
Improving Robustness Against Adversarial Attacks
with Deeply Quantized Neural Networks

Ferheen Ayaz‡, Idris Zakariyya∗, José Cano∗,
Sye Loong Keoh∗, Jeremy Singer∗, Danilo Pau†, Mounia Kharbouche-Harrari†

∗University of Glasgow, UK †STMicroelectronics ‡University of Sussex, UK

Abstract—Reducing the memory footprint of Machine Learning
(ML) models, particularly Deep Neural Networks (DNNs), is
essential to enable their deployment into resource-constrained
tiny devices. However, a disadvantage of DNN models is their
vulnerability to adversarial attacks, as they can be fooled by
adding slight perturbations to the inputs. Therefore, the challenge
is how to create accurate, robust, and tiny DNN models deployable
on resource-constrained embedded devices. This paper reports the
results of devising a tiny DNN model, robust to adversarial black
and white box attacks, trained with an automatic quantization-
aware training framework, i.e. QKeras, with deep quantization loss
accounted in the learning loop, thereby making the designed DNNs
more accurate for deployment on tiny devices. We investigated
how QKeras and an adversarial robustness technique, Jacobian
Regularization (JR), can provide a co-optimization strategy by
exploiting the DNN topology and the per layer JR approach
to produce robust yet tiny deeply quantized DNN models. As
a result, a new DNN model implementing this co-optimization
strategy was conceived, developed and tested on three datasets
containing both images and audio inputs, as well as compared
its performance with existing benchmarks against various white-
box and black-box attacks. Experimental results demonstrated
that on average our proposed DNN model resulted in 8.3% and
79.5% higher accuracy than MLCommons/Tiny benchmarks in
the presence of white-box and black-box attacks on the CIFAR-10
image dataset and a subset of the Google Speech Commands
audio dataset respectively. It was also 6.5% more accurate in the
presence of black-box attacks on the SVHN image dataset.

Index Terms—Deep Neural Networks (DNNs), QKeras, Jacobian
Regularization (JR), Adversarial Attacks.

I. INTRODUCTION

Deep Neural Networks (DNNs) demonstrate remarkable per-
formance in various tasks such as natural language processing,
cybersecurity, computer vision, intelligent applications and
many more [1]. However, DNN models are resource intensive
with large memory footprint and computational requirements.
Moreover, the increasing requirements of edge intelligence have
given rise to new optimization strategies in Machine Learning
(ML) which strive to reach optimal accuracy while shrinking
the DNN model architectures at the same time [2]. The specific
sub-discipline of ML that generates constrained ML workloads
to be deployed on a target edge device, such as Microcontroller
Units (MCUs) and sensors, is called Deeply Quantized Machine
Learning (DQML). However, DNN models are often vulnerable
to adversarial attacks causing changes to the input imperceptible
to the human eye [3]. These vulnerabilities are critical, as

This work was done when Ferheen Ayaz was with University of Glasgow.

they restrict the deployability of DNN models as an effective
solution for real world applications such as autonomous cars,
smart cities, intelligent applications and responsive Artificial
Intelligence (AI) [4]. Two widely used classes of adversarial
attacks are white-box and black-box attacks. In white-box, the
attacker has full knowledge of the DNN model, its structure and
parameters, whereas in the black-box paradigm, the attacker
is unaware of the used DNN model. In both scenarios, these
attacks aim to cause deliberate mis-classifications or to disrupt
the model performance. As such, there is an urgent need of
balancing the trade-off between reducing the memory footprint
of DNN models for tiny embedded devices while making them
robust against adversarial attacks.

DQML offers a promise in terms on executing very low
bit depth ML models on resource-constrained MCUs with
µW power and a memory of only a few MBytes [5]. Various
frameworks such as TensorFlow Lite (TFLite) [6] for post-
training optimization and Larq [7], Brevitas [8] and QKeras [9]
for deep quantization-aware training, are used to optimize ML
models resources. Most of these frameworks use quantization
to optimize the utilized ML models based on data precision.

QKeras is designed to offer quantization as low as a single-
bit, and at the same time retaining the model accuracy through
introducing quantization error in the form of random noise
and learning to overcome it during training [10]. It is based
on drop-in replacement functions for Keras, thus providing the
freedom to add a quantizer and choose quantization bit-depth
separately for activations, biases and weights per layer. This is
useful for efficient training of quantized DNN models. Among
various deep quantization strategies offered by QKeras, there
is stochastic quantization [11], which instead of quantizing all
elements (parameters) of a DNN model, quantizes a portion of
the elements with a stochastic probability inversely proportional
to the quantization error, while keeping the other portion
unchanged in full-precision (FP). The quantized portion is
gradually increased at each iteration until potentially the entire
DNN is quantized. This procedure greatly and incrementally
compensates the quantization error and thus yields better
accuracy for very low-bit-depth DNN.

In parallel, exploring the robustness of DNN models is
critical to be integrated within DQML. In fact, enhancing the
security while enabling the model’s deployment in resource-
constrained MCUs is a key challenge. Various defensive
techniques and models for DNNs are present in the literature

20
23

 In
te

rn
at

io
na

l J
oi

nt
 C

on
fe

re
nc

e
on

 N
eu

ra
l N

et
w

or
ks

 (I
JC

N
N

) |
 9

78
-1

-6
65

4-
88

67
-9

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IJC
N

N
54

54
0.

20
23

.1
01

91
42

9

Authorized licensed use limited to: City St Georges University of London. Downloaded on June 12,2025 at 18:15:09 UTC from IEEE Xplore. Restrictions apply.

to provide robustness against adversarial attacks [12]. However,
such defensive mechanisms may result in an increased model
size or accuracy drop for clean sets. Considering DQML
models, which require extensive learning computation to
reach optimal size and accuracy, with possible vulnerability
to adversarial attacks, any addition to the model size or
drop in accuracy can affect the deployment performance. In
view of that, recent studies [13], [14] have demonstrated that
quantization can reduce computational requirements while
granting robustness to a certain level of white-box adversarial
attacks.

Motivated by such an observation, this paper investigates
the following hypothesis: Can a per-layer hybrid quantization
scheme inherit robustness against white-box and black-box
attacks while maintaining the trade-off between clean set
accuracy performance and limited-resources requirements of
tiny embedded devices? We propose a DQML model that is
deployable on tiny devices and highly robust to adversarial
attacks, trained using the QKeras framework. Our theoretical in-
vestigation shows that QKeras utilizes Jacobian Regularization
(JR) as an adversarial attack defensive mechanism. Based on
this, we use QKeras to propose a Stochastic Ternary Quantized
(STQ) DNN model with accuracy performance suitable for
deployment in tiny MCUs, and potentially for image and audio
in the same sensor package embodiment. Its ability to provide
robustness against various adversarial attacks has been proven.
The contributions of this paper are as follows:

• Development of an STQ-based model that is less complex
and can be deployed on MCUs with minimal memory foot-
print requirements and an improved accuracy performance
on clean sets (Section III).

• Analysis of the robustness of the STQ-based model
according to its similarity with the JR technique, and
demonstration of its resilience against various white and
black box adversarial attacks (Sections III and IV).

• A comprehensive comparison of the resilience of the
STQ-based model to industry endorsed MLCommons/Tiny
benchmarks for both image and audio inputs while
investigating its performance with K-fold cross validation
(Section IV).

II. BACKGROUND AND RELATED WORK

A. Adversarial Attacks Against Machine Learning Models

Security considerations are important for sensitive applica-
tions like intelligent transportation systems, healthcare and
financial systems which utilize image and voice recognition
AI-based models [15]. A disadvantage of ML and AI models
developed for such tasks is that they can be vulnerable to
attacks which can compromise their integrity, confidentiality
and privacy in real world applications. In particular, adversarial
attacks involve adding a small perturbation to the input to
maximize the loss function of a model under a constrainted
norm [16]. Equation (1) expresses such a procedure of
introducing a perturbation into an input data, where: L(θ, x′, y)
is the loss function, θ denotes the model parameters, x′ is

the perturbed input, y is the model output, δ denotes the
perturbation and p is the perturbation norm [17]. This work
considers the two types of attacks defined in Section I, i.e.
white-box and black-box attacks.

A common adversarial attack technique is the Fast Gradient
Sign Method (FGSM) [18]. This is a white-box attack which
uses a single-step iteration to estimate the gradient of the model
training loss function based on the inputs. An FGSM [18]
attack procedure is expressed in (2), where ∆ represents the
gradient and ϵ denotes a small constant value that restricts the
perturbation. A variation of FGSM is the Projected Gradient
Descent (PGD) [18]. This is a more computationally expensive
multi-step threat model which runs several iterations to find
an adversarial input with the lowest possible δ, as expressed
in (3), where i is the iteration index, α denotes the gradient
step size and S represents the perturbation set.

max
||δ||p

L(θ, x′, y) (1)

x′ = x+ ϵ · sign(∆xL(θ, x, y)) (2)

x′
i+1 =

∏
x+S

(x+ α · sign(∆xL(θ, x, y))) (3)

An efficient black-box attack is the Square attack [19],
which is based on a random search optimization technique
with multiple iterations. In each iteration, it changes a small
fraction of the input shaped into square at random positions.
Similar to gradient-based optimizations, it also relies on step-
size reduction, where the size refers to the dimensions of the
square [19]. Another form of black-box attack is the Boundary
attack [20], where the queries are used to estimate the decision
boundaries of the output classes. Starting with a clean image,
gradient estimation is performed with queries, moving along
the estimated direction in each iteration and projecting a new
perturbation until the model decision is changed [20].

Overcoming the white-box and black-box attack methods
requires a suitable defensive mechanism. Therefore, it is
important to enhance the model performance against different
attacks variations to ease its deployment.

B. Robustness against Adversarial Attacks
Various defense methods have been proposed to increase

the robustness of DNNs against adversarial attacks [21]. Some
strategies aim at detecting adversarial inputs [22] or performing
transformations to remove perturbations [23] [24] through an
additional network or module. Adversarial training introduces
adversarial inputs during the model’s learning so that it learns
not to misinterpret them [25]. However, these approaches do not
guarantee robustness against attacks which are not introduced to
the model during training, as they are not learned by the model.
Other methods such as [26] decrease the model’s sensitivity to
small perturbations by adding a regularization term in the loss
function. Equation (4) expresses this joint loss function, where
Lreg denotes the regularization term and λ is a hyper-parameter
used to allow the adjustment between the regularization and
the actual loss.

Ljoint = L(θ, x, y) + λLreg, (4)

Authorized licensed use limited to: City St Georges University of London. Downloaded on June 12,2025 at 18:15:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Transformation of input xi into output zL by DNN.

C. Jacobian Regularization

Jacobian Regularization (JR) is a technique to provide
adversarial robustness, where the input gradient regularization
normalizes the gradient of the cross-entropy loss, such that
Lreg =

∑K
k=1 ||∆xz

L
k (xi)||22 = ||J(xi)||2F and ||J(xi)||2F is

the Frobenius norm of the model’s Jacobian matrix evaluated
on the input data [27]. To reduce computational complexity,
per-layer JR is proposed in [28].

To demonstrate the robustness of per-layer JR, let’s consider
a D-dimensional network input X consisting of N training
samples. As shown in Figure 1, the network contains l =
1, 2, ..., L layers. zl denotes the output at layer l and zkl is
the output of the kth neuron of the lth layer. Consider the
softmax operation at the output of the network; the predicted
final output for computing the top-1 accuracy for an input xi is
f(xi) = argmax{z1L, z2L, .., zKL }, where K is the dimension of
the output vector. The Jacobian matrix of a DNN is computed
at Lth layer, i.e. JL(xi) = ∇xzL(xi), and is defined as:

JL(xi) =



∂z1
Lx1

∂x1

∂z1
Lx1

∂x2
...

∂z1
Lx1

∂xD
∂z2

Lx2

∂x1

∂z2
Lx2

∂x2
...

∂z2
Lx2

∂xD

. . . .

. . . .
∂zK

L xK

∂x1

∂zK
L xK

∂x2
...

∂zK
L xK

∂xD

 ϵRK×D. (5)

In [27], the JR term for an input xi is defined as

||J(xi)||2F =

D∑
d=1

K∑
k=1

(∂

∂xd
zkL(xi)

)2

=

K∑
k=1

||∇xz
k
L(xi)||22, (6)

The standard loss of the training is added with the regularization
term in (6) to improve the robustness of the DNN. It is proposed
as a post-training, in which the network is re-trained for fewer
iterations with the new loss function [27]. As iϵ{1, 2, ..., N},
JR requires the computation of N gradients, whereas in per-
layer JR, the Jacobian matrix is computed on only one random
i at each layer [28]. The basic idea is to reduce the Frobenius
norm of the Jacobian matrix which results in the expansion
of the classification margin, i.e. the distance between an input
and the decision boundary induced by a network classifier.

D. Adversarial Robustness of Quantized Models

Model quantization techniques are widely used in various
fields [29]. In [30], it is used for anomaly detection and
thwarting cyber attacks in Internet-of-Things (IoT) networks.
However, the limitation of a quantized model is the shift of
the FP model classification boundary, which may influence
how vulnerable the model is to adversarial perturbations [31].
As such, the authors in [31] investigated the use of a
boundary-based retraining method to reduce adversarial and
quantization losses with the usage of non-linear mapping as

TABLE I: Comparison of adversarially quantized DNN models.

Works [32] [33] [34] [35] Ours

Compress.
technique

Method N bit-width quantization SQ*
on weights ✓ ✓ ✓ ✓ ✓
on activat. ✓ ✓ ✓ ✗ ✓

Inputs
Images ✓ ✓ ✓ ✓ ✓
Audio ✗ ✗ ✗ ✗ ✓

Datasets MNIST
C-10*

MNIST
SVHN

MNIST
C-10*
TinyI*

MNIST
Spiral

C-10*
SVHN
GSC

Attacks

White
box

FGSM
PGD
C&W

FGSM
BIM

C&W
✗ FGSM

FGSM
PGD
C&W

Black
box

✗
SPSA
ZOO

✗ ✗

Square
Boundary

ZOO

Random ✗ ✗
Gaus.
noise

✗ ✗

Memory footprint ✗ ✗ ✗ ✗ 410 KB
*C-10 denotes CIFAR-10 dataset, *TinyI: TinyImageNet, *SQ: Stochastic Quantization

a defensive mechanism against white-box adversarial attacks.
Other previous studies explored the impact of perturbations on
different models. Table I compares some existing works that
investigated the robustness of quantized DNN models. These
studies investigated the resilience of quantized DNN models
without examining their deployment feasibility on resource-
constrained devices, such as MCUs or sensors, and most of
them considered only white-box attacks.

III. PROPOSED DNN MODEL

This section introduces a new robust and less complex DNN
model based on the Stochastic Ternary Quantization (STQ)
approach which is conceived to be deployable on tiny MCUs.

A. Adversarial Robustness in QKeras

QKeras [9] is a DNN framework targeting quantization based
on Keras [36], which provides a productive methodology to
build and train quantized neural networks, either fractional
or integer spanning from 1 to 32 bits. QKeras performs
quantization aware training [37]. The background algorithm to
train neural networks with q bit-width weights, activations and
gradient parameters is conceptualized in [38]. In particular, the
network training in QKeras includes a backward propagation
where parameter gradients are stochastically quantized into
low bit-width numbers. Figure 2 shows the process flow of
training each layer in QKeras. Each training iteration involves
a forward propagation step to quantize weights, find output
and add quantization error into the output of each layer. Then
it includes a backward propagation step where gradients are
stochastically quantized into low bit-width numbers. Finally,
unquantized weights and gradients are updated for the next
iteration. The training process of deeply quantized networks,

Authorized licensed use limited to: City St Georges University of London. Downloaded on June 12,2025 at 18:15:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: QKeras quantization aware training flow.

through QKeras, make them robust to adversarial attacks due
to the two following reasons: i) a noise function is introduced
during quantization of gradients to overcome quantization error
during training, which makes a DNN robust to noise and
perturbation effect; ii) QKeras involves JR features that are
explained below.

Theorem: QKeras introduces per-layer JR and therefore
increases the robustness of DNNs against adversarial attacks.

Proof: Considering the per-layer structure of DNNs, as
shown in Figure 1, the output zL at the last layer L is

zL = ϕL((ϕL−1(...ϕ1(xi, θ1), ...θL−1), θL)), (7)

where ϕl(., θl) represents the function of the lth layer, θl
denotes the model parameters at layer l, and z0 = xi [28]. The
Jacobian matrix of the lth layer is defined as

Jl(zl−1) =
dzl

dzl−1
, (8)

which is back-propagated during QKeras training (Step 10-16
of Algorithm 1 in [38]). The derivation expressed in (8) is the
Jacobian matrix [28] of the lth block layers. Thus, QKeras
with such patterns incorporates per-layer JR during training.

To prove that per-layer JR enhances adversarial robustness,
consider a clean input xc and an adversarial input xp, both
close to an input xi and all belonging to the same class k.
Since f(xi) = f(xc) ̸= f(xp), then the ℓ2 distance metric of
the input and output of the network, as defined in [27], is

||xp − xi||2
||xc − xi||2

≈ 1, (9)

||zL(xp)− zL(xi)||2
||zL(xc)− zL(xi)||2

> 1, (10)

Combining (9) and (10) and using the Mean Value Theo-
rem [39], it is justified that a lower Frobenius norm makes a
network less sensitive to perturbations, i.e.,

||zL(xp)− zL(xi)||22
||xp − xi||22

≤ ||J(x′)||2F , (11)

where x′ϵ[xi, xp]. Similar to (10), for each layer l, we have

||zl(xp)− zl(xi)||2
||zl(xc)− zl(xi)||2

> 1. (12)

The misclassification error is propagated at each layer, thus

||zl(zl−1(xp))− zl(zl−1(xi))||2
||zl(zl−1(xc))− zl(zl−1(xi))||2

> 1. (13)

This error is back-propagated and then adjusted at each
layer. Therefore the learning optimization process increases
robustness of a DNN model trained by QKeras since it
discriminates the error due to the clean versus the perturbed
input. Consequently, it can be concluded that QKeras deep
quantization-aware process introduces per-layer JR with respect
to the previous layer’s input that is back propagated, as
shown in Figure 2 and Step 11 to 15 of Algorithm 1
in [38]. Although back propagation is intended to quantize
parameters, it ultimately results in more robust networks. Its
learning process increases the training computation time but
its advantage is two-fold, i.e. deep quantization and robustness
to adversarial perturbations.

B. Stochastic Ternary Quantized QKeras Architecture

As the QKeras [37] API serves as an extension of Keras,
initially a 32-bit FP DNN model was built with [36]. The FP
model consists of six convolutional layers including depth-
wise, separable, and three fully connected layers. The former
layers are used for capturing channel-wise correlations and can
provide more features with less parameters, particularly with
image inputs [40]. A multi-branch topology was used with
residual connections to refine the feature maps. For better ac-
curacy, batch normalization [41], ReLU [42] and sigmoid [43]
activation functions are considered in the hidden layers, while
softmax is used in the output layer. The FP model contains
998,824 parameters, of which 997,460 are trainable and 1,364
are non-trainable, as returned by model.summary(). This
DNN model is not integrated with JR by default, and is
therefore vulnerable to adversarial attacks. However, the model
cannot be deployed on tiny MCUs due to its large size (4 MB).
Since our target device is the STM32H7, which has a maximal
RAM memory of 1 MB, we applied the STQ method to this
model using QKeras.

Figure 3 shows the architecture of the STQ model visualized
using Netron [44] to render the DNN graph along with its
hyperparameters. As we can see, the convolutional, depth-wise,
separable layers and activation are appended with Q, which
indicates the quantization version of the FP Keras [36] model,
while the quantized relu represents the quantized activation
function versions of Keras. The proposed STQ model used the
heterogeneous quantization features of QKeras, which supports
independent quantization of each layer in the DNN [10]. This is
useful in reducing the model memory footprint and complexity
with increased performance accuracy.

IV. EVALUATION

This section describes the evaluation procedure of the
proposed STQ model, using image and audio datasets for
clean and adversarial samples. Moreover, it compares the top-1
accuracy of our STQ model with other benchmarks for three
black-box and three white-box adversarial attacks.

Authorized licensed use limited to: City St Georges University of London. Downloaded on June 12,2025 at 18:15:09 UTC from IEEE Xplore. Restrictions apply.

Output

Input

Fig. 3: Proposed architecture of the STQ-based DNN model developed using QKeras.

A. Experimental Setup

1) Datasets and Pre-processing: To evaluate the effective-
ness of the devised STQ model, the following audio and image
benchmark datasets are considered:

• CIFAR-10 consists of 60,000 images belonging to 10
different classes. Each class is divided into 50,000 training
images and 10,000 test images [45].

• Street View House Numbers (SVHN) is a real-world
image dataset obtained from house numbers in Google
Street View images. It consists of 10 classes, one for each
digit. There are 73,257 and 26,032 digits for training and
testing respectively [46].

• Google Speech Commands (GSC) consists of 65,000
one-second long utterances of 30 short words by thousands
of different people. Its 12 classes comprise words of ‘yes’,
‘no’ and digits from ‘zero’ to ‘nine’ that were used in the
experiment. The number of training and test samples are
31,257 and 15,636 respectively [47].

Note that the input image samples were normalized between
0 and 1 pixel and then converted into gray-scale images
before presenting them to the DNN input. This effectively
reduced the computational cost of processing the image samples
while avoiding the use color which are known to be deceitful.
Color processing was out of scope by this work and may be
considered in future extensions of it.

2) Model Training Procedure: Table II lists the training
parameters used to evaluate the full-precision (FP), the proposed
STQ and other tested quantized models. A cosine annealing
Learning Rate (LR) function [48] was used with the Adamax
optimizer for faster convergence. These training parameters

were selected to both fine tune each model and reduce its
computational complexity, while maintaining better or state-of-
the-art performance.

TABLE II: Training parameters for QKeras DNN

Parameter Value
Epochs 1000

Batch Size 64
Learning Rate [1 × 10−6, 1 × 10−3]
LR Scheduler Cosine Annealing

Loss Categorical Cross-entropy
Optimizer Adamax

Since the proposed STQ model targets images and audio
datasets, ResNetv1 and DS-CNN TFLite models were also
used and tested for comparison purposes. This is to inves-
tigate the robustness of the model against industry adopted
MLCommons/Tiny models, which can provide insights into the
performance capability of the proposed model across various
datasets and other benchmarks.

3) Adversarial Attacks Procedure: The proposed STQ model
was evaluated against several adversarial attacks to demonstrate
its resilience and robustness. Three white-box attacks, FGSM
and PGD [18] and Carlini and Wagner (C&W-L2) [49]; and
three black-box attacks, Square [19], Boundary attack [20]
and Zero Order Optimization (Zoo) [50] were considered. The
perturbed data samples for all attacks were generated with the
Adversarial Robustness Toolbox (ART) [51] against the tested
datasets. For FGSM and PGD samples, an ϵ value of 0.6 with
an L1 norm was used. For the Square attack, an ϵ value of 0.6
with infinity norm was used, while for the Boundary attack, an
ϵ value of 0.01 with infinity norm was used. The maximum

Authorized licensed use limited to: City St Georges University of London. Downloaded on June 12,2025 at 18:15:09 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Performance (top-1 accuracy) comparison on
CIFAR-10, SVHN and GSC clean datasets.

Model Flash CIFAR-10 SVHN GSC
(KB) Acc. (%) Acc. (%) Acc. (%)

FP 4496 52.73 67.94 89.50
8-bit 1124 52.46 70.04 85.60
4-bit 527 50.88 64.72 82.06

Ternary 410 77.35 93.11 88.30
STQ 410 80.57 95.53 94.76
2-bit 281 46.35 89.74 81.56

Binary 140 39.03 56.91 77.10
S-Binary 140 52.25 63.72 82.51

number of iterations used for C&W-L2 and Zoo is 10, and a
binary search tree of 10 used for Zoo. The C&W-L2 and Zoo
are used with CIFAR-10 data samples. The number of samples
used to create the perturbations were 100, 240 and 2400 for
CIFAR-10, SVHN and GSC datasets respectively.

To further examine the strength of our STQ model against
FGSM, PGD [18] and Square [19] attacks, they were crafted
under different attack strengths using the 10,000 test samples
of CIFAR-10. The FGSM attacks were crafted for ϵ ranging in:
{0.05, 0.1, 0.15, 0.2, 0.25, 0.3} as denoted in [14]. Regarding
the PGD attack, an iteration t = 7 was used along with a step
size α = 2/255 and an ϵ ranging in: {8/255, 16/255, 32/255}.
For the Square [19] attacks, the first variation consists of infinity
norm, ϵ value of 0.05 and maximum iterations of 10,000. The
second variation of the square attack uses the ℓ2 norm and
maximum iterations of 10,000 as denoted in [52].

4) K-fold Cross Validation: In order to estimate the variance
of the clean and adversarial data samples across each tested
model, K-fold cross validation was used. This technique splits
the entire dataset into K (fold) equal subsets, of which K − 1
subsets are used for training and the remaining one subset is
used for validation [53]. For each fold, the model is fitted on
the training set and predicted on the validation set to estimate
the average performance. For implementation purposes, K =
10 was considered, because a larger number of folds may
increase the predictive performance [54]. In addition, the scikit-
learn [55] ML Python API was used.

B. Quantization schemes

Table III shows the performance (top-1 test accuracy)
comparison between different quantized models against the
tested datasets using clean inputs from each dataset. In addition,
it includes the FLASH MCU memory of each quantized model
computed based on the weight profile obtained using the
qstats QKeras library. As we can see, the STQ-based model
provides the highest accuracy as compared to the FP, Stochastic
Binary (S-Binary), and other quantized models. Moreover,
this model is lighter than the FP, 8-bit and 4-bit models and
can be deployed on MCU devices. These results motivate
further investigations on the robustness of the proposed STQ
model against adversarial attacks, since the FP model does not
have any integrated defensive mechanism, nor better accuracy
performance in classifying clean samples.

TABLE IV: Models robustness (top-1 test accuracy) comparison
for CIFAR-10, SVHN, and GSC datasets.

Dataset Model Clean FGSM PGD Square Boundary
Acc(%) Acc(%) Acc(%) Acc(%) Acc(%)

CIFAR-10
ResNetv1 85.0 65.6 64.1 65.5 82.9

STQ 80.6 80.8 80.8 73.6 83.8

SVHN
ResNetv1 94.8 94.0 94.0 82.1 94.0

STQ 95.5 93.1 93.1 91.7 97.3

GSC
DS-CNN 89.1 15.0 15.4 15.1 14.7

STQ 94.8 94.3 94.2 94.3 95.4

Zoo CWL20

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

FP STQ ResNetv1

Fig. 4: Models robustness (top-1 test accuracy) comparison
against Zoo and C&W-L2 attacks for the CIFAR-10 dataset.

C. Robustness evaluation against adversarial attacks

Table IV shows the robustness (top-1 test accuracy) of our
STQ model against two white-box attacks (FGSM, PGD) and
two black-box attacks (Square, Boundary). The results are
compared with two MLCommons/Tiny benchmarks: ResNetv1
for image classifications trained on CIFAR-10 and SVHN
datasets; and DS-CNN TFLite for Keyword Spotting trained
on GSC dataset [56]. In addition, Figure 4 shows the robustness
against another white-box attack (C&W-L2) and a black-box
attack (Zoo). The results are compared with ResNetv1 for
image classifications trained on the CIFAR-10 dataset.

As we can see in Table IV, there is a drop in accuracy for
the two MLCommons/Tiny benchmarks against all adversarial
attacks, as no defense mechanism is included, which makes
STQ with integrated JR an interesting scheme. On average,
adversarial attacks have caused an accuracy drop of 15.5%,
3.8% and a massive 74.1% with CIFAR-10, SVHN and GSC
datasets respectively. Related to the C&W-L2 and Zoo attacks,
we can see in Figure 4 that the average drop of ResNetv1
for the CIFAR-10 dataset is 10.5%. All the previous accuracy
drops highlight the importance of robust tiny models. Note
that Figure 4 also includes the robustness of our FP model,
which is clearly lower than STQ.

However, the accuracy of the proposed STQ model was
either improved or slightly decreased in the presence of attacks.
The largest accuracy drops of 7.0% and 5.6% were observed
for the Square and C&W-L2 attacks, respectively, and the
CIFAR-10 dataset, although both outperformed the ResNetv1
benchmark. Note that ResNetv1 performs 0.9% better than our
STQ model only in the case of FGSM and PGD perturbations
for the SVHN dataset. Finally, our model outperforms the DS-
CNN model with better accuracy for both clean and adversarial
samples of the GSC dataset, for all the experiments.

Authorized licensed use limited to: City St Georges University of London. Downloaded on June 12,2025 at 18:15:09 UTC from IEEE Xplore. Restrictions apply.

0.05 0.10 0.15 0.20 0.25 0.30
Epsilon ()

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)
FP STQ QUANOS

(a) FGSM

8/255 16/255 32/255
Epsilon ()

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

FP STQ QUANOS

(b) PGD

INF-norm L2-norm
Epsilon ()

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

FP STQ RND-AT

(c) Square

Fig. 5: Robustness comparison of our FP and STQ models against Quanos [14] and RND-AT [52] for various FGSM and PGD
perturbation strengths and variations of Square attacks.

These results demonstrate that the resilience and robustness
of the proposed STQ model against several adversarial attacks
is better than the MLCommons/Tiny benchmarks tested models.
As such, the per-layer JR integration of our STQ model has
an advantage of reducing model complexity and in parallel
enhancing the robustness of the model, producing an effective
performance in comparison with traditional benchmark models.
This is an interesting finding when looking at the requirements
of MCUs, and other tiny devices that are memory and
computational resource-constrained.

Table V shows the variance reports of K-fold cross valida-
tion, where K = 10. The MLC/T column represents ResNetv1
model for CIFAR-10 and SVHN datasets and DS-CNN model
for the GSC dataset. The variance of the benchmark for the
STQ model is lower in many samples of CIFAR-10 and all
instances of the GSC dataset. For the SVHN, the variance of the
ResnetV1 model is lower than that of STQ. Therefore, the K-
fold cross validation results are varying with datasets and types
of attacks, although the overall average results demonstrate
general consistency of STQ, with categorical cross entropy
loss. Particularly for the GSC dataset, at which STQ tends to
outperform the MLC/T with both clean and attacks samples.
These results demonstrate the performance capability of STQ
as a robust and effective model suitable to be deployed into a
resource-constrained environment.

Finally, Figure 5 shows a comparison between our FP and
STQ models against: i) QUANOS [14] baseline model for
various FGSM and PGD perturbation strengths; and ii) RND-
AT [52] for variations of Square [19] attacks. All attacks used
10,000 testing samples of the CIFAR-10 dataset. As we can
see, STQ clearly outperforms QUANOS in detecting FGSM
and PGD attacks for various strengths, and is slightly worse
than RND-AT for Square attacks. We did not find any previous
work for the Boundary attack which we could fairly compare
against, and we leave Zoo and C&W-L2 for future work.

V. CONCLUSION

This paper investigated the robustness of a Deeply Quantized
Machine Learning (DQML) model against various white-
box and black-box adversarial attacks. The deep quantization
facilities of QKeras were considered to create a memory

TABLE V: Variance as a result of K-fold cross validation.

Dataset Procedure STQ MLC/T

CIFAR-10

No Attack 3.04 26.25
FGSM 5.81 6.01
PGD 3.7 3.35

Square 11.78 15.58
Boundary 1.4 5.69

SVHN

No Attack 0.19 0.1
FGSM 4.27 1.99
PGD 1.64 1.40

Square 4.2 5.36
Boundary 0.39 0.45

GSC

No Attack 0.37 0.80
FGSM 1.57 4.45
PGD 3.17 5.45

Square 2.96 3.64
Boundary 0.24 0.34
Average 2.98 5.39

optimized, accurate and adversarially robust quantized model.
This is due to its similarities with a defense technique,
Jacobian Regularization (JR), that was integrated into it. As
demonstrated, the proposed Stochastic Ternary Quantized
(STQ) model, with quantization-aware training procedure
introducing per-layer JR, was more robust than industry adopted
MLCommons/Tiny benchmarks when facing several adversarial
attacks. In fact, the stochastic quantization scheme was effective
for model compression with support for robustness against
adversarial attacks. This robustness was experimentally proved
by observing its accuracy under various adversarial attacks
utilizing two image (CIFAR-10 and SVHN) datasets and
one audio (GSC) dataset. This is relevant in the context of
deploying efficient and effective models in resource-constrained
environments, with limited capabilities. Our initial results
suggest further exploration of other sophisticated white-box
and black-box attacks with different attack strengths. Future
work will further assess the effectiveness of the proposed STQ
QKeras model against new and latest attacks.

ACKNOWLEDGMENT

This work has been supported by the PETRAS National
Centre of Excellence for IoT Systems Cybersecurity, funded
by the UK EPSRC under grant number EP/S035362/1.

Authorized licensed use limited to: City St Georges University of London. Downloaded on June 12,2025 at 18:15:09 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] W. Liu, Z. Wang, X. Liu et al., “A Survey of Deep Neural Network
Architectures and their Applications,” Neurocomputing, vol. 234, pp.
11–26, 2017.

[2] J. Turner, J. Cano, V. Radu et al., “Characterising Across-Stack
Optimisations for Deep Convolutional Neural Networks,” in 2018 IEEE
International Symposium on Workload Characterization (IISWC), 2018.

[3] I. Rosenberg, A. Shabtai, Y. Elovici, and L. Rokach, “Adversarial Machine
Learning Attacks and Defense Methods in the Cyber Security Domain,”
ACM Comput. Surv., vol. 54, no. 5, pp. 108:1–108:36, 2021.

[4] Y. Lin, H. Zhao, X. Ma et al., “Adversarial Attacks in Modulation
Recognition with Convolutional Neural Networks,” IEEE Trans. Reliab.,
vol. 70, no. 1, pp. 389–401, 2020.

[5] B. Sudharsan, J. G. Breslin, M. Tahir et al., “OTA-TinyML: Over the Air
Deployment of TinyML Models and Execution on IoT Devices,” IEEE
Internet Comput., vol. 26, no. 3, pp. 69–78, 2022.

[6] R. David, J. Duke, A. Jain et al., “TensorFlow Lite Micro: Embedded
Machine Learning for TinyML Systems,” in Proc. of the Machine
Learning and Systems, vol. 3, 2021.

[7] L. Geiger and P. Team, “Larq: An Open-Source Library for Training
Binarized Neural Networks,” J. Open Source Softw., vol. 5, no. 45, p.
1746, 2020.

[8] A. Pappalardo, “Xilinx/brevitas,” 2022. [Online]. Available: https:
//doi.org/10.5281/zenodo.3333552

[9] F. Loro, D. Pau, and V. Tomaselli, “A QKeras Neural Network Zoo for
Deeply Quantized Imaging,” in Proc. of the Int. Forum on RTSI, 2021.

[10] L. N. C. Jr, A. Kuusela, S. Li et al., “Automatic Heterogeneous
Quantization of Deep Neural Networks for Low-latency Inference on
the Edge for Particle Detectors,” Internet of Things, 2021.

[11] Y. Dong, R. Ni, J. Li et al., “Learning Accurate Low-Bit Deep Neural
Networks with Stochastic Quantization,” arXiv, 2017.

[12] S. H. Silva and P. Najafirad, “Opportunities and Challenges in Deep
Learning Adversarial Robustness: A Survey,” arXiv, 2020.

[13] J. Lin, C. Gan, and S. Han, “Defensive Quantization: When Efficiency
Meets Robustness,” arXiv, 2019.

[14] P. Panda, “Quanos: Adversarial Noise Sensitivity driven Hybrid Quanti-
zation of Neural Networks,” in Proc. of the ACM/IEEE ISPLED, 2020.

[15] A. K. Sikder, G. Petracca, H. Aksu et al., “A Survey on Sensor-based
Threats and Attacks to Smart Devices and Applications,” IEEE Commun.
Surv. Tutor., vol. 23, no. 2, pp. 1125–1159, 2021.

[16] J. Su, D. V. Vargas, and K. Sakurai, “One Pixel Attack for Fooling Deep
Neural Networks,” IEEE Trans. Evol. Comput., vol. 23, no. 5, 2019.

[17] Y. Jiang, G. Yin, Y. Yuan, and Q. Da, “Project Gradient Descent
Adversarial Attack Against Multisource Remote Sensing Image Scene
Classification,” Security Commun. Netw., vol. 2021, 2021.

[18] T. Huang, V. Menkovski, Y. Pei, and M. Pechenizkiy, “Bridging the
Performance Gap between FGSM and PGD Adversarial Training,” arXiv
preprint arXiv:2011.05157, 2020.

[19] M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein, “Square
Attack: A Query-Efficient Black-Box Adversarial Attack via Random
Search,” in Proc. of the ECCV, 2020.

[20] H. Li, X. Xu, X. Zhang et al., “QEBA: Query-Efficient Boundary-based
Blackbox Attack,” in Proc. of the IEEE/CVF CVPR, June 2020.

[21] H. Xu, Y. Ma, H.-C. Liu et al., “Adversarial Attacks and Defenses in
Images, Graphs, and Text: A Review,” Int. J. Autom. Comput., vol. 17,
pp. 151–178, 2020.

[22] G. Cohen, G. Sapiro, and R. Giryes, “Detecting Adversarial Samples
Using Influence Functions and Nearest Neighbors,” in Proc. of the
IEEE/CVF CVPR, June 2020, pp. 14 453–14 462.

[23] S. Hussain, P. Neekhara, S. Dubnov et al., “WaveGuard: Understanding
and Mitigating Audio Adversarial Examples,” in Proc. of the 30th
USENIX Security Symposium, 2021.

[24] R. Bernhard, P.-A. Moëllic, and J.-M. Dutertre, “Luring Transferable Ad-
versarial Perturbations for Deep Neural Networks,” in 2021 International
Joint Conference on Neural Networks (IJCNN), 2021, pp. 1–8.

[25] R. A. Khamis and A. Matrawy, “Evaluation of Adversarial Training on
Different Types of Neural Networks in Deep Learning-based IDSs,” in
Proc. of the ISNCC. IEEE, 2020, pp. 1–6.

[26] M. Picot, F. Messina, M. Boudiaf et al., “Adversarial Robustness via
Fisher-rao Regularization,” IEEE Trans. Pattern Anal. Mach. Intell., 2022.

[27] D. Jakubovitz and R. Giryes, “Improving DNN Robustness to Adversarial
Attacks using Jacobian Regularization,” in Proc. of the ECCV, September
2018, pp. 1–16.

[28] J. Sokolić, R. Giryes, G. Sapiro, and M. R. D. Rodrigues, “Robust Large
Margin Deep Neural Networks,” IEEE Trans. Signal Processing, vol. 65,
no. 16, pp. 4265–4280, 2017.

[29] A. Gholami, S. Kim, Z. Dong et al., “A Survey of Quantization Methods
for Efficient Neural Network Inference,” arXiv:2103.13630, 2021.

[30] D. Pau, A. Khiari, and D. Denaro, “Online Learning on Tiny Micro-
controllers for Anomaly Detection in Water Distribution Systems,” in
Proc. of the ICCE, vol. 11. IEEE, 2021, pp. 1–6.

[31] C. Song, E. Fallon, and H. Li, “Improving Adversarial Robustness in
Weight-quantized Neural Networks,” arXiv e-prints, 2020.

[32] A. Galloway, G. W. Taylor, and M. Moussa, “Attacking Binarized Neural
Networks,” in International Conference on Learning Representations
(ICLR), 2018.

[33] R. Bernhard, P.-A. Moellic, and J.-M. Dutertre, “Impact of Low-bitwidth
Quantization on the Adversarial Robustness for Embedded Neural
Networks,” in Proc. of the Int. Conference on Cyberworlds, 2019.

[34] Y. Kim, J. Lee, Y. Kim, and J. Seo, “Robust Quantization of Deep Neural
Networks,” in Proc. of the 29th International Conference on Compiler
Construction, 2020, pp. 74–84.

[35] M. Gorsline, J. Smith, and C. Merkel, “On the Adversarial Robustness of
Quantized Neural Networks,” in Proc. of the GLSV, 2021, pp. 189–194.

[36] Google, “Keras Framework: Python Deep Learning API,” 2017. [Online].
Available: https://keras.io/

[37] ——, “QKeras: Quantization Extension to Keras,” 2017. [Online].
Available: https://github.com/google/qkeras

[38] S. Zhou, Y. Wu, Z. Ni et al., “DoReFa-Net: Training Low Bitwidth
Convolutional Neural Networks with Low Bitwidth Gradients,” arXiv
preprint, vol. arXiv:1606.06160, 2018.

[39] E. Shishkina, “Mean-Value Theorem for B-Harmonic Functions,”
Lobachevskii J. Math., vol. 43, no. 6, pp. 1401–1407, 2022.

[40] Y. Guo, Y. Li, L. Wang, and T. Rosing, “Depthwise Convolution is all
you need for Learning Multiple Visual Domains,” in Proc. of the AAAI
Conference on Artificial Intelligence, 2019.

[41] E. Wang, J. J. Davis, D. Moro et al., “Enabling Binary Neural Network
Training on the Edge,” in Proc. of the 5th Int. Workshop on EMDL,
2021.

[42] K. Eckle and J. Schmidt-Hieber, “A Comparison of Deep Networks with
ReLU Activation Function and Linear Spline-type Methods,” Neural
Netw., vol. 110, pp. 232–242, 2019.

[43] N. Papernot, A. Thakurta, S. Song et al., “Tempered Sigmoid Activations
for Deep Learning with Differential Privacy,” in Proc. of the AAAI
Conference on Artificial Intelligence, 2021.

[44] L. Roeder, “Netron,” 2022. [Online]. Available: https://netron.app/
[45] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,”

University of Toronto, Toronto, ON, Canada, Tech. Rep., 2009.
[46] Y. Netzer, T. Wang, A. Coates et al., “Reading Digits in Natural Images

with Unsupervised Feature Learning,” in NIPS Workshop on Deep
Learning and Unsupervised Feature Learning, 2011.

[47] G. S. Commands, “Google’s Speech Commands Dataset,”
2016. [Online]. Available: https://pyroomacoustics.readthedocs.io/en/
pypi-release/pyroomacoustics.datasets.google speech commands.html

[48] I. Loshchilov and F. Hutter, “SGDR: Stochastic Gradient Descent with
Warm Restarts,” in ICLR, 2017.

[49] N. Carlini and D. Wagner, “Towards Evaluating the Robustness of Neural
Networks,” in 2017 IEEE Symposium on Security and Privacy (SP), 2017.

[50] P.-Y. Chen, H. Zhang, Y. Sharma et al., “Zoo: Zeroth Order Optimization
Based Black-box Attacks to Deep Neural Networks without Training
Substitute Models,” in Proceedings of the 10th ACM workshop on
artificial intelligence and security, 2017, pp. 15–26.

[51] M.-I. Nicolae, M. Sinn, M. N. Tran et al., “Adversarial Robustness
Toolbox v1. 0.0,” arXiv preprint arXiv:1807.01069, 2018.

[52] Z. Qin, Y. Fan, H. Zha, and B. Wu, “Random Noise Defense Against
Query-based Black-box Attacks,” Advances in Neural Information
Processing Systems, vol. 34, pp. 7650–7663, 2021.

[53] D. Berrar, “Cross-Validation,” in Encyclopedia of Bioinformatics and
Computational Biology, 2019, pp. 542–545.

[54] T.-T. Wong and P.-Y. Yeh, “Reliable Accuracy Estimates from k-fold
Cross Validation,” IEEE Trans. Knowl., vol. 32, no. 8, pp. 1586–1594,
2019.

[55] “Scikit-learn: Machine Learning Python API,” 2019. [Online]. Available:
https://scikit-learn.org/stable/

[56] C. Banbury, V. J. Reddi, P. Torelli et al., “MLPerf Tiny Benchmark,” vol.
arXiv:2106.07597, 2021.

Authorized licensed use limited to: City St Georges University of London. Downloaded on June 12,2025 at 18:15:09 UTC from IEEE Xplore. Restrictions apply.

		2023-07-27T18:21:31-0400
	Preflight Ticket Signature

