 6⊂ Vp \ Γs,

η
(J)
` = 0.

Therefore, we have Γs ⊂ Γh.

Alternatively, we also have

T`(X) =
∑

J⊂Vp\Γh

η
(J)
` (X(J)).

First, notice that the interventional value function writes, for A ∈ Pp,

v(int)(A, x(A)) = E[T`(x(A),X(−A))] =
∑

J⊂Vp\Γh

E[η
(J)
` (x(J∩A),X(J\A))].

Then, we consider j ∈ Γh, and I ⊂ Vp such that j ∈ I , and apply Theorem 4 from Bordt and von
Luxburg (2023) to get

φ
(I)
` (x(I)) =

∑
A⊂I

(−1)|I|−|A|v(int)(A, x(A))

=
∑

A⊂I\{j}

(−1)|I|−|A|v(int)(A, x(A))

+
∑

A⊂I\{j}

(−1)|I|−|A∪{j}|
∑

J⊂Vp\Γh

E[η
(J)
` (x(J∩(A∪{j})),X(J\(A∪{j})))].

27

In the last sum of the above equation, we have j ∈ Γh and J ⊂ Vp \Γh. Therefore, J ∩ (A∪ {j}) =
J ∩A and J \ (A ∪ {j}) = J \A. Hence,

φ
(I)
` (x(I)) =

∑
A⊂I\{j}

[
(−1)|I|−|A| + (−1)|I|−|A∪{j}|

]
v(int)(A, x(A))

=
∑

A⊂I\{j}

[
(−1)|I|−|A| − (−1)|I|−|A|

]
v(int)(A, x(A))

= 0.

Consequently, j ∈ Γs, and then Γh ⊂ Γs. Overall, we obtain Γh = Γs.

C.5 Proof of Theorem 6

We first recall the bounds of the distribution f of X in Assumption 1: there exists c1, c2 > 0 such that
for all x ∈ [0, 1]p, c1 ≤ f(x) ≤ c2. For J ∈ Pp, and I ⊂ J with I 6= J , we also denote by f (J|I)(x)

the distribution of X(J) conditional on X(I) = x(I), and use the same notation for all conditional
distributions.
Lemma 3 (Lemma 3.1 from (Stone, 1994)). If Assumption 1 is satisfied, ν is a square-integrable
function defined on [0, 1]p, and {ν(J)}J is the original HFD of ν, then we have

E[ν(X)2] ≥
(

1−
√

1− c1
c22

)2p−1 ∑
J∈Pp

E[ν(J)(X(J))2].

Lemma 4. If Assumption 1 is satisfied, {T (J)
` }J is the original HFD of T`(X), and {η(J)

` }J is the
tree HFD of T`(X), then we have for J ∈ Pp,

η
(J)
` = T

(J)
`

f (J)

f
(J)
`

− δ(J)
` ,

where {δ(J)
` }J is the HFD of δ`(Z`), with

δ` =
∑
J∈Pp

T
(J)
`

(f (J)

f
(J)
`

− 1
)
.

Lemma 5. If Assumption 1 is satisfied, then there exists a constant K > 0 such that for any tree T`,
we have ∑

J∈Pp

E[(η
(J)
` (X(J))− T (J)

` (X(J)))2] ≤ K∆2
A,fE[T`(X)2],

where {T (J)
` }J is the original HFD of T`(X), and {η(J)

` }J is the tree HFD of T`(X).

Proof of Theorem 6. We first split the MSE of interest using the original HFD {T (J)}J of T (X), as
follows

E[(η(J)(X(J))−m(J)(X(J)))2] = E[([η(J)(X(J))− T (J)(X(J))] + [T (J)(X(J))−m(J)(X(J))])2].

Recall that for two real numbers a, b, we have (a+ b)2 ≤ 2(a2 + b2). Hence, we have

E[(η(J)(X(J))−m(J)(X(J)))2] ≤ 2E[(η(J)(X(J))− T (J)(X(J)))2]

+ 2E[(T (J)(X(J))−m(J)(X(J)))2].

The core of the proof is thus to bound the two terms of the right hand side of the above inequality.
We first focus on E[(η(J)(X(J))− T (J)(X(J)))2]. If we denote by {T (J)

` }J the original HFD of each
tree T`(X), the HFD uniqueness implies that

T (J)(X(J)) =

M∑
`=1

T
(J)
` (X(J)).

28

Consequently,

E[(η(J)(X(J))− T (J)(X(J)))2] = E
[(M∑

`=1

η
(J)
` (X(J))− T (J)

` (X(J))
)2]

= E
[M∑
`,`′=1

[η
(J)
` (X(J))− T (J)

` (X(J))][η
(J)
`′ (X(J))− T (J)

`′ (X(J))]
]

≤
M∑

`,`′=1

√
E[(η

(J)
` (X(J))− T (J)

` (X(J)))2]E[(η
(J)
`′ (X(J))− T (J)

`′ (X(J)))2],

using Cauchy-Schwartz inequality at the last step. Finally, we apply Lemma 5 to obtain that there
exists a constant K2 > 0 such that

E[(η(J)(X(J))− T (J)(X(J)))2] ≤ K2

2
∆2
A,f

(M∑
`=1

√
E[T`(X)2]

)2

.

For the second term E[(T (J)(X(J))−m(J)(X(J)))2], we use again the HFD uniqueness to get that
the original HFD of T (X)−m(X) is given by {T (J)(X(J))−m(J)(X(J))}J . We apply Lemma 3 to
T (X)−m(X) to get that there exists a constant K1 > 0 such that

E[(T (J)(X(J))−m(J)(X(J)))2] ≤ K1

2
E[(m(X)− T (X))2].

We combine the two last inequalities to obtain the final result, that is

E[(η(J)(X(J))−m(J)(X(J)))2] ≤ K1E[(m(X)− T (X))2] +K2∆2
A,f

(M∑
`=1

√
E[T`(X)2]

)2

.

Proof of Lemma 4. By construction, we have∑
J∈Pp

η
(J)
` = T`.

Therefore, we simply need to show that the orthogonality constraints of the tree HFD are satisfied by
{η(J)
` }J to obtain the final result using the uniqueness of the tree HFD. Hence, we write for I ⊂ J

with I 6= J ,

E[η
(J)
` (Z(J)

`)|Z(I)
`] = E

[
T

(J)
` (Z(J)

`)
f (J)(Z(J)

`)

f
(J)
` (Z(J)

`)
− δ(J)

` (Z(J)
`)|Z(I)

`

]
= E

[
T

(J)
` (Z(J)

`)
f (J)(Z(J)

`)

f
(J)
` (Z(J)

`)
|Z(I)
`

]
,

since δ(J)
` (Z(J)

`) satisfies the orthogonality constraints by definition. Next, recall that conditional
on Z(I)

` , Z(J)
` has density f (J|I)

` , and X(J) conditional on X(I), has density f (J|I), which are both
positive. Therefore, for x(I) ∈ [0, 1]|I| we have

E
[
T

(J)
` (Z(J)

`)
f (J)(Z(J)

`)

f
(J)
` (Z(J)

`)
|Z(I)
` = x(I)

]
= E

[
T

(J)
` (X(J))

f (J)(X(J))

f
(J)
` (X(J))

f
(J|I)
` (X(J))

f (J|I)(X(J))
|X(I) = x(I)

]
=

∫
f (J)(x)dx(J\I)∫
f

(J)
` (x)dx(J\I)

E
[
T

(J)
` (X(J))|X(I) = x(I)

]
= 0,

since T (J)
` satisfies the orthogonality constraints of the original HFD.

29

Proof of Lemma 5. We consider that Assumption 1 is satisfied, and we apply Lemma 4 to get that

η
(J)
` = T

(J)
`

f (J)

f
(J)
`

− δ(J)
` ,

where {T (J)
` }J is the original HFD of T`(X), {η(J)

` }J is the tree HFD of T`(X), and {δ(J)
` }J is the

HFD of δ`(Z`), with

δ` =
∑
J∈Pp

T
(J)
`

(f (J)

f
(J)
`

− 1
)
.

Hence, we have

E[(η
(J)
` (X(J))− T (J)

` (X(J)))2] =E
[(
T

(J)
` (X(J))

(f (J)(X(J))

f
(J)
` (X(J))

− 1
)
− δ(J)

` (X(J))
)2]

≤E
[
T

(J)
` (X(J))2

(f (J)(X(J))

f
(J)
` (X(J))

− 1
)2]

+ E
[(
δ

(J)
` (X(J))

)2]
+ 2E

[∣∣∣T (J)
` (X(J))

(f (J)(X(J))

f
(J)
` (X(J))

− 1
)
δ

(J)
` (X(J))

∣∣∣].
We apply Cauchy-Schwartz inequality, and obtain

E[(η
(J)
` (X(J))−T (J)

` (X(J)))2]

≤

√√√√E
[
T

(J)
` (X(J))2

(f (J)(X(J))

f
(J)
` (X(J))

− 1
)2]

+

√
E
[(
δ

(J)
` (X(J))

)2]2

.

First, we bound E
[
T

(J)
` (X(J))2

(
f(J)(X(J))

f
(J)
` (X(J))

− 1
)2]

. We define g(J)
` = f (J) − f (J)

` , and then,

∣∣∣f (J)(x(J))

f
(J)
` (x(J))

− 1
∣∣∣ ≤ ∣∣∣ g(J)

` (x(J))

f
(J)
` (x(J))

∣∣∣.
Using Assumption 1, which also implies that c1 ≤ f

(J)
` (x(J)) ≤ c2, and |g(J)

` (x(J))| < ∆A,f by
construction, we have

g
(J)
` (x(J))

f
(J)
` (x(J))

≤ ∆A,f
c1

,

and consequently,

E
[
T

(J)
` (X(J))2

(f (J)(X(J))

f
(J)
` (X(J))

− 1
)2]
≤

∆2
A,f

c21
E[(T

(J)
` (X(J)))2].

Next, we use Lemma 3, and get∑
J∈Pp

E
[
T

(J)
` (X(J))2

(f (J)(X(J))

f
(J)
` (X(J))

− 1
)2]
≤ ∆2

A,f
K1

c21
E[T`(X)2],

with K1 =
(
1−

√
1− c1

c22

)−2p+1
. Similarly, we use Lemma 3 again to get∑

J∈Pp

E[δ
(J)
` (Z(J)

`)2] ≤ ∆2
A,f

K1

c21
E[(

∑
J∈Pp

|T (J)
` |)

2].

Since

E[δ
(J)
` (Z(J)

`)2] = E
[
δ

(J)
` (X(J))2 f

(J)
` (X(J))

f (J)(X(J))

]
≥ c1
c2

E[δ
(J)
` (X(J))2],

30

we get ∑
J∈Pp

E[δ
(J)
` (X(J))2] ≤ ∆2

A,f
c2
c31
K1E[(

∑
J∈Pp

|T (J)
` (X(J))|)2].

Then, using Cauchy-Schwartz inequality, notice that

E
[(∑
J∈Pp

|T (J)
` (X(J))|

)2]
=

∑
I,J∈Pp

E
[
|T (J)
` (X(J))||T (I)

` (X(I))|
]

≤
∑

I,J∈Pp

√
E
[
T

(J)
` (X(J))2]E

[
T

(I)
` (X(I))2

]
≤ 22pK1E[T`(X)2].

We finally obtain ∑
J∈Pp

E[δ
(J)
` (X(J))2] ≤ ∆2

A,f
c2
c31

22pK1E[T`(X)2].

Overall, we combine the previous inequalities to state that

E[(η
(J)
` (X(J))− T (J)

` (X(J)))2] ≤

(√
∆2
A,f

K1

c21
E[T`(X)2] +

√
∆2
A,f

c2
c31

22pK1E[T`(X)2]

)2

≤ ∆2
A,f

K1

c21

(
1 + 2p

√
c2
c1

)2

E[T`(X)2],

which gives the final result.

C.6 Proof of Corollary 1

Proof of Corollary 1. We first apply Theorem 6 to get

E[(η(J)(X(J))−m(J)(X(J)))2] ≤ K1E[(m(X)− T (X))2] +K2E
[
∆2
A,f

(M∑
`=1

√
E[T`(X)2]

)2]
,

where expectations are also taken with respect to the random training data of T of size nT . Now, we
show that both terms of the above inequality converges towards zero when nT grows. For the first
term, we use that T is L2-consistent by assumption, that is E[(m(X)− T (X))2] −→

nT→∞
0. Next, we

analyze the second term. By definition, we have

∆A,f = sup
A∈∪`A`

sup
x,x′∈A

|f(x)− f(x′)|.

Since the distribution f is assumed to be a Lipchitz function with a constant that we write K3 > 0,
we have

∆A,f ≤ K3 sup
A∈∪`A`

sup
x,x′∈A

‖x− x′‖.

Following the notation of Scornet et al. (2015), we define the diameter of a cell A ⊂ [0, 1] by

diam(A) = sup
x,x′∈A

‖x− x′‖,

and obtain

∆A,f ≤ K3 sup
A∈∪`A`

diam(A).

By assumption, the input distribution f is strictly positive on [0, 1]p, each node split leaves at least a
fraction γ > 0 of the observations in each child node, and the optimization of node splits is slightly
randomized to have a positive probability to split with all variables. Then, following (Meinshausen
and Ridgeway, 2006, Lemma 2) and (Bénard et al., 2022, Lemma 5), the number of splits along each

31

direction grows to infinity when nT grows, and the gap between two consecutive splits cannot vanish
too fast. Therefore, we get that in probability,

sup
A∈∪`A`

diam(A) −→
nT→∞

0.

Finally, since all trees are bounded, we obtain that the second term of the initial inequality converges
towards zero, and ultimately

E[(η(J)(X(J))−m(J)(X(J)))2] −→
nT→∞

0.

C.7 Proof of Theorem 7

Lemma 6. If Assumption 1 is satisfied, for β(J)
1 , . . . , β

(J)
KJ
∈ R, we have

Ln
p−→ L?.

Proof of Theorem 7. We consider a tree ` ∈ TM , and that Assumption 1 is satisfied. From Lemma 6,
for β(J)

1 , . . . , β
(J)
KJ
∈ R, we have

Ln
p−→ L?.

Additionally, the set of functions {η(J)
` }J∈Pp is the tree HFD of T`(X), which belongs to the class of

functions parameterized by {β(J)
1 , . . . , β

(J)
KJ
}J , according to Theorem 2. Therefore, L? is a convex

positive function of the parameters {β(J)
1 , . . . , β

(J)
KJ
}J , that has a unique minimum at {η(J)

` }J∈Pp ,
where L? = 0. Since the optimization of Ln is done over a compact set, the pointwise convergence
above implies the uniform convergence of Ln over this compact set. Finally, we can apply Theorem
5.7 from Van der Vaart (2000) to conclude that for all J ∈ Pp, we have

µ
(J)
n,`

p−→ η
(J)
` .

Proof of Lemma 6. Using the law of large numbers, we have

1

n

n∑
i=1

(
T`(Xi)−

∑
J∈Pp

µ
(J)
` (X(J)

i)
)2 p−→ E

[(
T`(X)−

∑
J∈Pp

µ
(J)
` (X(J))

)2]
,

1

n

n∑
i=1

1X(J)
i ∈A

(J)

k′
⋂

X(J\j)
i ∈A(J\j)

k

p−→ P(X(J) ∈ A(J)
k′ ∩ X(J\j) ∈ A(J\j)

k),

1

n

n∑
i=1

1X(J\j)
i ∈A(J\j)

k

p−→ P(X(J\j) ∈ A(J\j)
k).

Then, we combine these limits to state the convergence of the empirical loss Ln as follows,

Ln
p−→ E

[(
T`(X)−

∑
J∈Pp

µ
(J)
` (X(J))

)2]
+
∑
J∈Pp

∑
j∈J

KJ\j∑
k=1

[√
P(X(J\j) ∈ A(J\j)

k)

KJ∑
k′=1

β
(J)
k′ P(X(J) ∈ A(J)

k′ |X
(J\j) ∈ A(J\j)

k)
]2

=E
[(
T`(X)−

∑
J∈Pp

µ
(J)
` (X(J))

)2]
+
∑
J∈Pp

∑
j∈J

KJ\j∑
k=1

E[µ
(J)
` (X(J))|X(J\j) ∈ A(J\j)

k]2P(X(J\j) ∈ A(J\j)
k),

and finally, we obtain that

Ln
p−→E

[(
T`(X)−

∑
J∈Pp

µ
(J)
` (X(J))

)2]
+
∑
J∈Pp

∑
j∈J

∑
A∈A(J\j)

E[µ
(J)
` (X(J))1{X(J\j)∈A}]

2

= L?.

32

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Sections 2 and 3 for the theoretical claims and introduced algorithm, and
Section 4 for the experimental claims.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Sections 2 and 3 carefully analyze the theoretical properties of the introduced
algorithm, in particular the approximation with respect to the target HFD. Section 4 provides
experiments with the errors of the introduced algorithm in practical cases. The limitation
paragraph in the conclusion highlights the main limitations of the introduced algorithm.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

33

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: See Assumptions defined in Section 2, and the proofs in the Supplementary
Material.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The introduced algorithm is fully described in Section 3, and we provided all
details about the experiments in Section 4 and the Supplementary Material.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

34

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the code with instructions to reproduce the experiments of the
article. Real datasets are available online on the UCI repository (Kelly et al., 2024).
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 4 of the article and Section B of the Supplementary Material.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Experiments with simulated data are run multiple times to compute the standard
deviations of all metrics, which are displayed in Tables 4 and 5 for example. Notice that for
Tables 1 and 6, all standard deviations are small with respect to the associated metric values,
and are therefore omitted for the sake of clarity.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

35

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section B of the Supplementary Material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conducted this work following the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The article states that black-box models, such as tree ensembles, may have
negative societal impacts in critical domains (e.g., healthcare or industry). The article is
expected to have a positive societal impact, since it introduces a new XAI algorithm, in
order to improve explainability of machine learning models for a safe use in these critical
domains.

36

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The article deals with XAI methods for tree ensembles, which do not have a
high risk of misuse. Experiments are conducted with existing open datasets.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See Section B of the Supplementary Material.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

37

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce the treeHFD software package, which has a specific documenta-
tion provided in the package.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The article does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The article does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

38

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research work was conducted without using LLMs.
Guidelines:
• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)

for what should or should not be described.

39

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Hoeffding functional decomposition of tree ensembles
	Mathematical definition
	Theoretical properties

	TreeHFD algorithm
	Experiments
	Conclusion
	Categorical and discrete variables
	Additional experiments and settings
	Competitors
	Analytical case
	Real data cases

	Proofs of theorems
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Corollary 1
	Proof of Theorem 7

