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Abstract

Diffusion and flow models achieve high generative quality but remain compu-
tationally expensive due to slow multi-step sampling. Distillation methods ac-
celerate them by training fast student generators, yet most existing objectives
lack a unified theoretical foundation. In this work, we propose Di-Bregman, a
compact framework that formulates diffusion distillation as Bregman divergence-
based density-ratio matching. This convex-analytic view connects several existing
objectives through a common lens. Experiments on CIFAR-10 and text-to-image
generation demonstrate that Di-Bregman achieves improved one-step FID over
reverse-KL distillation and maintains high visual fidelity compared to the teacher
model. Our results highlight Bregman density-ratio matching as a practical and
theoretically-grounded route toward efficient one-step diffusion generation.

1 Introduction

Diffusion and flow models [1, [15} 21} 24} 41} 43| |44] have become a cornerstone of generative
modeling, attaining state-of-the-art performance across modalities and tasks [3} (7, 9} 10, [10} 25,
34,136, 47]. Yet their sampling process remains prohibitively slow, often requiring hundreds of
network evaluations per sample. This has motivated an active line of research on distillation: training
fast student generators that reproduce a pre-trained teacher’s output in one or few steps. Current
approaches can be broadly categorized as Ordinary Differential Equation (ODE)-based [12} 22} 138,
42]), which learn consistency mappings along the teacher’s probability-flow ODE, and distribution-
based [27, 155} 160], which directly match the generator’s output distribution to that of the teacher
or data. ODE-based methods enforce sufficient but unnecessary conditions for one-step generation,
whereas distribution-based methods relax these constraints and capture a broader solution space.
Variational Score Distillation (VSD) [49] and Distribution Matching Distillation (DMD) [55] define
objectives based on reverse-Kullback-Leibler (KL) divergence between student and teacher models.
f-distill [52] reframed these methods through the lens of f-divergences. Despite this progress, a
general perceptive that explains these objectives in a simple mathematical form remains missing.

We introduce Di-Bregman, a general framework that formulates diffusion distillation as Bregman
divergence-based density-ratio matching. The central insight is that aligning the student distribution
q(x) with the teacher p(x) can be viewed as driving the ratio r(z) = % toward constant one, un-
der a suitable convex function h. This perspective yields a closed-form gradient (Theorem [I]) with
weighting A" (r)r. Under this formulation, familiar objectives, such as KL- or MSE-based distil-
lation arise as specific choices of h. The result is a concise, interpretable expression that connects

multiple existing formulations within a single theoretical framework.

Beyond theory, Di-Bregman remains practical. To get the weightning coefficient 4" (r)r, we esti-
mate density ratios through a simple classifier trained to distinguish student samples from real data,
enabling efficient training without repeated teacher simulation and allowing optional adversarial
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refinement. Preliminary results on both unconditional image and text-to-image generation demon-
strate that our approach attains improved one-step FID than reverse-KL distillation and maintains
visual fidelity comparable to the multi-step teacher models.

In summary, our contributions are:

* We introduce a unified formulation of diffusion distillation based on Bregman density-ratio
matching, which yields a closed-form gradient interpretation,

* We propose a practical classifier-based training procedure that effectively instantiates this
formulation and validate it on early benchmarks.

2 Preliminaries

2.1 Variational Score Distillation

Variational Score Distillation (VSD) [49] was introduced to mitigate mode-seeking and over-
saturationissues observed when using Score Distillation Sampling (SDS) for 3D asset generation
[35]. Importantly, the VSD objective is defined on the final samples produced by a generator, rather
than on intermediate sampler states. This final-sample focus naturally motivates efforts to distil
powerful multi-step pre-trained model into compact few-step or one-step generators via VSD-style
objectives; several recent works have followed this route [27, 31, 155].

Concretely, VSD can be viewed as minimizing a time-averaged divergence between the noisy
marginal produced by the student generator and the corresponding noisy marginal of a pretrained
reference model. Writing ¢; and p; for the generator and reference noisy marginals at time ¢, respec-
tively, the gradient of a typical score-distillation loss admits the following approximation:

dG@ (6)
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VoLysp = Ei [VoKL(q; || pe)] = —Epe [w(t)(s¢(ze,t) — sp(we,t)) (D
where w(t) is a scalar weighting function over timesteps, and the noisy state x; is obtained by apply-
ing the forward diffusion kernel at time ¢ to the generator output Ggy(e) using another independent
Gaussian noise. sg(-,t) and sy (-, t) denote the pre-trained score function on reference data and the
auxiliary score function on the student-generated data evaluated at timestep ¢, respectively. Intu-
itively, the score difference s — s, provides a learning signal that pushes the student’s generated
noisy marginals toward those of the pre-trained teacher model, and backpropagating through Gy to
update the generator parameters 6.

2.2 Bregman Divergence for Density Ratio Matching

Given two probability distributions p*(z) and ¢*(z), the goal of density ratio matching is to learn
a ratio model 74 (x) that approximates the true density ratio r*(x) = ggig

drawn from both distributions.

based on i.i.d. samples

The Bregman divergence provides a flexible and theoretically grounded measure for comparing func-
tions such as density ratios. It generalizes the notion of squared Euclidean distance to a broad class
of divergences that share similar geometric and convexity properties [2,/46]]. Let i be a differentiable
and strictly convex function. The Bregman divergence associated with h between two functions r
and r* is defined as [18) 46]:

Da(rr) = [ p(o) [(r(a)) = b (@) = K @)0r(o) = 7 @) de. @

This divergence is positive-definite, which means it is always non-negative and equals zero if and
only if r(x) = r*(z) almost everywhere with respect to p(z), which is the density implicitly defined
in r(x). Many well-known divergences arise as special cases of the Bregman divergence for specific
choices of the convex function h. For instance, the squared loss corresponds to h(r) = %rz, leading

The SDS objective tends to produce solutions corresponding to the mode of the averaged likelihood, lead-
ing to mode-seeking behavior. Moreover, a high Classifier Free Guidance (CFG) scale can cause over-saturated
and over-smoothed generation results.



to least-squares density ratio estimation [45]] and the KL divergence corresponds to h(r) = rlogr —
7. More instances can be found in Sec.[2.2] This unifying framework allows density ratio estimation
to be interpreted as minimizing a Bregman divergence under different convex function h, providing
a general connection between statistical divergences and convex analysis [2, 6].

Table 1: Examples of different h(r) in Bregman divergence and the corresponding h”(r)r. The
choices of h(r) are from [18} 32].
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3 Method

In this section, we introduce a general distillation framework, termed Di-Bregman, which is derived
from the Bregman divergence for density ratio matching formulation in Sec. The core idea is to
align the student distribution ¢(x), induced by a one-step generator Gy, with the teacher distribution
p(x). Since the student distribution ¢(x) is implicitly defined by the generator through the push-
forward measure of the prior, i.e., x = Gy(€) with € ~ N(0, I), the distribution ¢(x) and its density
xT
student and teacher distributions. Perfect alignment hence corresponds to 7(x) = 1 for all , which
motivates minimizing a divergence between r(x) and the target ratio 1 in Eq. (2)):

Dy(r||1) = / p(@) [(r(@)) = A1) = W' (1)(r(z) ~ 1)] da. 3)

Minimizing this divergence with respect to 6 encourages the student generator Gy to produce sam-
ples whose induced distribution ¢(z) matches the teacher distribution p(z).

ratio depend on the generator parameters 6. Let r(x) denote the density ratio between the

Following prior work on one-step and few-step distillation of diffusion models [27, 31} 155], we can
derive the analytical form of the gradient of the Bregman divergence in Eq. (3). The resulting ex-
pression corresponds to a weighted variant of the gradient used in the KL-based objective (Eq. (I)),
where the weight is a function of the density ratio r(z), analogous to the formulation in f-distill [52].

To further generalize this result as in VSD, we consider the intermediate distributions p; and ¢
obtained via the diffusion forward process. This allows the Bregman-based distillation gradient
to be evaluated at arbitrary diffusion timesteps. The following theorem formally characterizes the
gradient of the Bregman divergence in this general setting.

Theorem 1 (Gradient of Bregman divergence). Let p; be a reference (teacher) marginal density
at time t and let q¢; = qp+ be the marginal induced by the generator Gy at time t. These inter-
mediate densities are obtained via the forward diffusion process. Define the intermediate density
qe,t(l)
pi ()
Bregman divergence Dy (r¢||1) = Eyp, [h(r¢)] — h(1) with respect to 8 admits the following form:

ratio r¢(x) = . Assume that h is twice continuously differentiable. Then the gradient of the

VoDp(rel|1) = —Ec | w(t)h" (re(x¢)) 7e(24) (Va, log pr(a) — Vi 1og qo e (a4)) V@G@(e)}, 4)
where w(t) is a weight function.

The corresponding proof can be found in Appendix

In practice, the density ratio on noisy data, r(z) = gig; , can be estimated using a classifier trained

to distinguish samples from the student generator Gy and those from the teacher model or reference
dataset. Under the common assumption that the pre-trained teacher model already captures the
data distribution well, it is often both preferable and computationally cheaper to draw real samples




Figure 2: Images generated with only one-step by model trained with Di-Bregman. More images
are shown in Appendix [E|

directly from the dataset rather than repeatedly sampling from the teacher. The discriminator loss is
hence:
0 MAXE i tpigp 108 D (Ze)t O] F Eennr(0,1) trvpigy 081 =D (Gole)in )] (5

For a discriminator output D, = o(l;(z)), where I;(z) denotes the classifier logits at noise level
p:(z)
pi(z)+qe(z)”
recovered as r(x) = e "(®), We provide common used h(r) and corresponding 1" (e~!)e~" in
Sec.[2.2] In this framework, the trained classifier not only provides an estimate of the local density

ratio but can also be repurposed as a discriminator for adversarially training the student generator.

t, the optimal output satisfies o (I} (z)) = This implies that the density ratio can be

-

Compared to f-distill [52]], our framework places ‘ o ReverseKL — Bregman A=5.0
fewer constraints on the convex function, which 8 sregmmn LR = BregmanAo100
yields greater flexibility in choosing divergence 7

families for distillation. Recently, Uni-Instruct .

[48] proposes a unifying view that connects in- %.6

tegral f-divergences [52.[55] and score-based di- £ i
vergences [28, [60]. However, Di-Bregman is s

complementary to this line of work: it provides

a Bregman-divergence perspective that admits a 4

broader class of function h and recovers many 0 1000 2000 3000 4000 5000
existing objectives as special cases. Together, Iterated k-images

these formulations offer a more complete picture

of distribution-based diffusion distillation. Figure 1: Evolution of one-step FID against

number of iterated images: Di-Bregman

4 Experiments achieves a lower one-step FID.

To evaluate the effectiveness of the proposed

method, we conduct experiments on both uncon-

ditional image and text-to-image generation tasks. Quantitative results are reported on the CIFAR-10
dataset using an EDM teacher [16], while qualitative results are presented for text-to-image gener-
ation with a Stable Diffusion v1.5 [36] teacher. As shown in Fig. [T] when applying the SBA-type
Bregman divergence with A = 5, our method achieves a lower one-step Fréchet Inception Distance
(FID) compared to the baseline reverse KL distillation approach. In addition, Fig. [2]illustrates repre-
sentative one-step samples generated by our distilled text-to-image model, demonstrating high visual
quality and fidelity to the text prompts. More experimental details (D)), qualitative (E)), quantitative
(F) results and additional ablations (F) are provided in Appendix.

5 Conclusion

We introduced Di-Bregman, a generalized framework for diffusion model distillation grounded in
Bregman divergences. Empirically, our method improves one-step generation quality on CIFAR-10
and produces competitive visual results in text-to-image synthesis, demonstrating both its theoretical
generality and practical effectiveness.



Algorithm 1 Di-Bregman Distillation

Require: Pre-trained teacher model ¢, auxiliary model v, discriminator heads 7, condition dataset D, ground
truth dataset Dy, loss weights wgan (optional)

1: 0 < copyWeights(¢), 1) < copyWeights(¢) // initialize models

2: repeat

3: ### Generate one-step image samples Zg

4:  Sample e ~ N(0,1),c ~ D

5: zg= Go(e, )

6: ### Update generator 6

7 Sample t ~U[0, 1], 2t ~ q¢o(x¢|xe) // Forward

8 Calculate true and auxiliary score s4(z¢, ¢) and sy (x4, ¢)

9: Calculate the density ratio ; using discriminator head logit output r+(z) = e (@)
10: # calculate Di-Bregman loss gradient

11: V 6 Li-Bregman (8) +— —E. [h”(m(mt)) re(xt) (s¢(act, ¢) — sy (e, c)) VoGo (e)}
12: # calculate GAN loss (optional)

13: EGAN(H) — ]Ee,t[_ log(Dn(xt, t))]

14: # calculate total loss and update

15: Update 6 using gradient of Leen(0) = Lpi-Bregman (0) + woanLaan(0)

16: ### Update auziliary model

17: Sample ¢’ ~U[0, 1], 24 ~ qyjo (2 |6 (@inir, €))

18: Update v with standard denoising score match loss to leard x4
19: ### Update discriminator n

20: Sample ¢t ~1[0, 0.95], calculate z; ~ g¢jo(z¢ |z9)

21: Sample real data (zg, ¢) ~ Da, calculate ()

22: Update n with GAN objective (Eq. (B)
23: until convergence
24: Return one-step generator
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A Limitations and Future Works.

This work primarily presents preliminary results. In future studies, we plan to extend our approach
to a wider range of teacher models and conduct comprehensive comparisons with state-of-the-art
methods. Moreover, while our current experiment only use the classifier in Eq. (), we aim to incor-
porate adversarial training based on it to further enhance the performance of one-step generation.

B Derivation

Theorem 1 (Gradient of Bregman divergence). Let p; be a reference (teacher) marginal density
at time t and let ¢ = qp+ be the marginal induced by the generator Gy at time t. These inter-

mediate densities are obtained via the forward diffusion process. Define the intermediate density

ratio r¢(x) = %SE)) Assume that h is twice continuously differentiable. Then the gradient of the

Bregman divergence Dy (r¢||1) = Eyp, [h(r¢)] — h(1) with respect to 8 admits the following form:
VoD (r|1) = —E. {w(t)h”(ﬁ(xt)) ri(2¢) (Va, log pe(2¢) — Vi log gg e (z¢)) VeGe(ﬁ)]- (6)

where w(t) is a weight function.

Proof. Recall that

Darel1) = [ p1(a) [h(ra(a)) = (1) = W (1) (rs(2) — 1)

where r;(x) = gg+(x)/p:(z) and p; do not depend on 6. Differentiating under the integral sign and
using that

/pt(x) Vor:(z) de = VQ/QQ¢($) dr = Vgl =0,

we obtain

VoD (r||1) = /pt(x) B (ri(z)) Vory(z) de = /h’(rt(z)) Voge ¢(x) de. @)

Next, we express gg ; as the pushforward of a base noise € ~ p(e) through the generator at time ¢,
xy = F(Gy(€), z) with fixed forward process F(z,z) = ayx + oz and z ~ N(0,1):

qo.1(z) = /p(e) §(z — xy) de, (8)

where § is the Dirac delta. Differentiating equation[8|w.r.t. 6 and using the chain rule for distributions
yields

Vogoi(x) = /p(e) V@(S(Jc — a:t) de = —w(t) /p(e) VI(S(:U — xt) VoGo(e) de. 9)
Substituting equation [9]into equation[7] gives

VoDp(r|1) = — /w(t)h'(rt(x)) [/p(e) Voo (z — x) VoGo(e) de} dz (10)

= — /p(e) [w(t)/h’(rt(a:)) Vb (x — x4) dx} VoGo(e) de. (11)
We now integrate by parts in x (assuming boundary terms vanish):
/h’(rt(x)) Vol (z — ;) do = f/é(x —x) Vol (re(z)) da.
Hence
VoDp(r||1) = /p(e) {/w(t)é(x — x) Vo (re(z)) dx] VoGo(e) de
=E. [w(t)Vzh’(rt(xt)) VgGg(e)] .

Apply the chain rule V, 1/ (r;) = b (r;)Vyry and Vg = 7(Vy log go t — V4 1og py ) yields Eq. (E])
stated in the theorem. ]

(12)



C Related Works: Diffusion Distillation

Distillation methods for accelerating diffusion and flow models fall into two broad families. ODE-
based distillation exploits the teacher’s Probability Flow ODE (PF-ODE) to derive regression-
style objectives for a student model [3} |4} [11} 12} [13] [17, 22, 26| 130 38} 42} 53| |61]. These
approaches frame distillation as learning an ODE-consistent mapping, often enabling stable one-
or few-step samplers which preserves the coupling induced by teacher models’ PF-ODE. By
contrast, distribution-based methods align the student generator’s output distribution with the
teacher’s multi-step sampling distribution (or with a specified data distribution) without relying
on an explicit PF-ODE. This class covers divergence- and adversarial-style matching techniques
(8, 27, 29} [311 139, 48, 149, 150, 51} 54, 155} 156, 57, 58 159, 160} 162, 163]]. Compared to distribution-
based methods, ODE-based formulations optimize more indirect objectives that enforce consistency
with an underlying continuous-time dynamics. These ODE constraints are sufficient but not neces-
sary for correct one-step generation. Consequently, ODE-based methods are more restrictive, while
distribution-based formulations directly match the target distribution and thus allow a broader fam-
ily of solutions and greater modeling flexibility. In f-distil, [52] extend the VSD framework from
reverse Kullback-Leibler (KL) divergence to more general f-divergence and use discriminator to
estimate the density ratio. A notable feature of many distribution-based methods is that they match
not only the final data distribution but also the intermediate noisy-data distributions encountered
during sampling; this property has also been referred to as Interpolation Distillation [23]].

D Experimental Setup

Datasets and Pre-trained Teacher Models. Our experiments to demonstrate the effectiveness of
Di-Bregman are performed on the CIFAR-10 [19] 3232 for unconditional generation and on the
LAION [40] and COCO [20] datasets for text-to-image generation. The pre-trained teacher models
are adopted from the official checkpoints from previous works, EDM [16], and Stable Diffusion
v1.5 [36].

Implementation Details. All experiments are conducted on a single NVIDIA H100 GPU. For
CIFAR-10 (32 x 32) experiments, we adopt the U-Net architecture of NCSN++ [44]. The imple-
mentation is based on the SiDA framework [S9]], where the discriminator is built upon the auxil-
iary model encoder, and the mean feature vector is used as the predicted discriminator logits. For
the text-to-image experiment, we use Stable-Diffusion v1.5 [36], a 900M-paramenter U-net-based
model, trained on LAION [40] and distilled at 512 x 512 resolution. All results presented in the
paper are one-step generated using our distilled generator.

Evaluation Metrics. The metrics we use for quantitative results on CIFAR-10 are Fréchet In-
ception Distance (FID) [14] and Inception Score (IS) [37]. In our experiments, FID is computed
with 50,000 generated samples compared against the training set using Clean-FID [33]], while IS is
calculated from the same generated images based on their Inception features.

E Additional qualitative results

In Fig. |3] we provide additional qualitative comparisons, where our one-step student produces vi-
sually coherent and faithful samples, closely matching the teacher output across diverse prompts.
Additional uncurated CIFAR-10 samples from our Di-Bregman model are shown in Fig.[6] demon-
strating diverse one-step generation, with an FID of 3.61.



Teacher Student Teacher Student

A still life of a red apple Walter White as a medieval king

F

A portrait in the style of polygonal painting A female leopard

Figure 3: Qualitative comparison at 512 x 512: Teacher 50 NFEs (first, third columns) vs
Student 1 NFE (second, last columns) for six prompts (left and right blocks per row). The
teacher is the Stable Diffusion v1.5 [36] model.

F Additional quantitative results

In this section, we provide some additional quantitative results from our one-step models.

Figures [] and [5] show the evolution of one-step FID and IS, respectively, across different values of
the Bregman parameter A\. We observe that Di-Bregmanconsistently improves over the reverse KL
baseline for several A configurations. In particular, settings such as A = 3.0, A = 5.0, and A = 10.0
yield the lowest one-step FID (Fig. d) and the highest one-step IS (Fig. [5), confirming the robust-
ness of Di-Bregmanacross a range of divergence parameters. Lower \ values (e.g., A < 1.0) tend
to perform closer to the baseline, while negative A = —1.0 underperforms. These results demon-
strate that Di-Bregmanoffers consistent improvements in sample quality metrics over the reverse KL
distillation method.
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Figure 4: Evolution of one-step FID against number of iterated images. For A = 3.0, A = 5.0 or
A = 10.0 Di-Bregman achieves a lower one-step FID.
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Figure 5: Evolution of one-step IS against number of iterated images. For A = 3.0, A = 5.0 or
A = 10.0 Di-Bregman achieves a higher one-step IS.



Figure 6: Uncurated samples from unconditional CIFAR-10 32x32 using Di-Bregman with single
step generation (FID=3.61).



G General Divergence with Fixed Target Ratio ;:

VoD (re|lrt) = / po(2) B (14 (2)) Vory(z) dz — / D@ ) Voro(@) dz.  (13)

The second term does not equal to 0 because h'(r}) is not a constant anymore.

The general final gradient is hence:

VoD (re||ry) = —Ee [h”(m (z¢)) re(xe) (Vm log pt(zt) — V4 log qg,t(xt)) VoGo(e)+h" () Veor; (xt)] .
(14)

We can interpret the target density ratio r* as a normalized reward function, hence the optimal
distribution satisfies ¢* = pr* and we can use Eq. (I3) to direct distill a reward tilted distribution.

In practice, employing an unnormalized reward R(x;) entails estimating its normalization constant,
Eg,~p, R(x:), which is typically intractable for arbitrary reward functions.
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