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Abstract

Training a deep neural network model usually
requires multiple iterations, or epochs, over the
training data set, in order to better estimate the
parameters of the model. However, in continual
learning, this process results in catastrophic for-
getting which is one of the core issues of this
domain. Most proposed approaches for this issue
try to compensate for the effects of parameter up-
dates in the batch incremental setup in which the
training model visits a lot of samples for several
epochs. However, it is not realistic to expect train-
ing data will always be fed to model in a batch
incremental setup. This paper proposes a chaotic
stream learner that mimics the chaotic behavior
of biological neurons and does not updates net-
work parameters. In addition, it can work with
fewer samples compared to deep learning mod-
els on stream learning setup. Our experiments
on MNIST, CIFAR10, and Omniglot show that
the chaotic stream learner has less catastrophic
forgetting by its nature in comparison to a CNN
model in continual learning.

1. Introduction

Continual learning assumes that a learning agent is pre-
sented with a sequence of different "tasks” (i.e., data coming
from different probability distributions), where each task is a
sequence of experiences from the same distribution (Riemer
et al., 2018). The human brain can continuously learn dif-
ferent tasks without any of them negatively interfering with
each other. However, learning a set of sequential tasks in the
neural networks degrades the performance of the models.
This is one of the biggest challenge in continual learning
which is known as catastrophic forgetting (McCloskey &
Cohen, 1989; Chen & Liu, 2018).
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Most approaches have been proposed to alleviate the catas-
trophic forgetting are categorized into one of three main
categories, including replay-based, regularization-based,
and parameters isolation based methods according to the
task-specific information that is stored and used through
sequential learning process (De Lange et al., 2019). Re-
play based methods store exemplars in the replay buffer
to alleviate the catastrophic forgetting while learning new
tasks (Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017;
Chaudhry et al., 2018). Since it is not always possible to
keep exemplars, regularization-based methods propose ex-
tra regularization to consolidate previous knowledge when
learning new tasks (Kirkpatrick et al., 2017). In the third
approach, the capacity of the model is not restricted and
the model architecture can be expanded (Xu & Zhu, 2018;
Rusu et al., 2016), copied (Aljundi et al., 2017) or frozen to
alleviate catastrophic forgetting. Some of the solutions in
this approach mask out the parameters or even neurons that
are used for the previous tasks (Mallya & Lazebnik, 2018;
Fernando et al., 2017).

Backpropagation is the main reason for catastrophic forget-
ting in continual learning and most proposed approaches
alleviate this issue by reducing the negative effects of back-
propagation. In addition, in most real world scenarios a
learning agent receives a very limited number of training
samples in each task similar to a few-shot learning setup (An-
toniou et al., 2020). However, most proposed approaches in
continual learning needs to revisit training data for several
epochs while learning a new task. Inspired by the chaotic
firing behavior of biological neurons many approaches have
been proposed to avoid backpropagation. ChaosNet is one
of those approaches that proposed a 1D chaotic dynamic
using the Generalized Lurth Series (GLS) as a chaotic neu-
ron (Balakrishnan et al., 2019). However, ChaosNet can not
compete with the deep neural network model in an image
classification task since a deep learning model can visit train-
ing samples in several epochs. Adapting the GLS neuron
in the continual few-shot learning and stream learning can
be considered as an alternative approach since it suffers less
catastrophic forgetting. Following the ChoasNet, we used a
GLS neuron to simulate the chaotic behavior of a biological
neuron to encode images with chaotic dynamics. We pro-
pose a GLS stream learner that uses a linear 1D ChaosNet
neuron as a continual learner component. We also propose
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Figure 1. The chaotic GIS based stream learner process (left) and
the feature extraction summary for a pixel, x;, ;, using skew-tent
dynamic mapping (right).

using some chaotic transformation as a data augmentation
technique. Our results demonstrate that our chaotic learner
has noticeable results in comparison to a CNN model in the
batch incremental and stream learning setups for the image
class incremental classification tasks.

2. GLS Stream Learner

In the human brain, dendrites are exquisitely specialized cel-
lular compartments that critically influence how neurons col-
lect and process information. Retinal ganglion cell (RGC)
dendrites receive synaptic inputs from bipolar and amacrine
cells, thus allowing cell-to-cell communication and flow of
visual information (Agostinone & Di Polo, 2015). Follow-
ing ChaosNet, GLS Stream Learner uses Generalized Lurth
Series (GLS) as a time-series that is defined as f;+1 = fi(q)
where ¢ initializes the dynamic. The Generalized Lurth Se-
ries is used to simulate the firing and not firing behavior of
a biological neuron (Balakrishnan et al., 2019). To compute
GLS series, we use the following mapping:

0<zx<b :
b<zr<l1 M

f(x) = { a(a-e)

-

where b controls the shape of the attractors. Setting (¢ =
1,a = —1) gives a tent shape attractors known as Skew-
Tent (fskew—Tent)- And, the mapping with (¢ = b,a = 1)
creates an attractors in the shape of two separated lines
known as Skew-Binary (fsiew—Binary). Skew-tent and
skew-binary have been used for encryption of information
in many domains (Li et al., 2019). Appendix A illustrates
the output of Skew-tent and skew-binary through the time
that simulates either firing or not firing responses of a neuron
corresponding to inputs.

2.1. Feature Extraction

GLS learner uses normalized images. So, the pixels are
scalar numbers in [0, 1]. The feature extractor process runs

several threads. And, each thread encodes the pixel j from
x; to a probability of firing rate count denoted as a P; ;.
The feature extraction process creates the GLS time-series
with either skew-tent or skew-binary mapping. Then, the
GLS thread tries to find the first e-neighborhood point in the
time-series to the pixel information. Then, it computes the
firing rate count for each pixel as follow:

False count

2

Wi = length of frequency list’
The result is the decoded information vector P for x;. Since
we encode each pixel to a probability number, the size of P
will be the same as image size. Figure 1 shows the feature
extraction process in detail.

2.2. Training

At time T, set of samples of new classes arrive in either
batch incremental fashion or as a stream of data. In this
case, we have D1 C Dyy.4in Where T is the task time for NV
samples from either i.i.d or non i.i.d observations of (z;, ¢;)
pairs where ¢; € C. And, C is the set of classes that the
stream learner should learn at time 7". For, each sample z;,
the stream learner creates the vector P; that is the extracted
feature from x;. Then, the stream learner computes the
mean representation, M3 %, for m samples of class c; that
have seen at time 1" as follow:
1 m m m
MEE = — [N PR PG Y Pl O
i=1 i=1 i=1
The batch incremental learner visits samples in several
epochs. Therefore, GLS learner should compute a new
vector, ij , for the epoch j and appends it to the batch
incremental representatives as follow:

MBSL — [Mf;,Mfg...,Mf;}, &)

where n is the number of epochs and ij is computed for
the epoch j using 3.

Replay Buffer: GLS stream learner keeps either M, 5 SL
or M CS L for the batch incremental or stream learning setup,
respectively, in the replay buffer instead of keeping exem-
plars in the buffer.

2.3. Classification

Let assume o(z) extracts features for a sample © € X
as described in 2.1. Then, GLS stream learner predicts the
target as follow:

y* = argmin ||p(z) — M|, 5)
y=1,...,t

Where ¢ € C (all classes have learned so far) and
|l(z) — M.|| is the cosine similarity distance of two ¢(z)
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Figure 2. Batch Incremental (left) v.s. Stream Learning (right).

and M, vectors that can be either either M 5 SLor M CS L for
the batch incremental or stream learning, respectively.

2.4. Chaotic Data Augmentation

Chaotic data augmentations can be applied on the train set
to improve the performance of the continual learner. In
this work, we proposed using “baker’s” transformation that
resembles the process of repeatedly stretching a piece of
dough and folding it in two. Equation 6 depicts ’baker’s”
mapping where ¢ and j are the row and column of each pixel
in an image.
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The dynamics of Hnon map may be decomposed into an
area-preserving bend, followed by a contraction, followed
by a reflection in the line y = z. Hnon map f : R? — R2
as frmon(xi, x;) = (zj + 1 — ax?, ba;). The solenoid dy-
namic mapping also can be used as a rotation transforma-
tion (Falconer, 2004).

3. Experiments

There are three different data paradigms of stream learning
for evaluating continual learning models based on the way
the training data is organized (Hayes et al., 2018; Antoniou
et al., 2020). The model visits a limited number of sam-
ples in only one epoch in either one of the following setups
in the stream learning context. In the first setup, the data
stream is completely unordered. In the second setup, the
data stream is ordered by the class and the models learns
classes incrementally which results in catastrophic forget-
ting. In the third setup, data is organized on batches from
specific instances of categories that can be revisited (Anto-
niou et al., 2020). diversely, the model incrementally learns
new classes and it is allowed to revisits samples for several
epochs while training a new task in the batch incremen-
tal setup. To evaluate our approach we follow the second
paradigm that is more aligned with real scenarios. Figure 2
shows the comparison of batch incremental learning and the
stream learning setups.
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(a) Permuted-MNIST divided into 5 tasks with 2 classes per task.
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(b) MNIST divided into 5 tasks with 2 classes per task.
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(c) CIFAR-10 divided into 5 tasks with 2 classes per task.
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(d) Omniglot divided into 10 tasks with 20 classes per task.

Figure 3. Performance comparison of the chaotic learner v.s. the
CNN model in the stream of data (left) and Chaotic learner per-
formance comparison with the CNN model in a batch incremental
learning setup (right). We repeated the experiment three times
to report except for the MNIST dataset that has the significant
marginal performance. The higher number is better.

3.1. Experiment Setup

We compared the performance of GLS stream learner with
a convolutional neural network (CNN) using three differ-
ent datasets including MNIST (LeCun & Cortes, 2010),
CIFAR-10 (Krizhevsky, 2009), Omniglot (Lake et al., 2015)
and Permuted-MNIST which is the same data as MNIST
dataset when every pixel is randomly permuted. Appendix
B explains the architecture of a CNN model that is used
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in our experiments. In addition, we have two different ex-
periment setups for each dataset. The first one is a batch
incremental setup for a CNN model that revisits samples for
50 epochs for each task. The second one is a stream learning
setup for the chaotic learner that uses a few samples to train
the model for each task. For each dataset, data is divided
into different tasks and each task has a certain number of
classes. We run three experiments for each dataset includ-
ing batch incremental for CNN model, stream setup for
GLS learner, and evaluating the CNN model performance
trained in a few-shot manner in the stream learning setup.
In our experiment, we observed that Skew-binary mapping
achieves 3% more accuracy performance at each task in
comparison to the Skew-tent. Therefore, all reported results
for GLS stream learner are based on Skew-binary mapping
with {b = 0.331, e = 0.01, ¢ = 0.336, time step = 20000}
for MNIST, Permuted-MNIST and Omniglot datasets And
{b=0.331,¢ = 0.008, ¢ = 0.136, time step = 30000} for
CIFAR-10.

MNIST and Permuted-MNIST: We split the MNIST
and Permuted-MNIST samples into 5 tasks with two classes
per task. In the stream setup, we train models with 3 batches
and 32 samples per batch. Figures 3(b) and 3(a) illustrate the
comparison results for MNIST and Permuted-MNIST. They
show chaotic learner has significant marginal performance
in comparison to the CNN model in both setups.

CIFAR-10: Figures 3(c) illustrates the comparison results
on CIFAR-10. CIFAR-10 training data is split into the 5
tasks with two classes per each task. For stream learner
setup, we train models with 4 batches and 64 samples per
batch. Unlike MNIST, the CNN model has better perfor-
mance (figures 3(c) right) in batch incremental learning
setup on CIFAR-10. However, the chaotic learner still lead
to better performance in the stream setup approach.

Omniglot: To evaluate the performance on the Omniglot
dataset (Lake et al., 2015), we designed two experimental
setups. From 964 classes in the background TRUE set of
the Omniglot dataset, we only chose 200 classes for this
experiment. We split the selected data into 10, 20, and 40
tasks such that each task includes 20, 10, and 5 classes,
respectively. We have 20 samples per class in this setup.
We selected 60 percent of samples for training. Therefore,
we have a few samples for training in the batch incremen-
tal and stream learning setups (12 samples per class in the
training set). Figure 3(d) represents the result of the Om-
niglot dataset that is divided into 10 tasks. Appendix C
contains further comparison results on Omniglot for the 20
and 40 tasks. The chaotic stream learner shows better results
compared to the CNN model in both batch incremental and
stream learner setups on Omniglot.
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Figure 4. The process of computing a higher-level abstraction for
each pixel using normalized correlated extracted features.

4. Future Work

To preserve the correlation between the extracted features,
we can use a moving feature extractor block on the sample
x;, and calculate the correlated features for each pixel that
lies in the moving block. Figure 4 briefly shows the process.
First, we extract features associated with each pixel using
the GLS feature extractor described in 2.1 for all pixels in
the block. Adding a zero padding to the extracted firing
rates helps to have the same size firing rate series. Applying
an element-wise sum and then normalize the vector of the
firing rates gives a higher-level abstraction of the correlated
feature extracted for the pixel, P;;, that is defined as follow:

131' .

Pi' = )
1251l

)

All extracted P;; have the same size but different angels.
The angels can represent the higher-level abstraction of the
correlated feature associated with each pixel and its neigh-
bors. Our next step in this direction is experimenting with
the effectiveness of using higher-level correlated abstraction
instead of considering a standalone extracted futures using
the GLS feature extractor in the stream learning setup.

5. Conclusion

In this work, GLS stream learner is proposed as a novel ap-
proach to alleviate the catastrophic forgetting in the context
of continual few-shot learning. This approach provides a
mechanism based on the chaotic structure of a biological
neuron that provides a different perspective from the most
continual learning approaches. According to our experi-
ment, this single chaotic neuron causes less forgetting in
comparison to a deep learning model that needs a lot of time
to train and more parameters to learn in batch incremen-
tal and stream learning setups. The deep learning model
achieved profound performance in the image classification
task. However, it suffers from catastrophic forgetting prob-
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lems because of the backpropagation mechanism to update
their parameters in the continual learning context. GLS
stream learner can show the importance of thinking to find
an alternative solution that more suitable for stream and
continual few-shot learning setups.
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Appendices
A. Skew-Tent and Skew-Binary

Figure 5 shows ten steps movement in the time-series using
skew-binary (left) and skew-tent (right). Repeating the pro-
cess for several steps shows that the tent shape attractor or
two separated lines attractor for skew-tent and skew-binary,
respectively. Red and blue colors in scatter plots illustrated
in figure 6 represents the active and passive status of a den-
drite. It mimics either firing or not firing the response of a
neuron corresponding to the input. Figure 7 shows this be-
havior through time. All points above the red line, where is
defined based on the ’b” hyperparameter, can be considered
as true (firing) and the bellow points as false (not firing).

Figure 5. The skew-binary (left) and skew-tent (right) movement
steps after applying ten-time steps in the time-series.

00 00

Figure 6. The Skew-Binary (left) and Skew-Tent (right) at tractors
after 1000 time steps.

- y=fld — ¥ —— y=ti0) — b

Figure 7. The Skew-Binary (left) and Skew-Tent (right) outputs
for 100 time steps through time.

B. CNN Model Architecture

The CNN model that used in the experiments has the follow-
ing architecture. It has 4 convolutional and 4 fully connected

layers. In addition, the convolutional layers have 3, 10, 20
and 40 inputs and 10, 20, 40 and 64 output channels with
5,5, 3, and 5 kernel size with stride of 1, respectively. The
feature extractor part is followed by two fully connected lay-
ers that contain 680 and 280 neurons followed by a softmax
module.

C. Omniglot Result

Figure 8 shows the further comparison on the Omniglot
dataset with 20 and 40 tasks setup with 10 and 5 classes per
task, respectively.

012345678911 1213115117 181 012345678 911121141161 119
task task.

(a) Omniglot divided into 20 tasks with 10 classes per task.
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(b) Omniglot divided into 40 tasks and 5 classes per task.

Figure 8. Performance comparison of the chaotic learner v.s. the
CNN model in the stream of data (left) and Chaotic learner per-
formance comparison with the CNN model in a batch incremental
learning setup (right). The higher number is better.



