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ABSTRACT

The bit-flip attack (BFA) is a well-studied assault that can dramatically degrade
the accuracy of a machine learning model by flipping a small number of bits in the
model parameters. Numerous studies have focused on enhancing the performance
of BFA and mitigating their effects on traditional Convolutional Neural Networks
(CNNs). However, there remains a lack of understanding regarding the security
of vision transformers against BFA. In our work, we conduct various experiments
on vision transformer models and discover that the flipped bits are concentrated
in the MLP layers, specifically in the initial and final several blocks. Furthermore,
we find an inverse relationship between the size of the transformer model and
its robustness. Our findings in this study can aid in refining defense techniques,
targeting them towards areas in vision transformer models that are particularly
vulnerable to BFA.

1 INTRODUCTION

The Vision Transformer (ViT) (Dosovitskiy et al., 2020) has garnered significant attention, primarily
due to its innovative approach to image analysis that sets it apart from traditional neural networks.
Unlike conventional convolutional neural networks (CNNs) (Waibel et al., 2013 |Zhang et al., 1988;
Krizhevsky et al.,[2012) that rely on local feature extraction, ViT adopts the transformer architecture,
which includes attention layers, originally designed for natural language processing, to process im-
ages as sequences of patches (Vaswani et al.,|2017). This enables global context understanding and
the capture of long-range spatial dependencies within images, leading to remarkable improvements
in various vision tasks. The ability of ViTs to efficiently scale with increased data and compute
resources further underscores their superiority, making them a pivotal development in the field.

Given the increasing prevalence of ViTs in critical applications, ranging from medical imag-
ing (Shamshad et al., [2023}; |Chen et al., 2021b; Dalmaz et al., [2022)) to autonomous driving (Ando
et al., 2023} |Prakash et al., 2021), their security and robustness have become paramount. As these
models are integrated into more systems, the need to safeguard them against potential attacks is
urgent. Current research indicates a growing number of sophisticated attacks targeting neural net-
works (Liu et al., 2018;|Su et al., 2019; |Ziigner et al., 2018} |Liu et al.,2020b). Among these attacks,
the BFA (Rakin et al} |2019) is a particularly insidious threat to the integrity and security of neural
networks, often overshadowing other forms of attacks such as adversarial and back-door attacks.
Unlike adversarial attacks, which typically require input manipulation to deceive a neural network,
BFA targets the physical memory of the hardware running the neural network. BFA executes these
bit flips through the row hammer attack, a hardware fault injection technique targeting dynamic
random-access memory (DRAM). By flipping a limited number of bits in the neural network’s pa-
rameters stored in memory, an attacker can induce a catastrophic decrease in the network’s prediction
accuracy. This subtlety makes BFA especially dangerous, as they can be hard to detect.
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Despite the significant advancements and widespread adoption of Vision Transformers (ViTs) in
the field of computer vision, there remains a notable gap in the understanding of their vulnerability
to BFA, as most previous works focus on BFA on traditional CNNs, leaving the vulnerability of
vision transformer towards BFA unstudied. This work, to the best of our knowledge, is the first that
analyzes the performance of BFA on vision transformers and explores the characteristics that can
make vision transformer robust to BFA. We perform BFA on three sizes, tiny, small, and base, of
two mainstream vision transformer models, standard ViT and DeiT. We then analyze the distribution
of flipped bits in vision transformer models and compare the results of BFA on standard ViT and
Data-efficient Image Transformer (DeiT) to find which characteristics can be attributed to their BFA
vulnerability.

The rest of this paper is as follows: Section [2| gives an overview of prior works. Section [3|describes
the experimental setup and presents ouir results and analysis. Finally, Sectiond]concludes the paper.

2 PRELIMINARIES

2.1 VISION TRANSFORMER

The Vision Transformer represents a cutting-edge architecture that leverages the attention mech-
anism to efficiently extract important input features (Vaswani et al., 2017). The standard vision
transformer consists of a patch embedding layer, 11 identical blocks, and a final MLP layer for
classification. Each block contains attention and Multi-Layer Perceptron (MLP) layers. The layer
organization is the same but varies in size, with configurations like Base, Small, and Tiny differ-
ing in the dimensionality of layers. Since its introduction in 2021 (Dosovitskiy et al., 2020), var-
ious adaptations of ViT have emerged, demonstrating its versatility and potential for innovation.
Notable variants include the DeiT, which enhances model efficiency through token distillation (Tou-
vron et al., 2021), the Swin Transformer, which optimizes representation through shifted windowing
techniques (Liu et al.,|2021)), and the Convolutional vision Transformer (CvT) that incorporates con-
volutional operations into the transformer framework for improved performance (Wu et al., |2021)).
Their widespread adoption has underscored the importance of addressing security concerns to ensure
the integrity and reliability of applications utilizing this model.

2.2  BIT-FLIP ATTACK

A BFA (Rakin et al., 2019) aims to significantly lower the accuracy of a model to nearly random
guesses by flipping a small number of bits in the model’s parameters, identified by its progressive
bit search algorithm. The core concept of the BFA involves using gradient ranking to pinpoint the
bits that are likely to cause the most significant accuracy degradation. In addition, previous work has
enhanced the BFA by improving the row hammer attack (Yao et al.,|2020) and progressive bit search
algorithm (Rakin et al.| 2021)) as well as modifying the BFA to enable the attack without access to
training or testing data (Ghavami et al.| 2022b)).

While the original BFA was applied to CNNs, some works have expanded the BFA to other kinds of
models, including pruned DNNs (Lee & Chandrakasan, 2022), transformers (Cai et al., [2021), and
even DNN executables compiled by DL compilers (Chen et al.| [2023). Besides BFA that aims to
degrade accuracy, there is also a BFA variant, targeted BFA (Chen et al., |2021a; Rakin et al.| 2020;
2022), that will not only reduce accuracy but also mislead the input to be classified into a preset class.
This targeted BFA has been applied to multiple models, including binary pattern network (Roohi &
Angizil 2022) and transformers (Liu et al.| 2023c).

Given the strong threat of BFA on neural networks, numerous strategies have been developed to
counteract such attacks in traditional DNNs. Many of these approaches involve manipulating the
weights to enhance the models’ resistance to the attack. Techniques such as binary neural network
(BNN) (Siraj Rakin et al., 2021} [He et al., 2020)), weight reconstruction (Li et al., |2020), smart bit
flip (Ghavami et al.,|2022a)), random rotation of weight bits (Liu et al.,[2023a)), and quantization (Liu
et al., |2023a; |Stutz et al., [2023) have been demonstrated to be effective. Additionally, encoding the
weights provides another form of protection (Javaheripi et al.,|2022;|Guo et al., 2021} Ozdenizci &
Legenstein, [2022; |Li et al.| 2021). Furthermore, hardware-based defense mechanisms are available
to counteract row hammer attacks (Zhou et al., 2023} |Gongye et al., [2023)), which underpin BFA.
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Notably, in targeted BFA, the flipped bits typically affect the final layers. Therefore, an efficient
early exit strategy has been identified, enabling models to deliver classification outcomes in earlier
stages of the model, thus thwarting targeted BFA (Wang et al.| 2023). There is also innovative work
introducing honey neurons into models to lure attackers by targeting these decoy neurons instead of
the crucial functional ones (Liu et al.l [2023b). Beyond minimizing the impact of BFA, significant
efforts are also directed towards detecting such attacks (Yang et al., [2022; |Liu et al., 2020a).

3 ANALYSIS OF BIT-FLIP SUSCEPTIBILITY

3.1 MODELS, DATASETS, AND ATTACK METRICS

To demonstrate BFA (Rakin et al.l [2019) on ViT, we choose two mainstream ViT models, standard
ViT (Vaswani et al., 2017) and DeiT (Touvron et al., [2021). For each ViT model, we perform
experiments on three different sizes: tiny, small, and base. We take two visual datasets, CIFAR-
10 and CIFAR-100 (Krizhevsky et al.| [2010), for object classification tasks. Both CIFAR10 and
CIFAR100 contain 60K RGB images of size 32 x 32 x 3. There are 10 classes in CIFAR10 while
100 classes in CIFAR100. The valid flipped bits are those causing the accuracy to degrade before it
reaches random guess, which is 11% and 1.1% separately for CIFAR10 and CIFAR100.

3.2  BIT-FLIP ATTACK ON MODELS OF DIFFERENT SIZES
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Figure 1: The top 1 accuracy of BFA after performing 0 to 60 bit flips. (abcd) CIFAR-10 (efgh)
CIFAR-100.

Observation 1: Larger model size will lead to a more vulnerable model towards bit-flip attack.

Figure [I{d) and (e) reveal that DeiT Tiny, the most compact of the three models, consistently
exhibits the highest resilience to BFA. Conversely, DeiT Base, the largest model, is the most
susceptible to such attacks. DeiT Small occupies an intermediate position in both size and
robustness against BFA. However, as Figure E]indicates, ViT models are excessively vulnerable to
BFA, leading to overlapping curves for the tiny, small, and base ViT models.

Observation 2: DeiT is more robust than ViT of the same model size. The smaller the model
size is, the more robust DeiT is compared with ViT of the same size.

Figure [T(a-c, e-g) demonstrate that DeiT consistently outperforms ViT in terms of robustness when
comparing models of identical size. The only distinction between DeiT and ViT is the presence
of a distillation token in DeiT (Touvron et al.l |2021; [Dosovitskiy et al.| [2020), which significantly
enhances the resilience of DeiT towards BFA. This suggests incorporating additional distillation fea-
tures into vision transformer models could enhance their defense against BFA. Furthermore, DeiT’s
robustness advantage over ViT increases as the model size decreases. Both the DeiT Base and ViT
Base models are extremely vulnerable, and the performance gap between them is narrow, indicating
a closer level of robustness.
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Table 1: Disctribution of flipped bits in types of layers

Flipped bits distributed in layers(%)
Dataset Model attention MLP head
ViT-Tiny 15.942 69.565 14.493
ViT-Small 12.500 | 76.563 10.938
CIFAR- ViT-Base 22.581 58.065 19.355
10 DeiT-Tiny 23.304 62.537 14.159
DeiT-Small 9.174 72.936 17.890
DeiT-Base 12.727 83.636 3.636
ViT-Tiny 8.333 91.667 0
ViT-Small 5.263 94.737 0
CIFAR- ViT-Base 16.129 80.645 3.226
100 DeiT-Tiny 41.860 52.907 5.233
DeiT-Small 34.653 65.347 0
DeiT-Base 2.857 97.143 0

3.3 DISTRIBUTION OF FLIPPED BITS

Observation 3: Flipped bits concentrate in MLP layers.

The data presented in Table [T| from our experiments indicate a tendency for bit flips to concentrate
within MLP layers. Notice that no flipped bit falls in the patch embed layer in any of the
experiments. The attention layers, which consist of a Query, Key, Value (QKV) framework, which
collaborate to dynamically distribute attention across various segments of the input data, contain
certain redundancies. Due to redundancy within the QKV structure, a bit flip in attention layers
generally results in less reduction in accuracy than a bit flip in MLP layers.
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Figure 2: Distribution of flipped bits in blocks on dataset (a) CIFAR-10 (b) CIFAR-100.

Observation 4: Flipped bits concentrate on the layers in the first block and the last few blocks.

Errors in the initial and final layers of the model can significantly harm its performance. This
is because errors at the initial layers can accumulate throughout the model’s computations, and
errors in the final layers can more directly affect classification outcomes. Interestingly, previous
analysis of BFA on DNNs also found front-end layers to be highly vulnerable (He et al.l 2020), but
our observations suggest the vulnerability of later layers appears to be more pronounced in vision
transformers.

Past methods for defending against BFA often resulted in increased power (He et al.| [2020; [Li et al.,
2020; Liu et al.,|2020a) or lowered baseline classification accuracy (He et al.,[2020; |Siraj Rakin et al.,
2021). However, with new insights into the distribution of flipped bits, these defense strategies can
be enhanced by focusing protection on the most susceptible layers—specifically, the MLP layers
in the first block and the last few blocks. This approach thus promises to reduce the cost of these
defenses.
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4 CONCLUSIONS

This paper studies the factors contributing to the resilience of vision transformer models against
BFA, paving the way for the development of more secure vision transformers. Through experimental
analysis, it has been identified that the robustness of vision transformers to BFA is affected by several
factors, notably the size of the model and the application of distillation techniques. Furthermore, the
investigation reveals a distinct pattern in the distribution of flipped bits, with a propensity for these
bits to cluster within the initial and final layers of the architecture. This insight could be instrumental
in formulating low-cost defensive strategies against BFA.
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