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Abstract

Multi-class sentiment analysis (MCSA) poses001
significant challenges due to its multiple cate-002
gories and the subtle semantic distinctions be-003
tween adjacent classes, necessitating substan-004
tial amounts of high-quality annotated data,005
which is often scarce. This paper introduces006
RD-MCSA (Rationales and Demonstrations007
based Multi-Class Sentiment Analysis), an008
approach that enhances classification perfor-009
mance with limited labeled data. RD-MCSA010
leverages In-Context Learning (ICL) by inte-011
grating classification rationales and demonstra-012
tion examples, enabling Large Language Mod-013
els (LLMs) to make more accurate predictions.014
In RD-MCSA, a representative set of annotated015
samples is constructed using a balanced Core-016
set algorithm to guide LLMs in generating clas-017
sification rationales grounded in linguistic and018
semantic features. These rationales are then in-019
tegrated with demonstration examples, selected020
via a Multi-Kernel Gaussian Process (MK-GP)-021
based similarity evaluation method, to enhance022
ICL for MCSA. Experiments on five diverse023
datasets demonstrate that RD-MCSA outper-024
forms both supervised learning methods and025
conventional ICL approaches across key evalu-026
ation metrics.027

1 Introduction028

Multi-Class Sentiment Analysis (MCSA) extends029

beyond basic sentiment polarity classification (e.g.,030

positive or negative) by distinguishing varying lev-031

els of emotional intensity (e.g., differentiating be-032

tween “very positive” and “generally positive”).033

By capturing finer sentiment distinctions, MCSA034

enables deeper insights into sentiment expression,035

making it essential for applications requiring fine-036

grained sentiment analysis (Wang et al., 2023). For037

example, in opinion dynamics research, a prereq-038

uisite step is categorizing users’ natural language039

expressions into five or more sentiment or opinion040

categories. (Chuang et al., 2024)041

However, the complexity of MCSA arises from 042

the subtle differences between adjacent sentiment 043

intensities, which are often challenging to discern 044

accurately (Mamta and Ekbal, 2023). Moreover, 045

sentiment categorization criteria can vary signifi- 046

cantly across applications (Rosenthal et al., 2019). 047

Effectively tackling a new MCSA task typically de- 048

mands a substantial amount of high-quality labeled 049

data tailored to the task’s specific requirements. 050

Large Language Models (LLMs) have shown 051

strong performance in sentiment analysis, mak- 052

ing them a promising approach for MCSA. How- 053

ever, while LLMs perform well in straightfor- 054

ward sentiment classification, they often struggle 055

with nuanced distinctions between sentiment cate- 056

gories (Zhang et al., 2024). In-Context Learning, 057

which enhances LLM performance by providing 058

demonstration examples, has achieved state-of-the- 059

art results in various NLP tasks. Yet, existing re- 060

search has largely overlooked its effective applica- 061

tion to classification tasks with a large number of 062

sentiment categories (Randl et al., 2024). Our ex- 063

perimental analysis further reveals that traditional 064

ICL approaches remain insufficient for MCSA. 065

In this paper, we propose RD-MCSA, a novel 066

approach to improve ICL performance for MCSA. 067

RD-MCSA leverages explicit category division ra- 068

tionales, generated through LLM-driven reasoning 069

of semantic and linguistic features from a repre- 070

sentative set of labeled MCSA samples. This in- 071

tegration enriches the decision-making process in 072

sentiment analysis. Additionally, we introduce a 073

text similarity evaluation method using a multi- 074

kernel Gaussian process to optimize the selection 075

of high-quality demonstration examples for ICL. 076

In summary, this paper makes the following 077

main contributions: 078

1. Integration of Classification Rationales and 079

Demonstrations for ICL: This approach en- 080

hances the performance of ICL for MCSA 081

1



by incorporating classification rationales and082

demonstration examples. These rationales,083

grounded in linguistic and semantic features,084

guide LLMs in achieving more accurate and085

nuanced sentiment classification.086

2. Classification Rationale Generation via Bal-087

anced Coreset Selection: A balanced Coreset088

algorithm is developed to construct a standard089

reference set to generate classification ratio-090

nales, ensuring comprehensive representation091

and class balance.092

3. MK-GP-based Demonstration Selection: A093

text similarity evaluation method leveraging094

a Multi-Kernel Gaussian Process (MK-GP) is095

introduced to enhance the selection of high-096

quality demonstration examples for ICL.097

A series of comprehensive experiments on five098

diverse and representative datasets validate the ef-099

fectiveness of RD-MCSA, highlighting its advan-100

tages and identifying key challenges in MCSA101

tasks.102

2 Related Works103

2.1 Multi-class Sentiment Analysis104

Multi-class sentiment analysis (MCSA), also105

known as fine-grained or graded sentiment anal-106

ysis (Sharma et al., 2024), extends traditional senti-107

ment classification by categorizing sentiments into108

multiple distinct classes. It refines sentiment in-109

tensity beyond polarity classification (e.g., “posi-110

tive”/“negative”) by introducing subcategories like111

“very positive” and “slightly positive” or rating112

scales (e.g., 1–5) (AlQahtani, 2021). This provides113

a more nuanced understanding of sentiment in text.114

Traditional MCSA models rely on supervised115

machine learning (Wang et al., 2023) and are typi-116

cally applied to texts such as tweets, movie reviews,117

and product reviews, with sentiment analysis of-118

ten focused on specific targets or aspects. Com-119

mon MCSA datasets include SemEval-2017 Task120

4 (Rosenthal et al., 2019), SST-5 (Socher et al.,121

2013), and Amazon Reviews (AlQahtani, 2021).122

Another research direction treats sentiment inten-123

sity assessment as a regression problem, where sen-124

timent is predicted on a continuous scale. Notable125

tasks and datasets include SemEval-2017 Task126

5 (Cortis et al., 2017), FiQA 2018 (de França Costa127

and da Silva, 2018), and recent dimABSA tasks at128

SIGHAN-2024 (Lee et al., 2024).129

Despite advances, MCSA still faces challenges 130

such as accuracy limitations and the high cost 131

of large-scale annotation, particularly as senti- 132

ment granularity increases (Krosuri and Aravapalli, 133

2023). Fine-grained sentiment analysis for specific 134

entities often requires distinct annotated datasets, 135

making large-scale implementation impractical. 136

To address these challenges, we aim to im- 137

prove MCSA performance with limited labeled 138

data while ensuring a versatile approach applicable 139

to various MCSA scenarios. 140

2.2 Text Analysis Using LLMs 141

Large-scale language models outperform smaller 142

models in many NLP tasks, especially when anno- 143

tation resources are limited (Zhang et al., 2024), 144

making them a promising solution for MCSA. 145

Recent research on LLMs for text analysis has 146

focused on in-context learning, where carefully se- 147

lected demonstration examples guide the model’s 148

predictions. Common strategies for example selec- 149

tion include similarity-based selection (Liu et al., 150

2022), diversity-based selection (Levy et al., 2023), 151

LLM feedback (Shi et al., 2022), information- 152

theoretic criteria (Wu et al., 2023), task-level se- 153

lection (Li and Qiu, 2023), active learning (Zhang 154

et al., 2022a), and contrastive learning (Chen et al., 155

2024). For MCSA, a recent study (Chuang et al., 156

2024) applies similarity-based demonstration selec- 157

tion within ICL to analyze opinion dynamics. 158

Despite their potential, LLMs still face chal- 159

lenges in many NLP tasks. While effective for 160

simpler tasks, they struggle with nuanced senti- 161

ment analysis (Zhang et al., 2024). Additionally, 162

few-shot ICL requires further research on optimal 163

prompt design (Liu et al., 2022). To our knowledge, 164

no prior work has explored few-shot prompting 165

for multi-class prediction with a large number of 166

classes (Randl et al., 2024). Long prompts can over- 167

load LLMs (Liu et al., 2024), and context window 168

limitations may restrict the effective representation 169

of all classes. Addressing how to efficiently pro- 170

vide classification information to LLMs is a key 171

focus of this paper. 172

3 The Methodology of RD-MCSA 173

The RD-MCSA framework, as illustrated in Fig. 1, 174

consists of the following key steps: given an an- 175

notated dataset D, 1) a balanced-coreset B is con- 176

structed to derive the classification rationale R (Sec- 177

tion 3.1), 2) a multi-kernel Gaussian process G is 178
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Figure 1: The workflow of RD-MCSA: The lower half of the figure (below the long dashed line) corresponds
to Section 3.1, while the upper half (above the long dashed line) corresponds to Section 3.2. The training of the
MK-GP (described in Subsection 3.2.2) is omitted in the figure.

trained (Subsection 3.2.2), 3) for MCSA on a new179

text, ICL is carried out by using a prompt that en-180

compasses the classification rationale R and a set181

of demonstration examples selected from D by G182

(Subsection 3.2.3).183

3.1 Classification Rationale Generation via184

Balanced Coreset Selection185

To ensure that the generated classification rationale186

adequately represents and balances the charac-187

teristics of each class, a balanced-coreset B is con-188

structed from the annotated dataset D = {(xi, yi) |189

1 ≤ i ≤ |D|} using a balanced Coreset algorithm.190

This algorithm selects a subset of representative191

samples while preserving class distribution to avoid192

over-representation of dominant classes.193

3.1.1 The Balanced Coreset Algorithm194

The Balanced Coreset selection process consists of195

the following steps:196

1) Determining Class-Specific Sample Limits197

The coreset size λB (a hyperparameter) serves as198

an upper bound on the total selected samples in B.199

To maintain class balance, the per-class selection200

limit is:201

λ′
B =

⌈
λB
u

⌉
202

where u is the number of unique classes in D.203

This prevents any class from being overrepresented.204

2) Computing the Sampling Probability 205

To select the most informative samples, selec- 206

tion probability is assigned based on an impor- 207

tance weight function w(xi, yi), which gives higher 208

weight to samples farther from the class centroid: 209

µc =
1

|Dc|
∑

j:yj=c

ϕ(xj) (1) 210

where ϕ(xj) represents the embedding of xj , 211

and |Dc| is the number of samples in class c. Prob- 212

abilities are then normalized within each class: 213

Pc(xi) =
w(xi, yi)∑

j:yj=cw(xj , yj)
(2) 214

Pc(xi) represents the normalized selection prob- 215

ability of sample xi within class c. 216

3) Stratified Weighted Random Sampling 217

Stratified weighted random sampling is applied 218

to select representative samples from each class. 219

The selection process follows these rules: 220

• If |Dc| ≤ λ′
B, all samples in class c are di- 221

rectly included in B. 222

• If |Dc| > λ′
B, a subset of λ′

B samples is se- 223

lected via weighted random sampling using 224

the computed probabilities Pc(xi) as follows: 225

Bc = {(xi, yi) | yi = c, xi ∼ Pc}, |Bc| = λ′
B 226
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where Bc is the subset of selected samples for227

class c.228

Finally, the balanced-coreset B is obtained by229

aggregating the selected subsets from all u classes:230

B =

u⋃
c=1

Bc, |B| ≤ λB231

This approach ensures that B remains represen-232

tative, diverse, and class-balanced.233

3.1.2 Classification Rationale Generation234

The balanced-coreset B serves as a reference set for235

generating classification rationale using LLMs. An236

LLM is prompted with examples from B to extract237

and articulate class-specific sentiment character-238

istics. The prompt guides the LLM to reason about239

class distinctions based on the following aspects:240

1) Linguistic expressions241

2) Semantic distinctions242

3) The characteristics of the target or aspect of243

sentiment expression.244

The LLM is instructed to derive clear, distin-245

guishing classification criteria and identify specific246

words, phrases, and expressions from the exam-247

ple set to enrich the rationale.248

The resulting classification rationale R is then in-249

corporated into the ICL process to enhance classifi-250

cation accuracy. An example prompt for generating251

rationale is provided in Appendix A.252

3.2 Demonstration Selection via Multi-Kernel253

Gaussian Process Similarity Evaluation254

RD-MCSA leverages a multi-kernel Gaussian pro-255

cess to evaluate text similarity for selecting ICL256

demonstrations. This method benefits from Multi-257

ple Kernel Learning’s ability to model and adapt258

to complex data distributions (Ghasempour and259

Martínez-Ramón, 2023). Initially, the multi-kernel260

Gaussian process is trained on the annotated dataset261

D to identify the unique characteristics of each cat-262

egory. Subsequently, the trained MK-GP’s kernel263

functions are employed to assess text similarity,264

enabling the effective selection of demonstrations.265

3.2.1 Gaussian Process (GP)266

Gaussian Process (GP) (Liu et al., 2021) is a267

Bayesian non-parametric method that can be ap-268

plied to model categorical data with C categories269

(Y = {1, . . . , C}) by introducing a set of latent 270

functions {fc(x)}Cc=1, one for each class. Here, 271

x ∈ X = RW represents the input space. For 272

text sentiment classification, X corresponds to the 273

embedding space of input sentences. 274

Each latent function is modeled as an indepen- 275

dent Gaussian Process (GP) (Wang, 2023): 276

fc(x) ∼ GP(ec(x), kc(x,x
′)), (3) 277

where ec(x) denotes the mean function, and 278

kc(x,x
′) represents the covariance function (also 279

referred to as the kernel) for the c-th class. In this 280

work, the mean function is modeled as a learnable 281

constant without additional constraints, and the 282

covariance function is designed as a multi-kernel 283

function, as detailed in Section 3.2.2. 284

Although the kernel function parameters and the 285

mean function are inherently independent across 286

categories, this study adopts a shared covariance 287

function k(xi,xj) and mean function for all cat- 288

egories c ∈ Y (Bonilla et al., 2007). This design 289

choice not only reduces computational complex- 290

ity but also leverages the structural similarities of- 291

ten observed among different categories within the 292

same dataset. 293

3.2.2 Multi-Kernel Gaussian Process 294

Multi-Kernel Gaussian Process (MK-GP) extends 295

standard GP by integrating Multiple Kernel Learn- 296

ing (MKL). This approach enhances the model’s 297

capability to represent and adapt to complex data 298

distributions through a flexible combination of ker- 299

nel functions (Ghasempour and Martínez-Ramón, 300

2023). In this work, we employ a weighted com- 301

bination of the Matérn kernel (Borovitskiy et al., 302

2021) and the polynomial kernel (Song et al., 2021) 303

to effectively capture both stationary and non- 304

stationary patterns in the data (Lawler, 2018). The 305

combined kernel function is defined as follows: 306

k(xi,xj) =

N∑
n=1

αnkMatérn,n(xi,xj)+

M∑
m=1

βmkPoly,m(xi,xj),

(4) 307

where kMatérn,n(xi,xj) represents the n-th 308

Matérn kernel, and kPoly,m(xi,xj) denotes the 309

m-th polynomial kernel. The coefficients αn and 310

βm are learnable weights constrained to be non- 311

negative (αn, βm ≥ 0). The Matérn kernel is de- 312
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fined as:313

kMatérn,n(xi,xj) = (5)314

21−νn

Γ(νn)

(√
2νn

∥xi − xj∥
ℓn

)νn

Bνn

(√
2νn

∥xi − xj∥
ℓn

)
,315

where νn controls the smoothness of the kernel,316

ℓn is the length scale, and both are learnable pa-317

rameters. Γ is the gamma function, and Bνn is the318

modified Bessel function of the second kind, with319

their specific forms detailed in the Appendix B.320

The polynomial kernel is expressed as:321

kPoly,m(xi,xj) = (γm⟨xi,xj⟩+ cm)dm , (6)322

where γm is a scaling factor, cm is an offset (both323

learnable parameters), and dm is the degree of the324

polynomial, treated as a hyper-parameter. Here,325

⟨xi,xj⟩ denotes the dot product of xi and xj .326

Given the annotated dataset D = {X,y}, where327

X represents the input data and y denotes the cor-328

responding labels, an MK-GP model G is trained.329

The training process for GP involves optimizing330

the kernel parameters by minimizing the negative331

log-marginal likelihood (Artemev et al., 2021). To332

optimize the kernel parameter vector θ, the gradi-333

ent of the negative log-marginal likelihood L with334

respect to each parameter θp is computed as:335

∂L
∂θp

= −1

2
yTK−1 ∂K

∂θp
K−1y+

1

2
Tr

(
K−1 ∂K

∂θp

)
, (7)336

where K is the covariance matrix with entries337

[K]ij = k(xi,xj), θp ∈ θ is a kernel learnable338

parameter, and Tr denotes the trace operator.339

3.2.3 Similarity-based Demonstration340

Selection Based on the Kernel Function341

Similarity-based demonstration selection, which342

identifies the examples most similar to the test sam-343

ple, has proven to be optimal for ICL (Liu et al.,344

2022). This paper leverages the kernel function of345

the trained MK-GP model G to perform similarity-346

based demonstration selection.347

For a given test sample x0, the similarity be-348

tween x0 and an example xi ∈ D is quantified349

using the following formulation:350

sim(x0,xi) = k(x0,xi), (8)351

A larger kernel function value signifies a greater352

similarity between x0 and xi in the feature353

space (Thickstun, 2019), with more details in Ap-354

pendix C.355

The S examples with the highest similarity val- 356

ues to x0 are selected as demonstration examples. 357

These examples, along with their corresponding la- 358

bels, denoted as {(x1, y1), . . . , (xS , yS)}, are then 359

concatenated with the classification rationale R to 360

form a ‘prompt’ for the LLM. This process is de- 361

fined as follows: 362

ŷ0 = LLM(x0 ⊕ R⊕ (x1, y1)⊕ · · · ⊕ (xS , yS)) 363

where ŷ0 is the predicted label for x0, and ⊕ repre- 364

sents the concatenation operation. 365

4 Experimental Setup 366

4.1 Experimental Datasets 367

To evaluate RD-MCSA, experiments were con- 368

ducted on five diverse datasets across various do- 369

mains and sentiment classification granularities as 370

shown in Table 1: 371

Dataset Size Classes Granularity & Text type
SST51 11,855 5 Sentence-level Movie Reviews
SemEval172 20,632 5 Topic-based Tweets
PR_Baby3 183,531 5 Baby-product Reviews
PR_Software4 12,804 5 Software Product Reviews
ABSIA5 4,650 7 Restaurant-related Reviews

Table 1: Summary of Experimental Datasets

These datasets cover a range of sentiment classi- 372

fication tasks, from sentence-level analysis to fine- 373

grained aspect-based sentiment analysis, enabling 374

a comprehensive evaluation of RD-MCSA. 375

4.2 Experimental Implementation Details 376

In our experiments, we randomly sample 1,000 in- 377

stances from each dataset to construct the annotated 378

dataset D, ensuring a fair evaluation of RD-MCSA 379

across datasets. This also provides insights into the 380

amount of labeled data required for MCSA tasks, 381

helping determine the annotation needed to outper- 382

form traditional classifiers trained on large-scale 383

datasets. The balanced coreset size for generating 384

the classification rationale is set to λB = 100. Tak- 385

ing into account both economy and effectiveness, 386

the number of demonstrations is set to S = 10. 387

We conduct experiments using two LLMs: GPT6 388

and DeepSeek7. Specifically, GPT-4o is employed 389

for classification rationale generation, while GPT- 390

4o-mini, a cost-efficient model, is utilized for 391

1https://huggingface.co/datasets/SetFit/sst5
2https://huggingface.co/datasets/midas/semeval2017
3https://snap.stanford.edu/data/web-Amazon-links.html
4https://cseweb.ucsd.edu/˜jmcauley/datasets/amazon_v2
5https://www.iitp.ac.in/ãi-nlp-ml/resources.html#ABSIA
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ICL in MCSA to handle large-scale datasets. For392

DeepSeek, DeepSeek-R1 is used for classification393

rationale generation, and DeepSeek-V3 is applied394

for ICL in MCSA.395

In the MK-GP model, we set n = 9 for the396

Matérn Kernel (Formula 5) and m = 9 for the397

Polynomial Kernel (Formula 6) across all datasets.398

The degrees for the kernels were configured as399

d1, d2, d3 = 1; d4, d5, d6 = 2; and d7, d8, d9 = 3.400

The Adam optimizer was employed to minimize the401

loss function, with a learning rate of 0.01 over 500402

training epochs. All other optimizer parameters403

were set to their default values. The optimal hyper-404

parameters were determined through grid search405

and cross-validation.406

The majority of our experiments were conducted407

on an NVIDIA GeForce RTX 3080 GPU, where a408

single unit of this GPU takes approximately 170.86409

seconds to complete 500 epochs of Gaussian pro-410

cess training. As for the utilization of LLMs, we411

employ an API-based approach for their invocation.412

4.3 Comparison Models413

We select baseline models from two categories: (1)414

classic machine learning and (2) language models415

for sentiment classification. The chosen models416

are: 1) Naïve Bayes (Rennie, 2001): Multinomial417

Naive Bayes with Tf-idf features and SMOTE over-418

sampling or random undersampling for data imbal-419

ance. 2) SVM (Li et al., 2011): Linear kernel Sup-420

port Vector Classifier with balanced class weights421

and Tf-idf features. 3) BERT (Sun et al., 2019):422

BERT-base model with ‘Focal Loss’ to handle data423

imbalance. 4) BERTweet (Nguyen et al., 2020):424

Pretrained model for English tweets, using ‘Focal425

Loss’ for imbalance.426

All the baseline models are trained and evaluated427

across five datasets with an 80%/20% train-test428

split.429

Given that ICL approaches have recently430

achieved state-of-the-art performance in text clas-431

sification, several ICL selection approaches are432

included as comparison methods: 1) Random:433

Randomly selects unique in-context examples from434

the candidate set. 2) Coreset (Indyk et al., 2014):435

Select samples that are representative of the over-436

all diversity present in the full dataset. 3) Cos-437

Similarity (de Vos et al., 2022): Selects the438

top-S examples based on cosine similarity. 4)439

6https://openai.com/api/
7https://www.deepseek.com/

BM25 (Robertson et al., 2009): Selects the top-S 440

examples based on BM25 scoring. 5) Complex- 441

CoT (Fu et al., 2022): Selects examples based on 442

their complexity, quantified by newline characters. 443

6) Auto-CoT (Zhang et al., 2022b): Clusters can- 444

didate examples and selects those closest to each 445

cluster center. 446

To ensure a fair comparison, these ICL-based 447

methods use the same 1,000 labeled samples as 448

RD-MCSA, with 100 demonstrations (S=100). Ad- 449

ditionally, all prompts include classification ratio- 450

nales generated by the same method. 451

For further analysis, ablation studies are con- 452

ducted with the following models: 1) CR-only: 453

Uses only classification rationales in the prompt, 454

excluding demonstration examples. 2) DE-only: 455

Uses only demonstration examples, excluding clas- 456

sification rationales. 3) LLM-only: Relies solely 457

on the LLM’s inherent reasoning for classification, 458

without classification rationales or demonstration 459

examples. 4) UnBa-CR: Excludes label balance in 460

coreset selection for classification rationale genera- 461

tion. 462

4.4 Evaluation Metric 463

Due to the multi-class nature of MCSA and the 464

class imbalance in the experimental data, we use 465

the Accuracy and weighted-average F1 score to 466

evaluate each model’s performance (Sokolova and 467

Lapalme, 2009). 468

5 Experimental Results and Analysis 469

5.1 Main Results 470

Table 2 summarizes the performance of various 471

models on sentiment classification tasks across 472

three datasets (results for the remaining two 473

datasets are provided in Table 4 in Appendix D). 474

Based on the experimental results, the following 475

conclusions can be drawn: 476

1) Effectiveness of In-Context Learning: 477

Across the experiments conducted on multi- 478

ple datasets, the In-Context Learning method 479

achieved the best performance in terms of 480

both Accuracy and weighted-average F1 481

score. This highlights its superior effective- 482

ness for the MCSA task compared to tradi- 483

tional machine learning approaches and lan- 484

guage model-based classification methods. 485

Notably, the In-Context Learning method ac- 486

complished this using only 1,000 samples as 487

the example pool, whereas baseline methods 488
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Table 2: Experimental Results of Baseline Models and ICL Comparison Methods.

Method SST5 SemEval17 ABSIA

Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)

Baseline
Models

Naïve Bayes 37.2 37.0 44.9 44.0 34.8 31.0
SVM 37.1 37.0 56.7 58.0 49.9 50.0
BERT 49.9 50.0 59.2 61.0 51.2 52.0

BERTweet 48.7 47.0 63.4 65.0 52.4 52.0

ICL based on
GPT-4o

+GPT-4o-mini

Random 55.0 54.9 57.7 60.22 51.6 52.87
Coreset 55.7 55.44 59.4 62.07 53.2 55.39

Cos-Similarity 55.6 55.08 60.1 61.92 52.8 53.58
BM25 56.5 56.02 61.6 63.53 53.0 54.66

Complex-CoT 56.5 54.3 62.5 63.12 52.9 55.26
Auto-CoT 56.6 54.18 62.2 63.09 53.4 55.62

RD-MCSA 57.6 56.03 63.9 64.69 54.3 56.01

ICL based on
DeepSeek-R1

+DeepSeek-V3

Random 56.1 55.18 67.2 67.71 51.2 53.26
Coreset 56.2 55.09 67.6 68.4 52.7 53.98

Cos-Similarity 56.3 55.21 68.4 68.62 53.2 55.41
BM25 56.6 55.75 67.3 67.99 53.1 54.72

Complex-CoT 56.1 53.84 67.5 67.31 52.2 53.36
Auto-CoT 56.3 54.64 67.7 68.11 52.7 54.99

RD-MCSA 57.9 57.0 68.6 68.55 54.6 56.5

were trained on 80% of the data (typically489

tens of thousands of samples). This further490

underscores the efficiency and effectiveness491

of In-Context Learning in leveraging limited492

data for robust performance.493

2) Effectiveness of the RD-MCSA Method:494

In the experiments conducted across multi-495

ple datasets, the RD-MCSA method achieved496

the best performance on all metrics, except497

for the SemEval17 dataset, where the co-498

sine similarity-based In-Context Learning499

method attained the highest weighted-average500

F1 score. These results validate the effective-501

ness of the RD-MCSA method. Further val-502

idation of its individual components will be503

provided in the subsequent ablation experi-504

ments.505

3) Comparison of various demonstrations506

selection methods: In our experiments507

across multiple datasets, the Coreset method508

(diversity-based sample selection), Complex-509

CoT (sample complexity-based selection),510

Auto-CoT (cluster center-based selection),511

and three similarity-based methods (BM25,512

Cosine Similarity, and RD-MCSA) consis-513

tently outperformed random sample selec- 514

tion. This highlights the overall effective- 515

ness of structured example selection strate- 516

gies. Among the similarity-based methods, 517

RD-MCSA, which leverages Gaussian pro- 518

cesses to learn a kernel function, demonstrated 519

superior capability in measuring sample simi- 520

larity. Compared to BM25 and Cosine Simi- 521

larity, RD-MCSA more effectively identifies 522

samples closely aligned with the target classi- 523

fication samples, thereby enhancing the clas- 524

sification performance of LLMs in the MCSA 525

task. 526

5.2 Ablation Analysis 527

Table 3 presents the results of the ablation study 528

conducted on two datasets. Based on the ablation 529

experiments, we can draw the following conclu- 530

sions regarding the components of the algorithm: 531

1) Effectiveness of In-Context Learning: Over- 532

all, in the experiments conducted on various 533

datasets in this paper, compared to directly 534

querying the LLM for text classification, in- 535

corporating classification rationales resulted 536

in an improvement in the LLM’s classification 537

performance. This is likely because classi- 538
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Table 3: Experimental Results of Ablation Studies.

SST5 SemEval17 PR_Baby PR_Software ABSIA

Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)

GPT-based:
LLM-only 54.2 52.62 56.0 58.88 57.4 57.5 62.1 63.32 50.2 52.11
CR-only 54.9 54.42 57.0 59.81 57.8 57.9 62.4 63.89 50.9 52.68
DE-only 55.8 54.07 59.1 61.03 59.7 59.81 65.6 65.97 52.0 53.31
UnBa-CR 57.1 54.82 62.0 62.81 59.6 59.62 66.1 65.82 53.7 56.01
Final 57.6 56.03 63.9 64.69 60.1 60.32 67.0 67.22 54.3 56.01

DeepSeek-based:
LLM-only 54.1 53.76 55.8 59.85 55.5 55.5 56.6 58.37 49.2 51.24
CR-only 54.97 52.88 66.5 67.23 55.9 55.96 58.8 60.58 50.1 51.9
DE-only 57.0 56.18 67.9 67.96 56.9 57.09 65.9 66.94 52.6 53.36
UnBa-CR 57.4 55.99 67.8 67.48 57.1 57.3 66.7 66.39 54.1 55.38
Final 57.9 57.0 68.6 68.55 57.5 57.7 67.7 68.11 54.6 56.5

fication rationales enable the LLM to better539

understand the specific meaning of each class540

label, thereby enhancing its ability to perform541

text classification.542

2) Effectiveness of Demonstration Examples:543

In the experiments conducted on various544

datasets, compared to directly querying the545

LLM for text classification, the inclusion of546

demonstration examples led to a significant547

improvement in the LLM’s classification per-548

formance. This suggests that, compared to549

other modules, demonstration examples play550

a more crucial role in the LLM’s text classifi-551

cation process.552

3) Effectiveness of Label Balance in Classifi-553

cation Rationales Generation: In the exper-554

iments conducted on various datasets in this555

paper, when the samples used to generate clas-556

sification rationales were imbalanced in terms557

of class distribution, the classification perfor-558

mance showed a noticeable decline compared559

to when class-balanced samples were used.560

This may be because, when the sample cate-561

gories are imbalanced, the number of samples562

from certain classes may be too small, making563

it difficult for the LLM to truly understand the564

meaning of those classes, and subsequently565

harder to generate effective classification ra-566

tionales.567

6 Conclusions568

This paper introduces a novel multi-class senti-569

ment analysis (MCSA) framework that combines570

balanced-coreset-based classification with multi- 571

kernel Gaussian processes (MK-GP) for similarity 572

assessment. The proposed approach effectively 573

tackles critical challenges, including class imbal- 574

ance and the high cost of large-scale annotation, 575

while capturing subtle and nuanced sentiment ex- 576

pressions. Extensive experiments conducted across 577

five diverse datasets demonstrate the superior per- 578

formance and robustness of our method. 579

Future research directions include extending the 580

framework to other sentiment analysis tasks, inte- 581

grating multimodal data (e.g., audio and visual in- 582

puts), enhancing computational efficiency, and de- 583

veloping strategies to mitigate the impact of subjec- 584

tive annotations. These advancements contribute 585

to the field by offering valuable insights and lay- 586

ing the groundwork for more accurate and scalable 587

sentiment analysis systems. 588

Ethics Statement 589

Our study uses publicly available datasets, and no 590

personally identifiable information is included. We 591

acknowledge potential biases in sentiment classifi- 592

cation tasks and have taken steps to mitigate them, 593

such as dataset balancing and bias analysis. No 594

human subjects were involved in the study, and no 595

additional ethical approval was required. While our 596

method could be used for sentiment analysis appli- 597

cations, we do not foresee direct misuse. We will 598

release the code and models responsibly, ensuring 599

compliance with ethical guidelines. 600

LLMs (mainly GPT) are applied in our writing 601

to help correct grammatical and word usage errors, 602

but they do not generate any ideas, data, images, or 603
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tables for us.604

Limitations605

This paper has the following limitations:606

1. While our method has been validated on five607

diverse datasets, its applicability remains lim-608

ited. In particular, we have not tested it on609

multimodal datasets, which are increasingly610

relevant.611

2. The overall performance of our method re-612

mains suboptimal. Even traditional super-613

vised models trained on tens of thousands of614

samples struggle to exceed 80% accuracy. A615

key challenge in MCSA tasks is the inherent616

subjectivity of annotations—different annota-617

tors may assign different labels to the same618

sample, limiting classification performance.619

Additionally, the quality of the datasets may620

not be ideal, but we have yet to conduct an621

in-depth analysis of this aspect.622

3. Although the multi-kernel Gaussian process623

(MK-GP) method achieves strong results, it624

is computationally slower than other similar-625

ity evaluation approaches. Enhancing its ef-626

ficiency is an important direction for future627

work, which we have not yet explored.628
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A Prompts for Classification Rationale837

Generation and MCSA838

1) Prompt Template for Classification Rationale839

Generation840

You are an expert in sentiment analysis. Based841

on the examples provided below, generate detailed842

descriptions for each sentiment label.843

Examples: {examples_str}844

Sentiment Labels: {str(label_list)}845

For each sentiment label, provide a comprehen-846

sive description covering: 1) Linguistic features; 2)847

Semantic features; 3) Characteristics of the target848

or aspect of sentiment expression.849

Clearly define distinguishing classification crite-850

ria and identify specific words, phrases, and expres-851

sions from the examples. Each description should852

be approximately {description_words} words.853

2) Prompt Template for MCSA854

As a sentiment analysis model, analyze the senti-855

ment of the given text, which contains texts about856

{target}.857

Your classification should be based on the858

following {len(label_list)} Sentiment labels:859

{str(label_list)}860

Label_description: {label_description}861

Demonstration Examples: {examples}862

If the input is nonsensical or meaningless, clas-863

sify it as intermediate values of {str(label_list)}.864

Now, analyze the following text about {target}: 865

{query_text} 866

When performing analysis, label distribution 867

also needs to be considered. 868

Label Distribution: {label_distribution} 869

B Definition and Properties of the Matérn 870

Kernel of MK-GP 871

The Matérn kernel is defined as follows, where ν 872

and ℓ are the kernel parameters: 873

kMatérn(xi, xj) = 874

21−ν

Γ(ν)

(√
2ν

∥xi − xj∥
ℓ

)ν

Bν

(√
2ν

∥xi − xj∥
ℓ

)
, 875

where Γ(ν) represents the Gamma function, de- 876

fined as: 877

Γ(ν) =

∫ ∞

0
tν−1e−t dt. 878

Here, Bν(z) denotes the modified Bessel function 879

of the second kind, defined as: 880

Bν(z) =
π

2

I−ν(z)− Iν(z)

sin(νπ)
, 881

where Iν(z) is the modified Bessel function of the 882

first kind, given by: 883

Iν(z) =
∞∑
k=0

(
z
2

)ν+2k

k!Γ(ν + k + 1)
. 884

When the parameter ν → ∞, the Matérn ker- 885

nel converges to the Radial Basis Function (RBF) 886

kernel (Porcu et al., 2024): 887

lim
ν→∞

kMatérn(xi, xj) = exp

(
−∥xi − xj∥2

2ℓ2

)
. 888

When the parameter ν = 1
2 , the Matérn kernel 889

becomes equivalent to the Laplace kernel [54]: 890

kMatérn(xi, xj) = exp

(
−∥xi − xj∥

ℓ

)
,when ν =

1

2
. 891

C Similarity Evaluation Based on Kernel 892

Functions of MK-GP 893

According to Mercer’s theorem (Thickstun, 2019), 894

there exists a Hilbert space H and a mapping ϕ : 895

X → H such that the kernel function k(xi, xj) can 896

be expressed as the inner product in the Hilbert 897

space: 898

k(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩H, ∀xi, xj ∈ X . 899
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Table 4: Experimental Results of Baseline Models and ICL Comparison Methods on Two Datasets.

Method PR_Baby PR_Software

Acc (%) F1 (%) Acc (%) F1 (%)

Baseline
Models

Naïve Bayes 47.86 47.0 44.8 45.0
SVM 50.96 51.0 58.1 59.0
BERT 58.18 58.0 60.3 61.0

BERTweet 57.74 56.0 59.9 58.0

ICL based on
GPT-4o

+GPT-4o-mini

Random 57.9 57.88 62.3 63.57
Coreset 58.1 58.06 62.6 63.68

Cos-Similarity 58.9 59.03 64.7 65.86
BM25 59.2 59.36 63.1 64.25

Complex-CoT 58.4 58.46 65.3 66.38
Auto-CoT 58.8 59.07 62.7 64.08

RD-MCSA 60.1 60.32 67.0 67.22

ICL based on
DeepSeek-R1

+DeepSeek-V3

Random 56.0 56.13 61.5 62.94
Coreset 56.3 56.42 63.5 64.54

Cos-Similarity 56.6 56.72 64.5 65.91
BM25 56.6 56.74 63.9 65.09

Complex-CoT 56.4 56.58 65.7 65.29
Auto-CoT 56.5 56.64 63.2 64.49

RD-MCSA 57.5 57.7 67.7 68.11

Here, ϕ(x) is an implicitly defined mapping,900

and H is the corresponding Hilbert space. In H,901

the Euclidean distance between any two samples902

xi, xj ∈ X is defined as:903

∥ϕ(xi)− ϕ(xj)∥2 = ⟨ϕ(xi), ϕ(xi)⟩H−904

2⟨ϕ(xi), ϕ(xj)⟩H + ⟨ϕ(xj), ϕ(xj)⟩H.905

By utilizing the definition of the kernel function,906

k(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩H, the expression can be907

rewritten as:908

∥ϕ(xi)−ϕ(xj)∥2 = k(xi, xi)−2k(xi, xj)+k(xj , xj).909

This represents the distance in the Hilbert space910

induced by a positive definite kernel function. After911

normalizing the samples, for the kernel function912

adopted in this study, the first and third terms in the913

above equation become constants. Thus, the larger914

the value of the middle term k(xi, xj), the smaller915

the distance between ϕ(xi) and ϕ(xj), indicating916

that the two samples are more similar.917

D Experimental Results on Other918

Datasets919

Table D presents the experimental results of base-920

line models and in-context learning (ICL) compari-921

son models on the remaining two datasets.922

12


	Introduction
	Related Works
	Multi-class Sentiment Analysis
	Text Analysis Using LLMs

	The Methodology of RD-MCSA
	Classification Rationale Generation via Balanced Coreset Selection
	The Balanced Coreset Algorithm
	Classification Rationale Generation

	Demonstration Selection via Multi-Kernel Gaussian Process Similarity Evaluation
	Gaussian Process (GP)
	Multi-Kernel Gaussian Process
	Similarity-based Demonstration Selection Based on the Kernel Function


	Experimental Setup
	Experimental Datasets
	Experimental Implementation Details
	Comparison Models
	Evaluation Metric

	Experimental Results and Analysis
	Main Results
	Ablation Analysis

	Conclusions
	Prompts for Classification Rationale Generation and MCSA
	Definition and Properties of the Matérn Kernel of MK-GP
	Similarity Evaluation Based on Kernel Functions of MK-GP
	Experimental Results on Other Datasets

