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ABSTRACT

Serving LLMs requires substantial memory due to the storage requirements of
Key-Value (KV) embeddings in the KV cache, which grows with sequence length.
An effective approach to compress KV cache is quantization. However, traditional
quantization methods face significant memory overhead due to the need to store
quantization constants (at least a zero point and a scale) in full precision per
data block. Depending on the block size, this overhead can add 1 or 2 bits per
quantized number. We introduce QJL, a new quantization approach that consists
of a Johnson-Lindenstrauss (JL) transform followed by sign-bit quantization. In
contrast to existing methods, QJL eliminates memory overheads by removing the
need for storing quantization constants. We propose an asymmetric estimator for
the inner product of two vectors and demonstrate that applying QJL to one vector
and a standard JL transform without quantization to the other provides an unbiased
estimator with minimal distortion. We have developed an efficient implementation
of the QJL sketch and its corresponding inner product estimator, incorporating a
lightweight CUDA kernel for optimized computation. When applied across various
LLMs and NLP tasks to quantize the KV cache to only 3 bits, QJL demonstrates a
more than fivefold reduction in KV cache memory usage without compromising
accuracy, all while achieving faster runtime.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable success across various domains, from
chatbots Achiam et al. (2023); Antropic (2024) to text-to-image Ramesh et al. (2022); FireFly (2023);
Midjourney (2022), text-to-video synthesis OpenAI (2024b), coding assistants Copilot (2023), and
multimodal tasks OpenAI (2024a). Their core architecture, Transformers with self-attention Vaswani
et al. (2017), scales with model size Kaplan et al. (2020), leading to significant memory challenges.

Auto-regressive decoding is costly due to the need to store all key-value (KV) embeddings, creating
memory and latency bottlenecks. Current solutions include reducing KV heads Shazeer (2019);
Ainslie et al. (2023), pruning Zhang et al. (2024b); Liu et al. (2024a), offloading Sheng et al. (2023),
and memory paging Kwon et al. (2023). Quantization of KV caches has also been explored Yue et al.
(2024); Yang et al. (2024); Dong et al. (2024); Kang et al. (2024); Zhang et al. (2024a), with recent
per-channel methods Liu et al. (2024b); Hooper et al. (2024) improving efficiency but introducing
memory overhead.

We propose QJL, a novel, data-oblivious quantization method leveraging Johnson-Lindenstrauss
(JL) transforms Dasgupta & Gupta (2003). By applying a random Gaussian projection to key
embeddings and quantizing them to a single bit (sign bit), while maintaining the same transforma-
tion on queries, we achieve an unbiased and low-distortion inner product estimator (Lemma 3.2,
Lemma 3.3). Our method eliminates storage overhead from quantization constants, requires no
tuning, and scales logarithmically with context length (Theorem 3.4).

For value embeddings, we adopt standard token-wise quantization Liu et al. (2024b); Hooper et al.
(2024). We also address outliers in deeper LLM layers by applying separate quantization for extreme
values (Figure 1 in Appendix D).

Our CUDA-optimized QJL method compresses the KV cache in Llama-2 Touvron et al. (2023) and
long-context models Li et al. (2023), reducing memory usage 5× with no accuracy loss at just 3
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bits per FPN. It surpasses recent KV quantization methods in F1 scores on long-context tasks from
LongBench Bai et al. (2023) while minimizing overhead.

2 PRELIMINARIES: TOKEN GENERATION IN ATTENTION

Deploying auto-regressive language models for inference requires caching key and value embeddings
at each transformer layer to eliminate redundant computations. The model sequentially updates the
KV cache to generate tokens one at a time.

At each generation phase i, let qi,ki,vi ∈ Rd be the query, key, and value embeddings, respectively.
Given n total tokens, the attention output at phase n is:

on =
∑
i∈[n]

softmax ([⟨qn,k1⟩, . . . , ⟨qn,kn⟩])i · vi. (1)

The output on is used to compute qn+1,kn+1,vn+1 unless generation terminates. Storing all previous
{ki,vi}i∈[n] in full precision demands high memory for long contexts. Computing equation 1 requires
O(nd) operations due to n inner products. Additionally, large KV cache sizes slow inference as
they must be repeatedly loaded from GPU memory, leading to low arithmetic intensity and GPU
underutilization Pope et al. (2023). This work compresses the KV cache via token quantization,
reducing memory usage while maintaining efficiency.

3 QUANTIZED JOHNSON-LINDENSTRAUSS (QJL) TRANSFORM

Our goal is to reduce KV cache memory while preserving the inner product between query and key
embeddings. To achieve this, we first apply a Johnson-Lindenstrauss (JL) transform Johnson et al.
(1986), a random projection that maintains inner products, followed by quantization. Specifically, we
use a 1-bit Johnson-Lindenstrauss transform, which projects embeddings onto a random subspace
using a Gaussian matrix and then quantizes the result to a single sign bit. This yields an unbiased,
low-distortion inner product estimator Dasgupta & Gupta (2003).

The Quantized Johnson-Lindenstrauss (QJL) transformation, along with its inner product estimator,
is formally defined as follows:
Definition 3.1 (QJL and inner product estimator). For integers d,m, let S ∈ Rm×d be a JL transform
matrix with i.i.d. standard normal entries. The QJL mappingHS : Rd → {−1,+1}m is:

HS(k) := sign(Sk), ∀k ∈ Rd. (2)
The inner product estimator for q,k ∈ Rd is:

ProdQJL(q,k) :=

√
π/2

m
· ∥k∥2 · ⟨Sq,HS(k)⟩. (3)

Unlike applying QJL to both vectors, which estimates only their angle Charikar (2002), asymmetric
quantization preserves an unbiased inner product estimator. We formally establish this in the following
results:
Lemma 3.2 (Unbiasedness of ProdQJL). For any q,k ∈ Rd, the expectation of ProdQJL(q,k) in
Equation (3) satisfies:

E
S
[ProdQJL(q,k)] = ⟨q,k⟩,

where the expectation is over the randomness of S in Definition 3.1.

Furthermore, ProdQJL retains bounded distortion with high probability:
Lemma 3.3 (Distortion of ProdQJL). For any q,k ∈ Rd, if ProdQJL(q,k) is defined as in Equation (3)
for m ≥ 4

3 · 1+ε
ε2 log 2

δ , then:
Pr
S
[|ProdQJL(q,k)− ⟨q,k⟩| > ε∥q∥2∥k∥2] ≤ δ.

The proof is in Appendix A. Notably, Lemma 3.3 shows that QJL achieves lower distortion constants
than the standard JL transform, indicating that quantizing one vector to a single sign bit preserves
accuracy. These properties enable a robust KV cache quantizer.
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Algorithm 1 QJL Key Cache Quantizer

Input: Stream of key tokens k1,k2, . . . ∈ Rd, integer m
1: Draw a random sketch S ∈ Rm×d with i.i.d. entries Si,j ∼ N (0, 1) as per Definition 3.1
2: repeat
3: Compute k̃i ← sign (Ski) and νi ← ∥ki∥2
4: store the quantized vector k̃i and the key norm νi in the cache
5: until token stream ends

Procedure ESTIMATESCORES(qn)

6: Compute inner product estimators q̃K(j)←
√

π/2

m · νi · ⟨Sqn, k̃j⟩ for every j ∈ [n]

7: S̃core← softmax
(
q̃K

)
return S̃core

3.1 KEY CACHE QUANTIZATION VIA QJL

The key cache is used in the computation of attention scores as shown in Equation (1). To calculate
these scores, we need to compute the inner products of the current query embedding with all key
embeddings in the cache. We design a quantization scheme that allows for a low-distortion estimate
of the inner products between an arbitrary query and all keys in the cache. In this section, we develop
a practical algorithm with provable guarantees based on QJL and the inner product estimator defined
in Definition 3.1.

The quantization scheme presented in Algorithm 1 applies QJL, defined in Definition 3.1, to each key
embedding, mapping them to binary vectors and storing the results in the key cache. We show in
the following theorem that the attention scores calculated by Algorithm 1 have very small (1± ε)
relative distortion with high probability:
Theorem 3.4 (Distortion bound on QJL key cache quantizer). For any sequence of key tokens
k1, . . .kn ∈ Rd and any integer m, Algorithm 1 stores binary vectors k̃1, . . . k̃n ∈ {−1,+1}m
along with scalar values ν1, . . . νn in the cache. If the key embeddings have bounded norm
maxi∈[n] ∥ki∥2 ≤ r and m ≥ 2r2ε−2 log n, then for any query embedding qn ∈ Rd with bounded
norm ∥qn∥2 ≤ r the output of the procedure ESTIMATESCORES(qn) satisfies the following with
probability 1− 1

poly(n) sinultaneously for all i ∈ [n]:∣∣∣S̃core(i)− Score(i)
∣∣∣ ≤ 3ε · Score(i),

where Score is the vector of attention scores defined in Equation (1).

The proof is provided in Appendix A. This theorem shows that if the query and key embeddings have
constant norms, as is common in practical scenarios, we can quantize each key embedding such that
only m ≈ ε−2 log n bits are needed to store each key token. This is independent of the embedding
dimension of the tokens and scales only logarithmically with the sequence length.

3.2 VALUE CACHE QUANTIZATION

We quantize the value cache using a standard quantization method, i.e., normalizing each token’s
entries and then rounding each entry to a few-bit integer representation. This approach aligns with
prior work, which has shown that standard token-wise quantization is highly effective for the value
cache and results in a minimal accuracy drop Liu et al. (2024b); Hooper et al. (2024).

4 EXPERIMENTS

We validate the empirical performance of our algorithm through experiments on a single A100 GPU
(80GB). Our implementation includes two primary CUDA kernels: one for quantizing embedding
vectors using bfloat16, FP16, and FP32, and another for computing inner products between an
arbitrary vector and all quantized vectors in the cache. The algorithm’s wrapper is implemented in
PyTorch for ease of integration, with a future CUDA implementation planned for further acceleration.
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Methods Bits Datasets from LongBench Bai et al. (2023)

NarrativeQA Qasper MultiQA-en MultifQA-zh HotpotQA 2WikiMultiQA

FP16 (baseline) 16 20.79 29.42 42.83 34.33 33.05 24.14
KIVI Liu et al. (2024b) 3 20.96 29.01 40.93 34.75 32.79 23.01
QJL (ours) 3 20.67 28.48 40.94 29.71 35.62 23.60
KVQuant Hooper et al. (2024) 4.3 20.14 28.77 44.22 34.44 34.06 23.05
QJL (ours) 4.3 20.72 30.02 41.18 31.73 34.22 22.63
KIVI Liu et al. (2024b) 5 20.49 28.90 43.24 34.66 33.07 24.86
QJL (ours) 5 21.09 29.11 41.58 31.86 35.65 24.61

Table 1: Evaluation of various quantization methods and different bits per floating-point number
(FPN) on long-context question-answering datasets from LongBench (F1 scores).

As shown in Theorem 3.4, attention score distortion is proportional to embedding norms. To mitigate
this, we identify and isolate outlier channels, which significantly contribute to key embedding norms.
These outliers are quantized separately using an independent QJL instance with a lower compression
rate, allocating more bits for accurate representation.

4.1 END-TO-END TEXT GENERATION

We benchmark our method on LongBench Bai et al. (2023), a suite for evaluating long-context
tasks. The base model is longchat-7b-v1.5-32k Li et al. (2023), a fine-tuned Llama-2 with
a 16,384-token context length. We compare the following quantization methods: KIVI Liu et al.
(2024b), KVQuant Yue et al. (2024), and our QJL-based approach. Each floating-point number (FPN)
in the base model uses 16 bits. We configure KIVI and QJL to match a 3-bit per FPN setup, while
KVQuant defaults to 4.3 bits per FPN.

To assess the quality of these quantized models, we evaluate them on six QA datasets from LongBench,
setting a maximum sequence length of 31,500. The evaluation follows the methodology of the original
repository. Table 1 summarizes the results, showing that QJL achieves the highest F1 scores among
quantization methods for NarrativeQA, Qasper, and 2WikiMultiQA.

Models Methods Bits Datasets from LM-eval Gao et al. (2023)

Lambada-OpenAI HellaSwag PIQA MathQA MMLU

Llama-2-7B
FP16 (baseline) 16 73.90 57.18 78.07 28.11 41.85
KIVI Liu et al. (2024b) 3 73.88 57.13 78.07 28.11 41.81
QJL (ours) 3 73.88 57.14 78.07 28.17 41.78

Llama-3-8B BF16 (baseline) 16 75.59 60.17 79.65 40.64 62.09
QJL (ours) 3 75.61 60.13 79.87 40.60 62.12

Table 2: Evaluation (accuracy) of various quantization methods on regular length datasets from
LM-eval Gao et al. (2023). These comparisons are not typically based on long-context length;
however, even in these cases, our QJL with 3 bits per FPN performs comparably to the baseline with
16 bits per FPN.

Experiments with Llama3 and Llama2 models. We further evaluate our method on
Lambada-OpenAI, HellaSwag, PIQA, MathQA, and MMLU, which have shorter sequence
lengths. Benchmarking is conducted using the LM-eval framework Gao et al. (2023) to ensure
thorough evaluation across various metrics. We assess quantization methods based on accuracy on
Llama-2-7B Touvron et al. (2023) and Llama-3-8B Llama3 (2024). Notably, KIVI supports only
half-precision floating point, preventing its use on Llama-3, whereas our method is compatible with
any precision format.

QJL achieves an 81% memory reduction by using 3 bits per FPN compared to the 16-bit baseline,
without significant performance loss. As shown in Table 2, QJL on Llama-3-8B achieves comparable
or slightly superior accuracy to the baseline across all datasets.
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A SUPPORTING PROOFS

Lemma 3.2 (Unbiasedness of ProdQJL). For any q,k ∈ Rd, the expectation of ProdQJL(q,k) in
Equation (3) satisfies:

E
S
[ProdQJL(q,k)] = ⟨q,k⟩,

where the expectation is over the randomness of S in Definition 3.1.

Proof. Let s1, s2, . . . sm denote the rows of the JL matrix S. Additionally, let us decompose q to its
projection onto the vector k and its orthogonal component, i.e., q⊥k := q − ⟨q,k⟩

∥k∥2
2
· k. We can write,

ProdQJL(q,k) =

√
π/2

m

∑
i∈[m]

∥k∥2 · s⊤i q · sign(s⊤i k)

=

√
π/2

m

∑
i∈[m]

⟨q,k⟩
∥k∥2

· s⊤i k · sign(s⊤i k) + ∥k∥2 · s⊤i q⊥k · sign(s⊤i k)

=

√
π/2

m

∑
i∈[m]

⟨q,k⟩
∥k∥2

· |s⊤i k|+ ∥k∥2 · s⊤i q⊥k · sign(s⊤i k).

Since si’s have identical distributions, we have:

E
S
[ProdQJL(q,k)] =

√
π/2

( ⟨q,k⟩
∥k∥2

· E
[
|s⊤1 k|

]
+ ∥k∥2 · E

[
s⊤1 q

⊥k · sign(s⊤1 k)
])

.

To calculate the above expectation let us define variables x := s⊤1 k and y := s⊤1 q
⊥k. Note that x

and y are both zero-mean Gaussian random variables and because ⟨q⊥k,k⟩ = 0. By the following
Fact A.1, x and y are independent.
Fact A.1. If x ∈ Rd is a vector of i.i.d. zero-mean normal entries with variance σ2 and A ∈ Rm×d

is a matrix, then A · x is a normal random variable with mean zero and covariance matrix σ2 ·AA⊤.

This implies that the second expectation term above is zero because E
[
s⊤1 q

⊥k · sign(s⊤1 k)
]
=

E[y · sign(x)] = E[y] · E[sign(x)] = 0. Furthermore, x is a Gaussian random variable with mean
zero and variance ∥k∥22. Therefore, we have

E
S
[ProdQJL(q,k)] =

√
π/2 · ⟨q,k⟩∥k∥2

· E
x
[|x|] = ⟨q,k⟩.

where the equality comes from the following Fact A.2:
Fact A.2 (Moments of Normal Random Variable). If x is a normal random variable with zero mean
and variance σ2, then for any integer ℓ, the ℓ-th moment of x is E

[
|x|ℓ

]
= σℓ ·2ℓ/2Γ((ℓ+1)/2)/

√
π.

This completes the proof of Lemma 3.2.

Lemma 3.3 (Distortion of ProdQJL). For any q,k ∈ Rd, if ProdQJL(q,k) is defined as in Equation (3)
for m ≥ 4

3 · 1+ε
ε2 log 2

δ , then:

Pr
S
[|ProdQJL(q,k)− ⟨q,k⟩| > ε∥q∥2∥k∥2] ≤ δ.
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Proof. First note that, letting s1, s2, . . . sm denote the rows of the JL transform matrix S, we have:

ProdQJL(q,k) =
1

m

∑
i∈[m]

√
π/2 · ∥k∥2 · s⊤i q · sign(s⊤i k).

Since si’s are i.i.d. the above is indeed the average of m i.i.d. estimators defined as zi :=
√
π/2 ·

∥k∥2 · s⊤i q · sign(s⊤i k) for i ∈ [m]. Let us now calculate the ℓ-th moment of zi using Fact A.2:

E
[
|zi|ℓ

]
=

(√
π/2 · ∥k∥2

)ℓ

· E
[
|s⊤i q|ℓ

]
=

(√
π · ∥k∥2∥q∥2

)ℓ · Γ((ℓ+ 1)/2)√
π

, (4)

where the second equality above follows because s⊤i q is a Gaussian random variable with mean zero
and variance ∥q∥22 along with Fact A.2. Now we can prove the result by invoking the unbiasedness of
the estimator, Lemma 3.2, along with an appropriate version of Bernstein inequality and using the
moment bounds in Equation (4). More specifically, our moment calculation in Equation (4) implies:

E
[
|zi|ℓ

]
= E

[
|zi|2

]
·
(√

π∥k∥2∥q∥2
)ℓ−2 · Γ((ℓ+ 1)/2)

Γ(3/2)
≤ E

[
|zi|2

]
·
(
2

3
· ∥k∥2∥q∥2

)ℓ−2

· ℓ!
2

Therefore, by invoking a proper version of the Bernstein inequality, for instance Corollary 2.11 from
Boucheron et al. (2003), we have the following:

Pr
S
[|ProdQJL(q,k)− ⟨q,k⟩| > t] ≤ 2 exp

(
3

4
· mt2

∥k∥22∥q∥22 + ∥k∥2∥q∥2 · t

)
.

If we set t = ε∥q∥2∥k∥2 the above simplifies to:

Pr
S
[|ProdQJL(q,k)− ⟨q,k⟩| > ε∥q∥2∥k∥2] ≤ 2 exp

(
3

4
· mε2

1 + ε

)
.

Therefore if m ≥ 4
3 · 1+ε

ε2 log 2
δ the error bound follows. This completes the proof of Lemma 3.3.

Theorem 3.4 (Distortion bound on QJL key cache quantizer). For any sequence of key tokens
k1, . . .kn ∈ Rd and any integer m, Algorithm 1 stores binary vectors k̃1, . . . k̃n ∈ {−1,+1}m
along with scalar values ν1, . . . νn in the cache. If the key embeddings have bounded norm
maxi∈[n] ∥ki∥2 ≤ r and m ≥ 2r2ε−2 log n, then for any query embedding qn ∈ Rd with bounded
norm ∥qn∥2 ≤ r the output of the procedure ESTIMATESCORES(qn) satisfies the following with
probability 1− 1

poly(n) sinultaneously for all i ∈ [n]:∣∣∣S̃core(i)− Score(i)
∣∣∣ ≤ 3ε · Score(i),

where Score is the vector of attention scores defined in Equation (1).

Proof. The proof is by invoking Lemma 3.3 and a union bound. For every j ∈ [n] the estimator
q̃K(j) computed in line 6 of Algorithm 1 is in fact equal to the inner product estimator q̃K(j) =
ProdQJL(qn,kj) as defined in Equation (3). Thus by Lemma 3.3 we have the following with
probability at least 1− 1

n3/(2+2ε) :∣∣∣q̃K(j)− ⟨qn,kj⟩
∣∣∣ ≤ ε

r2
· ∥qn∥2∥kj∥2 ≤ ε,

where the second inequality follows from the preconditions of the theorem regarding the boundedness
of the norms of the query and key embeddings. By union bound, the above inequality holds
simultaneously for all j ∈ [n] with high probability in n. Thus after applying the softmax function in
line 7 of Algorithm 1 we get that with high probability in n:

S̃core(i) ∈ e±2ε · Score(i) ∈ (1± 3ε) · Score(i).
This completes the proof of Theorem 3.4.
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Figure 1: The magnitude of key cache entries for different layers of the Llama-2 model, based on
an example prompt, reveals notable patterns. The coordinates of embeddings (channels) are sorted
by their average magnitude over tokens. In the initial layers, no significant outlier patterns are
observed. However, in the deeper layers, a few channels (approximately four) exhibit visibly larger
magnitudes, indicating the presence of significant outliers. This observation highlights the importance
of addressing these outliers to improve quantization accuracy and reduce distortion in the key cache.

B PRACTICAL CONSIDERATION

Outliers. As reported in recent works e.g., KIVI Liu et al. (2024b), KVQuant Hooper et al.
(2024), key embeddings typically contain outliers exhibiting a distinct pattern. Specifically, certain
coordinates of key embeddings display relatively large magnitudes. To further investigate these
observations, we analyze the distribution of the magnitudes of key embedding coordinates across
different layers.

Firstly, we observe that there are no significant outliers in the initial attention layers. However, in
the deeper layers, certain fixed coordinates of key embeddings consistently exhibit large magnitudes,
and this pattern persists within these channels across all tokens. The distribution of outliers across
different layers for the Llama-2 model is plotted in Figure 1. It is evident that in the initial layers,
outliers are rare, but as we approach the final layers, their frequency and impact increase significantly.
Secondly, the outliers show a persistent pattern in specific fixed coordinates of the key embeddings.
This observation aligns with previous findings that certain fixed embedding coordinates exhibit larger
outliers Dettmers et al. (2022); Lin et al. (2023); Liu et al. (2024b); Hooper et al. (2024).

Orthogonalized JL transform. We observed that orthogonalizing the rows of the JL matrix S in
Definition 3.1 almost always improves the performance of our QJL quantizer. This finding aligns
with previous work on various applications of the JL transform, such as random Fourier features
Yu et al. (2016) and locality sensitive hashing Ji et al. (2012). Consequently, in our implementation
and all experiments, we first generate a random JL matrix S with i.i.d. Gaussian entries and then
orthogonalize its rows using QR decomposition. We then use this orthogonalized matrix in our QJL
quantizer, as described in Algorithm 1.

C ABLATION STUDY

Here, we perform an ablation study on the relative distortion of the attention scores in one attention
layer after applying QJL on key embeddings. The distortion for various layers of the Llama2-7B
model is plotted against the number of bits per token and embedding channel m/d, where d = 128 is
the embedding dimension, as shown in Figure 2. Our theoretical result from Theorem 3.6 suggests
that m ∼ 1/ε2 which aligns with our observations in Figure 2. An interesting observation is that
the first layer has a much higher distortion compared to all other layers, suggesting that the first
layer is more challenging to quantize and requires a higher number of bits per FPN. This finding is
noteworthy and indicates the need for tailored quantization strategies for different layers. This is
consistent with the outlier distribution depicted in Figure 1, where the first layer appears distinct from
the others.
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Figure 2: The relative distortion on the attention scores ε versus the number of bits of QJL per token
and embedding channels, i.e., m/d, for layers at different depths of Llama 2 model.
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(a) Prompt encoding (Llama2)

2k 8k 32k 64k
Sequence Length

0

2

4

6
D

ec
od

e
(m

s)

Llama-2-7B

FP16
QJL (ours)
KVQuant
KIVI

(b) Token generation (Llama2)

1k 2k 8k 32k 64k
Sequence Length

0.5

1.0

1.5

2.0

To
ta

lG
en

er
at

io
n

(m
s)

Llama-3-8B

BF16
QJL (ours)

(c) Encode and generate (Llama3)

Figure 3: Wall-clock time (ms) to encode a prompt and quantize the KV cache (left), generate 128
tokens for llama2 model (middle), and generate 64 tokens for llama3 model (right) using different
quantization methods in a single attention layer model. The input sequence length varies from 1k
to 64k. Both KIVI and QJL (ours) with 3 bits per FPN show faster decoding time than the baseline.
However, KVQuant is significantly slower during both quantizing and decoding phases. QJL is the
only method that can quantize Llama3, as our kernels support grouped query attention and BF16
data type. We observe the same speed for Llama3 as the exact method for generation. Note that our
memory usage is at least 5-fold less than the exact method and can support all data types.

D EXTENDED EXPERIMENTS

Runtime and Peak-Memory Evaluations. To evaluate the runtime and memory consumption of
QJL we additionally report runtimes of: (1) prompt encoding, (2) KV cache quantization, and (3)
decoding (token generation) in a single attention layer as well as the (4) peak memory consumption
during prompt encoding and decoding. Figure 3 shows the wall-clock time to encode a prompt and
quantize the KV cache, generate 128 tokens for Llama2 model, and generate 64 tokens for Llama3
model using different quantization methods in a single attention layer of these models. Note that
QJL is the only method that can quantize Llama3, as our kernels support grouped query attention
and BF16 data type. we observe the same speed for Llama3 as the exact method for generation. The
input sequence lengths vary between 1k to 128k. As shown in Figure 3, KVQuant runs slower than
other methods during both prompt encoding and decoding phases, as it requires a huge amount of
preprocessing which leads to slow runtime. On the other hand, both KIVI and our QJL with 3 bits per
FPN show marginal runtime overhead compared to the exact baseline during prompting but reduce
KV cache memory usage by at least a factor of 5.

Next, we compare the peak memory consumption of various KV cache quantization methods applied
to the Llama2 model for encoding prompts of different lengths and generating 128 new tokens, as
shown in Figure 4. Both QJL and KIVI quantize the KV cache to 3 or 5 bits per FPN. However,
peak memory consumption also includes the memory required to store model parameters. Even
considering total memory consumption, we observe an over two-fold reduction in peak memory
usage. We did not include KVQuant in the peak memory study as this method was extremely slow
and running it repeatedly for different sequence lengths takes a very long time.
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Figure 4: Peak memory usage for encoding the prompt and generating 128 tokens with Llama2,
comparing various KV cache quantization methods to the exact model without quantization.
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