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Abstract

In many settings, such as scientific inference, op-
timization, and transfer learning, the learner has
a well-defined objective, which can be treated as
estimation of a target parameter, and no intrinsic
interest in characterizing the entire data-generating
process. Usually, the learner must also contend
with additional sources of uncertainty or variables
— with nuisance parameters. Bayesian active learn-
ing, or sequential optimal experimental design, can
straightforwardly accommodate the presence of
nuisance parameters, and so is a natural active
learning framework for such problems. However,
the introduction of nuisance parameters can lead to
bias in the Bayesian learner’s estimate of the target
parameters, a phenomenon we refer to as negative
interference. We characterize the threat of negative
interference and how it fundamentally changes the
nature of the Bayesian active learner’s task. We
show that the extent of negative interference can
be extremely large, and that accurate estimation
of the nuisance parameters is critical to reducing
it. The Bayesian active learner is confronted with
a dilemma: whether to spend a finite acquisition
budget in pursuit of estimation of the target or of
the nuisance parameters. Our setting encompasses
Bayesian transfer learning as a special case, and
our results shed light on the phenomenon of nega-
tive transfer between learning environments.

1 INTRODUCTION

Sequential optimal experimental design (sOED), or
Bayesian active learning, has been used in a wide variety
of applications, including mixed-effects modeling [Foster
et al., 2019], model selection [Cavagnaro et al., 2010], hy-
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perparameter selection [Houlsby et al., 2011], Bayesian
optimization [Hernandez-Lobato et al., 2014], and graph
discovery [Branchini et al., 2023]. In all these applications,
the learner prioritizes identification of some aspects of the
data-generating process over others: fixed over random ef-
fects, functional form/hyperparameter values/location of the
function maximum over values of the function’s parame-
ters, or graph structure over a structural causal model. In
such settings, data is generated by a combination of far-
get parameters (which are of interest to the learner) and
nuisance parameters (which are not). Naive application of
sOED involves greedy maximization of the Bayesian active
learner’s primary objective — information about the target
parameters — marginalized across values of the nuisance
parameters.

Despite the frequent use of SOED in such settings, there is
little work on how it is affected by the presence of nuisance
parameters. As we show in Section 2, this fundamentally
changes the nature of the Bayesian active learner’s task:
while, in the absence of nuisance parameters, the naive
approach usually leads to consistent and sample-efficient
estimates [Paninski, 2005], introducing nuisance parameters
can result in initial convergence towards the wrong value
of the target parameter. We refer to this phenomenon as
negative interference.

We introduce the concept of negative interference in SOED
and provide a non-asymptotic analysis of it. Our results
show that (i) negative interference is caused by a bias in
the learner’s rarget likelihood function that can arise in the
presence of nuisance parameters even if their likelihood
function is well-specified (Theorem 4.5), (ii) there exist
data-generating processes that induce such extreme negative
interference that the learner cannot learn from any finite
amount of data (Theorem 4.8), and (iii) identification of
the (distribution of) nuisance parameters is critical to re-
ducing this threat, and so constitutes an implicit auxiliary
objective for the Bayesian active learner (Theorem 4.11). In
synthetic but illustrative settings, we show empirically that
rather than only occurring in pathological cases, negative
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interference can arise frequently in practice. Bayesian active
learners thus face a dilemma, akin to but distinct from the
exploration—exploitation dilemma: should they spend their
acquisition budget directly pursuing identification of the
target parameters, or of the nuisance parameters?

2 PRELIMINARIES

Notation. We denote sets by calligraphic capital letters
(&) and vectors by bold lowercase letters (a). a; is the
ith entry of a. Bold capital letters (A) indicate a random
variable (RV) with a corresponding sample space .«7. For
RVs whose distribution the learner has access to, P is the
distribution of A and p(a) is the probability of event a. For
RVs whose distribution the learner does not have access to,
QA is the distribution of A and ¢(a) is the probability of
event a. A may refer to the RV with distribution Pa or Qa,
and we may not distinguish when it is clear from context.

General formulation. On each of several time steps
t € [1...T], the learner selects one action x from some
action set 2 . Each action results in the realization of an
outcome variable that can take values y € #/. The outcome
distribution is determined by x and the values of some unob-
servable parameters, partitioned into target parameters that
can take values 8 € .7 and nuisance parameters that can
take values 1 € .#. The probability of observing outcome
y given a tuple (x, 0, 1) is p(y|x, 8, ).

As usual, there is assumed to be some value of the tar-
get parameters underlying the data-generating process the
learner interacts with, which we denote @*. The learner’s
goal, which we refer to as their primary objective, is identi-
fication of the target parameters, i.e., of 8*.

There is no assumption placed on the nature of the nui-
sance parameters underlying the data-generating process.
Each data point the learner encounters may be generated
by a deterministic value of the nuisance parameters, or by a
stochastic value drawn from some distribution. Moreover,
we do not require that these draws be independent nor identi-
cally distributed: the distribution of the nuisance parameters
may change over time, and the learner may or may not have
access to the nature of these changes.

Formally, values 1) are assumed to be drawn from a distri-
bution (), which may depend arbitrarily on the history of
observations. The tuple (68”, Qg ), which is unknown to the
learner, fully specifies a data-generating process (DGP). A
DGP (6*, Q) generates the outcome distribution Qv |x,
where for any y, ¢(y|x) = Ey~e [P(¥]x, 0%, 9)]. Since
the learner does not have access to (6%, Qg ), they are not
able to evaluate this outcome distribution.

To capture their uncertainty about the value 6 and the
distribution QQy, the learner considers them RVs with a
prior distribution Pg . The learner’s predictive distribution

is Py|x, under which p(y|x) = Eo,y~re « [P(¥|x, 6, )].
We use the term farget likelihood function to refer to Py |x g,

under which p(Y|xa 9) = E¢~P\m9 [p(y|X, 07 Q/J)]

The learner’s prior on each time step conditions on the
entire history of observations. This results in the posterior
p(0ly,x) = % functioning as their prior on the
next time step. In general when we refer to the learner’s prior
Pe, we suppress this potential dependence on previously-

observed data.!

The fixed-1) formulation refers to the special case where
Q-+ is degenerate on some value 1* (which is unknown to
the learner), and can be written Qg = §(v"), i.e., as the
Dirac delta function centered at 1™,

Sequential optimal experimental design (SOED) is an
active learning paradigm in which the learner selects the
action x that maximizes the mutual information (I) between
the observations it induces and the value of some specified
parameters (see Ryan et al. [2016] or Rainforth et al. [2023]
for a review). This quantity is generically known as the ex-
pected information gain, which conveys its interpretation
as the expectation, across the learner’s prior, of the amount
of information they gain about the value of the specified
parameters. The naive Bayesian active learner greedily max-
imizes the expected information gain with respect to the
target parameters. We refer to this as the expected target
information gain:?

Definition 2.1 (Expected target information gain (ETIG)).
The ETIG of an action x is the mutual information between
Y |x and © according to the learner’s prior:

ETIG(x) = (@ ~ Po ; Y[x ~ Py|y)

= GNI%;‘@ [T(X, 07 P‘Il|9)}

where

r(6.Pug) = B LNPEEW, [k’g (W)H

is the learner’s target information gain.

Here, 7(x, 0, Pygg) represents the degree to which the
learner could expect to achieve their primary objective when
taking action x in DGP (6, Pg|g). Of course, the learner
does not have access to the true DGP, and so approximates
the target information gain they will experience by taking
an expectation with respect to their prior Pg. The ETIG

'We place no constraints on how the learner’s prior over 1)
will respond or has responded to data. The learner may similarly
update Py on the basis of presently-observed data, and/or Py may
implicitly depend on previously-observed data.

We hereafter reserve the term “expected information gain”
to refer to the mutual information between observations and the
entire data-generating process (see Definition 4.12).



can also be interpreted as a measure of expected posterior
concentration, i.e., of the degree to which the learner ex-
pects their posterior to concentrate on 8* after observing
data y|x.

While the ETIG may be a useful approximation for the
epistemically uncertain learner, the amount of informa-
tion gained by the learner in practice will depend on the
data-generating process. The data does not care about the
learner’s uncertainty, and will present itself according to
the true DGP (6*,Qy). A learner interacting with this
DGP will experience a target information gain r(x, 0%, Qg ),
which we hereafter denote r*(x):

™ (x) = 1(x,0", Qu)
= b e ()
= E

0*
{k’g <p<y|x, ) )}
Y Qv ix p(ylx)
While in practice the learner cannot know r* (x), understand-
ing how it behaves facilitates understanding of whether, and

under what conditions, the learner’s inferences will resem-
ble the true DGP in practice.

Negative interference. In the absence of nuisance param-
eters, the DGP is fully specified by the value of 8*. In this
case, 7*(x) can be written without dependence on Qg, i.e.,

25 1 (x) = 7(x,607) = Eynry,,. [log (2E00)]3
This is also the Kullback-Leibler divergence (KLD) from
Py|x,6+ to Py|x. Like all KLD measures, r*(x) is non-
negative. In other words, in the absence of nuisance param-
eters, regardless of the DGP the learner encounters, their

posterior will move towards 6.

However, the same is not generally true in the presence of
nuisance parameters: the distribution over which the expec-
tation is taken, which is generally unavailable to the learner,
need not match the distribution whose density is evaluated
in the numerator of the log function, which depends only on
the learner’s prior. In other words, the presence of nuisance
parameters poses the threat of biased inference, i.e., that
the learner’s posterior will move away from 8. Such cases
correspond to a situation in which the learner is better off
before learning from data!

When this threat is present, i.e., r*(x) is negative due to
the presence of nuisance parameters, we say that the learner
experiences negative interference (from the nuisance param-
eters):

Definition 2.2 (Negative and positive interference). If

3As in the presence of nuisance parameters, 7* (x) can equiv-

alently be written 7*(x) = Ey~Qy/y [log (%{f;))] (recall

that an action and DGP fully determine the probability of an out-
come p(y|x,0%), and 50 Py |x,0+ = Qv|x,0* = Qv|x)-

r*(x) < O for the set of actions x that the learner takes
when interacting with DGP (0%, Qg ), we say the learner
experiences negative interference. Otherwise, we say they
experience positive interference.

As a simple example of a setting in which negative inter-
ference can occur, consider a learner who confronts data
generated by the following linear model:

y|x ~ N (021 + pzs,07) (1)

where the outcome variance o2 is known to the learner.
However, the learner may be mistaken about the distribution
of W. The degree to which they are mistaken will affect
their estimate of 8. Informally, if Q)¢ is centered on large
values of 1), the learner will tend to observe large values of
y. However, if the learner’s prior Py is centered on small
values of 1), they will attribute the observed large values of y
to a large value of 8. Importantly, this will occur regardless
of the true value 8*, and if 8™ is relatively small, the result
will be negative interference.

3 RELATED WORK

In Section 4, we characterize the phenomenon of negative
interference by analyzing the target information gain r*(x).
Due to the generality of our formulation, these results apply
in a variety of settings, including active model selection,
Bayesian optimization, and transfer learning. To further
motivate our results, we here summarize how our work
complements these and other streams of related work.

Misspecification and active learning. As we will show,
negative interference arises from a difference between the
true nuisance parameter distribution Q) and the learner’s
prior Py, which is a form of prior misspecification. Cuong
etal. [2016] and Simchowitz et al. [2021] provide theoretical
results on how prior misspecification affects active learning
strategies, but do not consider sOED specifically or the pres-
ence of nuisance parameters. The results in Simchowitz et al.
[2021] apply to a broad range of Bayesian decision-making
strategies but in the presence of an exploration—exploitation
dilemma, where the learner trades off seeking information
with reward maximization. Our results apply in the pres-
ence of a trade-off between seeking information about tar-
get versus nuisance parameters. Our work is also closely
related to Go and Isaac [2022], who propose a novel acqui-
sition function for SOED that facilitates robustness to prior
misspecification. Their Robust Expected Information Gain
(REIG) is designed to cope with misspecification over the
target, rather than nuisance, parameters.* We also propose

*The REIG can be extended to cope with misspecification of
the target likelihood, of which misspecification of the distribution
of nuisance parameters is a special case.



an acquisition function which, unlike the REIG, actively
seeks information about the nuisance parameters.

Our work is also related to, but distinct from, work on model
misspecification in active learning [Sugiyama, 2005, Fuden-
berg et al., 2017, Farquhar et al., 2021, Bogunovic and
Krause, 2021, Chen et al., 2021, Sloman et al., 2022, Over-
stall and McGree, 2022, Catanach and Das, 2023]. Like
our setting, model misspecification is characterized by bias
in the target likelihood. Unlike our setting, this source of
bias is a fixed part of the learner’s model, and cannot be
alleviated by collecting more data.

Applications of sOED in the presence of nuisance pa-
rameters. Many applications of sOED involve estimation
in the presence of nuisance parameters, or of an embedded
model [Foster, 2021]. The effect of prior misspecification
has, to a limited degree, been explored in the context of some
of these specific applications. To the best of our knowledge
we are the first to provide a general characterization of the
effect of nuisance parameters.

In active model selection, the model indicator is treated as
the target parameter and each model’s parameters are treated
as nuisance parameters [Cavagnaro et al., 2010]. Ray et al.
[2013] show that naive SOED for model selection exhibits
suboptimal sample efficiency. Sloman et al. [2023] show
that misspecified parameter distributions can lead to biased
inferences in initial experimental trials, and discussed the
resulting model selection—parameter estimation dilemma.

In Bayesian optimization (BO), the target parameter is
the location of the data-generating function maximum
[Hernandez-Lobato et al., 2014, Wang and Jegelka, 2017],
and the nuisance parameters correspond to the parameters
of the data-generating function. Prior work has investi-
gated the limitations of greedy acquisition functions for
BO [Gonzilez et al., 2016] and shown that identification of
the function maximum can be threatened by prior misspeci-
fication [Schulz et al., 2016, Bogunovic et al., 2018].

sOED for implicit likelihoods. In our setting, the like-
lihood p(y|x, @) is often not defined analytically and is
derived by taking an expectation of p(y|x, 8, ) over the
nuisance parameters W. In such cases, the target likelihood
constitutes an implicit likelihood [Foster et al., 2019], which
connects our setting to work on methods for SOED with
implicit likelihoods [Ivanova et al., 2021]. Unlike us, this
prior work does not consider the potential for bias in the
estimation of the target likelihood (the crucial threat posed
by the presence of nuisance parameters). Blau et al. [2022]
and Lim et al. [2022]’s proposed methods for SOED with
implicit likelihoods incorporate stochasticity in the learner’s
choice of action, and so explore the design space more thor-
oughly than naive sSOED methods. The objective to explore
the design space is distinct from (although perhaps related
to) the specific auxiliary objective that arises in our setting

to learn the distribution of nuisance parameters.

Inference in the presence of nuisance parameters. Our
results align with a large body of literature on the effect of
nuisance parameters on inference more broadly [Neyman
and Scott, 1948, Basu, 1977, Dawid, 1980]. We differ from
this prior work in our emphasis on the interpretation and
characterization of these effects in the context of active
learning and the learner’s decision of how to allocate their
finite acquisition budget.

Bayesian transfer learning and negative transfer.
Bayesian transfer learning refers to settings in which lit-
tle or no data is available from the task in which the learner
wants to make predictions, and so they rely on learning from
data from other, similar tasks [Suder et al., 2023]. This is
often formulated as the training and test tasks being char-
acterized by a set of common parameters and a set of task-
specific parameters [Suder et al., 2023]. Examples include
probabilistic meta-learning [Gordon et al., 2019], Model
Agnostic Meta-Learning, where the transferable parameter
is a good initialization for training within tasks [Finn et al.,
2017, Grant et al., 2018, Yoon et al., 2018, Patacchiola et al.,
2020], and multitask learning, where the transferable pa-
rameter corresponds to a latent representation shared across
tasks [Caruana, 1997].

This formulation can be naturally cast into our setting by
considering the transferable parameters to be target parame-
ters, and the task-specific parameters to be nuisance parame-
ters. A DGP can be interpreted to extend across one or many
training tasks, and Qg as the distribution of task-specific
parameters across these tasks.

Negative transfer refers to the phenomenon that learning
in one environment hurts performance in another environ-
ment [Wang et al., 2019]. One of the reasons for this can be
understood by our more general concept of negative inter-
ference. Here, the auxiliary objective can be thought of as
learning task-specific properties of the training task(s) that
are not expected to transfer to the test tasks. Some Bayesian
but non-active transfer learning algorithms do as much by
simultaneously learning a fixed, transferable parameter and
a distribution over task-specific parameters [Gordon et al.,
2019] or explicitly learning a task-specific parameter in each
task [Yoon et al., 2018].

4 ANALYZING NEGATIVE
INTERFERENCE

The primary objective of the Bayesian active learner can be
restated as maximizing the amount of positive interference,
which requires minimizing the threat of negative interfer-
ence. To this end, our results address the following ques-



tions:> Under what conditions does negative interference
arise (Theorem 4.5)? How drastic can the amount of neg-
ative interference be (Theorem 4.8)? How can the learner
mitigate the threat of negative interference (Theorem 4.11)?

We first give Proposition 4.1, which decomposes r*(x) in a
way that allows us to make the notion of bias in the target
likelihood more rigorous. The derivation of Proposition 4.1
is given in Appendix A.2.

Proposition 4.1 (Decomposition of 7*). 7*(x) can be de-
composed as

r*(x) = Dxi (Qvix || Pyx) — DL (Qvx || Py|x.6+) -

D Deor

When the true outcome distribution, characterized by the
density ¢(y|x), differs from the learner’s predictive distri-
bution, characterized by the density p(y|x), the learner’s
predictive distribution is biased, i.e., does not match the true
outcome distribution. We use D to refer to the extent of this
form of bias.

Recall that ¢(y|x) = Ey~gy [P(¥]x, 0%, )], and that the
target likelihood p(y|x, 0") = Ey~ry . [P(Y]X, 07, 9)].
When ¢(y|x) differs from p(y|x, 8*), the target likelihood
of 6” is biased, in the sense that the learner’s expectations of
outcomes delivered under 8" do not resemble the outcomes
the world delivers under 8*. We use Dy~ to refer to the
extent of this form of bias.

Note that both these forms of bias can occur as a result either
of epistemic uncertainty about () or of model misspecifi-
cation, i.e., misspecification of the functional form of the
likelihood p(y|x, 6, ). While our setting allows for only
the first source of bias, some elements of our analysis could
be extended to understand the effect of model misspecifi-
cation (see related work in Section 3). We do not consider
such extensions further here, but consider them a promising
avenue for future work.

Conditions for negative interference. Proposition 4.1
provides the intuition that higher bias in the target likeli-
hood leads to a larger extent of negative interference. How-
ever, notice that D also implicitly depends on Dg+: Py |x
is constructed by marginalizing over Py |y ¢ forall @ € .7,
including 8. Conditions that lead to higher Dy« could also
lead to higher D, and so it is not a priori obvious whether
bias in the target likelihood is indeed responsible for nega-
tive interference. Theorem 4.5 provides an upper bound on
r*(x) that isolates the contribution of Dg+, and shows that
negative interference is a direct function of bias in the target
likelihood of 8*. It depends on the following definitions:

Definition 4.2 (e-neighborhood of 6 (N.(0))). N.(0) =

SExcept when stated otherwise, all our results hold for the
general formulation.

{6 € 7 |d(6,0) < €}, where d is a suitable distance
measure, is the e-neighborhood of 0.

Definition 4.3 (I:’@,Y‘x). p@’y|x refers to the joint distribu-
tion of ©® and Y |x obtained by “subtracting” the contribu-
tion of N.(0%) from the learner’s prior. Pe is the marginal
distribution of © under 15(..)7y|x, under which

o p(6)
p(8) = Jo\n.on) P(0) d

and Py‘x is the marginal distribution of Y |x under P@’Y|x,
under which

Bylx) = / p(y|x.0) 5 (8) d6 foranyy € .
T\Nc(6%)

Bfor any 0 € T\N.(0")

Theorem 4.5 also depends on the following assumption:

Assumption 4.4 (Smoothness in target parameter space).
There exists some € > 0 such that

Ey~qy. log (p(y[x))] =

Ey Qv [(/ p(0) d0> log (p(y[x,6"))+
N(6%)

( / p(6) d0> log (7 <y|x>>] .
T\N(6%)

Remark. Assumption 4.4 says that there is some e-
neighborhood around 6* inside which it is “safe” to ap-
proximate the expectation of p(y|x,8) as p(y|x,0%), in
the sense that the approximation error is not that large.®
If the target parameter space is continuous and p(y|x, 6)
is smooth near 6*, one would expect the approximation
error to decrease as € approaches 0. If the target param-
eter space is discrete, Assumption 4.4 holds for any € <
min{d(6*,0) | 6 € T\{6"}}, i.e., for any € less than the
smallest distance from 0™ to another value of @ (in which
case, N.(0%) = {6*}).

Theorem 4.5 gives an upper bound on 7*(x) in terms of
De+. The proof is given in Appendix A.3.

Theorem 4.5 (Upper bound on 7*(x).). Given (8*,Qg)
and € that satisfies Assumption 4.4, r*(x) is upper-bounded

r*(x) < ( /mN o p(6) d0> (ﬁ - pg*)

where D == Dk, (QY\x I PYIX)'

SMore specifically, we require that, on average across ob-
servations y|x, there is some e-neighborhood around 6 inside
which the error from approximating the expected likelihood with
p(y|x,0%) does not close the Jensen gap between the log marginal
likelihood across .7 and the expectation of the log marginal likeli-
hood both inside and outside N.(0).



Importantly, D does not depend on Dy-+. By isolating the
contribution of Dg+ to the bound, Theorem 4.5 shows that
the bound decreases as a function of Dg~ . In other words, the
larger Dg- is, the higher the threat of negative interference
is.

Extent of negative interference. Theorem 4.8, given be-
low, shows that the amount of negative interference can be
arbitrarily extreme. More precisely, it establishes conditions
under which the learner might encounter a DGP in which
learning for any finite number of time steps would not yield
information about 6*.

To prove Theorem 4.8, we analyze how r*(z) responds to
changes in the true distribution of nuisance parameters. For
this, we require a measure of the degree to which a scalar-
valued function changes with respect to Qg . To this end,
we consider possible values of (g to be members of some
parametric family of distributions:

Definition 4.6 (Parameters of Qg (¢ € %).). Possible
distributions over nuisance parameters can be represented
as vectors ¢ € F where F is a closed subset of RP for
some positive integer p. Q‘é, is the distribution of nuisance
parameters parameterized by .

Values of ¢ can be interpreted as vectors parameterizing a
family of nuisance parameter distributions (the family of
distributions that constitutes possible values of Q@). For
example, the entire family of Gaussian distributions can be
parameterized by a set of vectors ¢ € R, with one dimen-
sion corresponding to possible values of each of the mean
and variance. Definition 4.6 allows Qg to belong to any
such family of parametric distributions, including families
parameterized by p data points (e.g., possible outputs of a
given deterministic algorithm for density estimation of p
data points) or that have a discrete domain (for which each
element of ¢ can represent the — potentially unnormalized
— probability of the corresponding domain element).

Since values of ¢ are vectors of finite length, we can analyze
how a scalar-valued function f responds to changes in Qw
via its gradient with respect to ¢. We use V f(¢) to refer
to the gradient of f at ¢. This can also be interpreted as a
measure of the robustness of f to changes in Q.

Theorem 4.8 also requires the following assumption:

Assumption 4.7 (Unboundedness of .%). F is unbounded
in at least one direction, meaning that for some integer
i € [1,p] one of the following conditions holds:

(a) Y € F,3p € F for which q}l < ¢;
(b) Vp € F,3¢p € F for which ; > ¢;
Remark. Assumption 4.7 says that the domain of at least one

parameter of the family of nuisance parameter distributions
tends to either infinity or negative infinity. Continuing with

the example above in which ¢ parameterizes the family of
Gaussian distributions, take ¢, to correspond to possible
values of the mean and ¢, to correspond to possible values
of the variance. Possible values of the mean ¢, consist
of all numbers on the real line R. Since R tends to both
positive and negative infinity, both Assumption 4.7(a) and
(b) are satisfied for + = 1. Possible values of the variance
consist of all numbers on the positive real line R*. Since R™
is bounded from below by 0 but tends to positive infinity,
Assumption 4.7(b) is satisfied for ¢ = 2.

Theorem 4.8 establishes conditions under which r*(x) is un-
bounded below with respect to ¢. The proof of Theorem 4.8
is given in Appendix A.4. The smaller the amount of pos-
terior mass on 8*, the more data the learner will require to
recover 6”. Theorem 4.8 implies that for any finite number
of time steps, there is a distribution of nuisance parame-
ters that would lead to such extreme posterior concentration
away from 6 that it could not be unlearned from collecting
data on subsequent time steps.

Theorem 4.8 (Sufficient conditions for no lower bound on
r*(x)). Given 0%, F and i that satisfies Assumption 4.7,
r*(xX) does not have a finite lower bound (in the sense that
Ve € R, 3¢ € .F such that r(x, 0%, Qg) < ¢) if one of the
following conditions holds:

(a) Assumption 4.7(a) holds and 3¢ € F such that V¢ €
F forwhich ¢, < ¢;, VDo~ () exists, VD(¢p) exists,
and VD« (¢); < VD(¢p); — b

(b) Assumption 4.7(b) holds and EI&& € F such thatN¢ €
F for which ¢; > ¢;, VDo () exists, VD(¢) exists,
and VDg+(¢); > VD(¢p); + b

for some b € RT.

Theorem 4.8 essentially says that catastrophically negative
interference occurs when the predictive distribution Py«
is usually more robust than the target likelihood Py | g+ to
changes in Q.

As a simple example of a setting in which the conditions
of Theorem 4.8 are met, consider again the linear model
in Equation (1). As we discussed when introducing this
example, here, the more mistaken the learner is about the
distribution of W, the more they will misattribute their ob-
servations to the value of . If they are arbitrarily mistaken,
the amount of negative interference can become arbitrarily
large — in other words, r*(x) has no lower bound.

To make this more concrete, let’s say the learner assigns
to both ® and ¥ a Gaussian prior, i.e., Po = N (ug, sg)
and Py = N (pyp, s¢). Let’s also say that Qg is known
to be Gaussian with standard deviation s, but need not
be centered at f1,,. As we mentioned in the remark below
Assumption 4.7, possible values of the mean of (g consist
of all numbers on the real line R. The family of nuisance
parameter distributions is {Q$ = N(¢,sy) | ¢ € R}



Since R is unbounded in both directions, Assumption 4.7(a)
and (b) are satisfied for ¢ = 1 (i.e., for the first and only
dimension of .%). The intuition established above can now
be stated more formally as “r*(x) will decrease with the
magnitude of ¢ (as it moves further from ,); since there
is no limit to the magnitude of ¢, there is no limit to the
extent of negative interference.” We show in Appendix A.4
that this intuition holds in the sense that this simple case
satisfies both conditions of Theorem 4.8.

The auxiliary objective. Theorem 4.5 shows that nega-
tive interference arises when Dg- is large. Theorem 4.11,
given below, shows that Dg+ is directly related to the degree
to which the learner’s prior over nuisance parameters is mis-
specified, i.e., how different it is from Q). It depends on
the following definition:

Definition 4.9. )y -mixing. We say a prior P‘(Il’l o+ IS Q-
mixed with a prior Pg|g+ at a mixing rate o € [0, 1] when
Pgor = aQu + (1 — @) Pyjo-.

A DGP (6*,Qy) and prior Pg|g~ define a family of Qg-
mixed priors whose members are uniquely identified by the
(Qw-mixing rate a.. We write P‘%IB* for the member of this
family ()g-mixed at rate «, and Dy~ () for the value of
Deg+ when P‘i‘j‘g* is used as a prior and data is generated by
the provided DGP. The concept of Q¢ -mixing allows us
to directly compare the degree of misspecification of some
pairs of priors: given (0%, Qg ) and Pg|g+, we can say that
P&f‘ls* is more misspecified than P\;Ta* if a1 < «g, in the
sense that it differs more from Q.

Theorem 4.11 uses the following lemma, which provides
a lower bound on Dg-+ as a function of . We refer to this
bound, which is also a function of «, as Dy~ («). The proof
of Lemma 4.10 is given in Appendix A.5.

Lemma 4.10. Lower bound on Dg+. Given (6*,Qw),
Pg|g+, and o € [0, 1], Do+ () is lower-bounded as

Dg- (a) > —log <a +(1-a) (ngﬂ [W] ))

Dagx (o)

Theorem 4.11 states how this bound depends on «, our
proxy for the degree of misspecification. The proof is given
in Appendix A.S.

Theorem 4.11 (Dg+ depends on a.). Given (60*,Qg),
P‘I"@*’ a1 € [O, 1), and Qg € (0, 1} > o,

Dg-(az) < Dg«(a1)

if Py

|0+ induces negative interference when data is gener-

ated from the DGP (0%, Q).

Theorem 4.11 shows that in the presence of negative inter-
ference, a lower degree of prior misspecification translates
to a lower extent of bias in the target likelihood. By The-
orem 4.5, this is expected to reduce the extent of negative
interference, and so we refer to gathering information about
Qw as the learner’s auxiliary objective.

In the fixed-v» formulation, Theorem 4.11 has an intuitive
interpretation: the threat of negative interference is reduced
by effective estimation of 1)*. This can be seen by substi-
tuting 6(1¢p*) for Qg and observing that this implies that
the bound decreases as the learner places more probability
mass on 1*. In other words, in this case, the auxiliary objec-
tive corresponds to concentration of the learner’s posterior
over ¥|60* onto v*. Leveraging this insight, we define a
specific acquisition function for the auxiliary objective in
the fixed-1y formulation.

Acquisition function for the auxiliary objective. In the
fixed-1) formulation, the learner’s auxiliary objective can
be represented in the SOED framework as the learner’s ex-
pected information gain with respect to ¥|0*. We define the
expected likelihood information gain (ELIG) to stress that
this corresponds indirectly to information about the target
likelihood of @*. Of course, the learner does not have access
to 6%, and so the ELIG is defined as an expectation across
Pe.

Definition 4.12 (Expected likelihood information gain
(ELIG)). The ELIG of an action X is an expectation w.r.t.
Pe of the mutual information between Y |x and ¥|0 ac-
cording to the learner’s prior:

0~ Pg

= EIG(x) — ETIG(x)

where EIG(x) = 1((©,%) ~ Pow ; Y[x ~ Pyx) is
the expected information gain (EIG).

The ELIG and EIG subsume, and make explicit the theoreti-
cal motivation for, application-specific acquisition functions
present in the literature. In the context of model selection,
the total entropy function [Borth, 1975] corresponds to the
EIG; policies which alternate between acquisition functions
tailored to parameter estimation and model selection [Cav-
agnaro et al., 2016] correspond to alternating between the
ELIG and ETIG. In the context of BO, the SCoreBO ac-
quisition function for simultaneous learning of the function
maximum and hyperparameters corresponds closely to the
EIG [Hvarfner et al., 2023] (although note that the EIG
and ELIG would also target information gained about the
function itself).

The active learner’s dilemma — the trade-off the learner
faces between pursuit of their primary and auxiliary ob-
jectives — is transparent in Definition 4.12. The ELIG,
which represents the learner’s auxiliary objective, depends



negatively on the ETIG, which represents their primary
objective. Actions that lead to gains with respect to the
learner’s primary objective may reduce or even eliminate
opportunities for gains with respect to the auxiliary objec-
tive. As a toy example, consider again estimation of the
linear model in Equation (1). For an action x = [z, 2] for
which |z1]| — oo and xo = 0, ETIG(x) — oo and ELIG(x)
=0.

Notice that [(¥]|0* ~ Pgjg~ ; Y|x ~ Py|x) = 0iff.
¥ |0* and Y|x are independent according to the learner’s
prior. In this case, viewing data (x,y) has no effect on the
learner’s posterior on ¥|0* (Py|o*,y,x = Pwjo+). When
this becomes their prior on the next time step, Do~ remains
unchanged. At the same time, D usually decreases as the
learner updates their joint posterior on (®, ¥) in light of
the data. The upshot is that in this scenario, r*(x) decreases
(by a simple application of Proposition 4.1). In other words,
failure to achieve gains with respect to the auxiliary objec-
tive can lead the extent of negative interference to increase
as the learner collects more data! By directly pursuing their
primary objective, the learner risks missing opportunities
for gains in their auxiliary objective and the possible exacer-
bation of negative interference.

5 ILLUSTRATING THE PROBLEM

The goal of this section is to illustrate characteristics of
learning problems that pose a threat of negative interfer-
ence and an active learner’s dilemma. In three synthetic
settings, we demonstrate a substantial threat of negative in-
terference which depends on how misspecified the learner’s
prior Py+ is with respect to Qg (corroborating Theo-
rem 4.11) and a trade-off between maximization of the
ETIG and ELIG. Further details of the experiments are
in Appendix B.

Illustrative settings. All of these settings are modeled
using the fixed-1) formulation, i.e., when we refer to a true
outcome distribution, it is always for a single value 1)*.

The first setting is a linear model, and corresponds to es-
timation of a single coefficient in a multiple regression
model. This example is intentionally stylized to provide
clear intuition. The model is y ~ N (0x1 + ;X2 + 1pox3 +
13x4,02). The learner’s prior specifies that each coefficient
is independent and distributed as NV (0, 10). xo, x3 and x4
are positively correlated with each other; x;, whose effect
is the target effect of interest to the learner, is negatively
correlated with the inverse of x(3.4). The extreme multi-
collinearity induces dependence of the target likelihood on

P.

The second setting, preference modeling, corresponds to
recovery of a human user’s latent preference function on
the basis of their observed choices. Our setting is a ver-

sion of an experimental setting from Foster et al. [2019],
modified in ways described in Appendix B.2. The model
is y ~ Bernoulli (1 + e‘!’x’e)ﬂ). The learner’s prior
specifies ® and ¥ as independent Gaussian RVs, Pg =
N (0,16) and Py = N (0,1). The target parameter 8 may
correspond to a stable preference that generalizes across
users or settings, and ¢ may correspond to the accuracy
with which a user encodes the choice set in a given setting.
Past research has shown that in similar models, interdepen-
dency between 6 and 1) is induced by the structure of the
model [Krefeld-Schwalb et al., 2022].

The final setting is Gaussian Process (GP) regression [Ras-
mussen and Williams, 2006]. The GP prior has a zero
mean with covariance determined by a composite kernel
k() = ke(-,-) + kg, (-, -), where @ corresponds to the
lengthscale of kg(-,-) and 1), corresponds to the length-
scale of Ky, (-, -). The learner’s prior specified Pg and Py,
to be independent Gamma distributions, both with concen-
tration 3 and scale 1.25. Interdependency between 6 and
1), is induced by their composite effect on the correlation
structure of the observed data. The lengthscale parameter
), is not the only relevant nuisance parameter, however: the
function sampled from the GP defined by k(-, -) ultimately
determines the outcome distribution, and so we additionally
model it as a nuisance parameter and refer to it as ).

Prior misspecification leads to more negative interfer-
ence. Figures la, 1c and le plot 7*(x) as a function of
p(1*6*) (higher values on the z-axis indicate lower mis-
specification). The plotted values of 8 and 1) are sampled
from the learner’s prior. These figures yield two insights. In
each of these illustrative settings, a substantial proportion
of the considered DGPs (i.e., unique values of (6*, ™)) in-
duce negative interference. In Figure 1a, 42% of the plotted
points show DGPs that induce negative interference; this is
true for 25% of the plotted points in Figure 1c, and 58% of
the plotted points in Figure le (the additional complexity of
the GP regression setting likely introduces comparatively
larger Monte Carlo estimation errors; see Appendix B.3).
Secondly, in the presence of negative interference (orange
points), 7*(x) generally increases with p(t)*|6*), which
reflects the result from Theorem 4.11.

The active learner’s dilemma. Figures 1b, 1d and 1f
show how the values of the acquisition functions corre-
sponding to the learner’s primary and auxiliary objectives
(ETIG and ELIG, respectively) compare to each other. In all
cases, there is a trade-off: maximizing with respect to one
objective means forgoing gains on the other. For example,
Figure 1b shows that in the linear model setting, the ETIG is
high when the magnitude of x; is large and the magnitude
of X(2.4) is small; this facilitates identification of the effect
of x;. ELIG favors the opposite situation, precisely because
it aims for identification of the effects of x(2.4y. Figure 1f
shows that in the GP regression setting, the ETIG is maxi-
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Figure 1: Notes. Panels (a,c,e) show 10,000 parameter values
drawn from the learner’s prior. In panels (a,c), 7* is com-
puted for the value of x that maximizes the ETIG. In panel
(e), r* is computed for two nearby points in the interior of
the domain, and values on the y-axis are truncated from
below at -10. Panels (b,d,f) show the acquisition function
values normalized by their respective maximum values. In
panel (b), the acquisition function values additionally each
have their respective minimum values subtracted (so their
minima coincide at 0), and the y-axis is X1F%2+Xs Pape]
(f) additionally shows initial training points on which the
GP prior used to compute the acquisition function values is
conditioned.

mized at points near the training data. Different values of 6
considered by the learner’s prior make different predictions
about how correlated these points should be with the training
data (while most values of @ predict that points further away
will revert to the prior mean). By contrast, ELIG focuses
its energy on gaining information about the function as a
whole, and so prefers points further away from the training

data, where it is most uncertain about the outcomes. See
Appendix B.2 for discussion of the preference modeling
setting.

6 CONCLUSION

We analyzed the phenomenon of negative interference, a
threat to Bayesian inference posed by the presence of nui-
sance parameters, and its effect on Bayesian active learning.
Our analysis showed that mitigating the threat of negative
interference requires the Bayesian active learner to take into
account an auxiliary objective: identification of the distribu-
tion of nuisance parameters.

A limitation of our analysis is the assumption that the learner
has access to the likelihood function. Extensions of our work
could apply components of our analysis to the more general
setting of potential model misspecification. Our analysis is
also limited in the assumption that the partition between
target and nuisance parameters is well-defined; in some
settings, the learner may additionally be tasked with learning
this partition (which can be thought of as a form of relevant
feature selection), and/or have the option to eliminate effects
of the nuisance parameters (e.g., by controlling laboratory
conditions).

By identifying the threat of negative interference and es-
tablishing the theoretical groundwork for how to address it
(identification of the distribution of nuisance parameters),
our work opens the door to the development of algorithms to
navigate the active learner’s dilemma. As a step in this direc-
tion, Definition 4.12 proposes the ELIG, a novel acquisition
function for the auxiliary objective in the fixed-1) formula-
tion. Applications of SOED in this special case can address
the threat of negative interference with design policies that
alternate between the ELIG and ETIG according to a princi-
pled switching criterion (one that would ideally be sensitive
to the extent of the threat of negative interference). This
criterion could be based on one of the many existing crite-
ria developed in the context of the exploration—exploitation
dilemma (e.g., an e-greedy scheme), the value of a distri-
butionally robust information gain measure [Go and Isaac,
2022], or a credible lower bound of target information gain
values.
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The supplementary material is organized as follows:

* In Appendix A, we provide proofs of all our mathematical results.

* In Appendix B, we provide details of the illustrative examples presented in Section 5.

A  PROOFS OF MATHEMATICAL RESULTS

A.1 DEFINITIONS

* Dx1, (Q || P) is the Kullback-Leibler divergence from @) to P:

D (@11 P) = [ 1og (%) o(y) dy

* H(Q || P) is the cross-entropy from Q to P:

H(Q | P)=— / log (p(y)) a(y) dy

4

* H(Q) is the entropy of distribution Q:

H(Q) = - /@ log (q(y)) q(y) dy

A.2  DERIVATION OF PROPOSITION 4.1

)= E {log<p(yx79*))]

Y~Qyx p(ylx)
=H (Qvx |l Pyjx) — H(Qyx || Py|x,0%)
=H (Qvx) + DL (Qvix || Pyix) — H(Qvx) — Dkr (Qvix || Py|x,6+)
=Dxr (Qvix || Pyix) — Dki (Qvx || Py|x.6+)

“Work done while at Aalto University.
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A.3 PROOF OF THEOREM 4.5

The proof of Theorem 4.5 depends on Lemma A.1, which upper bounds D as a function of Dg+.

Lemma A.1 (Upper bound of D.). Given (6*,Qw) and € that satisfies Assumption 4.4, D is upper-bounded as

D< / p(6) db | Do+ + / p(0) do | D
N.(6%) T\N.(6%)

Proof.

D = Dk (Qvix || Pyix) (Proposition 4.1)
q(yX)>
= 1 d
/gz/ o (p(yIX) Ale) dy

- L (log (q(y %)) — log (p(y1x))) a(y|x) dy

< /@/ (mg (q(ylx)) — ( /N o p(8) d0> log (p(y|x,0")) — ( /Q\N‘(e*) p(0) d@) log (ﬁ(y|x))> q(ylx) dy

(Assumption 4.4)

= —H (Qle) + (/NE(O*)p(G) d9> H (QY|x || Py‘xﬂ*) + (/9\]\]6(0*)10(0) d@) H <Qle || pY‘x)
= -H(Qyx) + (/ p(0) d0> (H (Qyx) + Dxr (Qvix || Pyix6+))
N.(6%)

( | we) d0> Dxt, (Qvis || Prieor) + ( [ e d@) Dic, (Qvix | Pix)
N.(6%) T\Nc(6%)

/ p(0) d0> Dy + < / p(0) d0> D
N.(6%) T\Nc(6*)

Direct substitution of this bound into Proposition 4.1 completes the proof of Theorem 4.5:

r*(x) = D + Dg~ (Proposition 4.1)

< ( / () d0> Do+ + ( / p(0) de) D — Dg- (Lemma A.1)
Ne(6) T\N(6%)

_ ( /y\Ne(g*) (6) d0> (B-o.)

A4 PROOF OF THEOREM 4.8

Given i that satisfies Assumption 4.7, the conditions of Theorem 4.8 imply that r*(x) can grow arbitrarily negative as
¢; — cooras ¢, — —oo.

If ¢+ satisfies Assumption 4.7(a), the conditions of Theorem 4.8 imply that at some point (}bl on dimension ¢ of .7, any
movement along this dimension towards —oo will result in 7*(x) decreasing by at least some amount b. Assumption 4.7(a)
implies that ¢»; — —o0, and the stated conditions imply that r*(x) can grow arbitrarily negative as ¢p; — —oo.



More specifically, we require that, for some ¢, the following holds V¢ € .Z for which o; < (Nﬁl
Vr*(x); > b <= VD(x); — VDg+(x); > b
<= VDg-(x); < VD(x); — b

as stated in the theorem.

If ¢ satisfies Assumption 4.7(b), the conditions of Theorem 4.8 imply that at some point &)l on dimension ¢ of .%, any
movement along this dimension towards oo will result in 7*(x) decreasing by at least some amount b. Assumption 4.7(b)
implies that ¢p; — 0o, and the stated conditions imply that 7*(x) can grow arbitrarily negative as ¢, — cc.

For this, we require that, for some (}b the following holds V¢ € .# for which ¢, > (;5

Vr*(x); < =b < VD(x); — VDg+(x); < —b
<= VDg+(x); > VD(x); +b

as stated in the theorem.

Application to the linear model. We write the learner’s prior over (0, ¥) as Pg ¢ = N (i, ). We use o2 v|x and O'y‘x 0+
to refer to the variance of the learner’s predictive distribution and variance of distribution corresponding to the learner’s
target likelihood, respectively. These are:

bosd x = o + x2xT ()

vl
e 0o T 3)
ylx.0 0 3o — %1373
Without loss of generality, take 2 = [0,0] and 3 to be a diagonal matrix, and s0 Eg~re [0] = 0 and Eq~py 4. [¥] =

As described in the main text, ¢ represents the mean of Qw, i.e., @ € R := Ey~qy [¢]. This satisfies both Assumption 4.7(a)

and Assumption 4.7(b) (for ¢ = 1). Satisfying the conditions of the theorem requires showing that the conditions on the
gradients VDg+ and VD are met. Below, we give the derivatives agg and gg, and then show that there is a value of
¢ below which the gradient conditions in Theorem 4.8(a) hold, and a value of qb above which the gradient conditions in

Theorem 4.8(b) hold.

Dg+ = DkL (QY|x || Py|x,6+)

* 2
1 (0" 21 + Eynryp. [h22] — (0721 + Eypnqy [t22])) Lol 0200
T2 o2 —1log o?
y|x0* y|x0*
2
= 1 2362) — 1+ log 7)"’(9
2\\ %o ) Toxer o’
8@9* - ¢$%
o 0'}2,‘&0*
D = DL (Qvx || Py|x)
1 2 Eo,p~Po ¢ (021 + Y22] — (0721 + Epngy [V 02
:2<<§ >+<9,¢ ro Bm 4 bl _ ("1 + By [V 2])” 1+log<y ))
y\x y|x
2 52
() e ()
Tylx ylx g
oD 0 z129 + D3

o a}z,‘x



0Dg» OD o3 0* w129 + P13

T 9d a2 - 2
o o Ty|x,0* Tylx
2 2 *
B x3 x| Oz 4
ylx,0* ylx ylx
. 2 2 . * . .
Taking p = UZTZe = ;32‘ > 0 (since 0|, . can never be greater than 0 ) and 7 = 9027‘1”2, Equation (4) is at most —b
v|x,0* ylx ’ yix

when ¢ < Tbe, and so the conditions in Theorem 4.8(a) are met for any (,Z; < Tij.

Equation (4) is at least b when ¢ > %‘b, and so the conditions in Theorem 4.8(b) are met for any gZ) > =

A.5 PROOF OF THEOREM 4.11

We first given the proof of Lemma 4.10.

Proof. Take p®(y|x, 0™) to be the likelihood of y under the Qg -mixed prior Pg o

De* (O[) = DKL (Qy‘x H P%\x,@*)

| 1on [ Ev~eu P]%,6%,9)] N
= [, o <E¢~p . by own) 1y d

=/ lo Ey~qq [P(Y[X, 0", %)] y
R [yl : (aEMW [p(yP, 07, %)) + (1 — @) Egry . P01 ew)]> a(ylx) dy

B EpnPyor P(YIX,0%,9)]
_—/{ylog <a+(1— ) E¢~Q; CERD) )q(yX) dy

:7/ 1og(a+(1 yIX6’*)qy|x ) dy

& (y[x)

> —log (/ (a +(1- ) (y|x) d ) (Jensen’s inequality)
@

——tog (a+ -0 ( /@ <qy(';‘|’x v ay ) ) ®

For the proof of Theorem 4.8, we can without loss of generality take or; = 0 and a € (0, 1]. (Notice that for any Py g-
and a; > 0 we could take the prior Pff,‘e* =aQuw+ (1-— Oél)P\p\e* Qg -mixed at rate 0, which would be equivalent to
Pyo- (QQw-mixed at rate a;;.) When o = 0, we can use the usual notation for the prior and bias terms.



By Proposition 4.1, we can say that if Py, induces negative interference under the given DGP:

Do+ > D
—Dg+« < —D
q(y|x) >
— [ tog [ YR x) dy < —D
[ s (g st as
—log (/ q(yilx)* q(y|x) dy) < -D (Jensen’s inequality)
o p(ylx,0")
x, 0"
log (/ plylx, 67) q(ylx) dy) <-D
v q(yx)
x, 0% N
/ plylx,0") qlylx)dy <e P
v a(ylx)
<1

The last line follows since e=? > 1 would violate the non-negativity of the Kullback-Leibler divergence measure that
defines D.

. x,0*
Since [, p(qy(‘y|x) )

expression in line 5 generally decreases with o. Comparison between o = 0 and « € (0, 1] recovers the statement in the
theorem for «r; = 0, which can be generalized to all a; € [0,1) and ap € (0, 1] > «; as described above.

q(y|x) dy < 1, we can say that if Py, induces negative interference under the given DGP, the

B DETAILS OF ILLUSTRATIVE EXAMPLES
B.1 LINEAR MODEL

Data was generated according to the model y ~ N (0x1 + P X2 + PoX3 + P3Xy, 02) where 02 = 1. The learner’s prior
over (@, ¥, Wy, W3)is N (u, X) wherep = [0 0 0 0] and ¥ = diag ([10 10 10 10]).

We use af,‘x and Uf,‘x g+ to refer to the variance of the learner’s predictive distribution and variance of distribution
corresponding to the learner’s target likelihood, respectively. These are:

Ui‘x =% +x2x7 (6)
0
2 2 T
o »=0"+Xx _ X 7
ylx.0 {0 3i(2:4),(2:4) — 21,(2:4) 27 1231,(2:4)] @
We used the following formulas for the ETIG and ELIG:
2
1 Oylx
ETIG(x) = = log | 2 ®)
2 Ty|x,0*

2 2
ELIG(x) = 5 <1og ( ;; > ~log <02y'>) )
yIx,0*

To generate the set of possible actions, we sampled 10,000 values z ~ N (10, .25). For each value of 2z, we then sampled one
value of each x2, x3 and x4 from N (z,.25), and one value of x; from ' (—1/z,.25). Each point in Figure 1b corresponds
to one of 10,000 values of x generated as above. With reference to Figure la, when we calculate 7*(x), x is always
argmax, c o- ETIG(x) where 2" contains all 10,000 possible actions.

B.2 PREFERENCE MODELING

We modified the preference example from Foster et al. [2019], who use a censored sigmoid normal as the output distribution.

Instead, we used the Bernoulli distribution y ~ Bernoulli m% .



Figure 1c shows the 7*(x) for x = argmax, . o- ETIG(x) where 2" contains values evenly spaced between -79 and 81
(this differs slightly from the example in Foster et al. [2019], in which values of x were evenly spaced between -80 and 80).

Unlike in the linear model setting, for which there are closed-form expressions for the ETIG and ELIG, the ETIG and ELIG
for this example are not known in closed form. We approximate them using the following nested Monte Carlo estimators:

N

M AN
ETIGx) =D ( > (p(yx 6", 4") log (Zﬂp(ﬂx’e ad )>> (10)

N T
i=1 \yew > pylx, 0%, 97)

N

T T i i (Y‘X70i7¢i> i
ELIG(x) = (ylx, 0", 9")1 ( b >> — ETIG(x) (11)

Samples of 6 and 1) are drawn from the prior given above. Although not shown explicitly in Equation (10), each set of M
inner samples is constrained to include the corresponding sample (01, Q/ﬂ) to avoid pathological behavior when a value
y has positive probability in only a very small region of Py g: [Foster et al., 2020]. We set N to 10,000 and M to 100

(reflecting results from Rainforth et al. [2018] that M is optimally o< v/N).

Remark on Figure 1d. The trade-off between ETIG and ELIG visualized in Figure 1d can be explained by noticing that
the magnitude of x has opposite effects on the ease of identification of 8 and 1. When x = 0, 1bx = 0 and so v can’t be
identified at all. This is reflected by the fact that the ETIG peaks at 0. Conversely, the size of the effect of 1) on outcomes
depends on the magnitude of x, which is reflected by the fact that the ELIG is maximized by values of x with large
magnitudes.

B.3 GAUSSIAN PROCESS REGRESSION
We constructed the kernel % (-, -) as the additive composition of kg(-,-) and ky, (-, -) where both kg(-,-) and ky (-, -) were
radial basis functions kernels with shared amplitude and lengthscale determined by the values of 8 and ), respectively.

To generate Figure le, we set x = [25, 26], and sampled 10,000 values from the learner’s joint distribution over (6, ¥, 15),
where 1, is a sample from the GP at x. We set o2, the variance of Y |x, 8, %1, 15, to .01.

We approximated 7*(x) using a nested Monte Carlo estimator:

(x)= E  [log(p(ylx,0%)) —log (p(y]x))]

pryw*yw*

Q

. . i LN _ - i J J
M; log M;p(y x,0%,17) | —log N;p(y %, 607,47

with N = 10,000 and M = 100. Samples were drawn from the prior given above.

To generate Figure 1f, we used a Hamiltonian Monte Carlo (HMC) sampler [Gardner et al., 2018] to first train the model,
initialized with the priors given above, on the five randomly-sampled points shown in the figure. The training data was
generated from a function sampled from a kernel with 8* = 5 and ¢{ = 2.5. In this case, 02 = 0, i.e., outcomes were
treated as deterministic. We again used nested Monte Carlo estimators for the acquisition functions, given below. Rather
than sampling from the prior, we used the HMC samples of 8 and 1/, to compute the expectations.

ETIG(x) = E [log (p(y[x, 0)) — log (p(y|x))]

0,¢%,y~Pe v v|x
M

1 N 1 L 1 ) ) 1 L 1 N . .
~ o [ o | 57 Do p 0w | < 1D los [ D p(y' %67, 4)
i=1 =1 =1 j=1

j=1 =



ELIG(x) = E [log (p(y|x, 6,%)) —log (p(y|x))] — E [log (p(y|x, 8)) — log (p(y|x))]

0,9, y~Pe v v|x 0,9, y~Peo v v|x
= E [log (p(y[x, 0,%))] — E [log (p(y %, 0))]
0,¢%,y~Pe v v|x 0,9, y~Pe v v|x
=- E [log (p(y|x. 0))]

0,%,y~Pe v v|x
N

1 | L M
Ny EZlog Z (y'|x, 0", 97)
‘ =1 j=1

with N = M = 500 and L = 10, 000. (Since observations are treated as deterministic, the term in the ELIG corresponding
to the entropy of Y0, is 0.)
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