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ABSTRACT

Despite the strong performance of large language models (LLMs) across a wide
range of tasks, they still have reliability issues. Previous studies indicate that
strong LLMs like GPT-4-turbo excel in evaluating the reliability of responses
from LLMs, but face efficiency and local deployment issues. Thus, to enable
weak LLMs to effectively assess the reliability of LLM responses, we propose a
novel cross-query-comparison-based method called Meta Ranking (MR). Unlike
previous few-shot methods that solely based on in-context learning capabilities in
LLMs, MR assesses reliability by pairwise ranking the target query-response pair
with multiple reference query-response pairs. We found that MR is highly effec-
tive in error detection for LLM responses, that MR with weaker LLMs, which
have lower task performance, results in higher judgement precision against base-
lines with the same or even stronger models. Moreover, the method requires as
few as five reference samples and significantly improving efficiency. We further
demonstrate that MR can enhance strong LLMs’ performance in two practical
applications: model cascading and instruction tuning. In model cascading, we
combine open- and closed-source LLMs to achieve performance comparable to
GPT-4-turbo with lower costs. In instruction tuning, we use MR for iterative
training data filtering, significantly reducing data processing time and enabling
LLaMA-7B and Phi-2 to surpass 13B models with fewer training tokens. These
results underscore the high potential of MR in both efficiency and effectiveness.1

1 INTRODUCTION

Large language models (LLMs) have demonstrated strong performance in various tasks (OpenAI,
2023; Touvron et al., 2023b; Du et al., 2022). However, they still face reliability challenges. For
example, these models often produce responses that seem plausible but are factually incorrect, a
phenomenon known as “hallucination” (Huang et al., 2023). Fine-tuning and alignment techniques
have been extensively studied to mitigate this issue (Ouyang et al., 2022; Wang et al., 2023; Rafailov
et al., 2023; Yang et al., 2023; Gupta et al., 2024). Recent studies sadly demonstrate that halluci-
nation is inevitable (Xu et al., 2024). Consequently, instead of resolving it directly, we focus on
developing techniques to discriminate the reliability of responses from LLMs.

Recent research has highlighted the potential of strong LLMs in evaluating response reliabil-
ity (Zheng et al., 2023a). Highly capable models, such as GPT-4 (OpenAI, 2023), have shown
effective in assessing the quality of LLM responses through few-shot in-context learning (ICL) (Yin
et al., 2023). However, these models are often prohibitively large, resulting in high computational
and monetary costs. Also, most of these models are closed-source, which limits their deployment
in local environments. On the other hand, weak models, are often better choices for efficiency and
local setup. However, their performance is usually lower, probably due to the inherent low capacity
in ICL (Figure 1 (a)). This raises a critical question: Is it possible to enable weak LLMs to effectively
judge the reliability of LLM responses despite the low task performance?

To address this question, we propose a novel method named Meta Ranking (MR). Inspired from the
idea of pairwise ranking on responses to the same query (Wang et al., 2024b; Ke et al., 2024; Zhu
et al., 2023a), we raised a core hypothesis of MR, that the reliability of a response can be discerned

1The source code, data, and model checkpoints will be released.
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Figure 1: Overview of our proposed Meta Ranking (MR) method. (a) Left: The table summarizes
MR and previous judgement methods with different backbone models. (b) Right: The sub-figure
illustrates different methods. “Ŝt” denotes the estimated score for the target query-response pair.
“Queryi” (Qi), “Responsei” (Ri), and “Scorei” (Si) (i = 1, 2) denote the references and its score
(e.g., +1 for correct and -1 for incorrect responses). MR takes two query-response pairs for cross-
query comparison on reliability with language models, then aggregates the estimated score of the
target query and response.

by comparing the query-response pair with other pairs of known reliability. Unlike traditional meth-
ods that let an LLM directly judge the response to a query, MR involves cross-query comparison of
the target query-response pair with multiple reference pairs (Figure 1 (b)). Specifically, MR utilizes
a fixed set of query-response pairs with pre-determined reliability scores as reference. For any given
target query-response pair, the LLM determines whether this pair is more reliable than each of the
reference pairs. A voting mechanism is then employed to aggregate these comparisons and reach
a final judgment. Here, “reliable” encompasses attributes such as correctness and quality as
required by the context. Theoretically, it avoids item perturbation problems in few-shot ICL (Zhao
et al., 2021) and over-confidence on the target response in judgement (Xiong et al., 2024) for LMs.
Empirical results demonstrate that MR enables weaker LLMs to effectively judge LLM responses
on reasoning tasks, resulting in better judgement precision scores with low task performance.

Moreover, we showcase the application of MR with a weak LLM in two practical scenarios for val-
idation: (1) enhancing LLM inference through model cascading between open- and closed-source
LLMs, where queries are routed to the appropriate LLM based on reliability assessments. It de-
mands high efficiency of the judgement process. With MR, the model cascading achieves perfor-
mance comparable to GPT-4-turbo while consuming less than half API tokens. And (2) iteratively
filtering training datasets to improve instruction tuning, which prefers local deployment and also, the
efficiency. With a light-weight judge model, MR leads to advancements over existing data selection
methods on the Alpaca-52k dataset (Taori et al., 2023), in terms of effectiveness and efficiency.

In summary, our contributions are threefold:

1. We introduce Meta Ranking (MR), a novel method for assessing the reliability of LLM
responses through cross-query comparison with reference query-response pairs.

2. We demonstrate that MR enables weak LLMs to judge the reliability of LLM responses,
surpassing previous uncertainty estimation and prompting methods even with some strong
LLMs, on effectiveness and efficiency.

3. Additionally, we explore two practical applications of MR, improving strong LLMs in both
inference and training, respectively. These results underscore the considerable potential of
our proposed method in both efficiency and effectiveness.
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2 META RANKING
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Figure 2: Example illustrations of
MR process. The correctness of the
target response (Rt) is considered
according to comparisons with ref-
erence query-response pairs.

This section demonstrates how cross-query comparisons
could reveal the reliability of the target query-response pair
with limited reference examples from the same source LLM.
The intuition is as follows: Taking correctness assessment as
an example, the target pair is likely to be correct when ranked
closer to a correct reference pair and higher to an incorrect
pair, and vice versa, as shown in Figure 2. Below, we outline
the specific steps and considerations accordingly.

Formally, suppose we have N reference query-response pairs

X = {(Qi, Ri, Si)} , (1)

where i = 1, · · · , N , Qi and Ri are the i-th reference query
and response, respectively. For each pair of (Qi, Ri), we have
a score Si that represents its reliability. We aim to estimate the
reliability St of a target response Rt to the target query Qt,
by an estimation score Ŝt. For binary classification scenarios
(e.g., correctness assessment), Si, St ∈ {+1,−1}, where +1
denotes the response is True and −1 denotes False.

Cross-Query Comparison The basic operation of Meta Ranking is to compare the target query-
response pair with each of the reference query-response pairs. For brevity, we denote the target
query-response pair as Pt = (Qt, Rt), and the i-th reference query-response pair as Pi = (Qi, Ri).
Then, the cross-query comparison operation and its result are denoted as follows:

ri = MR(Pt, Pi) , i = 1, · · · , N, (2)

where ri ∈ {+1, 0,−1}, +1, 0, and −1 denote the target pair is better than, equal to, or worse
than the i-th reference pair, respectively. In practice, MR(·, ·) is implemented by directly prompting
LLMs or using the relative magnitude of quality estimation scores of each response to its query.

Aggregation The final judgement is obtained by aggregating the comparison results to arrive at the
estimated reliability score of the target query-response pair. Specifically, we will upvote if the target
air is ranked higher than a reference pair, i.e., ri = +1, and downvote when ranked lower. Also,
ranking higher than a correct reference and than an incorrect reference will result in different voting
values. Thus, the process is a kind of weighted voting. For each comparison between the target and
the i-th reference pair, the individual voting value is

si = Si · δsgn(Si)·ri , i = 1, · · · , N, (3)

where sgn(·) is the sign function, sgn(Si) · ri ∈ {+1, 0,−1}, and δ+1, δ0, and δ−1 are hyper-
parameters. For instance, in terms of correctness, δ+1 is the absolute voting value when the target
pair is ranked higher than a correct reference (sgn(Si) = +1, ri = +1), or lower than an incorrect
one (sgn(Si) = −1, ri = −1). The rationale of the hyper-parameter as the voting weight is
enumerated in Table 5. Note that we require that δ+1 > 0, δ−1 < 0. Formally, we denote the total
vote value as s:

s =

N∑
i=1

si =

N∑
i=1

Si · δsgn(Si)·ri , (4)

And we say the target response is reliable if s ≥ 0 and unreliable otherwise. Thus, the estimated
target reliability score Ŝt ≈ sgn(s) for correctness assessment. The entire algorithmic process is
shown in Appendix C. In practice, N is usually small due to efficiency and the limited labeled data.

For theoretical validation, when cross-query comparison reveals the actual relation between Si and
St, we show that sgn(s) ≈ sgn(St − Savg), where Savg =

∑
i Si

N under reasonable constraints in
Appendix D.1. Hence, a negative s means subpar reliability of the target response, and vice versa.

Under the formulation, there are several interesting properties of MR. First, MR is model-agnostic
and permutation-agnostic towards references, which is different from few-shot ICL methods that
fluctuate with the order of examples (Zhao et al., 2021). Second, MR alleviates the over-confident

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0.00 

0.22 

0.41 

0.59 

0.89 

0.55 0.57 
0.62 

0.38 

0.00 

0.67 0.66 
0.70 

0.77 

0.28 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Task Performance (Acc)
Precision Score
Inference Time (s/it)

+0.16

+0.55

Figure 3: The task performance (light blue) in accuracy, judgement precision scores and infer-
ence time (gray) in error detection experiments for target responses from LLaMA-2 on the MMLU
dataset. We used examples in the development set as reference for few-shot methods. We observed
larger gap between task performance when using MR than baseline methods.

issue in LLM judgement (Xiong et al., 2024) that LLMs are too confident in their own responses.
In MR, we provide two responses on different queries from the same LLM for the judge (equation 2).
Thus, in theory, MR should not be over-confident on any side (Pt or Pi in equation 2), regardless
that the responses are from the same model as the judge LLM or not. Still, judgement from LLMs
directly might incorporate positional bias between the target and reference pair. We randomly swap
them during prompt assembly to mitigate the issue. Finally, MR could be extended to continuous
metrics (Si ∈ R, e.g., BLEU (Papineni et al., 2002)) directly without modification, and the final
judgement of the response reliability is still determined by sgn(s).

3 MAIN EXPERIMENT: ERROR DETECTION WITH META RANKING

In the following section, we empirically demonstrate that Meta Ranking can effectively judge the
reliability of LLM responses concerning correctness. We leverage error detection on responses
from LLMs in reasoning tasks for validation. Our findings indicate that the MR approach achieves
high judgement precision despite the low task performance, response accuracies, and languages.

3.1 SETTINGS

The error detection task requires identifying whether a response from an LLM is incorrect given the
query. The settings are as follows, and implementation details are in Appendix C.1:

Datasets: To validate the effectiveness of methods on diverse tasks, we conduct experiments on 14
reasoning datasets, including subjects of “STEM”, “Arithmetics”, “Humanities”, “Social Science”,
“Chinese Culture”, etc. Specifically, we selected 8 test sets in MMLU (Hendrycks et al., 2021b;a),
5 test sets in CMMLU (Li et al., 2024a), and the test set from GSM8K (Cobbe et al., 2021). The
MMLU and CMMLU datasets are multi-choice and the GSM8K dataset contains open-ended math
queries. We select 5 few-shot samples for each dataset from its development or training set.

Response Generation: For different model accuracies, we chose LLaMA-2-chat-7B (Touvron
et al., 2023b) and OpenChat-3.5 (Wang et al., 2024a) to zero-shot generate responses for English
queries (MMLU and GSM8K), and ChatGLM-2-6B (Zeng et al., 2023) and Yi-6B-Chat (01.AI,
2023) for Chinese ones (CMMLU). For each multi-choice query, we first generate the reasoning path
for judgement, and then extract the choice by calling the generator model again.

MR Settings: We prompted LLaMA-2, ChatGLM-2, OpenChat-3.5, GPT-3.5-turbo, and Phi-2 to
judge on different query-response pairs with Meta Ranking. We also tested an LLM-as-a-Judge-
tuned model JudgeLM-7B-v1 (Zhu et al., 2023a) in MR to see if the fine-tuning for the evaluation
of responses to the same query helps. By setting each label Si with the value ±1, where +1 and −1
denote True and False, we apply MR on this task to identify incorrect responses.
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Table 1: The micro precision scores on error detection experiments on the MMLU, CMMLU, and
GSM8K datasets with responses generated by different LLMs. Models in the second row of the
header are sources of responses and judge models are specified for each method. TP denotes the
task performance of the judge model in accuracy. The number in the parentheses denotes the gap
between the judgment precision and the task performance. The bold font denotes best results. Due
to low instruction following capacity of Phi-2, we barely extract valid answers from its zero-shot
generation on GSM8K.

Method MMLU (En) CMMLU (Zh) GSM8K (Math)

LLaMA-2 OpenChat-3.5 ChatGLM-2 Yi LLaMA-2 OpenChat-3.5

TP of Phi-2 0.22 0.25 0.00
TP of OpenChat-3.5 0.45 0.40 0.59
TP of GPT-3.5-turbo 0.53 0.54 0.93

Random Selection 0.50 0.50 0.50 0.50 0.50 0.50

P(T) w/ OpenChat-3.5 0.62 (+0.17) 0.38 (-0.07) 0.31 (-0.09) 0.35 (-0.05) 0.39 (-0.20) 0.11 (-0.48)
P(T) w/ GPT-3.5-turbo 0.59 (+0.06) 0.65 (+0.12) 0.22 (-0.32) 0.21 (-0.33) 0.80 (-0.13) 0.48 (-0.45)

MR w/ Phi-2 0.77 (+0.55) 0.73 (+0.51) 0.69 (+0.44) 0.52 (+0.27) 0.93 (+0.93) 0.91 (+0.91)
MR w/ GPT-3.5-turbo 0.78 (+0.25) 0.79 (+0.26) 0.75 (+0.21) 0.73 (+0.19) 0.64 (-0.29) 0.87 (-0.06)

Baselines: We compare our method against several baselines with few-shot ICL to ensure a com-
prehensive evaluation, including (1) appending an Unsure Choice (Kadavath et al., 2022), (2) a
black-box uncertainty estimation method NumSemSets (Kuhn et al., 2023), (3) a white-box method
Entropy (Han et al., 2024), and (4) P(True) (P(T)) (Kadavath et al., 2022) which directly asks
an LLM about the correctness of a query-response pair. Additionally, we have discussed other
uncertainty-based methods (Lin et al., 2024) in Appendix E.1.

Evaluation Metrics: We adopted micro scores calculated across MMLU, CMMLU, and GSM8K
datasets. We report precision of judgement since it is essential to pick out more unreliable responses,
and seconds per iteration for inference time on a single A800 GPU (Figure 3). Inference time are
normalized with P(T) with GPT-4-turbo as the unit. And F1 scores are reported in Appendix C.1 to
ensure the balance of judgement. AUROC-style metrics are not applicable because MR uses a static
threshold and calibration methods (Han et al., 2024) determine the threshold of baseline methods.
We also measured task performance of judge models in accuracy.

3.2 DISCUSSION

Meta Ranking is Effective across Different LLM Backbones The effectiveness of MR might at-
tribute to the position agnosticism to reference and judgement without over-confidence. In Figure 3,
we report results of all baselines and MR in error detection on LLaMA-2-generated responses, and
the actual performance of LLMs on MMLU. Impressively, we found that MR with Phi-2 notably
exceeds all baseline methods, except for P(T) with GPT-4-turbo, reaching a precision score of 0.77,
more than double the performance of P(T) with Phi-2 and reaching 88% GPT-4-turbo performance.
With LLaMA-2 and ChatGLM-2, MR exceeds P(T) significantly. However, JudgeLM performs not
as well as other pretrained or general aligned LLMs in the MR results and fails to generalize for
the P(T) method. It might be the fine-tuning process limits its generalization. Overall, MR consis-
tently outperforms the random baseline to a greater margin than P(T), and has a greater gap between
judgement precision and task performance. However, GPT-4-turbo detect the error most accurately
even with P(T), probably relying on its strong reasoning capabilities and generalizability (OpenAI,
2023). We also depict F1 scores in Appendix C.1 to indicate MR is not biased to identify most
responses as incorrect ones, which could result in 1.00 judgement precision but extremely low F1.

Meta Ranking with Weak LLMs is Efficient and Robust In Figure 3 and Table 1, the performance
of P(T) across different models displays a positive correlation with their actual performance on
reasoning tasks, while MR has demonstrated strong robustness and better efficiency across models
with different capabilities. The improvement of efficiency is because the utilization of reference
demonstration in MR is through cross-query comparisons, which do not introduce long inputs from
in-context examples as P(T), saving the inference time from quadratic computational complexity of
Transformer (Vaswani et al., 2017) with the input length. We further investigate the performance of
Meta Ranking with LLMs with different capabilities across languages and response accuracies. In
Table 1, we select top performing P(T) and MR methods and report the precision score across all
target responses. We omit GPT-4-turbo for the cost and its unparalleled capabilities to open-source
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models we have tested. From results, P(T) with OpenChat-3.5 performs worse than random selection
when facing more accurate responses on MMLU. In contrast, MR shows significant robustness with
weak models, e.g., the 2.7B Phi-2, impressively surpassing P(T) with GPT-3.5-turbo and OpenChat-
3.5 on responses in different accuracy levels.
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Figure 4: The change of precision scores with
the number of reference pairs on the MMLU
dataset with target responses from LLaMA-2.

Meta Ranking Demands Fewer Reference Pairs
In Figure 4, we illustrate the change of precision
scores with the number of reference pairs, where
MR exhibits that it could function with far less la-
beled data compared to previous methods. Notably,
other uncertainty-based methods are incompatible
with the 1-shot setting since there are usually no
correct examples for calibration. Upon the abla-
tion study, we observe that reducing five examples
to one leads to a slightly decreased performance
of MR, indicating the robustness. Also, the result
highlights the effectiveness of MR with limited la-
beled data compared to P(T). Without reference ex-
amples, P(T) faces a great performance drop, show-
ing inferior performance to random selection probably because of over-confidence. It is also worth
noting that uncertainty-based methods like NumSemSets and Entropy usually require hundreds of
examples to calibrate the score threshold (Han et al., 2024; Mielke et al., 2022), explaining the
relative low results of these methods in Figure 3 when there are only five labeled samples.

Meta Ranking Generalizes to Non-English and Open-ended Tasks In Table 1, the overall results
on Chinese reasoning problems are lower than on English ones, showing that non-English languages
have negative impact. Despite this, MR exhibits strong robustness across languages, while P(T) per-
forms worse than random selection in all CMMLU results. Results on Japanese (Appendix E.2)
show a similar trend. Meanwhile, Table 1 also shows that MR performs well on open-ended arith-
metic tasks, except MR /w Phi-2 demonstrating a bit of biased judgements. The F1 score of MR
/w Phi-2 on GSM8K is 0.85 for responses from LLaMA-2, but drops to 0.55 for OpenChat-3.5,
although it outperforms most baselines (Appendix C.1).

4 APPLICATIONS OF META RANKING

In this section, we present two practical applications to further validate the effectiveness of Meta
Ranking beyond mere correctness, as shown in Figure 5. Each application is implemented by
collecting reference query-response pairs and setting reference reliability scores. (a) With the
assessment of the reliability of responses from open-source LLMs to the given queries, we identify
and route unsolved queries to stronger closed-source LLMs. It could achieve better efficiency and
remaining performance of closed-source models. However, it demands the model used for judge-
ment is weaker than the open-source LLM in deployment, otherwise it is better in place to respond
to queries. (b) By evaluating the quality of instruction data, we can refine the supervised fine-
tuning (SFT) for LLM instruction tuning, whose key factor is the quality of training data (Liu et al.,
2024). By filtering low-quality data after each epoch and further introducing post-SFT training with
mere instruction data, we achieve significant improvement against state-of-the-art SFT data selec-
tion methods. For this data-related application, the method is better to be locally deployed and with
high efficiency. Thus, we decide MR with weak LLMs is suitable for judgement for these.

4.1 MODEL CASCADING

Since LLMs exhibit varying performance across various tasks, we propose using MR within a model
cascading system. As depicted in Figure 5 (a), this system employs MR to assess the reliability of
generated responses from open-source LLMs. Queries with responses deemed unreliable by MR are
routed to more powerful, but also more costly, closed-source LLMs for better answers. This system
aims to achieve performance similar to closed-source models with improved efficiency.

4.1.1 IMPLEMENTATION

Assuming both the development and the test sets are drawn from the same underlying distribution.
Given that the MR method requires reference query-response pairs, we first feed the queries in the

6
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Figure 5: Two applications of Meta Ranking for inference- and training-time LLM enhancement,
respectively. (a) Model Cascading (left): MR identifies reliability of responses and routes unsolved
queries from open-source LLMs towards closed-source LLMs for better results (Responset →
Response′t). (b) Instruction Tuning (right): MR filters low-quality data after each epoch in SFT
and then tune LLMs with low- and high-quality data. MR results depend on the reference pairs
generated from the LLM on samples of the training dataset. Qi, Ri denote reference query-response
pairs for the MR algorithm, and Queryt, Responset denote the target pair.

development set to the open-source LLM and evaluate the generated responses against the ground
truth. Formally, for every query Qi, let R(θ)

i represent the response generated by an open-source
LLM (parameterized by θ), and S

(θ)
i denote the evaluation result according to the ground truth to

Qi and an appropriate metric. By applying the model to each query in the development set with

N samples, we produce responses
{
R

(θ)
i

}N

i=1
and form a set of reference query-response pairs

X =
{
P

(θ)
i = (Qi, R

(θ)
i )

}N

i=1
, along with associated evaluation results

{
S
(θ)
i

}N

i=1
.

There are two reasonable ways to derive reliability scores for X in MR. The first is to directly
define Si ≜ S

(θ)
i , which we term MR(θ). The second option is to compute the responses from the

closed-source LLM (Θ) and their evaluation results
{
S
(Θ)
i

}N

i=1
, and define the score as follows:

Si ≜ S
(θ)
i − S

(Θ)
i , (5)

which denotes the extent that the response from open-source LLMs is better than the one from
closed-source LLM. Since a query will only be routed when the predicted reliability score is neg-
ative, this definition matches the principle that the model cascading only causes performance im-
provement when closed-source LLM performs better. We denote it by MR(∆), which considers the
gap between open- and closed-source LLMs.

Accordingly, we can obtain estimated reliability for P (θ)
t from the MR approach during inference

on test sets. If the assessment indicates Rt as an unreliable response, we direct Qt to a closed-
source large language model (such as GPT-4-turbo) to secure a more precise response. Conversely,
we preserve the original response for a positive MR result. Ideally, this approach can enhance
performance with moderate costs, as it is generally observed that a poorly accurate response from
open-source LLMs often corresponds to a difficult query, which requires strong LLMs to respond.

4.1.2 EXPERIMENT

Settings We leverage reasoning and translation tasks to validate the effectiveness of model cascad-
ing. We use the same datasets for reasoning tasks as Section 3 and randomly sampled test set and
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Table 2: The overall results in model cascading experiments. MR is implemented with Phi-2, whose
results are gray. “Average” denotes the macro average value across tasks. The bold font denotes the
best result using model cascading and the underlined numbers denote the best result for each task.
The number in the parentheses denotes the improvement over the best among open-source LLMs
and the ensemble baseline without model cascading. For notation, serial numbers represent LLMs,
e.g., “①/② + ③” represents model cascading from LLaMA-2 or ChatGLM-2 to GPT-3.5-turbo.

Model Routing Reasoning Translation Average #Token (API)
Strategy English Chinese Zh-En En-Zh (Relative Value)

Phi-2 - 22.48 24.84 42.32 23.18 28.21 -

LLaMA-2 (①)

-

34.37 32.86 58.53 51.33 44.27
-ChatGLM-2 (②) 30.48 49.71 58.43 63.30 50.48

Ensemble (①&②) 35.44 43.47 31.35 46.54 39.20
GPT-3.5-turbo (③) 52.91 54.09 63.67 69.14 59.95 1.00

①/② + ③

Entropy 38.75 47.03 58.32 65.45 52.39 (+1.91) 0.38
Random 41.89 48.32 58.97 64.83 53.50 (+3.02) 0.45
MR(∆) 44.30 48.67 59.80 65.87 54.66 (+4.18) 0.24
MR(θ) 48.62 52.76 61.36 67.10 57.46 (+6.98) 0.42

OpenChat-3.5 (④)

-

45.42 40.19 61.35 60.77 51.93
-Yi (⑤) 42.08 61.96 60.87 62.07 56.74

Ensemble (④&⑤) 45.68 48.24 11.16 62.90 41.99
GPT-4-turbo (⑥) 72.86 62.82 64.73 69.95 67.59 1.00

④/⑤ + ⑥
Random 46.64 61.96 61.29 63.74 58.41 (+1.67) 0.44
MR(∆) 57.68 61.93 61.60 67.61 62.21 (+5.47) 0.23
MR(θ) 64.68 61.93 62.60 68.11 64.33 (+7.59) 0.43

few-shot samples from the FLORES-200 dataset (Guzmán et al., 2019) for translation tasks. To
implement cross-query comparisons in MR, we prompt Phi-2 in reasoning tasks, and in translation
tasks, we adopt wmt22-cometkiwi-da (Rei et al., 2022b) for reference-free quality estimation
and thus compare the estimated scores between translations. Due to the diverse LLM capabilities
and language biases, we have tested two combinations: (1) LLaMA-2 for English and ChatGLM-2
for Chinese tasks, with GPT-3.5-turbo as the closed-source model; (2) OpenChat-3.5 for English
and Yi for Chinese problems, with GPT-4-turbo as the closed-source model. For baselines, we
validate the logits ensemble of the open-source models and implement model cascading with strate-
gies of entropy-based uncertainty estimation (Han et al., 2024). We omit the result of the latter for
OpenChat-3.5 and Yi since it results in almost no routed queries, probably because the calibrated
uncertainty threshold is too high to determine false answers.

Effectiveness of Cascading Guidance from MR In Table 2, we report the average accuracy on
reasoning tasks and the average among BLEU, BLEURT (Sellam et al., 2020; Pu et al., 2021), and
COMET (Rei et al., 2022a) scores on translation tasks. With the model cascading approach, we
observe significant improvement against single open-source LLMs. MR(θ) and MR(∆) manage
to gain the highest performance improvement across tasks and languages with less than half token
consumption. Moreover, MR(∆) consistently outperforms random selection with nearly half of
the token consumption, demonstrating the effectiveness of equation 5. We also demonstrate actual
deployment costs and inference speeds in Appendix C.2 and found MR-based model cascading costs
much lower in monetary expenditure.

Relation with Error Detection Performance The performance of our model cascading mechanism
is closely related to the effectiveness of error detection. For instance, in Table 2, MR outperforms
Random and Entropy on absolute performance and token consumption, which denotes MR detects
errors in a larger quantity and with higher precision. It suggests that error detection with MR is also
robust on open-ended generation tasks with continuous metrics, e.g., translation. For tasks whose
responses could be more effectively validated through rule-based checker, e.g., code translation, we
also validate the performance of MR in Appendix E.4, and the whole system even outperforms the
closed-source model with lower token costs.

4.2 INSTRUCTION TUNING

Recent studies show that the quality of instruction data is essential to SFT performance (Zhou et al.,
2023). For better instruction tuning on LLMs, we introduce an iterative training data filtering process
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Table 3: Results on instruction tuning experiments,
where MR is implemented with Phi-2. The bold font
denotes best results. “Full” denotes the whole dataset.

Method MT-Bench AlpacaEval 2.0 #Token (M)

Alpaca-13B 4.53 2.65 -
Phi-2 4.52 2.34 -
LLaMA-7B 2.62 0.43 -

Phi-2-Based Results

Full 4.42 3.26 13.293
Longest 4.56 3.32 1.008
Deita 4.33 3.18 9.609
Deita (9k) 4.64 3.29 3.981
MR (Stage 1) 4.70 3.56 7.509
+ pKTO (Stage 2) 4.77 3.47 1.205

LLaMA-7B-Based Results

Full 4.36 2.53 13.293
Longest 4.18 2.35 1.008
Deita 4.37 2.60 9.609
Deita (9k) 4.48 2.86 3.981
MR (Stage 1) 4.52 2.93 2.412
+ pKTO (Stage 2) 4.69 3.24 0.907

Table 4: The multi-turn evaluation re-
sults from MT-Bench on instruction tun-
ing experiments, which is unfolded from
the second column in Table 3. “Avg.” de-
notes the average score of different turns
in MT-Bench. The bold font denotes the
best result for each base model.

Method MT-Bench

Turn 1 Turn 2 Avg.

Alpaca-13B 4.98 4.09 4.53
Phi-2 6.37 2.66 4.52
LLaMA-7B 3.30 1.94 2.62

Phi-2-Based post-SFT Results

MR (Stage 1) 6.33 3.08 4.70
+ KTO (Stage 2) 6.12 2.94 4.53
+ pKTO (Stage 2) 6.27 3.26 4.77

LLaMA-7B-Based post-SFT Results

MR (Stage 1) 5.47 3.58 4.52
+ KTO (Stage 2) 5.15 3.60 4.38
+ pKTO (Stage 2) 5.45 3.93 4.69

based on Meta Ranking and a post-SFT training stage, as shown in Figure 5 (b). The basic intuition
is to continuously filter low-quality data, letting LLMs concisely learn from more reliable and fewer
training samples at the first stage, and utilize less reliable data samples at the second stage for post-
SFT contrastive learning. MR makes it possible by judging the quality of instruction data rapidly
with generated responses from an LLM that reflect its capabilities during training, and is better for
local deployment with weak LLMs.

4.2.1 IMPLEMENTATION

The application contains two stages (Figure 5 (b)): (1) SFT with MR guided data selection and (2)
post-SFT training with both estimated low- and high-quality data from the last epoch at stage 1.

For the first stage, besides regular SFT, we extract a small set of queries from the training set and,
after each epoch, ask the tuned LLM to respond to those queries. With the generated responses
and the queries as reference, the MR method could judge whether each sample in the original
training dataset matches the quality of the reference. For simplicity in MR, we set the reliability
score of all reference pairs to 1. Thus, we could filter training data samples that fail the judgment,
i.e. unreliable, improving training efficiency and, potentially, LLM performance.

For the second stage, we want to utilize both the filtered low-quality and the high-quality data
to further train the LLM. Since post-SFT training methods (e.g., PPO (Ouyang et al., 2022),
DPO (Rafailov et al., 2023)) require multiple responses of diverse human preferences or quality
to the same query, they are not compatible. Recently, Ethayarajh et al. (2024) proposed Kahneman-
Tversky Optimization (KTO) to align LLMs towards desired and away from undesired query-
response pairs contrastively. However, we are aware that their objective is misaligned with our
requirement because the low-quality data is derived from the SFT dataset, which is not completely
negative. Therefore, in order to incorporate both high- and low-quality data as positive and partially
positive samples, we propose positive-KTO (pKTO). Intuitively, pKTO differs from KTO only in
dealing with low-quality data, where pKTO regulates the reward of these data with MSE loss instead
of decreasing it unlimitedly. Specifically, we use equal amount of low-quality and high-quality data
samples from the last epoach in the first stage to fine-tune the LLM with the pKTO objective. Please
refer to Appendix D.2 for the detailed implementation and comparisons with DPO and KTO.

4.2.2 EXPERIMENT

Settings In all experiments, we only use the Alpaca-52k (Taori et al., 2023) dataset with 52,002
samples from text-davinci-003 (Brown et al., 2020), which is also the target pairs for MR. We
utilize AlpacaEval 2.0 (Li et al., 2023) and MT-Bench (Zheng et al., 2023a) to benchmark instruction
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following capabilities. We select strong baselines on SFT data selection, including Deita (Liu et al.,
2024) and Longest (Zhao et al., 2024). Please refer to Appendix C.3 for implementation details. For
base models, we choose Phi-2 and LLaMA-7B (Touvron et al., 2023a) for instruction tuning. For
Phi-2, our method starts with the original 52k dataset. For LLaMA, Chen et al. (2024) empirically
find a 9k subset of Alpaca is the most proper for SFT. We thus adopt the scorer from Deita and
extract the top 9k data, noted by Deita (9k), as the initial training set for LLaMA at stage 1.

High-Quality SFT Data Filtering Guided by MR (Stage 1) We report overall results and training
tokens (calculated by LLaMA tokenizer) in Table 3. For each base model, we found MR guided iter-
ative training data filtering leads to significant improvement in both benchmarks with fewer training
tokens. In the first stage of MR guided data selection, our method iteratively filters low-quality data
after each epoch. After stage 1, Phi-2 and LLaMA already surpass all baselines, indicating MR ef-
fectively picks high-quality training samples in a curriculum way (Bengio et al., 2009), which helps
align LLMs better compared to selecting data at the beginning for SFT in baseline methods. We also
observed significant lower data processing time of MR compared to Deita in Appendix C.3.

Post-SFT Training through MR-Filtered Data (Stage 2) We also notice a significant enhancement
of stage 2 in Table 3, and report the detailed scores on each turn of LLM responses from MT-Bench in
Table 4. From empirical results, pKTO enhances the second-turn communication of LLMs to a great
extent while preserving the instruction-following abilities from SFT at stage 1, which is indicated
by the slight drops in first-turn scores. In contrast, KTO fails at this setting, which is aligned with
our hypothesis in Section 4.2.1. By incorporating the low- and high-quality data distinguished from
MR, stage 2 further elicits LLMs’ capacity, especially for multi-turn scenarios.

5 RELATED WORK

Evaluation of LLM Responses Extensive research has been conducted to evaluate responses from
LLMs. Studies have focused on estimating uncertainty to gauge the potential reliability of LLM
responses (Kuhn et al., 2023; Rafailov et al., 2023). Furthermore, LLMs are capable of providing
uncertainty scores from itself by fine-tuning (Chen et al., 2023; Gupta et al., 2024), which usu-
ally requires an amount of training data, or black-box measurements (Lin et al., 2024). However,
these methods often require an amount of labeled data for calibration to determine a threshold (Han
et al., 2024). Additionally, the LLM-as-a-judge approach effectively assesses the accuracy of LLM
responses from strong LLMs (Zheng et al., 2023a) with manual prompting rules. Contrarily, our
Meta Ranking method leverages weak LLMs and a training-free judgment based on cross-query
comparisons with much fewer examples.

Model Cascading with LLMs Recent studies on model cascading focus on how LLMs can selec-
tively call tools or stronger models only in difficult situations for better efficiency. Tool calls or
another trial happens on external feedback from environment (Lin et al., 2023; Shinn et al., 2023).
For tasks with explicit criteria, e.g., coding, LLMs can call stronger models after their failure (Zhang
et al., 2023; Yue et al., 2024). Selection can also be achieved through fine-tuning (Erbacher et al.,
2024) or uncertainty estimation (Han et al., 2024; Gupta et al., 2024). In our approach, MR route
queries on complicated open-ended tasks, and empirical results are demonstrated in Section 4.1.2.

Data-Efficient Training for LLMs Coresets (Mirzasoleiman et al., 2020) are used in machine learn-
ing for a long period. For LLMs, several data selection methods are developed for SFT (Liu et al.,
2024; Zhou et al., 2023; Li et al., 2024b; Chen et al., 2024) and post-SFT stages (Gulcehre et al.,
2023; Aksitov et al., 2024). Inspired by the latter, we introduce iteratively filtering SFT data based
on MR results after each epoch, and used in post-SFT training.

6 CONCLUSION

We present Meta Ranking (MR), a novel method effectively enabling weak LLMs to judge the re-
liability of LLM responses. By comparing a target query-response pair with a small number of
reference pairs, MR outperforms strong baselines in error detection without fine-tuning. Further-
more, the method significantly enhances strong LLMs’ performance and efficiency in two practical
application scenarios, model cascading and instruction tuning. These findings highlight the potential
of MR for broader inference- and training-time applications with LLMs.
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A LIMITATIONS

There are several limitations to our work that we would like to acknowledge:

First, we have not explored deep in the compatibility between the model training process and the
Meta Ranking (MR) method. Different model training strategies may affect the effectiveness of MR.
It is an interesting direction for future work to study how to better integrate MR with the alignment
process (e.g., SFT and post-SFT training) on LLMs.

Also, we have not focused on finding potential applications of the Meta Ranking method for strong
models. Our current experiments focus on enabling weak LLMs to judge the reliability of LLM
responses due to its superior efficiency and effectiveness. It remains an open question of what
practical usage could incorporate MR with strong models like GPT-4-turbo. Exploring the potential
applications of MR for strong models is also a direction for future work.

Last but not least, inaccurate judgments in sensitive domains like healthcare could lead to erroneous
advice or misdiagnosis, endangering patient’s health. In finance, inaccurate judgments could result
in flawed financial advice or risk assessments, leading to substantial economic losses.

In conclusion, while our proposed Meta Ranking method has shown promising results in enabling
weak LLMs to judge the reliability of LLM responses and enhancing LLM performance in practical
applications, there are still spaces to be explored. We hope that future research can address these
limitations and further improve the method.
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B BROADER IMPACT

The Meta Ranking (MR) method presented in this paper has the potential to significantly influence
the field of LLMs and their applications. Here, we discuss the broader impact of our work in several
key areas:

Data and LLM Response Curation: Meta Ranking enables the use of smaller, less resource-
intensive models for response judgement, which previously required large, expensive models. Thus,
MR is more cost-efficient and practical for landing in real-world scenarios. Also, MR does not
inherently incorporate risks in the methodology, while the language model MR utilizes could con-
tain potential risks from its pre-train data. The application of MR, including model cascading and
instruction tuning, may result in risky results due to the nature of the application. However, MR
could actually be used in risk mitigation for LLMs by identifying and filtering LLM responses with
potential risks.

LLM Inference and Training: The MR method can improve the efficiency and effectiveness of
LLM inference and training. By routing queries to the most appropriate LLMs based on reliabil-
ity assessments, MR can save computational resources and improve response times, making LLMs
more practical for real-world applications. Additionally, the iterative training data refinement en-
abled by MR can lead to more accurate and reliable LLMs, which is crucial for maintaining public
trust in AI systems.

In conclusion, the Meta Ranking method not only enhances the capabilities of weak LLMs but also
has the potential to transform how we develop, deploy, and interact with AI systems, leading to a
more reliable, efficient, and equitable integration of AI in various aspects of our lives.

C IMPLEMENTATION DETAILS

Algorithm 1: Meta Ranking
Input : Target query-response pair Pt = (Qt, Rt), reference query-response pairs

X = {Pi = (Qi, Ri)}Ni=1, the reliability score Si for each Pi, and hyper-parameters
δ+1, δ0, and δ−1

Output: A boolean indicator I of the reliability of the target response (True indicates reliable)
s← 0;
for i← 1 to N do

r ← MR(Pt, Pi);
r ← sgn(Si)× r;
s← s+ Si × δr;

end
if s ≥ 0 then I ← True else I ← False;

We demonstrate the detailed process of Meta Ranking in Algorithm 1. And we list all rationales for
the hyper-parameter δ as the absolute voting weight used in equation 3 under different conditions
of Si, ri in Table 5. Under this core technique, we elaborate on the implementation details of the
experiments below.

For general settings, all experiments in this paper were conducted on two types of servers: 8*A800
and 8*V100. The A800 server is equipped with 8 NVIDIA A800-SXM4-80GB GPUs. The
V100 server features 8 NVIDIA Tesla V100-PCIE-32GB GPUs. For the name of LLMs, we
use Phi-2 to denote Phi-2 (2.7B)2 (Li et al., 2023), LLaMA to denote LLaMA-7B3 (Touvron
et al., 2023a), LLaMA-2 to denote LLaMA-2-7B-chat4 (Touvron et al., 2023b), ChatGLM-
2 for ChatGLM2-6B5 (Zeng et al., 2023), OpenChat-3.5 for OpenChat-3.5 (7B)6 (Wang

2https://huggingface.co/microsoft/phi-2
3https://huggingface.co/huggyllama/llama-7b
4https://huggingface.co/meta-llama/Llama-2-7b-chat
5https://huggingface.co/THUDM/chatglm2-6b
6https://huggingface.co/openchat/openchat_3.5
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Table 5: The rationales for the hyper-parameter δ as the absolute voting weight used in equation 3
under different conditions of Si, ri in Algorithm 1.

Hyper-Parameter Value of sgn(Si) Value of ri Rationale

δ+1

+1 +1 The target query-response pair is better (ri = +1) than a reliable
reference (sgn(Si) = +1).

-1 -1 The target query-response pair is worse (ri = −1) than an unre-
liable reference (sgn(Si) = −1).

δ0

+1 0 The target query-response pair is equal (ri = 0) to a reliable
reference (sgn(Si) = +1).

0 - The target query-response pair is compared to a reference of un-
known quality (sgn(Si) = 0).

-1 0 The target query-response pair is equal (ri = 0) to an unreliable
reference (sgn(Si) = −1).

δ−1

+1 -1 The target query-response pair is worse (ri = −1) than a reliable
reference (sgn(Si) = +1).

-1 +1 The target query-response pair is better (ri = +1) than an unre-
liable reference (sgn(Si) = −1).

et al., 2024a), Yi for Yi-6B-Chat7 (01.AI, 2023), and GPT-3.5-turbo and GPT-4-turbo for
GPT-3.5-turbo-1106 and GPT-4-1106-preview (OpenAI, 2023). All open-source mod-
els are deployed with vLLM inference framework (Kwon et al., 2023) in fp16 precision. For re-
production, we set the temperature to 0 for LLM generation without specification. And the
maximum number of tokens for LLM response generation is set to 512.

For clarification, we have ensured that the use of pretrained and instruction-tuned LLMs and datasets
is consistent with their intended use and licenses. Furthermore, the derivatives of these data and
instruction-tuned models based on MR should be used in consideration of the original access condi-
tions and ethical guidelines.

C.1 ERROR DETECTION

Detailed Settings For the MMLU dataset (Hendrycks et al., 2021b), we randomly selected sub-
jects in each category, including “Abstract Algebra” and “College Mathematics” for STEM, “Pre-
history” and “Moral Scenarios” for humanities, “Econometrics” and “Professional Psychology” for
social sciences, and “Global Facts” and “Professional Accounting” for others. For the CMMLU
dataset (Li et al., 2024a), we select “College Actuarial Science” for STEM, “World History”
for humanities, “Security Study” for social sciences, “Traditional Chinese Medicine” for China-
specific subjects, and “Human Sexuality” for others. For MMLU and CMMLU, we use all the
five examples in the development set as the reference pairs, along with generated responses for
the reference query-response pair in MR. For GSM8K (Cobbe et al., 2021), we randomly sam-
pled five examples in the training set as reference. We use the original answer extractor to
check whether the answer is correct from generator LLMs. We performed grid search for hyper-
parameters δ+1, δ0, δ−1 ∈ {±1,±0.5,±0.25, 0}, and assign the hyper-parameter in MR as follow-
ing: δ+1 = 1, δ0 = 1, δ−1 = −0.5 for MMLU, and δ+1 = 1, δ0 = 0.5, δ−1 = −0.25 for CMMLU
and GSM8K. We calculate the accuracy by exactly matching the generated choice (e.g., A, B, C, or
D) with the ground truth. We measured the inference speed on a single A800 GPU with a single
worker.

Baseline Implementations For (1) Unsure Choice (Kadavath et al., 2022), we include an addi-
tional option, “(E) Not Sure”, allowing the LLM to admit uncertainty in a zero-shot manner
on questions it might answer incorrectly. For uncertainty measurement (2) NumSemSets (Kuhn
et al., 2023), given that the responses of different choices inherently form semantic sets, we sample
five times on each question with the same LLM with the temperature of 0.8, and decide on
an incorrect answer if the number of semantic sets is larger than all correct examples, following
the calibration method in Han et al. (2024). (3) Entropy (Han et al., 2024) measures the confi-

7https://huggingface.co/01-ai/Yi-6B-Chat
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Figure 6: The F1 score of all methods on error detection experiments for target responses from
LLaMA-2 on the MMLU dataset. The metric shows similar trends to the precision score in Figure 3.

dence of LLM responses in a white-box way, and picks out incorrect responses in the exact way
as NumSemSets, that a response is considered incorrect when its uncertainty value is lower than
all correct examples. Lastly, (4) P(T): the P(True) (Kadavath et al., 2022) baseline directly asks an
LLM about the correctness of a query-response pair, thus able to be implemented on different LLMs,
including the aforementioned open-source LLMs and closed-source GPT-3.5-turbo-1106 and
GPT-4-1106-preview. We implement NumSemSets, Entropy, and P(T) in a few-shot manner,
with the same five examples as MR. We shuffled the few-shot examples to eliminate the positional
bias. For the one-shot experiments in Figure 4, we use the first sample.

Table 6: The F1 score on error de-
tection experiments on the GSM8K
dataset. Models in the second row of
the header are sources of responses.

Method GSM8K
LLaMA-2 OpenChat-3.5

P(T) w/ OpenChat-3.5 0.56 0.19
P(T) w/ GPT-3.5-turbo 0.86 0.48

MR w/ Phi-2 0.85 0.55
MR w/ GPT-3.5-turbo 0.77 0.57

Biases in Error Detection To validate the potential bi-
ases in the error detection experiments (e.g., judging all
responses as false ones) in Figure 3, we report micro F1
scores of the MMLU dataset in Figure 6 and F1 scors of
the GSM8K in Table 6. We can observe that the F1 results
approximately follow the trend of precision scores in Fig-
ure 3, and for MR methods, the F1 scores are close to or
surpass GPT-3.5-turbo, demonstrating unbiased judgement
for correct and incorrect responses.

C.2 MODEL CASCADING

Detailed Settings For the translation dataset construc-
tion, we randomly extracted 400 parallel sentences from the dev-test set as the test set and 20
sentences from the development set as few-shot samples, respectively, in Chinese and English
from Flores-200 (Guzmán et al., 2019). For evaluation, we adopt SacreBLEU (Post, 2018) for
BLEU calculation8, BLEURT-20 (Pu et al., 2021) for BLEURT scores (Yan et al., 2023), and
wmt22-comet-da9 for COMET scores (Rei et al., 2022a). We report the detailed results of
translation tasks in Table 7. For MR implementation, we use Phi-2 as the backbone model.
We follow the same implementation of MR from error detection experiments (Appendix C.1)
on reasoning tasks. For translation tasks, we set δ+1 = 1, δ0 = 0, δ−1 = −1 in Algo-
rithm 1. We implement the cross-query comparison with the reference-free quality estimation model
wmt22-cometkiwi-da10 (Rei et al., 2022b).

8The signature is “nrefs:1+case:mixed+eff:no+smooth:exp +version:2.3.1”.
9https://huggingface.co/Unbabel/wmt22-comet-da

10https://huggingface.co/Unbabel/wmt22-cometkiwi-da
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Table 7: Detailed results on translation tasks in Table 2. “#Token (Local)” denotes the total number
of prompt and generated tokens during inference of open-source LLMs.

Model Zh-En En-Zh #Token (Local) #Token (API)

BLEU BLEURT COMET BLEU BLEURT COMET (×104) (×104)

Phi-2 8.1 49.60 69.27 2.5 23.28 43.77 49.82

-
LLaMA-2 (①) 20.1 71.13 84.35 22.7 55.30 75.99 17.52
ChatGLM-2 (②) 20.8 70.52 83.97 36.3 68.21 85.40 7.43
OpenChat-3.5 (④) 24.4 73.85 85.80 32.1 66.24 83.97 8.92
Yi (⑤) 23.8 73.39 85.41 31.1 69.16 85.94 6.78
GPT-3.5-turbo (③) 27.8 76.04 87.16 45.7 73.12 88.59 - 8.72
GPT-4-turbo (⑥) 29.6 77.04 87.55 46.9 73.86 89.08 8.78

MR (①/② + ③) 23.7 74.17 86.20 41.6 71.70 88.00 8.28 4.01
MR(∆) (①/② + ③) 21.3 72.70 86.20 29.5 70.77 87.35 8.28 2.26
MR (④/⑤ + ⑥) 25.5 75.52 86.79 43.3 72.66 88.38 7.86 3.22
MR(∆) (④/⑤ + ⑥) 24.4 74.30 86.11 42.6 72.19 88.05 7.86 2.07

Baseline Implementations For the logits ensemble baseline, we map the vocabulary from one
LLM to another. Thus, we can add logits from different LLMs with an equal magnitude. We adopt
the manner from Hao et al. (2023) to train a single token for LLMs to identify the language of
generation from the multilingual Alpaca dataset released by Zhu et al. (2023b). Thus, LLMs can
automatically switch LLMs for Chinese and English tasks, resulting in the combinations of LLaMA-
2 and ChatGLM-2 as well as OpenChat-3.5 and Yi as a complete system, as depicted in Section 4.1.
Thus, we view the results of model cascading in the same row of Table 2 as a whole.
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Figure 7: The overall results and estimated costs in model cascading experiments. Additionally, we
use the width of circles to illustrate the latency of inference (Sec./Iter.) relatively. We devide the two
settings into subfigures. “(fs)” denotes few-shot results. Methods closer to the top-left corner and
with smaller circles are more ideal.

Cost Estimation In model cascading experiments (under the same setting of Table 2), we estimate
the cost of each model and method in Figure 7 in US dollars, with the reference of the pricing
of AWS cloud servers, from which we estimate the cost of local running LLMs, and the OpenAI
pricing on GPT-3.5-turbo and GPT-4-turbo.11 We also measure the average inference time for each
sample for each method, and the network latency is contained for closed-source GPT-3.5-turbo and
GPT-4-turbo. Empirically, we demonstrate that model cascading with MR achieves comparable
performance to closed-source LLMs with moderate costs on real money.

11AWS server pricing and OpenAI pricing URLs.
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C.3 INSTRUCTION TUNING

Detailed Settings For the instruction dataset, we use Alpaca 52k (Taori et al., 2023). We use
the default setting of the MT-Bench (Zheng et al., 2023a) and AlpacaEval 2.0 (Li et al., 2023)
benchmarks. Since AlpacaEval 2.0 uses a non-zero temperature for evaluation, thus we run
the evaluation for three times and report the median value. We follow the original hyper-parameter
setting as Taori et al. (2023) for all baselines and our method at stage 1, except we use a batch size
of 128 for fine-tuning Phi-2 and of 256 for fine-tuning LLaMA. The number of training epochs is 3
for all baselines and our method at stage 1. Our method at stage 2 uses the same hyper-parameters
as KTO (Ethayarajh et al., 2024). For MR implementation, we use Phi-2 as the backbone model and
set δ+1 = 1, δ0 = 0, δ−1 = −1 in Algorithm 1. Specifically, we duplicate the training data at the
third epoch for Phi-2 on our method at stage 1 due to compatibility issues with the cosine learning
rate scheduler.

Baseline Implementations For baselines, we followed Longest (Zhao et al., 2024) to select 1k
samples with the longest responses; Deita (Liu et al., 2024) provides distilled scorers from GPT-3.5
for scoring each training sample, and we extract 30k samples with the highest scores. To construct
Deita (9k) dataset, we apply the same scorers for the top 9k samples.
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Figure 8: Training Samples of different methods
on the Alpaca-52k dataset during SFT (stage 1).

Table 8: The overall number of training to-
kens in the SFT (stage 1) and post-SFT (stage
2) training process of all methods, which is
calculated by the LLaMA-2 tokenizer.

Method #Token (×105)

Full 132.93
Longest 10.08
Deita 96.09
Deita (9k) 39.81
MR 87.14
MR (9k) 33.19

Training Tokens Comparison Results We demonstrate the training samples in Figure 8 and the
overall training tokens in Table 8. MR denotes our method at stage 1, and “Full” denotes the whole
Alpaca dataset. We exhibit that our method achieves superior performance in Table 3 with a mod-
erate amount of training samples and tokens. For clarity, Alpaca-13B in Table 3 and Table 4 is
LLaMA-13B fine-tuned on the whole Alpaca dataset.

5.9

11.7

MR (Ours)

Deita

Data Processing Time (h)

Figure 9: The data processing time
of Deita and MR in the instruction
tuning experiments on Phi-2-based
models.

Data Processing Time of MR and Deita We demonstrate
the data processing time of Deita (Liu et al., 2024) and MR
on Phi-2-based models in Figure 9. We omitted results on
LLaMA-based models because MR guided instruction tuning
for LLaMA uses only 9k data samples, compared to 52k for
Phi-2. Data processing stands for the process of scoring each
data point in the instruction dataset for Deita and the process
that MR judges each data point and filter unreliable ones after
each SFT epoch, as illustrated in Figure 5. We found that MR
also has much lower costs in terms of data processing time,
which is mainly because MR utilizes only 2.7B Phi-2 model
as the judge, but Deita uses 2 7B models to grade each data
point.

D MATHEMATICAL ARGUMENTS AND STEPS

D.1 EXPLANATION ON Meta Ranking METHODOLOGY

In this section, we provide the proof for
sgn(∆si) = sgn(St − Si), if St − Si ̸= 0, Si ̸= 0, (6)
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and theoretically explain why the Meta Ranking process could approximately determine the reliabil-
ity of the response of a query-response pair, according to Section 2. From equation 3, we note that
sgn(∆si) = sgn(Si) · sgn(δsgn(Si)·ri), when Si ̸= 0.

Recall that ri ∈ {±1, 0}, which represents the MR results of the reliability of the target query-
response pair (Qt, Rt) with another pair (Qi, Ri). Therefore, sgn(ri) = sgn(St − Si) ̸= 0 is valid
when MR results are correct.

Note that we have set hyper-parameters δ+1 > 0 > δ−1, indicating sgn(δsgn(Si)·ri) = sgn(Si) ·
sgn(ri), when Si ̸= 0. Given the values of the sgn function, we notice that

sgn(δsgn(Si)·ri) = sgn(ri) · sgn(Si)

= sgn(ri)/sgn(Si)

= sgn(St − Si)/sgn(Si).

(7)

Identically, we arrive at
sgn(∆si) = sgn(Si) · sgn(δsgn(Si)·ri)

= sgn(St − Si).
(8)

When Si = 0, in case of correctness, it indicates the i-th query-response pair stands neutral. Intu-
itively, it is hard to tell the correctness of the target pair based on whatever MR results due to the
lack of understanding of what correctness is. This also matches the formulation of equation 3.

Furthermore, consider equation 4. Given

St − Savg =
1

N

N∑
i=1

(St − Si) (9)

and equation 6, we can similarly view sgn(s) as an approximation of the sign of St − Savg by
viewing sgn(∆si) as the approximation of sgn(St − Si).

In summary, the signed agreement ensures that the expression St−Savg is legitimately approximated
based on the MR method.

D.2 DIFFERENCE ON THE OBJECTIVE OF PKTO, KTO, AND DPO

DPO (Rafailov et al., 2023) and KTO (Ethayarajh et al., 2024) are shown to be effective on post-
SFT training with specific datasets. As described in Section 2, we propose positive-KTO (pKTO) to
alleviate the misalignment of KTO’s objective. pKTO’s objective is as follows:

LpKTO(πθ, πref) = E(Q,R)∈D[λI((Q,R)∈Dhigh) · σ(v(Q,R))], (10)

where
zref = E(Q′,·),(·,R′)∈D[βLKL(πθ(R

′|Q′)||πref(R
′|Q′))],

r(Q,R) = zref − βlog
πθ(R|Q)

πref(R|Q)
,

v(Q,R) =

{
r(Q,R) if (Q,R) ∈ Dhigh

LMSE(r(Q,R)) if (Q,R) ∈ Dlow
,

D = {(Qi, Ri)}ND
i=1 represents the training set,Dhigh,Dlow denote the high- and low-quality querie-

response pairs from MR results respectively, LMSE and LKL are the mean squared error (MSE) and
KL loss respectively, σ is the sigmoid function, πθ is the trained model, πref is the reference model
which is a copy of untrained πθ on default, and λ{0,1}, β are hyper-parameters. We followed the
original KTO (Ethayarajh et al., 2024) for implementation.

In our formulation, we can rewrite the objective of KTO by

LKTO(πθ, πref) = E(Q,R)∈DλI((Q,R)∈Dhigh
· σ(vKTO(Q,R)), (11)

where

vKTO(Q,R) =

{
r(Q,R) if (Q,R) ∈ Dhigh

−r(Q,R) if (Q,R) ∈ Dlow
.
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Thus, the main difference between pKTO and KTO is the handling of low-quality data for LLM
training. In pKTO, a MSE loss is applied to the reward function r(Q,R) for data samples in Dlow,
which aims to limit the variation of the discrepancy between the predicted and reference policies in
log πθ(R|Q)

πref (R|Q) . This encourages the policy to improve its performance without potentially unlearning
important knowledge within Dlow. On the other hand, KTO simply takes the negative of r(Q,R)
for undesired data samples, driving the policy away. This difference in the treatment of low-quality
regions leads to distinct optimization behaviors and can impact the overall performance and suitable
scenarios, which aligns with the experimental results in Table 3.

The Direct Preference Optimization (DPO) approach, which is another variant in this domain, can
also be contrasted with pKTO and KTO. DPO modifies the objective to focus on both policy im-
provement and preference learning, which can be written as:

LDPO(πθ, πref) = E(Q,R)∈D[−logσ(βlog
πθ(Rbad|Q)

πref(Rbad|Q)
− βlog

πθ(Rgood|Q)

πref(Rgood|Q)
)], (12)

where Rbad and Rgood denote a relatively good and bad response pair to the same query Q, in
terms of correctness, human preferences, etc. This definition limits its generalization to incorporate
queries with single responses.

Table 9: Results of uncertainty-based meth-
ods on error detection experiments for tar-
get responses from LLaMA-2 on the MMLU
dataset. Inference time is measured in sec-
onds per iteration.

Method Precision F1 Avg. Inference Time

NumSemSets 0.22 0.33 2.04
Deg 0.24 0.25 2.36

Entropy 0.41 0.51 2.12
Semantic Entropy 0.49 0.50 2.13

P(T) w/ Phi-2 0.38 0.48 1.55
MR w/ Phi-2 0.77 0.72 0.53

In summary, while pKTO, KTO, and DPO share
similarities in their overall structure, their distinct
treatments of reward functions and their require-
ments of data set them apart, leading to different
trade-offs in policy optimization in different scenar-
ios.

E ADDITIONAL EXPERIMENTS

E.1 DISCUSSION
ON OTHER UNCERTAINTY-BASED METHODS

Lin et al. (2024) proposed serveral uncertainty-based methods except NumSemSets, e.g., Deg. Thus,
we adopt Deg and Semantic Entropy (Kuhn et al., 2023) in error detection experiments for responses
from LLaMA-2. The settings of all methods are identical to Section 3 or, if not specified, by the
original default setting. Unexpectedly, in our experiment, we found uncertainty-based methods with
much higher complexity result in subtle performance improvement but inferior efficiency (Table 9).
The reason might be due to two factors: In terms of effectiveness, uncertainty-based methods often
performs well with dedicated designed scores and sufficient calibrated data (usually more than a
hundred). Due to the lack of labeled data (only 5 samples due to data scarcity), we found uncertainty
based methods perform worse than random selection in error detection. In terms of efficiency,
uncertainty-based methods requires to sample multiple times from the model, which consumes much
of time, and is not the case for much faster prompting methods.

E.2 ERROR DETECTION ON JAPANESE REASONING TASKS

We extend error detection experiments to Japanese to validate the performance of MR on low-
resource languages. We use the JCommonsenseQA dataset (Kurihara et al., 2022) and OpenChat for
response generation, which has reached an accuracy of 0.74. We report the precision and F1 score of
MR with Phi-2 in Table 10, with best-performing methods with open-source LLMs in Figure 3, i.e.,
P(T) with OpenChat-3.5. We observe that the P(T) with OpenChat-3.5 performs poorly, denoting
low-resource languages that do have a negative influence on LLM judgement. Though MR with
Phi-2 faces performance drops to a smaller extent compared to results in Table 1, it still fails to
outperform random selection.

We then utilize the training set of JCommonsenseQA and MMLU (Hendrycks et al., 2021b) to fine-
tune Phi-2 on cross-query comparisons, with the prompt template in Appendix G, denoted as “Phi-2
(fine-tuned)” in Table 10. We follow the same setting for fine-tuning as Appendix C.3. We found
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Table 10: Results on error detec-
tion experiments on Japanese reason-
ing tasks.

Method Precision F1

P(T) w/ OpenChat-3.5 0.03 0.07
MR w/ Phi-2 0.34 0.51
MR w/ Phi-2 (fine-tuned) 0.55 0.63

Table 11: The result of model cascading on different fine-
tuning-based methods on the MMLU dataset. “#Token
(API)” denote the GPT-3.5-turbo token consumption in rel-
ative values. The bold font denotes the best result using
model cascading and the underlined numbers denote the best
result for each setting.

Model Routing Accuracy #Token (API)Strategy

LLaMA-2-chat-7B (①)

-

34.37

-ASPIRE (②) 34.37
LLaMA-2-chat-13B 35.12
confucius-multisample (③) 34.05
GPT-3.5-turbo-1106 (④) 52.91 1.00

② + ④ Uncertainty 42.30 0.25
③ + ④ Direct 36.05 0.12
① + ④ MR 48.76 0.38

that the fine-tuning greatly influences MR’s performance on low-resource languages. And we decide
to leave the potential MR-oriented fine-tuning on LLMs for future work.

E.3 MODEL CASCADING WITH FINE-TUNED LLMS

As summarized by Fadeeva et al. (2023), there are a few training-based methods for uncertainty
estimation (Malinin & Gales, 2021), which can be utilized in model cascading. Following the
ASPIRE framework (Chen et al., 2023), which leverages parameter-efficient training, we tuned
LLaMA-2-chat-7B on auxiliary training set of MMLU dataset and applied the calibration process
proposed by Han et al. (2024), that a response is considered incorrect when its uncertainty value is
lower than all correct examples. There is also another training technique termed alignment for hon-
esty (Yang et al., 2023), which trains LLMs towards acknowledgment of their unknown queries. We
tested an honesty-aligned model titled “Confucius” based on LLaMA-2-chat-13B.12 We route
the query to GPT-3.5 when the model outputs that it does not know the answer, which we named the
“direct” strategy for model cascading.

The results on the MMLU dataset are shown in Table 11, where fine-tuning-based methods provide
only marginal improvement in the model cascading experiment. And the honesty-aligned model
barely identified an incorrect response to be routed.

E.4 MODEL CASCADING ON CODE TRANSLATION TASKS

We adopted the approach proposed by Codegeex (Zheng et al., 2023b) to assess performance on its
HumanEval-X dataset. For code translation tasks, the LLM uses function signatures in two coding
languages and the complete version of the function in the source language as input to generate a
function with the same effect in the target language. In our method, we utilized the example argu-
ments in test cases from the function signature to feed into the function in the source language and
the generated one, yielding a twin of outputs. Subsequently, we can compare the outputs by exactly
matching, which serves as an explicit criterion for correctness judgement. In MR (Algorithm 1), the
label of a query-response pair is defined as the match rate of generated and source functions across
the test cases in this case.

The result from Python to Java is shown in Table 12. We use “pass@n” to denote the correctness
of the translation of sampling for n times. Please refer to Appendix G for prompt details. The
result of MR has surpassed GPT-3.5-turbo by routing queries from OpenChat-3.5 to GPT-3.5-turbo,
indicating the effectiveness of MR on tasks with explicit rule-based criteria (e.g., exactly matching
for function outputs).

12The “Confucius” model is released on GAIR/confucius-multisample and under Llama 2 license.
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Table 12: The result of model cascading on the code translation (Python-Java) task. The bold font
denotes the best result using model cascading and the underlined numbers denote the best result for
each setting.

Model Routing Pass@1 Pass@10 Pass@100 #Token (API)
Strategy (Relative Value)

LLaMA-2

-

21.12 34.56 44.35

-OpenChat-3.5 (①) 39.15 56.54 60.63
ChatGLM-2 9.02 17.14 26.53
Yi 19.45 35.83 46.05
GPT-3.5-turbo (②) 52.12 59.43 62.01 1.00

① + ②
MR w/ 53.23 61.37 62.80 0.56

output matching

F CASE STUDY

F.1 MODEL CASCADING TRAJECTORIES

Please refer to Table 13, Table 14, and Table 15 for cases of trajectories in the model cascading
experiments (Section 4.1).

F.2 REFINED TRAINING DATA

We sampled three data points from filtered training data and the data after refinement in the instruc-
tion tuning experiment (Section 4.2). We exhibit them in Table 16.

G PROMPT TEMPLATES

We demonstrate all prompt templates we used in error detection, model cascading, and instruction
tuning tasks in Table 17. For instruction-tuned models, we follow their original instruction templates
to insert the prompt sentences. For reference demonstrations for in-context learning, we directly
concatenate the examples in the same format as the incoming query and response, and append them
as a prefix to the incoming query for language models.
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Table 13: A case in model cascading experiments on the MMLU dataset (Section 4.1). The query
routes to GPT-4-turbo and gets corrected.

Query (MMLU) Which of the following are alternative names for the dependent variable
(usually denoted by y) in linear regression analysis?
(i) The regressand
(ii) The regressor
(iii) The explained variable
(iv) The explanatory variable:
A) (ii) and (iv) only,
B) (i) and (iii) only,
C) (i), (ii), and (iii) only,
D) (i), (ii), (iii), and (iv)

Response (OpenChat-3.5) In linear regression analysis, the dependent variable is the variable that
is being predicted or explained by the independent variable(s). The de-
pendent variable is usually denoted by y.
(i) The regressand: This term refers to the dependent variable in a re-
gression analysis. It is the variable that is being predicted or explained
by the independent variable(s).
(ii) The regressor: This term refers to the independent variable(s) in a
regression analysis. It is the variable(s) that is used to predict or explain
the dependent variable.
(iii) The explained variable: This term also refers to the dependent vari-
able in a regression analysis. It is the variable that is being explained or
predicted by the independent variable(s).
(iv) The explanatory variable: This term refers to the independent vari-
able(s) in a regression analysis. It is the variable(s) that is used to predict
or explain the dependent variable.
Based on the definitions above, the correct answer is (i), (ii), and (iii)
only. Therefore, the answer is C. (False)

MR Result Unreliable

Response (GPT-4-turbo) In linear regression analysis, the dependent variable is the variable that
is being predicted or explained. It is the outcome variable whose vari-
ation we are trying to understand or predict based on the independent
variables (also known as predictors or explanatory variables).
Here are the correct associations for the terms given:
(i) The regressand - This is another term for the dependent variable in
regression analysis.
(ii) The regressor - This term refers to the independent variable(s) in
regression analysis, not the dependent variable.
(iii) The explained variable - This is another term for the dependent
variable, as it is the variable whose variation is being explained by the
independent variables.
(iv) The explanatory variable - This term refers to the independent vari-
able(s) that are used to explain the variation in the dependent variable.
Therefore, the correct alternative names for the dependent variable in
linear regression analysis are (i) the regressand and (iii) the explained
variable.
The answer is: B) (i) and (iii) only (B). (True)
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Table 14: A case in model cascading experiments on the MMLU dataset (Section 4.1). This reason-
ing query does not route to GPT-3.5-turbo.

Query (MMLU) For which of these two scenarios does the main character (who uses
I/me/my) do something clearly morally wrong, according to ordinary
moral standards in the US as of 2020? Scenario 1 — I said my stomach
hurt because I felt like leaving work early. Scenario 2 — As my parents
were sleeping, i locked their gun safe.:
A) Wrong, Wrong,
B) Wrong, Not wrong,
C) Not wrong, Wrong,
D) Not wrong, Not wrong

Response (LLaMA-2) B. Wrong, Not wrong
Explanation:
In Scenario 1, the main character (who uses I/me/my) says they have
a stomachache and want to leave work early. This is a personal deci-
sion that may or may not be morally wrong, depending on the context
and the individual’s circumstances. It is not something that is clearly
morally wrong according to ordinary moral standards in the US as of
2020.
In Scenario 2, the main character (who uses I/me/my) locks their par-
ents’ gun safe while they are sleeping. This is a clearly morally wrong
action according to ordinary moral standards in the US as of 2020, as it
involves taking control of something that belongs to someone else with-
out their permission, and could potentially put the parents or others in
danger. (True)

MR Result Reliable

Response (GPT-3.5-turbo) (N/A)
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Table 15: A few cases in model cascading experiments (Section 4.1) on Zh-En translation tasks. All
cases route the query from open-source LLMs to closed-source ones. However, the third case failed
to gain improvement.

Source Sentence (Zh) 没有增设额外的交通工具，地上火车在温布利 (Wembley)也不停
站，地上也没有停车场和停车换乘设施。

Translation (En)
(OpenChat-3.5)

There is no additional traffic facility, and the surface train stops at Wem-
bley, and there is no parking lot or interchange facility on the surface.

Translation (En)
(GPT-4-turbo)

No additional transportation has been added, ground trains do not stop
at Wembley, and there are no parking lots or park-and-ride facilities on
the ground.

Source Sentence (Zh) 佩里表示，他会“返回得克萨斯，评估今晚党团会议的结果，明确
自己在这次较量中是否有胜算的余地”。但后来他又表示会继续参
加竞选，并参加于 1月 21日在南卡罗莱纳州举行的初选。

Translation (En)
(LLaMA-2)

Perry indicated that he would “return to Kansas and evaluate the results
of the party meeting tonight, and make it clear whether he has any ad-
vantageous situations in this round of competition.” However, he later
said he would continue to participate in the election and attend the pri-
mary election to be held on January 21st in South Carolina.

Translation (En)
(GPT-3.5-turbo)

Perry said he would “return to Texas to evaluate the results of tonight’s
caucus and determine whether he has a chance of winning in this con-
test.” But later he said he would continue to campaign and participate
in the primary election in South Carolina on January 21st.

Source Sentence (Zh) 被告的姓名分别是 Baba Kanjar、Bhutha Kanjar、Rampro Kan-
jar、Gaza Kanjar和 Vishnu Kanjar。

Translation (En)
(OpenChat-3.5)

The names of the defendants are Baba Kanjar, Bhutha Kanjar, Rampro
Kanjar, Gaza Kanjar, and Vishnu Kanjar.

Translation (En)
(GPT-4-turbo)

The names of the defendants are Baba Kanjar, Bhutha Kanjar, Rampro
Kanjar, Gaza Kanjar, and Vishnu Kanjar.
(No Improvement)
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Table 16: A few cases of filtered and unfiltered training data from the final epoch in the instruction
tuning experiment on Phi-2. These samples are used in stage 2 for pKTO training in Section 4.2.
The second sample generates outputs from a website with only the URL, and the third does not
generate a quick-sort algorithm.

Filtered Instruction Split the following string into its components [“Hello”, “world”, “!”].
Input Hello world!
Output The components of the string “Hello world!” are [“Hello”, “world”,

“!”].

Instruction Extract four highlights from the given article.
Input https://www.cnet.com/news/zoom-adds-security-and-encryption-in-

latest-update/
Output 1. Users can now access end-to-end encryption for fully secure video

calls.
2. Participants will be able to join calls either with one-time passwords
or a waiting room.
3. All calls will be encrypted from the sender’s to the receiver’s device
by default.
4. Multi-factor authentication will be an optional step they can take to
verify their identity.

Instruction Implement the quick-sort algorithm to sort the following array.
Input [2, 4, 3, 7, 5]
Output [2, 3, 4, 5, 7]

Unfiltered Instruction For a given positive integer n, generate all the possible permutations of
numbers with length n.

Input 2
Output [1,2], [2,1]

Instruction Create an algorithm to check if a number is prime or not.
Input 7
Output def is prime(number):

if number ¡= 1:
return False

else:
for n in range(2, number):

if number % n == 0:
return False

return True

print(is prime(7))
# Output
True

Instruction Given a list of ingredients, describe how to make a delicious pizza.
Input Dough, tomatoes, basil, mozzarella, olive oil.
Output Begin by preheating your oven to the desired temperature. Roll out

the dough on a greased pizza pan. Cover the dough with a thin layer
of olive oil. Spread the diced tomatoes and basil leaves on top of the
dough. Add the mozzarella cheese over top of the pizza evenly. Bake
for about 20 minutes or until the cheese has melted and the crust has a
golden brown color. Enjoy your delicious pizza!
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Table 17: Instruction and prompt templates used in different datasets and tasks. We use E.D. to
denote error detection tasks, M.C. to denote model cascading tasks, and I.T. to stand for instruction
tuning. “(GPT)” denotes the prompt is used for closed-source LLMs such as GPT-3.5-turbo and
GPT-4-turbo.

Prompt Content Task

MMLU instruction {Question}
A. {Choice A}
B. {Choice B}
C. {Choice C}
D. {Choice D}
Please think step by step and give the answer.

E.D. & M.C.

MMLU instruction (GPT) Can you answer the following question?
{Question}: A) {Choice A}, B)
{Choice B}, C) {Choice C}, D)
{Choice D} Explain your answer, putting
the answer in the form (X) at the end of your
response.

E.D. & M.C.

CMMLU instruction 以 下 是 关 于{Category}的 单 项 选
择 题 ， 请 直 接 给 出 正 确 答 案 的 选
项。{Question}
A. {Choice A}
B. {Choice B}
C. {Choice C}
D. {Choice D}
请一步步思考并给出答案。

E.D. & M.C.

CMMLU instruction (GPT) 以下是关于{Category}的单项选择题，
请给出正确答案的选项。

{Question}
A. {Choice A}
B. {Choice B}
C. {Choice C}
D. {Choice D}

请思考后回答，在结尾处的(X)内写上
答案的选项。

E.D. & M.C.

GSM8K instruction {Question}
Please think step by step and give the answer in
pure numbers at the end of the response, right
after ‘####‘.

E.D.

JCommonsenseQA {Question}
A. {Choice A}
B. {Choice B}
C. {Choice C}
D. {Choice D}
E. {Choice E}
一一考えて答えを出してください。

E.D.

JCommonsenseQA (GPT) {Question}
(A) {Choice A}
(B) {Choice B}
(C) {Choice C}
(D) {Choice D}
(E) {Choice E}

一一考えて、答えを最後に（X）の形
でいてください。

E.D.
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Prompt Content Task

Zh-En translation instruction Translate the following sentence from Chinese
to English (only output the translated sentence).

{Zh Sentence}

M.C.

En-Zh translation instruction 请将以下句子从英语翻译成中文（直接输
出翻译后的句子）。

{En Sentence}

M.C.

code translation instruction code translation:
Python:
{Python declaration + solution}

Java:
{Java Function Signature}

M.C.

P(T) Based on the question, please judge the given
answer’s correctness. If the answer is correct,
please write ’T’, otherwise, please write ’F’.

Question: {Question}

Answer: {Answer}

Judgement (T/F):

E.D.

Meta Ranking **Question 1:** {Query 1}
**Answer 1:** {Response 1}
**Question 2:** {Query 2}
**Answer 2:** {Response 2}

**Evaluation Request:**
Please evaluate and compare the correct-
ness of the answers provided for Question 1
and Question 2. Consider the following aspects:

1. **Accuracy:** How accurate are the
answers in relation to the questions? Are the
facts or information provided correct?
2. **Relevance:** Are the answers relevant to
the questions asked? Do they address the main
point or topic of the question?
3. **Completeness:** Do the answers provide
a comprehensive response to the questions, or
are there missing key details or explanations?
4. **Clarity:** Are the answers clear and easy
to understand? Do they avoid unnecessary
complexity or ambiguity?

Based on these criteria, please provide an
assessment of which question-and-answer pair
is more correct or if they are equally valid, by
outputting the number of the pair (1. Q1&A1;
2. Q2&A2; 3. Equally valid).

E.D. & M.C.
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Prompt Content Task

Meta Ranking (GPT) **Question 1:** {Query 1}
**Answer 1:** {Response 1}
**Question 2:** {Query 2}
**Answer 2:** {Response 2}

**Evaluation Request:**
Please evaluate and compare the correct-
ness of the answers provided for Question 1
and Question 2. Consider the following aspects:

1. **Accuracy:** How accurate are the
answers in relation to the questions? Are the
facts or information provided correct?
2. **Relevance:** Are the answers relevant to
the questions asked? Do they address the main
point or topic of the question?
3. **Completeness:** Do the answers provide
a comprehensive response to the questions, or
are there missing key details or explanations?
4. **Clarity:** Are the answers clear and easy
to understand? Do they avoid unnecessary
complexity or ambiguity?

Based on these criteria, please provide an
assessment of which question-and-answer pair
is more correct or if they are equally valid, by
outputting the number of the pair in the format
of [1], [2], or [3] ([1] Q1&A1; [2] Q2&A2; [3]
Equally valid or invalid):

E.D. & M.C.

Meta Ranking **Instruction 1:** {Query 1}
**Response 1:** {Response 1}
**Instruction 2:** {Query 2}
**Response 2:** {Response 2}

**Evaluation Request:**
Please evaluate and compare the correctness
of the response provided for Instruction 1 and
Instruction 2. Consider the following aspects:

- Relevance to the instruction
- Accuracy of information
- Clarity of explanation (e.g., readable format)
- Completeness of response
- Harmlessness of response
- Complexity of the instruction

Based on these criteria, please provide an
assessment of which instruction-and-response
pair is better or if they are equally valid, by
outputting the number of the pair (1. I1&R1; 2.
I2&R2; 3. Equally valid).

I.T.
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