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Abstract

Multi-class sentiment analysis (MCSA) poses
significant challenges due to its multiple cate-
gories and the subtle semantic distinctions be-
tween adjacent classes, necessitating substan-
tial amounts of high-quality annotated data,
which is often scarce. This paper introduces
RD-MCSA (Rationales and Demonstrations
based Multi-Class Sentiment Analysis), an
approach that enhances classification perfor-
mance with limited labeled data. RD-MCSA
leverages In-Context Learning (ICL) by inte-
grating classification rationales and demonstra-
tion examples, enabling Large Language Mod-
els (LLMs) to make more accurate predictions.
In RD-MCSA, a representative set of annotated
samples is constructed using a balanced Core-
set algorithm to guide LLMs in generating clas-
sification rationales grounded in linguistic and
semantic features. These rationales are then in-
tegrated with demonstration examples, selected
via a Multi-Kernel Gaussian Process (MK-GP)-
based similarity evaluation method, to enhance
ICL for MCSA. Experiments on five diverse
datasets demonstrate that RD-MCSA outper-
forms both supervised learning methods and
conventional ICL approaches across key evalu-
ation metrics.

1 Introduction

Multi-Class Sentiment Analysis (MCSA) extends
beyond basic sentiment polarity classification (e.g.,
positive or negative) by distinguishing varying lev-
els of emotional intensity (e.g., differentiating be-
tween “very positive” and ‘“generally positive”).
By capturing finer sentiment distinctions, MCSA
enables deeper insights into sentiment expression,
making it essential for applications requiring fine-
grained sentiment analysis (Wang et al., 2023). For
example, in opinion dynamics research, a prereq-
uisite step is categorizing users’ natural language
expressions into five or more sentiment or opinion
categories. (Chuang et al., 2024)

However, the complexity of MCSA arises from
the subtle differences between adjacent sentiment
intensities, which are often challenging to discern
accurately (Mamta and Ekbal, 2023). Moreover,
sentiment categorization criteria can vary signifi-
cantly across applications (Rosenthal et al., 2019).
Effectively tackling a new MCSA task typically de-
mands a substantial amount of high-quality labeled
data tailored to the task’s specific requirements.

Large Language Models (LLMs) have shown
strong performance in sentiment analysis, mak-
ing them a promising approach for MCSA. How-
ever, while LLMs perform well in straightfor-
ward sentiment classification, they often struggle
with nuanced distinctions between sentiment cate-
gories (Zhang et al., 2024). In-Context Learning,
which enhances LLM performance by providing
demonstration examples, has achieved state-of-the-
art results in various NLP tasks. Yet, existing re-
search has largely overlooked its effective applica-
tion to classification tasks with a large number of
sentiment categories (Randl et al., 2024). Our ex-
perimental analysis further reveals that traditional
ICL approaches remain insufficient for MCSA.

In this paper, we propose RD-MCSA, a novel
approach to improve ICL performance for MCSA.
RD-MCSA leverages explicit category division ra-
tionales, generated through LLM-driven reasoning
of semantic and linguistic features from a repre-
sentative set of labeled MCSA samples. This in-
tegration enriches the decision-making process in
sentiment analysis. Additionally, we introduce a
text similarity evaluation method using a multi-
kernel Gaussian process to optimize the selection
of high-quality demonstration examples for ICL.

In summary, this paper makes the following
main contributions:

1. Integration of Classification Rationales and
Demonstrations for ICL: This approach en-
hances the performance of ICL for MCSA



by incorporating classification rationales and
demonstration examples. These rationales,
grounded in linguistic and semantic features,
guide LLMs in achieving more accurate and
nuanced sentiment classification.

2. Classification Rationale Generation via Bal-
anced Coreset Selection: A balanced Coreset
algorithm is developed to construct a standard
reference set to generate classification ratio-
nales, ensuring comprehensive representation
and class balance.

3. MK-GP-based Demonstration Selection: A
text similarity evaluation method leveraging
a Multi-Kernel Gaussian Process (MK-GP) is
introduced to enhance the selection of high-
quality demonstration examples for ICL.

A series of comprehensive experiments on five
diverse and representative datasets validate the ef-
fectiveness of RD-MCSA, highlighting its advan-
tages and identifying key challenges in MCSA
tasks.

2 Related Works

2.1 Multi-class Sentiment Analysis

Multi-class sentiment analysis (MCSA), also
known as fine-grained or graded sentiment anal-
ysis (Sharma et al., 2024), extends traditional senti-
ment classification by categorizing sentiments into
multiple distinct classes. It refines sentiment in-
tensity beyond polarity classification (e.g., “posi-
tive”/“negative”) by introducing subcategories like
“very positive” and “slightly positive” or rating
scales (e.g., 1-5) (AlQahtani, 2021). This provides
a more nuanced understanding of sentiment in text.

Traditional MCSA models rely on supervised
machine learning (Wang et al., 2023) and are typi-
cally applied to texts such as tweets, movie reviews,
and product reviews, with sentiment analysis of-
ten focused on specific targets or aspects. Com-
mon MCSA datasets include SemEval-2017 Task
4 (Rosenthal et al., 2019), SST-5 (Socher et al.,
2013), and Amazon Reviews (AlQahtani, 2021).

Another research direction treats sentiment inten-
sity assessment as a regression problem, where sen-
timent is predicted on a continuous scale. Notable
tasks and datasets include SemEval-2017 Task
5 (Cortis et al., 2017), FiQA 2018 (de Franca Costa
and da Silva, 2018), and recent dimABSA tasks at
SIGHAN-2024 (Lee et al., 2024).

Despite advances, MCSA still faces challenges
such as accuracy limitations and the high cost
of large-scale annotation, particularly as senti-
ment granularity increases (Krosuri and Aravapalli,
2023). Fine-grained sentiment analysis for specific
entities often requires distinct annotated datasets,
making large-scale implementation impractical.

To address these challenges, we aim to im-
prove MCSA performance with limited labeled
data while ensuring a versatile approach applicable
to various MCSA scenarios.

2.2 Text Analysis Using LL.Ms

Large-scale language models outperform smaller
models in many NLP tasks, especially when anno-
tation resources are limited (Zhang et al., 2024),
making them a promising solution for MCSA.

Recent research on LLMs for text analysis has
focused on in-context learning, where carefully se-
lected demonstration examples guide the model’s
predictions. Common strategies for example selec-
tion include similarity-based selection (Liu et al.,
2022), diversity-based selection (Levy et al., 2023),
LLM feedback (Shi et al., 2022), information-
theoretic criteria (Wu et al., 2023), task-level se-
lection (Li and Qiu, 2023), active learning (Zhang
et al., 2022a), and contrastive learning (Chen et al.,
2024). For MCSA, a recent study (Chuang et al.,
2024) applies similarity-based demonstration selec-
tion within ICL to analyze opinion dynamics.

Despite their potential, LLMs still face chal-
lenges in many NLP tasks. While effective for
simpler tasks, they struggle with nuanced senti-
ment analysis (Zhang et al., 2024). Additionally,
few-shot ICL requires further research on optimal
prompt design (Liu et al., 2022). To our knowledge,
no prior work has explored few-shot prompting
for multi-class prediction with a large number of
classes (Randl et al., 2024). Long prompts can over-
load LLLMs (Liu et al., 2024), and context window
limitations may restrict the effective representation
of all classes. Addressing how to efficiently pro-
vide classification information to LLMs is a key
focus of this paper.

3 The Methodology of RD-MCSA

The RD-MCSA framework, as illustrated in Fig. 1,
consists of the following key steps: given an an-
notated dataset D, 1) a balanced-coreset B3 is con-
structed to derive the classification rationale R (Sec-
tion 3.1), 2) a multi-kernel Gaussian process G is
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Figure 1: The workflow of RD-MCSA: The lower half of the figure (below the long dashed line) corresponds
to Section 3.1, while the upper half (above the long dashed line) corresponds to Section 3.2. The training of the
MK-GP (described in Subsection 3.2.2) is omitted in the figure.

trained (Subsection 3.2.2), 3) for MCSA on a new
text, ICL is carried out by using a prompt that en-
compasses the classification rationale R and a set
of demonstration examples selected from D by G
(Subsection 3.2.3).

3.1 Classification Rationale Generation via
Balanced Coreset Selection

To ensure that the generated classification rationale
adequately represents and balances the charac-
teristics of each class, a balanced-coreset B3 is con-
structed from the annotated dataset D = {(z;, ;) |
1 <4 < |D|} using a balanced Coreset algorithm.
This algorithm selects a subset of representative
samples while preserving class distribution to avoid
over-representation of dominant classes.

3.1.1 The Balanced Coreset Algorithm

The Balanced Coreset selection process consists of
the following steps:
1) Determining Class-Specific Sample Limits
The coreset size Ap (a hyperparameter) serves as
an upper bound on the total selected samples in 5.
To maintain class balance, the per-class selection

limit is: \
Ny = |28
o= %]

where v is the number of unique classes in D.
This prevents any class from being overrepresented.

2) Computing the Sampling Probability

To select the most informative samples, selec-
tion probability is assigned based on an impor-
tance weight function w(z;, y; ), which gives higher
weight to samples farther from the class centroid:
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where ¢(z;) represents the embedding of z;,
and |D,| is the number of samples in class c. Prob-
abilities are then normalized within each class:

w(z;, i)
Zj:yj:c w($j7 yj)

Pc(l‘z)

= 2
P.(x;) represents the normalized selection prob-
ability of sample x; within class c.
3) Stratified Weighted Random Sampling
Stratified weighted random sampling is applied
to select representative samples from each class.
The selection process follows these rules:

 If |D.| < Mj, all samples in class ¢ are di-
rectly included in B.

o If |D.| > X, a subset of A}z samples is se-
lected via weighted random sampling using
the computed probabilities P.(x;) as follows:

B. = {(arz,y@) | Yi = C, X5 ~ Pc}7 |Bc| = XB



where B, is the subset of selected samples for
class c.

Finally, the balanced-coreset B is obtained by
aggregating the selected subsets from all u classes:

B=|JB., [BI<Xs

c=1

This approach ensures that 13 remains represen-
tative, diverse, and class-balanced.

3.1.2 Classification Rationale Generation

The balanced-coreset B serves as a reference set for
generating classification rationale using LLMs. An
LLM is prompted with examples from B to extract
and articulate class-specific sentiment character-
istics. The prompt guides the LLM to reason about
class distinctions based on the following aspects:

1) Linguistic expressions
2) Semantic distinctions

3) The characteristics of the target or aspect of
sentiment expression.

The LLM is instructed to derive clear, distin-
guishing classification criteria and identify specific
words, phrases, and expressions from the exam-
ple set to enrich the rationale.

The resulting classification rationale R is then in-
corporated into the ICL process to enhance classifi-
cation accuracy. An example prompt for generating
rationale is provided in Appendix A.

3.2 Demonstration Selection via Multi-Kernel
Gaussian Process Similarity Evaluation

RD-MCSA leverages a multi-kernel Gaussian pro-
cess to evaluate text similarity for selecting ICL
demonstrations. This method benefits from Multi-
ple Kernel Learning’s ability to model and adapt
to complex data distributions (Ghasempour and
Martinez-Ramon, 2023). Initially, the multi-kernel
Gaussian process is trained on the annotated dataset
D to identify the unique characteristics of each cat-
egory. Subsequently, the trained MK-GP’s kernel
functions are employed to assess text similarity,
enabling the effective selection of demonstrations.

3.2.1 Gaussian Process (GP)

Gaussian Process (GP) (Liu et al., 2021) is a
Bayesian non-parametric method that can be ap-
plied to model categorical data with C' categories

(Y = {1,...,C}) by introducing a set of latent
functions {f.(x)}_,, one for each class. Here,
x € X = RW represents the input space. For
text sentiment classification, X corresponds to the
embedding space of input sentences.

Each latent function is modeled as an indepen-
dent Gaussian Process (GP) (Wang, 2023):

fe(x) ~ GP(ec(x), ke(x, 2')), 3)

where e.(x) denotes the mean function, and
k.(x,x") represents the covariance function (also
referred to as the kernel) for the c-th class. In this
work, the mean function is modeled as a learnable
constant without additional constraints, and the
covariance function is designed as a multi-kernel
function, as detailed in Section 3.2.2.

Although the kernel function parameters and the
mean function are inherently independent across
categories, this study adopts a shared covariance
function k(x;, ;) and mean function for all cat-
egories ¢ € Y (Bonilla et al., 2007). This design
choice not only reduces computational complex-
ity but also leverages the structural similarities of-
ten observed among different categories within the
same dataset.

3.2.2 Multi-Kernel Gaussian Process

Multi-Kernel Gaussian Process (MK-GP) extends
standard GP by integrating Multiple Kernel Learn-
ing (MKL). This approach enhances the model’s
capability to represent and adapt to complex data
distributions through a flexible combination of ker-
nel functions (Ghasempour and Martinez-Ramoén,
2023). In this work, we employ a weighted com-
bination of the Matérn kernel (Borovitskiy et al.,
2021) and the polynomial kernel (Song et al., 2021)
to effectively capture both stationary and non-
stationary patterns in the data (Lawler, 2018). The
combined kernel function is defined as follows:

N
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where  karatérn.n (i, ) represents the n-th
Matérn kernel, and kpojym (s, ;) denotes the
m-th polynomial kernel. The coefficients a,, and
Bm are learnable weights constrained to be non-
negative (ay,, B > 0). The Matérn kernel is de-



fined as:
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where v, controls the smoothness of the kernel,

£, is the length scale, and both are learnable pa-

rameters. I is the gamma function, and B,,, is the

modified Bessel function of the second kind, with

their specific forms detailed in the Appendix B.
The polynomial kernel is expressed as:

kPoly,m<wiij) = (7m<mia a3j> + cm)dm ’ (6)

where 7, is a scaling factor, c,, is an offset (both
learnable parameters), and d,,, is the degree of the
polynomial, treated as a hyper-parameter. Here,
(xi, ;) denotes the dot product of x; and x;.
Given the annotated dataset D = { X, y}, where
X represents the input data and y denotes the cor-
responding labels, an MK-GP model G is trained.
The training process for GP involves optimizing
the kernel parameters by minimizing the negative
log-marginal likelihood (Artemev et al., 2021). To
optimize the kernel parameter vector 6, the gradi-
ent of the negative log-marginal likelihood £ with
respect to each parameter ¢, is computed as:
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where K is the covariance matrix with entries
[K]ij = k(x4,xj), 0, € 0 is a kernel learnable
parameter, and Tr denotes the trace operator.

3.2.3 Similarity-based Demonstration
Selection Based on the Kernel Function

Similarity-based demonstration selection, which
identifies the examples most similar to the test sam-
ple, has proven to be optimal for ICL (Liu et al.,
2022). This paper leverages the kernel function of
the trained MK-GP model G to perform similarity-
based demonstration selection.

For a given test sample xg, the similarity be-
tween g and an example x; € D is quantified
using the following formulation:

sim(xo, ;) = k(xo, T;), 3)

A larger kernel function value signifies a greater
similarity between x¢ and x; in the feature
space (Thickstun, 2019), with more details in Ap-
pendix C.

The S examples with the highest similarity val-
ues to g are selected as demonstration examples.
These examples, along with their corresponding la-
bels, denoted as { (1, 91), ..., (xs,ys)}, are then
concatenated with the classification rationale R to
form a ‘prompt’ for the LLM. This process is de-
fined as follows:

Yo = LLM(zo ® R @ (x1,91) © -~ © (@8, Ys))
where 7jp is the predicted label for xq, and @ repre-

sents the concatenation operation.

4 Experimental Setup

4.1 Experimental Datasets

To evaluate RD-MCSA, experiments were con-
ducted on five diverse datasets across various do-
mains and sentiment classification granularities as
shown in Table 1:

Dataset Size Classes Granularity & Text type
SST5! 11,855 5 Sentence-level Movie Reviews
SemEval172 20,632 5 Topic-based Tweets
PR_Baby’ 183,531 5 Baby-product Reviews
PR_Software* 12,804 5 Software Product Reviews
ABSIAY 4,650 7 Restaurant-related Reviews

Table 1: Summary of Experimental Datasets

These datasets cover a range of sentiment classi-
fication tasks, from sentence-level analysis to fine-
grained aspect-based sentiment analysis, enabling
a comprehensive evaluation of RD-MCSA.

4.2 Experimental Implementation Details

In our experiments, we randomly sample 1,000 in-
stances from each dataset to construct the annotated
dataset D, ensuring a fair evaluation of RD-MCSA
across datasets. This also provides insights into the
amount of labeled data required for MCSA tasks,
helping determine the annotation needed to outper-
form traditional classifiers trained on large-scale
datasets. The balanced coreset size for generating
the classification rationale is set to Az = 100. Tak-
ing into account both economy and effectiveness,
the number of demonstrations is set to S = 10.
We conduct experiments using two LLMs: GPT®
and DeepSeek’. Specifically, GPT-40 is employed
for classification rationale generation, while GPT-
4o0-mini, a cost-efficient model, is utilized for
"https://huggingface.co/datasets/SetFit/sst5
Zhttps://huggingface.co/datasets/midas/semeval2017
3https://snap.stanford.edu/data/web-Amazon-links.html

*https://cseweb.ucsd.edu/jmcauley/datasets/amazon_v2
Shttps://www.iitp.ac.in/di-nlp-ml/resources. htmI#ABSIA



ICL in MCSA to handle large-scale datasets. For
DeepSeek, DeepSeek-R1 is used for classification
rationale generation, and DeepSeek-V3 is applied
for ICL in MCSA.

In the MK-GP model, we set n = 9 for the
Matérn Kernel (Formula 5) and m = 9 for the
Polynomial Kernel (Formula 6) across all datasets.
The degrees for the kernels were configured as
dl, d2, d3 =1; d4, d5,d6 = 2; and d7,d8, dg = 3.
The Adam optimizer was employed to minimize the
loss function, with a learning rate of 0.01 over 500
training epochs. All other optimizer parameters
were set to their default values. The optimal hyper-
parameters were determined through grid search
and cross-validation.

The majority of our experiments were conducted
on an NVIDIA GeForce RTX 3080 GPU, where a
single unit of this GPU takes approximately 170.86
seconds to complete 500 epochs of Gaussian pro-
cess training. As for the utilization of LLMs, we
employ an API-based approach for their invocation.

4.3 Comparison Models

We select baseline models from two categories: (1)
classic machine learning and (2) language models
for sentiment classification. The chosen models
are: 1) Naive Bayes (Rennie, 2001): Multinomial
Naive Bayes with Tf-idf features and SMOTE over-
sampling or random undersampling for data imbal-
ance. 2) SVM (Li et al., 2011): Linear kernel Sup-
port Vector Classifier with balanced class weights
and Tf-idf features. 3) BERT (Sun et al., 2019):
BERT-base model with ‘Focal Loss’ to handle data
imbalance. 4) BERTweet (Nguyen et al., 2020):
Pretrained model for English tweets, using ‘Focal
Loss’ for imbalance.

All the baseline models are trained and evaluated
across five datasets with an 80%/20% train-test
split.

Given that ICL approaches have recently
achieved state-of-the-art performance in text clas-
sification, several ICL selection approaches are
included as comparison methods: 1) Random:
Randomly selects unique in-context examples from
the candidate set. 2) Coreset (Indyk et al., 2014):
Select samples that are representative of the over-
all diversity present in the full dataset. 3) Cos-
Similarity (de Vos et al.,, 2022): Selects the
top-S examples based on cosine similarity. 4)

®https://openai.com/api/
"https://www.deepseek.com/

BM25 (Robertson et al., 2009): Selects the top-S
examples based on BM25 scoring. 5) Complex-
CoT (Fu et al., 2022): Selects examples based on
their complexity, quantified by newline characters.
6) Auto-CoT (Zhang et al., 2022b): Clusters can-
didate examples and selects those closest to each
cluster center.

To ensure a fair comparison, these ICL-based
methods use the same 1,000 labeled samples as
RD-MCSA, with 100 demonstrations (S=100). Ad-
ditionally, all prompts include classification ratio-
nales generated by the same method.

For further analysis, ablation studies are con-
ducted with the following models: 1) CR-only:
Uses only classification rationales in the prompt,
excluding demonstration examples. 2) DE-only:
Uses only demonstration examples, excluding clas-
sification rationales. 3) LLM-only: Relies solely
on the LLM’s inherent reasoning for classification,
without classification rationales or demonstration
examples. 4) UnBa-CR: Excludes label balance in
coreset selection for classification rationale genera-
tion.

4.4 Evaluation Metric

Due to the multi-class nature of MCSA and the
class imbalance in the experimental data, we use
the Accuracy and weighted-average F1 score to
evaluate each model’s performance (Sokolova and
Lapalme, 2009).

S Experimental Results and Analysis

5.1 Main Results

Table 2 summarizes the performance of various
models on sentiment classification tasks across
three datasets (results for the remaining two
datasets are provided in Table 4 in Appendix D).
Based on the experimental results, the following
conclusions can be drawn:

1) Effectiveness of In-Context Learning:
Across the experiments conducted on multi-
ple datasets, the In-Context Learning method
achieved the best performance in terms of
both Accuracy and weighted-average Fl1
score. This highlights its superior effective-
ness for the MCSA task compared to tradi-
tional machine learning approaches and lan-
guage model-based classification methods.
Notably, the In-Context Learning method ac-
complished this using only 1,000 samples as
the example pool, whereas baseline methods



Table 2: Experimental Results of Baseline Models and ICL Comparison Methods.

SSTS SemEvall7 ABSIA
Method

Acc (%) F1 (%) Acc(%) Fl (%) Acc(%) Fl(%)

Naive Bayes 37.2 37.0 44.9 44.0 34.8 31.0

Baseline SVM 37.1 37.0 56.7 58.0 49.9 50.0

Models BERT 49.9 50.0 59.2 61.0 51.2 52.0

BERTweet 48.7 47.0 63.4 65.0 52.4 52.0

Random 55.0 54.9 57.7 60.22 51.6 52.87

Coreset 55.7 55.44 594 62.07 53.2 55.39

ICL based on  Cos-Similarity 55.6 55.08 60.1 61.92 52.8 53.58
GPT-40 BM25 56.5 56.02 61.6 63.53 53.0 54.66
+GPT-40-mini  Complex-CoT 56.5 543 62.5 63.12 52.9 55.26
Auto-CoT 56.6 54.18 62.2 63.09 53.4 55.62

RD-MCSA 57.6 56.03 63.9 64.69 54.3 56.01

Random 56.1 55.18 67.2 67.71 51.2 53.26

Coreset 56.2 55.09 67.6 68.4 52.7 53.98

ICL based on  Cos-Similarity 56.3 55.21 68.4 68.62 53.2 5541
DeepSeek-R1 BM25 56.6 55.75 67.3 67.99 53.1 54.72
+DeepSeek-V3  Complex-CoT 56.1 53.84 67.5 67.31 52.2 53.36
Auto-CoT 56.3 54.64 67.7 68.11 52.7 54.99

RD-MCSA 57.9 57.0 68.6 68.55 54.6 56.5

2)

3)

were trained on 80% of the data (typically
tens of thousands of samples). This further
underscores the efficiency and effectiveness
of In-Context Learning in leveraging limited
data for robust performance.

Effectiveness of the RD-MCSA Method:
In the experiments conducted across multi-
ple datasets, the RD-MCSA method achieved
the best performance on all metrics, except
for the SemEvall7 dataset, where the co-
sine similarity-based In-Context Learning
method attained the highest weighted-average
F1 score. These results validate the effective-
ness of the RD-MCSA method. Further val-
idation of its individual components will be
provided in the subsequent ablation experi-
ments.

Comparison of various demonstrations
selection methods: In our experiments
across multiple datasets, the Coreset method
(diversity-based sample selection), Complex-
CoT (sample complexity-based selection),
Auto-CoT (cluster center-based selection),
and three similarity-based methods (BM25,
Cosine Similarity, and RD-MCSA) consis-

5.2

tently outperformed random sample selec-
tion. This highlights the overall effective-
ness of structured example selection strate-
gies. Among the similarity-based methods,
RD-MCSA, which leverages Gaussian pro-
cesses to learn a kernel function, demonstrated
superior capability in measuring sample simi-
larity. Compared to BM25 and Cosine Simi-
larity, RD-MCSA more effectively identifies
samples closely aligned with the target classi-
fication samples, thereby enhancing the clas-
sification performance of LLMs in the MCSA
task.

Ablation Analysis

Table 3 presents the results of the ablation study
conducted on two datasets. Based on the ablation
experiments, we can draw the following conclu-
sions regarding the components of the algorithm:

1) Effectiveness of In-Context Learning: Over-

all, in the experiments conducted on various
datasets in this paper, compared to directly
querying the LLM for text classification, in-
corporating classification rationales resulted
in an improvement in the LLM’s classification
performance. This is likely because classi-



Table 3: Experimental Results of Ablation Studies.

SST5 SemEvall7 PR_Baby PR_Software ABSIA

Acc (%) F1(%) Acc(%) Fl1 (%) Acc(%) Fl1(%) Acc(%) Fl (%) Acc(%) Fl(%)
GPT-based:
LLM-only 54.2 52.62 56.0 58.88 574 57.5 62.1 63.32 50.2 52.11
CR-only 54.9 54.42 57.0 59.81 57.8 57.9 624 63.89 50.9 52.68
DE-only 55.8 54.07 59.1 61.03 59.7 59.81 65.6 65.97 52.0 53.31
UnBa-CR 57.1 54.82 62.0 62.81 59.6 59.62 66.1 65.82 53.7 56.01
Final 57.6 56.03 63.9 64.69 60.1 60.32 67.0 67.22 54.3 56.01
DeepSeek-based:
LLM-only 54.1 53.76 55.8 59.85 55.5 55.5 56.6 58.37 49.2 51.24
CR-only 54.97 52.88 66.5 67.23 55.9 55.96 58.8 60.58 50.1 51.9
DE-only 57.0 56.18 67.9 67.96 56.9 57.09 65.9 66.94 52.6 53.36
UnBa-CR 574 55.99 67.8 67.48 57.1 57.3 66.7 66.39 54.1 55.38
Final 57.9 57.0 68.6 68.55 57.5 57.7 67.7 68.11 54.6 56.5

fication rationales enable the LLM to better
understand the specific meaning of each class
label, thereby enhancing its ability to perform
text classification.

2) Effectiveness of Demonstration Examples:
In the experiments conducted on various
datasets, compared to directly querying the
LLM for text classification, the inclusion of
demonstration examples led to a significant
improvement in the LLM’s classification per-
formance. This suggests that, compared to
other modules, demonstration examples play
a more crucial role in the LLM’s text classifi-
cation process.

3) Effectiveness of Label Balance in Classifi-
cation Rationales Generation: In the exper-
iments conducted on various datasets in this
paper, when the samples used to generate clas-
sification rationales were imbalanced in terms
of class distribution, the classification perfor-
mance showed a noticeable decline compared
to when class-balanced samples were used.
This may be because, when the sample cate-
gories are imbalanced, the number of samples
from certain classes may be too small, making
it difficult for the LLM to truly understand the
meaning of those classes, and subsequently
harder to generate effective classification ra-
tionales.

6 Conclusions

This paper introduces a novel multi-class senti-
ment analysis (MCSA) framework that combines

balanced-coreset-based classification with multi-
kernel Gaussian processes (MK-GP) for similarity
assessment. The proposed approach effectively
tackles critical challenges, including class imbal-
ance and the high cost of large-scale annotation,
while capturing subtle and nuanced sentiment ex-
pressions. Extensive experiments conducted across
five diverse datasets demonstrate the superior per-
formance and robustness of our method.

Future research directions include extending the
framework to other sentiment analysis tasks, inte-
grating multimodal data (e.g., audio and visual in-
puts), enhancing computational efficiency, and de-
veloping strategies to mitigate the impact of subjec-
tive annotations. These advancements contribute
to the field by offering valuable insights and lay-
ing the groundwork for more accurate and scalable
sentiment analysis systems.

Ethics Statement

Our study uses publicly available datasets, and no
personally identifiable information is included. We
acknowledge potential biases in sentiment classifi-
cation tasks and have taken steps to mitigate them,
such as dataset balancing and bias analysis. No
human subjects were involved in the study, and no
additional ethical approval was required. While our
method could be used for sentiment analysis appli-
cations, we do not foresee direct misuse. We will
release the code and models responsibly, ensuring
compliance with ethical guidelines.

LLMs (mainly GPT) are applied in our writing
to help correct grammatical and word usage errors,
but they do not generate any ideas, data, images, or



tables for us.

Limitations

This paper has the following limitations:

1. While our method has been validated on five
diverse datasets, its applicability remains lim-
ited. In particular, we have not tested it on
multimodal datasets, which are increasingly
relevant.

2. The overall performance of our method re-
mains suboptimal. Even traditional super-
vised models trained on tens of thousands of
samples struggle to exceed 80% accuracy. A
key challenge in MCSA tasks is the inherent
subjectivity of annotations—different annota-
tors may assign different labels to the same
sample, limiting classification performance.
Additionally, the quality of the datasets may
not be ideal, but we have yet to conduct an
in-depth analysis of this aspect.

3. Although the multi-kernel Gaussian process
(MK-GP) method achieves strong results, it
is computationally slower than other similar-
ity evaluation approaches. Enhancing its ef-
ficiency is an important direction for future
work, which we have not yet explored.
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A Prompts for Classification Rationale
Generation and MCSA

1) Prompt Template for Classification Rationale
Generation

You are an expert in sentiment analysis. Based
on the examples provided below, generate detailed
descriptions for each sentiment label.

Examples: {examples_str}

Sentiment Labels: {str(label_list)}

For each sentiment label, provide a comprehen-
sive description covering: 1) Linguistic features; 2)
Semantic features; 3) Characteristics of the target
or aspect of sentiment expression.

Clearly define distinguishing classification crite-
ria and identify specific words, phrases, and expres-
sions from the examples. Each description should
be approximately {description_words} words.

2) Prompt Template for MCSA

As a sentiment analysis model, analyze the senti-
ment of the given text, which contains texts about
{target).

Your classification should be based on the
following {len(label_list)} Sentiment labels:
{str(label_list)}

Label_description: {label_description}

Demonstration Examples: {examples}

If the input is nonsensical or meaningless, clas-
sify it as intermediate values of {str(label_list)}.
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Now, analyze the following text about {target}:
{query_text}

When performing analysis, label distribution
also needs to be considered.

Label Distribution: {label_distribution}

B Definition and Properties of the Matérn
Kernel of MK-GP

The Matérn kernel is defined as follows, where v
and / are the kernel parameters:

kMatérn («Tia ZC]‘) =

t (V2L (vl o)

where I'(v) represents the Gamma function, de-

fined as:
x
/ 'Lt dt.
0

Here, B, (z) denotes the modified Bessel function
of the second kind, defined as:

w1 y(2) — L(2)

2

I'(v)

I

B =
v(2) sin(v)
where I, (z) is the modified Bessel function of the
first kind, given by:

(é)u—i-Qk

o
L(z)=) —2
() kZO ET(v+k+1)
When the parameter v — oo, the Matérn ker-
nel converges to the Radial Basis Function (RBF)

kernel (Porcu et al., 2024):
i — 2
202 )

When the parameter v = %, the Matérn kernel
becomes equivalent to the Laplace kernel [54]:

lim Amagmn (24, ) = exp
V—00

i =l

kMatérn(-ria .%'j) = €xp ( /

C Similarity Evaluation Based on Kernel
Functions of MK-GP

According to Mercer’s theorem (Thickstun, 2019),
there exists a Hilbert space H and a mapping ¢ :
X — H such that the kernel function k(x;, X;) can
be expressed as the inner product in the Hilbert
space:

k(xi,xj) = (o(xi), o(xj)),  Vxi,X; € X.
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Table 4: Experimental Results of Baseline Models and ICL Comparison Methods on Two Datasets.

Method PR_Baby PR_Software

Acc (%) F1 (%) Acc(%) Fl (%)

Naive Bayes 47.86 47.0 44.8 45.0

Baseline SVM 50.96 51.0 58.1 59.0

Models BERT 58.18 58.0 60.3 61.0

BERTweet 57.74 56.0 59.9 58.0

Random 57.9 57.88 62.3 63.57

Coreset 58.1 58.06 62.6 63.68

ICL based on  Cos-Similarity 58.9 59.03 64.7 65.86
GPT-4o0 BM25 59.2 59.36 63.1 64.25
+GPT-40-mini  Complex-CoT 58.4 58.46 65.3 66.38
Auto-CoT 58.8 59.07 62.7 64.08

RD-MCSA 60.1 60.32 67.0 67.22

Random 56.0 56.13 61.5 62.94

Coreset 56.3 56.42 63.5 64.54

ICL based on  Cos-Similarity 56.6 56.72 64.5 65.91
DeepSeek-R1 BM25 56.6 56.74 63.9 65.09
+DeepSeek-V3  Complex-CoT 56.4 56.58 65.7 65.29
Auto-CoT 56.5 56.64 63.2 64.49

RD-MCSA 57.5 57.7 67.7 68.11

Here, ¢(x) is an implicitly defined mapping,
and H is the corresponding Hilbert space. In 7,
the Euclidean distance between any two samples
X;,X; € X is defined as:

lp(x:) — (x))II” = (D(xi), (xi))n—
2(p(x;), P(X5)) 21 + (D(X5), B(X;)) 21

By utilizing the definition of the kernel function,
k(xi,x;) = (¢(x;), ¢(X;))2, the expression can be
rewritten as:

(X)) —p(x)|1> = k(xi, i) —2k(xq, X;)+k (x5, X;).

This represents the distance in the Hilbert space
induced by a positive definite kernel function. After
normalizing the samples, for the kernel function
adopted in this study, the first and third terms in the
above equation become constants. Thus, the larger
the value of the middle term k(x;, X;), the smaller
the distance between ¢(x;) and ¢(x;), indicating
that the two samples are more similar.

D Experimental Results on Other
Datasets

Table D presents the experimental results of base-
line models and in-context learning (ICL) compari-
son models on the remaining two datasets.

12



	Introduction
	Related Works
	Multi-class Sentiment Analysis
	Text Analysis Using LLMs

	The Methodology of RD-MCSA
	Classification Rationale Generation via Balanced Coreset Selection
	The Balanced Coreset Algorithm
	Classification Rationale Generation

	Demonstration Selection via Multi-Kernel Gaussian Process Similarity Evaluation
	Gaussian Process (GP)
	Multi-Kernel Gaussian Process
	Similarity-based Demonstration Selection Based on the Kernel Function


	Experimental Setup
	Experimental Datasets
	Experimental Implementation Details
	Comparison Models
	Evaluation Metric

	Experimental Results and Analysis
	Main Results
	Ablation Analysis

	Conclusions
	Prompts for Classification Rationale Generation and MCSA
	Definition and Properties of the Matérn Kernel of MK-GP
	Similarity Evaluation Based on Kernel Functions of MK-GP
	Experimental Results on Other Datasets

