WEAVER: Shrinking the Generation-Verification Gap
with Weak Verifiers

Jon Saad-Falcon'* E. Kelly Buchanan'* Mayee F. Chen'*
Tzu-Heng Huang® Brendan McLaughlin' Tanvir Bhathal!
Shang Zhu? Ben Athiwaratkun? Frederic Sala®

Scott Linderman' Azalia Mirhoseini' Christopher Ré!

!Stanford University ~ 2Together AI ~ 3University of Wisconsin-Madison
*Equal contribution
{jonsaadfalcon, kelly.buchanan, mfchen}@stanford.edu

Abstract

Verifiers can improve language model (LM) capabilities by providing feedback or se-
lecting the best response from a pool of generated candidates. Currently, high-quality
verifiers are either unscalable (e.g., humans) or limited in utility (e.g., tools like Lean
for formal proofs). While LM judges and reward models have become broadly useful
as general-purpose verifiers, a significant performance gap remains between them
and oracle verifiers. To help close this gap, we introduce WEAVER, a framework for
designing a strong verifier by combining multiple weak, imperfect verifiers. First
we find that weighted ensembles of verifiers, which typically require learning from
labeled data, significantly outperform unweighted combinations due to differences
in the verifiers. To reduce the dependency on labeled data, WEAVER leverages weak
supervision to estimate each verifier’s accuracy and combines their outputs into a
unified score that better reflects true response quality. However, directly applying
weak supervision algorithms poses several challenges, including inconsistent ver-
ifier output formats and handling low-quality verifiers. WEAVER addresses these
challenges by using dataset statistics to normalize outputs and filter specific verifiers.
We study the effectiveness of WEAVER in repeated sampling settings, where a model
generates multiple candidate responses at test time and a verifier is used to select the
correct one. Our evaluations demonstrate that WEAVER significantly improves the
pass@1 performance across several reasoning and math tasks, achieving 03-mini-
level accuracy with Llama 3.3 70B Instruct (a much cheaper non-reasoning model)
as the generator, and an ensemble of smaller judge and reward models as the verifiers
(86.2% average). This gain mirrors the jump achieved between GPT-40 and 03-mini
(69.0% vs. 86.7%), which required extensive finetuning and post-training interven-
tions. To make WEAVER more efficient, we train a compact 400M cross-encoder
using WEAVER’s combined output scores. This distilled model retains 98.7% of
WEAVER’s full accuracy while reducing verification compute by up to 99.97%.

1 Introduction

A core challenge in deploying language models (LMs) is verification: determining the quality or
correctness of a model’s response. This problem arises across various components of the LM pipeline,

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

including dataset curation, model alignment, and informed inference-time decision-making. A verifier
is a function that scores responses. When combined with repeated sampling—generating multiple
candidate responses from a LM—a strong verifier can be used to select a correct candidate response,
significantly enhancing model capability on tasks such as math, code, and reasoning [5, 55, 70].
However, without a perfect verifier, a generation-verification gap emerges [72]: a LM can generate
a correct response, but we fail to identify it.

In some settings, we have access to oracle verifiers that can perfectly identify correct responses. A
prominent example is Lean, a formal theorem prover that can be used for problems such MiniF2F [94].
However, this is often a limited setup, as not all mathematical proofs can be processed by Lean. In
contrast, more generally applicable verifiers such as LMs prompted as judges [13] and reward models
[39, 45, 68] can be broadly applied to tasks like scientific reasoning, coding, and instruction-following
[32, 40, 62]. However, these weak verifiers produce noisy, inconsistent scores, often exhibit poor
calibration, and suffer from high false positive rates [73]. We ask: to what extent can we leverage
weak verifiers to improve accuracy in the repeated sampling regime?

We explore scaling verification, specifically how to combine multiple weak verifiers to improve
response selection for repeated sampling. As new pre-trained models become available, the pool
of weak verifiers continues to expand and offer diverse, complementary sources of signal that could
improve response selection if they can be aggregated effectively. Recent work has explored scaling
verification through techniques such as self-verification or averaging LM judge scores [9, 41, 93].
However, it remains unclear how to effectively combine multiple weak verifiers. We observe three
key challenges towards ensembling weak verifiers:

1. Naively aggregating weak verifiers is insufficient for reliable verification. Weak verifiers such
as LM-based judges or reward models produce noisy, biased, and poorly calibrated scores, leading
to inconsistent performance. [13, 39, 73]. While using a naive unweighted average of verifier scores
is straightforward, it implicitly assumes uniform verifier quality, causing low-quality verifiers
to dominate and degrade the overall accuracy [21, 76, 88]. Moreover, while previous work has
hypothesized that more sophisticated weighted ensembles should perform better, this claim has
not been studied [41].

2. Effective ensembling with limited labeled data is challenging. More sophisticated ensembling
techniques typically learn verifier weights from labeled data, but such data is expensive and difficult
to obtain. Weak Supervision (WS), a family of statistical techniques developed for data labeling,
offers a potential solution through algorithms that aggregate multiple weak signals—such as crowd-
worker annotations and expert-defined heuristics—while only requiring a small amount of labeled
data[23,57,58]. Intraditional WS, practitioners can design and shape each weak signal to ensure suf-
ficient quality (i.e., iteratively tweaking program-based heuristics), and guarantees of WS hinge on a
baseline level of quality. Our weak signals, however, are fixed pre-trained language model verifiers,
which have wildly varying accuracy—especially when applied to out-of-distribution tasks—and
can emit incompatible outputs (logits, binary scores, Likert scores) [39] that we cannot easily tweak.
Due to these conditions, WS algorithms may not perform well when directly applied to verification.

3. Verification is expensive to deploy at inference. Verification can dominate inference-time costs
[45, 68], since each verifier must process both the problem and its candidate response(s) [42], often
evaluating intermediate steps [42] and multiple solution paths [70]. In fact, achieving modest gains
over unverified generation can require 10X to 128 x the inference compute per query [9, 41, 69, 93].

In this work, we introduce WEAVER, a framework for aggregating weak verifiers without supervised
finetuning on ground truth labels (Figure 1). First, we demonstrate that if we have access to a large
corpus of labeled training data (e.g., 50,000 query-response pairs), we can learn weighted ensembles
that can outperform naive averaging by up to 11.2% points. This is because of wide variability in verifier
accuracy. However, in many real-world scenarios, we do not have access to such quantities of labeled
data. Second, to reduce the dependency on labeled data, we adapt Weak Supervision to the verification
setting by addressing challenges around inconsistent outputs and low-accuracy verifiers. WEAVER
filters out uninformative verifiers, normalizes verifier scores, and builds a latent variable model over
these scores and the unknown true labels to estimate the verifier accuracies to be used as weights [26, 58].

Empirically, WEAVER improves over unweighted averaging of verifier scores by 17.1% and repeated
sampling with majority voting by 13.5% (Table 1). WEAVER allows us to improve over Pass@1 by
17.9% for 8B models and 14.5% for 70B models across reasoning and mathematics tasks (Tables 1
and 18). This mirrors the performance jump from GPT-4o to 03-mini (73.9% vs. 88.2%)—but without

[Instruction] + [LM Generation] GPQA Diamond GPQA Diamond*

90 L L5
= | g
™ 70 99.97%
S 80 >
0.0 Weak ; 03-mini P) o5 Compute Saved
Judges 0.5 Supérvnsuon £ 2 4 5
0.7 Estimated o Y 60 98.2% of
Reward 2 OPtlm_aL A 60 < 55 Accuracy Gains
Models 0. v;lsghlfz_mg g s . Preserved
of Verifiers S
9 50 g % [
\]/ v & et M el % 45)
First S)l
LM Generation Verdict 4055 5T 57 53 34 35 36 57 za,szgmglg Y 40 0 100 102 104
Number of Repeated Generations Verification Computer Budget (ExaFlops)
--- Pass@K (Oracle) Majority Voting Weaver: Distilled (0.48) @ MAV (70.0B)
Weaver Methodology —— Weaver —— Multi-Agent Verification @ Weaver (70.0B) Self-Verification (70.0B)

Naive Ensemble Self-Verification Majority Voting (0.0B) Pareto Region

Figure 1: WEAVER Framework: We propose WEAVER, a framework combining multiple weak
verifiers to effectively scale repeated sampling without parameter finetuning on ground truth labels
(left). WEAVER significantly outperforms majority voting and shrinks a model’s generation-verification
gap by 14.5%, on average, for GPQA Diamond and other datasets (Table 1) (middle). By distilling
WEAVER from an ensemble of 70B verifiers to a single 400M cross-encoder, we can preserve 98.2% of
the accuracy gains of WEAVER while reducing inference compute cost by 99.97% (right).

parameter tuning or post-training steps. We also study how WEAVER scales along different axes of
test-time compute: generation, verifiers, model size, and inference budget (Section 5.2). We find that
even as we increase the number of generations, many standard verification baselines (e.g. majority
voting) quickly plateau (Figure 3). Naive ensembling saturates more slowly, but its gains are limited
by high compute costs, and sensitivity to the choice and number of verifiers. We show that WEAVER
outperforms alternative verification approaches by 13.5% while improving over Pass@1 by 18.3%
as we scale from 2! to 210 generations (Figure 3).

Finally, as an extension of WEAVER, we train a 400M parameter cross-encoder verifier using
WEAVER’s selected responses to mitigate the compute costs of calling multiple weak verifiers on each
response. We demonstrate that using distilled WEAVER cross-encoder as a verifier retains 98.7% of
the accuracy gains from the learned verifier ensemble while reducing compute costs by three orders
of magnitude — saving 99.97% inference FLOPS while still capturing an effective verification strategy
(Section 6). Overall, our findings highlight that more reliable, scalable verification is possible even
in the absence of ground-truth labels—paving the way for improved data filtering, model alignment,
and inference-time decision-making.

2 Related Work

LM Judges and Reward Models: Both LM judges and reward models are promising approaches
for evaluating language model outputs, but their high false positive rates limit their reliability [73].
LM judges can evaluate outputs without additional training [24, 47, 80], using approaches from simple
prompting to chain-of-thought reasoning [47] and specialized fine-tuning [64, 75]. However, they face
poor generalization across contexts [22, 59, 64] and systematic biases in position and self-preference
[8, 37, 54, 96]. Similarly, while reward models have become central to model alignment [4, 14, 43],
they struggle with noisy training signals from low inter-annotator agreement [3, 19, 53, 78] and
learned biases favoring attributes like response length [18, 38, 67]. Recent work has improved
individual verifier reliability through better data collection and chain-of-thought reasoning [83, 92],
yet fundamental challenges persist [7, 20]. WEAVER advances beyond these approaches by combining
multiple verification signals with adaptive weighting, thus leveraging the complementary strengths
of weak verifiers while suppressing noise and reducing false positives.

Weak Supervision: WEAVER builds upon statistical techniques from weak supervision, which
emerged as a framework for programmatically generating training labels by aggregating multiple
weak sources [56, 58]. While initial work focused on classification tasks [23, 57], recent advances
have expanded to handle multi-task settings [66] and structured prediction [77]. WEAVER applies this
framework to answer verification, treating binary imperfect verification signals (e.g. reward models
and LM judges) as weak supervision voters that classify candidate solutions as correct or incorrect.

This novel application combines predictions by converting these diverse signals into binary verdicts,
enabling WEAVER to learn better verification strategies from weak but complementary verifiers.

Verification as another compute axis and aggregation: Recent work has explored verification as
anew scaling axis [9, 41, 46, 69, 73, 93]. However this work limits their analysis to one verifier, and
instead scale how many times to verify [93]. Approaches that do leverage multiple verifiers often rely
on substantial amounts of labeled data for aggregation or creating specialized verifiers [36, 41]. With
WEAVER, we show that it is possible to combine verifiers without ground truth labels, even when they
are not specialized. Other work has focused on combining multiple verifiers for post-training the base
model using RLHF [21, 81, 84]. We note that this is a direction of future work (Section 7).

3 Preliminaries

First, we define the problem of how to select among repeated samples. We then define verifiers and
key evaluation metrics, including the generation-verification gap.

Problem Definition Let g € Q be a input text query, and let » € R ~ M(q) be a corresponding
response sampled from language model M with non-zero temperature. For a given query-response
pair (q,r), we define y: @ x R — {0,1} such that y(q,r) is the correctness label of r for . We are given
an unlabeled test dataset D' = {(q;,73) }j—,, where 7; = {r;; } -, consists of K repeatedly sampled
responses from M for each ¢;. We do not have access to true labels y;; :==y(g;,r;;) for any 7,7.

For each (g;,r;) € D', our goal is to select a correct response j* € [K] that satisfies y;;« = 1.
We can broadly describe this selection rule using a scoring function f : Q@ x R — R, namely
J*i=argmax; f*(¢;,ri;)-

Using verifiers A verifier, either a reward model or an LM prompted as a judge, can be expressed
as a scoring function on query-response pairs v : @ x R — R. For reward models, the verifier score
is continuous, while for LM judges, the verifier score is typically discrete (for our setup, we use [0,1]
and {0,1}, respectively). We assume that we have access to multiple verifiers V =wvy,...,v,,,. We apply
each of the m verifiers to each (g;,r;;), for a total of nm K scores on D' with s 1, := vy (gi,ri;). We
aim to use V to construct a good verification strategy f.

Evaluation metrics The Pass @K metric is the probability that there exists a correct response among
K generated responses: Pass@K = 13" 1(3j € [K]:y;; =1). This metric is independent of the

verification strategy, and depends on the choice of M, K, and the task dataset. The success rate of

a verification strategy f is %Z?:lyiﬁ., wherej' = argmax¢|x] f (gi,Ti;). Success rate is dependent

on the verification strategy and bounded by Pass @K, and equality is obtained with oracle verification
(i.e., f = f* can always select a correct j as long as it exists).

We define the generation-verification gap as Pass@K - Success Rate. A large positive gap indicates
that although correct answers are generated, the verification strategy fails to select them consistently.
We aim to close this gap and will use it to evaluate verification strategies.

4 WEAVER: A Framework for Weak Verifier Aggregation

In Section 4.1, we demonstrate that naively averaging multiple verifier scores to select responses
significantly underperforms weighted ensembles; however, common methods for computing weights
require labeled data [65, 89]. We introduce WEAVER (Section 4.2), a method for weighted aggregation
of verifier scores with minimal data that draws inspiration from Weak Supervision.

4.1 How to aggregate multiple verifiers: weighted vs unweighted ensembles

A straightforward approach for using multiple verifiers is a naive ensemble—selecting the response
with the highest average verifier score: f (qi,rij) = % ZL=15ij . This approach [41] does not consider
the relative accuracy of verifiers. However, we observed that there is significant variation in the success
rates of individual verifiers—spanning a range of up to 37.5%—suggesting that naive ensembles could

be suboptimal (Table 14).

An alternative is to use a weighted ensemble. One approach is to use a labeled dataset to identify and use
the top-performing verifier, effectively assigning a weight of 0 to discarded verifiers. Other strategies

include using Logistic Regression or a Naive Bayes classifier, where the scoring function f(g;,7;;)
is the probability Pr(y;; =1|s;;1,...,5i;m), Which are fit using labeled data and can be either modeled
as a logistic function or factorized using Bayes’ rule and independence assumptions, respectively.

In Figure 2, we compare a naive ensemble with weighted ensembles for several tasks, using Llama
3.3 70B Instruct to generate responses and using a collection of 33 7B-72B reward models and LM
judges as verifiers. We see that using a weighted ensemble can achieve up to 11.2 points higher success
rate than the naive ensemble. However, all weighted ensembles shown are “oracle” methods: they
are computed using y;; for all i € [n],j € [K], although in practice these labels are unknown for D'**.
In fact, when we instead use 0.01n labeled samples, accuracy drops by 20.1% on average (Table 15).
This raises the question of how to best construct weighted ensembles with limited labeled data.

N
o

Oracle Unweighted
Ensembles

Top-1 Verifiers
Top-5 Verifiers

I Top-10 Verifiers
Supervised Weighted
mil | B Ensembles
e B Naive Bayes
Bl Logistic Regression

=
w

=
o

w

Improvement over
Naive Ensemble (%)
o

MATH500 GPQA Diamond MMLU MMLU Pro

Figure 2: Weighted Verifier Ensembles Outperform Naive Verifier Ensemble: By using oracle data
to keep the best verifiers (i.e. top- K verifier ensembles) or learn aggregation weights for verifiers (i.e.
supervised weighted ensembles), we can improve beyond naive combinations of the verifiers available
by 3.6% and 7.8%, on average, respectively.

4.2 WEAVER: weighted ensembling of verifier scores with minimal labeled data

We first describe the WS method we use in WEAVER to construct a weighted ensemble over binary
verifier scores. Because verifiers often produce scores in inconsistent formats and exhibit low
accuracies—challenges not typically encountered in traditional WS—we introduce a binarization
and verifier discarding strategy in Appendix B.2 to discard low-quality verifiers and ensure that only
sufficiently reliable binary scores are used as input to the WS method.

4.2.1 Weak Supervision Algorithm

s

In Weak Supervision, the input is an unlabeled dataset, where each entry has multiple binary “votes’
on the true label. Applied to our setting, each entry is a query-response pair, forming a dataset of size
nK, and verifier scores s; 3, are binarized into votes ;1 € {0,1} for all 4,5,k. Our goal is to predict
the probability that a response is correct Pr(y;; =1|s;;1,...,5:jm) forall ,j.

WS model We can view all y;; as samples of an unknown random variable Y and each 5;;, across
1,7 as samples of a random variable S;. WS then defines a latent variable graphical model over the
random binary vector {Y,S1,...,5,, }, where Y is latent while S1,...S,,, are observable. While existing
WS methods assume various models, one common assumption is that S; L .S;|Y" for each S;,S;. That
is, S; and S; are conditionally independent given Y'; intuitively, each verifier captures independent
aspects of the correctness of the response. Under this assumption, we can write the posterior as the
following, for some given binary verifier scores {S1,...,5, }:

- Pr(S1=351,.,9m =5m)

The weighted ensemble score for each query-response pair can be written in terms of: 1)
Pr(S) =51,...,5m = 5), which we compute via the law of total probability as 3 ¢, 1, Pr(Y =
Y1, Pr(S; = 5|Y =y’) using the conditional independence assumption; 2) Pr(Y = 1), which
can be estimated from D"; and 3) Pr(S; = 5,|Y = 1), or equivalently Pr(S; = 1|Y = 1), which is

9 €6

the verifier’s “accuracy parameter”—this cannot be computed directly since we do not have access
to Y. Next, we discuss how to estimate accuracy parameters, Pr(S; =1|Y =1), without labels.

PI‘(Y=1|81 251,...,szgm)

ey

WS parameter estimation We outline a parameter estimation technique first introduced in [56].
Due to the assumption that S; L .S;|Y, the following equation holds:

=Pr(S;|Y =1)Pr(S;[Y = 1)Pr(Y =1)+Pr(S;[Y =0)Pr(S;[Y =0)Pr(Y =0) (2)

Note that Pr(.S;,5;) can be computed from the known verifier scores, and Pr(Y = 1) is estimated
from D", Then, equation 2 is a quadratic equation over the accuracy parameters. We can write this
equation for every pair S;,5;, and for every pair of values {0,1} they can take. Furthermore, we can
write another type of equation over the accuracy parameters:

Pr(S;=1)=Pr(S;=1|Y =1)Pr(Y =1)+Pr(8; =1|Y =0)Pr(Y =0) 3)

This is a consistency property that holds regardless of the conditional independence assumption, and
we can write this equation for each of the m S;’s. Because we know that the accuracy parameters
should follow equations 2 and 3, we can construct an objective function that aims to minimize the
difference between the left and right hand sides of these equations. We write this efficiently in
matrix notation. Let P € R?*?2 be a diagonal matrix with diagonal [Pr(Y =0) Pr(Y = 1)]. Define
€ R?™X2 (o be the matrix of accuracy parameters, and define O € R?™*2™ (o be a matrix over the
joint probabilities of pairs of \S;,5;; more formally:

Pr(S; =0|Y =0) Pr(S; =0|Y =1 _[Pr(si=0 0 .
H2i—1:2i,1:2 = [prﬁsi=1}y=0§ prEsi:1}y:1ﬂ ,Osi12i2i-12i=| 5" pr(sizl)} Vi€ [m]
Pr(S; =0,5; =0) Pr(S;=0,S,=1 ..
O2i—1:2i,2j-1:2j = [Prgsizl,sj R e :13} Vi j € [m] 4

Let off-diag denote the elements of a matrix that lie outside its 2 x 2 block diagonal. Then, to estimate
1 that satisfies both equations 2 and 3, we have the following objective:

S 2 . 2
minimize,, HOOff_diag — (uPuT)Off_diag || + Hdlag(O) —uP1? || 5)
We optimize 5 using gradient descent to estimate the verifier accuracy parameters. These estimates

are then used in Eq. (1) to select the response with the highest estimated posterior. We provide a full
derivation in Sec. B.1.

5 Results

In section 5.1, we provide empirical results on WEAVER’s performance compared to other approaches
for selecting responses in repeated sampling. In section 5.2, we study how WEAVER’s performance
scales along several axes: the number of responses, model size, verifier counts, and inference compute.

Datasets, Verifiers, and Baselines Our reward models range in size from 8B to 72B, are all open-
source, and are obtained from RewardBench [39], a popular evaluation tool for reward models. We
prompt open-source language models from Chatbot Arena [13] to serve as judges. Unless specified, we
use Llama 3.3 70B Instruct to generate responses and use all 33 reward models and judges. We evaluate
on MATH500, GPQA Diamond, MMLU College, and MMLU Pro. See Sec. C.1 for more details.

We compare WEAVER against verifier-free baselines as well as standard verification strategies. First
Sample, also known as Pass@1, only uses the first response and does not scale test-time compute
or verification. Majority Voting involves repeated sampling but not verification, picking the most
common final answer from the responses [5, 10, 70]. We compare against the highest scoring reward
model and a naive ensemble of the top-10 reward models on RewardBench. We also evaluate two
recently proposed methods that scale verification but do not use multiple verifier models or weighted
ensembles: Self-Verification [93] and Multi-Agent Verification [41]. Lastly, we report the oracle
Pass @K rate, which establishes an upper bound for the success rate of these verification strategies.

5.1 WEAVER Shrinks the Gap with Frontier LMs

In Table 1, we evaluate WEAVER along with baseline verification methods, the first sample performance
of frontier LMs, and the Pass@ 100 metric. We use L1aMA 3.3 70B Instruct to generate K = 100
responses per query. We find that WEAVER’s weighted ensembling of multiple verifiers allows us to
outperform majority vote by 14% and come within 5.7% of the Pass@ 100 oracle metric. Furthermore,
WEAVER rivals the performance of frontier reasoning models—coming within 0.5% of OpenAI’s
03-mini [52]—even though we use a non-reasoning model for generation.

Table 1: WEAVER Outperforms Baseline Verification Methods and Shrinks Gap with Frontier
LMs.

Datasets
MATH GPQA MMLU MMLU

Methodology Generations (K) 500 Diamond College Pro Average
First Sample 1 78.0% 42.9% 82.6% 699% 68.4%
. Majority Voting 100 83.0% 47.4% 84.1% T44% 12.2%
H Highest Scoring RM on RewardBench [39, 49] 100 782% 49.7% 86.0% 77.0% 72.7%
2 Naive Ensemble of Top-10 RMs on RewardBench [39] 100 75.4% 41.3% 88.1% 71.4% 69.1%
= Self-Verification [93] 100 781% 43.1% 82.0% 69.5% 66.9%
Multi-Agent Verification [41] 100 81.3% 47.8% 84.1% 72.6% 71.6%
WEAVER 100 93.4% 66.4% 949% 902% 86.2%
8 GPT-40 [51] 1 77.4% 35.9% 87.1% 754% 69.0%
4 E Claude 3.7 Sonnet [2] 1 692% 48.0% 86.1% 781% 70.4%
2 - Llama 4 Maverick [48] 1 87.6% 68.9% 91.1% 81.0% 82.2%
= 03-mini [52] 1 94.4% 74.0% 922% 86.0% 86.7%
Oracle Verification (Pass@ 100) 100 98.6% 81.0% 96.0% 92.0% 91.9%

5.2 WEAVER Improves Compute-Accuracy Trade-Off for Scaling

By proposing to combine multiple weak verifiers instead of one, we introduce yet another axis for
test-time scaling. In this section, we study how well scaling verification with WEAVER interacts with
common previously studied axes for verification, summarized in Table 2.

Table 2: Scaling Dimensions for Generation and Verification Models

Scaling Dimension Base Model Verifier Type Visuals
Sample Count: More Temperature-based Majority Vote, Weak Verifier, Figure 3
Generations sampling Top-K, WEAVER

Model Size: Larger Models Llama 8B — 70B RM-8B — RM-70B Table 3
Verifier Count: More Models Llama 8B/70B RMs and LM Judges Figure 4
Inference Compute: More Temp-based sampling Weak Verifiers + WEAVER Figure 5
FLOPs for Gen./Ver.

(1) Scaling Candidate Generations: we study the performance of verification methods as we increase
the number of repeated samples in Fig. 3. Based on prior work [4, 12], as the number of responses
increases, we are more likely to see a correct response (i.e. Pass@K increases), and hence more likely
to select a correct response given a good verification strategy. However, differences in verification
translate into different scaling rates. We evaluate the performance of WEAVER and baselines for
K = 2° to 20, comparing to 03-mini and Pass@K as well. Across all tasks, WEAVER yields the
most substantial gains when scaling the number of generations. WEAVER consistently narrows the
generation-verification gap with the oracle upper bound (Pass@XK) while alternative verification
strategies plateau after a few generations. The effect is particularly pronounced on difficult tasks like
GPQA. We detail the scaling trends observed in Fig. 3 in Sec. C.3.

(2) Scaling Model Sizes: In Table 3, we study how WEAVER applied on smaller models (both
verifiers and for generating responses) can allow us to match the performance of larger models,
enabling weak-to-strong verification. We consider an 8B setting—using LIaMA 3.1 8B to generate
responses along with 8B verifiers—and compare this to a 70B setting (LlaMA 3.3 70B Instruct,
8B-72B verifiers) as well as 03-mini. We see that WEAVER applied at the 8B scale comes within 2.2%
of the majority vote baseline at the 70B scale, and WEAVER at 70B comes within 0.5% of 03-mini,
demonstrating a weak-to-strong verification phenomenon.

(3) Scaling Verifier Count: Two axes for scaling verification are (1) the number of verifiers used
or (2) the number of scores sampled from each verifier. Fig. 4 shows how the performance changes
as we ensemble more verifiers (up to 15) using naive ensembling and WEAVER. We can see that
aggregating verifiers continuously improves performance over using the top-1 verifier by up to 8.5%.
However, these gains diminish as we continue to add models to the ensemble. These results reflect
the classic ensemble bias-variance tradeoff: initial gains arise from variance reduction as independent
verifier errors are averaged out, but performance plateaus as additional verifiers contribute redundant

GPQA Diamond MATH 500 MMLU Pro

90 100 95
§ 80 /”f” 95 03-mini e
S o emmini T
2
2 70
-9
a
0 60
v
5
wn 50 80 First Sample First Sample
First Sample
40 20 21 22 23 24 25 26 27 28 29 210 75 20 21 22 23 24 25 26 o7 65 20 21 22 23 24 25 26 37
Number of Repeated Generations Number of Repeated Generations Number of Repeated Generations
[———Pass@K (Oracle) —— Weaver Naive Ensemble Majority Voting —— Multi-Agent Verification Self—Verification]

Figure 3: Scaling Generations Boosts Performance with WEAVER: The generation-verification gap
shrinks when increasing K and leveraging WEAVER, outperforming alternative verification methods
by an average 18.3%.

Table 3: WEAVER Reduces Gap between Model Classes: 8B and 70B, 70B and Frontier LM

Generator Verifier Aggregation Datasets Average
Model Model Strategy GPQA MMLU MMLU g
MATH -
Diamond College Pro
N/A Majority Vote 69.0% 30.5% 72.7% 56.4% 57.2%

Llama3.18BInstruct ¢p . ibelow WEAVER 80.0% 47.1% 857% 672% 70.0%

Aw. WEAVER +11.0% +16.6% +13.0% +102% +12.8%

N/A Majority Vote 83.0% 47.4% 84.1% 74.4% 72.2%
72B and below WEAVER 93.4% 66.4% 949% 902% 86.2%

Aw. WEAVER +104% +9.0% +10.8% +15.8% +14.0%
03-mini N/A First Sample ~ 94.4% 74.0% 922% 86.0% 86.7%

Llama 3.3 70B Instruct

information due to correlated biases on systematically difficult examples. [1]. We also include results
on scaling the number of scores per verifier in Appendix C.5. We find that scaling the number of
verifiers yields better performance than sampling multiple scores from the same verifier (i.e., via
prompt tuning or temperature variation). However, this method is complementary and could be used
in conjunction with scaling the verifier count.

75 GPQA Diamond 100 MATH 500 o5 MMLU Pro
~ | +9.4% Accuracy Gains +8.6% Accuracy Gains +7.4% Accuracy Gains
o e B ——O O
R0 o ¢
~ I
95 90 /
8 o /\\,_\‘
]
& g5
n
0n
g 90 85
3 60
n —e— Weaver —o— \Weaver —e— Weaver
Naive Ensemble Naive Ensemble Naive Ensemble
BT I 45 67 B s DU LB NG 1323 45 67 8 90N Rnu5 01335 4567 55 bhuLnBNn
Top-K Verifiers Top-K Verifiers Top-K Verifiers

Figure 4: WEAVER Benefits from Adding Top- K Verifiers.

(4) Scaling Test-Time Compute: We study how performance scales in the total compute used for
both verification and repeated generations. Figure 5 shows the relationship between inference-time
compute and success rate for different generation-verification systems. For each method, we scale
the number of generations exponentially from 1 to 100 and plot the required inference compute
for generation and verification together versus the success rate. Note that Fig. 5 differs from Fig. 3,
since Majority Voting requires 0 verification inference calls while WEAVER requires 30+ calls for the
weak verifiers. We find that WEAVER achieves the highest maximum success rate; notably, majority
voting plateaus at around 2?2 to 23 ExaFLOPs per query while WEAVER continues scaling until 512

ExaFLOPs. However, the additional compute required for WEAVER can be prohibitive. We explore
how to reduce this computational burden while retaining WEAVER’s performance in the next section.

GPQA Diamond MATH 500 MMLU Pro
70 87.3%C s d 95.0 97.3% Compute Saved 95
.3% Compute Save P o
92.5 97.3% Compute Saved
~ 65 o ° 90
8 90.0 oo ° o °
o +10. o [}
3 60 87.5 Accuracy | /o 85 p +14.7
g [o} Gains Accuracy
" 55 85.0 80 e} Gains
7]
o o
g 50 d 825 75 o
3 80.0 o oo°
¥ 45 . 7059
<3 o . o
40274 22 20 2?2 24 26 28 210 75'0274 2-2 20 22 24 26 28 210 65274 2-2 20 22 24 26 28 210
Inference Compute per Query (ExaFLOPs) Inference Compute per Query (ExaFLOPs) Inference Compute per Query (ExaFLOPs)
Weaver Distilled —— Weaver Naive Ensemble Majority Voting

Figure 5: WEAVER Improves the Accuracy-Compute Performance Trade-Offs.

6 WEAVER Distillation: Improving Verification Efficiency at Inference

We explore distillation strategies for fine-tuning a smaller LM as a task-specific verifier. In particular,
we train cross-encoders; the input is a concatenated query-response pair, while the output is WEAVER’s
pseudolabel generated from Weak Supervision, namely Pr(y;; =1|$;1,-..,5m) (see Section 4). Cross-
encoders are used for a variety of NLP tasks requiring comparison between two textual inputs, including
search result reranking [50], question-answer matching [25], semantic textual similarity assessment
[60], natural language inference [16], and response quality evaluation in dialogue systems [31]. For
the model, we selected ModernBERT-Large (396M) [85]. For more details, please see Appendix C.6.

Figure 6, shows the performance of WEAVER
on the Llama-70B generations against the cross- GPQA Diamond*

encoder on GPQA Diamond. Across tasks, we 75

find that the distilled cross-encoder is able to cap- 95.97% ‘
ture 98.2% of the performance of WEAVER. Fur- <70 Compute Saved
thermore, while it would cost 35.35 exaFLOPs to g es 08.2% of

run all the verifiers needed for preparing and eval- 3 60 Accuracy Gains

uating WEAVER, while running a 400M cross- <

encoder costs 1.01 exaFLOPs for evaluating 100 §>°

samples, this is more than three orders of magni- 0 © .
tude in compute cost reduction, saving 99.97% 8 45

of the FLOPs originally required for running 20 O

10° 102 104

the 70B verifiers. We also outperform majority 0
Verification Compute Budget (ExaFLOPs)

voting by 23.2% while only incurring a 0.57%
increased inference cost over only generating the Weaver: Distilled (0.4B) @ MAV (70.0B)
responses. We see similar results for additional ® Weaver (70.08) Self-Verification (70.08)
datasets in Figure 14 (Sec. C.6). Majority Voting (0.08) Pareto Region

These results suggest that, through distillation, Figure 6: Distilling WEAVER into a 400M Cross-
we can capture the combined strengths of the Encoder Almost Entirely Captures the Perfor-
weak verifiers used for WEAVER, and deploy gen- Mance of WEAVER, Yielding 99.97 % Compute
eralizable and lightweight cross-encoders that Savings. “We train/evaluate on an 80:20 split.

use only a fraction of the parameters used for gen-

eration. This reduces our hardware constraints

considerably; rather than utilizing an 8-GPU node per 70B verifier (i.e. Nvidia H200s with 80B
memory), we only require a single A100 GPU with 32GB of memory for our cross-encoder. Our
economical approach has the added benefit of leaving the original generation model frozen (i.e. without
any parameter tuning), allowing us to preserve the original model’s distribution at inference [87, 91].

7 Conclusion

WEAVER offers a flexible and scalable framework for aggregating weak verifiers, achieving strong
performance across diverse reasoning tasks while remaining computationally efficient. Our results
show that combining many weak verifier can further close the generation verification gap with a fraction
of the compute. Looking forward, several directions stand to extend WEAVER’s impact. First, designing
specialized verifiers can further enhance task-specific accuracy. Second, WEAVER can be leveraged for
RLHEF for better supervision signals. Multimodal extensions of WEAVER represent another exciting
frontier. Finally, the compute efficiency of WEAVER opens the door to improved on-device verification.

8 Acknowledgements

We thank Simran Arora, Daniel Biderman, Bradley Brown, Owen Dugan, Ryan Ehrlich, Neel Guha,
Simon Guo, Jordan Juravsky, Jerry Liu, Avanika Narayan, Benjamin Spector, and Benjamin Viggiano
for their constructive feedback during the composition of the paper. We would also like to thank our
collaborators at the Stanford Artificial Intelligence Laboratory (SAIL) and TogetherAl.

We gratefully acknowledge the support of NIH under No. U54EB020405 (Mobilize); NSF under
Nos. CCF2247015 (Hardware-Aware), CCF1763315 (Beyond Sparsity), CCF1563078 (Volume to
Velocity), and 1937301 (RTML); US DEVCOM ARL under Nos. W911NF-23-2-0184 (Long-context)
and W911NF-21-2-0251 (Interactive Human-Al Teaming); ONR under No. N000142312633 (Deep
Signal Processing); Stanford HAI under No. 247183; Google DeepMind; Google Research; Google
Cloud; NXP; Xilinx; LETI-CEA; Intel; IBM; Microsoft; NEC; Toshiba; TSMC; ARM; Hitachi;
BASF; Accenture; Ericsson; Qualcomm; Analog Devices; Salesforce; Total; the HAI-GCP Cloud
Credits for Research program; the Stanford Data Science Initiative (SDSI); members of the Stanford
DAWN project: Meta, Google, and VMWare; and members of the Stanford SEAMS project: IBM
and Felicis. The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the
views, policies, or endorsements, either expressed or implied, of NIH, ONR, or the U.S. Government.

References

[1] Taiga Abe, E. Kelly Buchanan, Geoff Pleiss, and John Patrick Cunningham. Pathologies of
predictive diversity in deep ensembles. Transactions on Machine Learning Research, 2024.
Featured Certification.

[2] Anthropic. Claude 3.7 sonnet and claude code, February 2025. Announcement blog post, 5 min
read.

[3] Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy
Jones, Nicholas Joseph, Ben Mann, Nova DasSarma, et al. A General Language Assistant as a
Laboratory for Alignment. ArXiv Preprint arXiv:2112.00861, 2021.

[4] Ralph Allan Bradley and Milton E Terry. Rank Analysis of Incomplete Block Designs: I. The
Method of Paired Comparisons. Biometrika, 39(3/4):324-345, 1952.

[5] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling,
2024.

[6] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the 24th international conference on Machine
learning, pages 129-136, 2007.

[7] Shreyas Chaudhari, Pranjal Aggarwal, Vishvak Murahari, Tanmay Rajpurohit, Ashwin Kalyan,
Karthik Narasimhan, Ameet Deshpande, and Bruno Castro da Silva. RLHF Deciphered: A
Critical Analysis of Reinforcement Learning from Human Feedback for LLMs, 2024.

[8] Guiming Hardy Chen, Shunian Chen, Ziche Liu, Feng Jiang, and Benyou Wang. Humans or
LLMs as the Judge? A Study on Judgement Bias. ArXiv Preprint arXiv:2402.10669, 2024.

10

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Jiefeng Chen, Jie Ren, Xinyun Chen, Chengrun Yang, Ruoxi Sun, and Sercan O Arik. Sets:
Leveraging self-verification and self-correction for improved test-time scaling. arXiv preprint
arXiv:2501.19306, 2025.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and
James Zou. Are more 1lm calls all you need? towards scaling laws of compound inference systems.
arXiv preprint arXiv:2403.02419, 2024.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and
James Zou. Are more 1lm calls all you need? towards scaling laws of compound inference
systems, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,
Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica.
Chatbot arena: An open platform for evaluating llms by human preference, 2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and
Dario Amodei. Deep Reinforcement Learning from Human Preferences.
Advances in Neural Information Processing Systems, 30, 2017.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan,
Tianyu Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv
preprint arXiv:2502.01456, 2025.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019.

Nicolai Dorka. Quantile regression for distributional reward models in rlhf. arXiv preprint
arXiv:2409.10164, 2024.

Yann Dubois, Baldzs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-Controlled
AlpacaEval: A Simple Way to Debias Automatic Evaluators. ArXiv Preprint arXiv:2404.04475,
2024.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy S Liang, and Tatsunori B Hashimoto. AlpacaFarm: A Simulation Framework
for Methods that Learn from Human Feedback. Advances in Neural Information Processing
Systems, 36, 2024.

Jacob Eisenstein, Jonathan Berant, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alexan-
der Nicholas D’ Amour, Krishnamurthy Dj Dvijotham, Katherine A Heller, Stephen Robert Pfohl,
and Deepak Ramachandran. Reward Model Underspecification in Language Model Alignment. In
NeurIPS 2023 Workshop on Distribution Shifts: New Frontiers with Foundation Models, 2023.

Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alex D’ Amour, DJ Dvi-
jotham, Adam Fisch, Katherine Heller, Stephen Pfohl, Deepak Ramachandran, et al. Helping or
herding? reward model ensembles mitigate but do not eliminate reward hacking. arXiv preprint
arXiv:2312.09244, 2023.

Shahul Es, Jithin James, Luis Espinosa-Anke, and Steven Schockaert. RAGAs: Automated
Evaluation of Retrieval Augmented Generation. ArXiv Preprint arXiv:2309.15217, 2023.

11

[23] Daniel Fu, Mayee Chen, Frederic Sala, Sarah Hooper, Kayvon Fatahalian, and Christopher
Ré. Fast and three-rious: Speeding up weak supervision with triplet methods. In International
conference on machine learning, pages 3280-3291. PMLR, 2020.

[24] Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei Liu. GPTScore: Evaluate as You
Desire. Proceedings of the 2024 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), 2023.

[25] Siddhant Garg, Thuy Vu, and Alessandro Moschitti. Tanda: Transfer and adapt pre-trained
transformer models for answer sentence selection, 2019.

[26] Alastair R Hall. Generalized method of moments. A companion to theoretical econometrics,
pages 230-255, 2003.

[27] HazyResearch. metal. https://https://github.com/HazyResearch/metal, 2018.

[28] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021.

[29] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

[30] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022.

[31] Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux, and Jason Weston. Poly-encoders: Trans-
former architectures and pre-training strategies for fast and accurate multi-sentence scoring,
2020.

[32] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code, 2024.

[33] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020.

[34] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri
Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller,
Matei Zaharia, and Christopher Potts. Dspy: Compiling declarative language model calls into
self-improving pipelines. arXiv preprint arXiv:2310.03714, 2023.

[35] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

[36] Jan Hendrik Kirchner, Yining Chen, Harri Edwards, Jan Leike, Nat McAleese, and Yuri Burda.
Prover-verifier games improve legibility of llm outputs. arXiv preprint arXiv:2407.13692, 2024.

[37] Dahyun Koo, Yejin Choi, and Eunsol Choi. Cognitive Biases in Large Language Models as
Evaluators. ArXiv Preprint arXiv:2312.05441, 2023.

[38] Nathan Lambert and Roberto Calandra. The alignment ceiling: Objective mismatch in reinforce-
ment learning from human feedback. ArXiv Preprint arXiv:2311.00168, 2023.

[39] Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi
Chandu, Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh
Hajishirzi. RewardBench: Evaluating Reward Models for Language Modeling, 2024.

[40] Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 2023.

12

https://https://github.com/HazyResearch/metal
https://github.com/tatsu-lab/alpaca_eval

[41] Shalev Lifshitz, Sheila A. Mcllraith, and Yilun Du. Multi-agent verification: Scaling test-time
compute with multiple verifiers, 2025.

[42] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023.

[43] Chris Yuhao Liu and Liang Zeng. Skywork Reward Model Series. https://huggingface.
co/Skywork, September 2024.

[44] Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. arXiv preprint
arXiv:2410.18451, 2024.

[45] Runze Liu, Junqi Gao, Jian Zhao, Kaiyan Zhang, Xiu Li, Biging Qi, Wanli Ouyang, and Bowen
Zhou. Can 1b llm surpass 405b 1lm? rethinking compute-optimal test-time scaling, 2025.

[46] Runze Liu, Junqi Gao, Jian Zhao, Kaiyan Zhang, Xiu Li, Biging Qi, Wanli Ouyang, and Bowen
Zhou. Can 1b Ilm surpass 405b 1lm? rethinking compute-optimal test-time scaling. arXiv preprint
arXiv:2502.06703, 2025.

[47] Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg
evaluation using gpt-4 with better human alignment. ArXiv Preprint arXiv:2303.16634, 2023.

[48] Meta. The Llama 4 herd: The beginning of a new era of natively multimodal Al innovation, 4
2025. Accessed: 2025-05-12.

[49] Xiaoyu Tan Minghao Yang, Chao Qu. Inf-orm-llama3.1-70b, 2024.
[50] Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert, 2020.
[51] OpenAl. GPT-4 Technical Report. ArXiv Preprint arXiv:2303.08774, 2023.

[52] OpenAl. Openai 03-mini system card. Technical report, OpenAl, January 2025. Publication.

[53] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in Neural Information Processing Systems,
35:27730-27744, 2022.

[54] Qian Pan, Zahra Ashktorab, Michael Desmond, Martin Santillin Cooper, James Johnson, Rahul
Nair, Elizabeth Daly, and Werner Geyer. Human-Centered Design Recommendations for LLM-

as-a-judge. In Proceedings of the 1st Human-Centered Large Language Modeling Workshop,
pages 16-29,2024.

[55] IshaPuri, Shivchander Sudalairaj, Guangxuan Xu, Kai Xu, and Akash Srivastava. A probabilistic
inference approach to inference-time scaling of llms using particle-based monte carlo methods,
2025.

[56] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christopher Ré.
Snorkel: rapid training data creation with weak supervision. The VLDB Journal, 29(2):709-730,
2020.

[57] Alexander Ratner, Braden Hancock, Jared Dunnmon, Frederic Sala, Shreyash Pandey, and
Christopher Ré. Training complex models with multi-task weak supervision. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pages 4763—4771, 2019.

[58] Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher Ré. Data
programming: Creating large training sets, quickly. Advances in neural information processing
systems, 29, 2016.

[59] Selvan Sunitha Ravi, Bartosz Mielczarek, Anand Kannappan, Douwe Kiela, and Rebecca Qian.
Lynx: An Open Source Hallucination Evaluation Model, 2024.

[60] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Conference on Empirical Methods in Natural Language Processing, 2019.

13

https://huggingface.co/Skywork
https://huggingface.co/Skywork

[61] Nils Reimers and Iryna Gurevych. Making monolingual sentence embeddings multilingual using
knowledge distillation. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 11 2020.

[62] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024.

[63] Saharon Rosset, Ji Zhu, and Trevor Hastie. Margin maximizing loss functions. Advances in
neural information processing systems, 16, 2003.

[64] Jon Saad-Falcon, Omar Khattab, Christopher Potts, and Matei Zaharia. ARES: An Auto-
mated Evaluation Framework for Retrieval-Augmented Generation Systems. ArXiv Preprint
arXiv:2311.09476, 2023.

[65] Robert E Schapire. Explaining adaboost. In Empirical inference: festschrift in honor of vladimir
N. Vapnik, pages 37-52. Springer, 2013.

[66] Changho Shin, Winfred Li, Harit Vishwakarma, Nicholas Roberts, and Frederic Sala. Universal-
izing weak supervision. arXiv preprint arXiv:2112.03865, 2021.

[67] Prasann Singhal, Tanya Goyal, Jiacheng Xu, and Greg Durrett. A long way to go: Investigating
length correlations in rlhf. ArXiv Preprint arXiv:2310.03716, 2023.

[68] Nishad Singhi, Hritik Bansal, Arian Hosseini, Aditya Grover, Kai-Wei Chang, Marcus Rohrbach,
and Anna Rohrbach. When to solve, when to verify: Compute-optimal problem solving and
generative verification for llm reasoning, 2025.

[69] Nishad Singhi, Hritik Bansal, Arian Hosseini, Aditya Grover, Kai-Wei Chang, Marcus Rohrbach,
and Anna Rohrbach. When to solve, when to verify: Compute-optimal problem solving and
generative verification for llm reasoning, 2025.

[70] Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute
optimally can be more effective than scaling model parameters, 2024.

[71] Mingyang Song, Zhaochen Su, Xiaoye Qu, Jiawei Zhou, and Yu Cheng. Prmbench: A fine-grained
and challenging benchmark for process-level reward models, 2025.

[72] Yuda Song, Hanlin Zhang, Carson Eisenach, Sham Kakade, Dean Foster, and Udaya Ghai. Mind
the gap: Examining the self-improvement capabilities of large language models, 2025.

[73] Benedikt Stroebl, Sayash Kapoor, and Arvind Narayanan. Inference scaling flaws: The limits of
IIm resampling with imperfect verifiers, 2024.

[74] Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging
big-bench tasks and whether chain-of-thought can solve them, 2022.

[75] Liyan Tang, Philippe Laban, and Greg Durrett. MiniCheck: Efficient Fact-Checking of LLMs on
Grounding Documents, 2024.

[76] Pat Verga, Sebastian Hofstatter, Sophia Althammer, Yixuan Su, Aleksandra Piktus, Arkady
Arkhangorodsky, Minjie Xu, Naomi White, and Patrick Lewis. Replacing judges with juries:
Evaluating llm generations with a panel of diverse models, 2024.

[77] Harit Vishwakarma and Frederic Sala. Lifting weak supervision to structured prediction.
Advances in Neural Information Processing Systems, 35:37563-37574, 2022.

[78] Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan Dou, Caishuang Huang, Wei Shen, Senjie
Jin, Enyu Zhou, Chenyu Shi, Songyang Gao, Nuo Xu, Yuhao Zhou, Xiaoran Fan, Zhiheng Xi,
Jun Zhao, Xiao Wang, Tao Ji, Hang Yan, Lixing Shen, Zhan Chen, Tao Gui, Qi Zhang, Xipeng
Qiu, Xuanjing Huang, Zuxuan Wu, and Yu-Gang Jiang. Secrets of RLHF in Large Language
Models Part II: Reward Modeling, 2024.

14

[79] Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences
via multi-objective reward modeling and mixture-of-experts. ArXiv Preprint arXiv:2406.12845.

[80] Jiaan Wang, Yunlong Liang, Fandong Meng, Zengkui Sun, Haoxiang Shi, Zhixu Li, Jinan Xu,
Jianfeng Qu, and Jie Zhou. Is ChatGPT a good NLG Evaluator? A Preliminary Study. ArXiv
Preprint arXiv:2303.04048, 2023.

[81] Junlin Wang, Roy Xie, Shang Zhu, Jue Wang, Ben Athiwaratkun, Bhuwan Dhingra, Shuai-
wen Leon Song, Ce Zhang, and James Zou. Improving model alignment through collective
intelligence of open-source llms, 2025.

[82] Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. arXiv preprint arXiv:2406.01574, 2024.

[83] Zhilin Wang, Yi Dong, Jiaqi Zeng, Virginia Adams, Makesh Narsimhan Sreedhar, Daniel
Egert, Olivier Delalleau, Jane Polak Scowcroft, Neel Kant, Aidan Swope, and Oleksii Kuchaiev.
HelpSteer: Multi-Attribute Helpfulness Dataset for SteerLM, 2023.

[84] Zihao Wang, Chirag Nagpal, Jonathan Berant, Jacob Eisenstein, Alex D’ Amour, Sanmi Koyejo,
and Victor Veitch. Transforming and combining rewards for aligning large language models.
arXiv preprint arXiv:2402.00742, 2024.

[85] Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallstrom, Said
Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, Nathan Cooper, Griffin
Adams, Jeremy Howard, and Iacopo Poli. Smarter, better, faster, longer: A modern bidirectional
encoder for fast, memory efficient, and long context finetuning and inference, 2024.

[86] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023.

[87] Peter West and Christopher Potts. Base models beat aligned models at randomness and creativity,
2025.

[88] Tengyu Xu, Eryk Helenowski, Karthik Abinav Sankararaman, Di Jin, Kaiyan Peng, Eric Han,
Shaoliang Nie, Chen Zhu, Hejia Zhang, Wenxuan Zhou, Zhouhao Zeng, Yun He, Karishma
Mandyam, Arya Talabzadeh, Madian Khabsa, Gabriel Cohen, Yuandong Tian, Hao Ma, Sinong
Wang, and Han Fang. The perfect blend: Redefining rlhf with mixture of judges, 2024.

[89] LU Ying et al. Decision tree methods: applications for classification and prediction. Shanghai
archives of psychiatry, 27(2):130, 2015.

[90] Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou,
Zhiyuan Liu, and Hao Peng. Free process rewards without process labels. arXiv preprint
arXiv:2412.01981, 2024.

[91] Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao
Huang. Does reinforcement learning really incentivize reasoning capacity in llms beyond the
base model?, 2025.

[92] Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh
Agarwal. Generative Verifiers: Reward Modeling as Next-Token Prediction, 2024.

[93] Eric Zhao, Pranjal Awasthi, and Sreenivas Gollapudi. Sample, scrutinize and scale: Effective
inference-time search by scaling verification. arXiv preprint arXiv:2502.01839, 2025.

[94] Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for
formal olympiad-level mathematics, 2022.

[95] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging 1lm-as-a-judge with mt-bench and chatbot arena, 2023.

[96] Lianmin Zheng, Dacheng Xu, Jiajun Dong, Andy Zeng, Shuo Xie, Eric P Xing, and Percy Liang.
Evaluation Biases for Large Language Models. ArXiv Preprint arXiv:2305.17926, 2023.

15

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We ensure our claims in the abstract and introduction accurately reflect our
paper’s contributions and scope. We clearly state our approach using weak supervision, the
evaluation context, and the specific performance improvements achieved with WEAVER.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made
in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* Itis fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitations in Section 7, addressing specialized verifier development,
dataset distribution challenges, and concrete directions for improvement like extending
WEAVER to RLHF and multi-modal verification.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

16

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

Justification: We provide theoretical foundations for our weak supervision approach in Sec-
tions 4.2.1 and Appendix B.1, including assumptions and complete proofs. Our mathematical
formulations for the Discrete Weak Supervision Model include all necessary equations and
derivations.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

 The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We thoroughly disclose information needed to reproduce our main experimental
results, specifying datasets, models, verification techniques, and evaluation metrics. We
provide implementation details of WEAVER in Appendix B.4 along with our code repository.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

17

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: In our supplementary materials, we provide a code repository for our WEAVER
implementation along with access to all datasets used in our experiments. Furthermore, our
methodology is also described in sufficient detail for reproducibility in the paper in Sections 3
and 4.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We clearly specify all training and test details necessary to understand our results
in Section 4 and Appendix C. We include details about models, datasets, parameter settings,
and evaluation metrics.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: For each of our tables and figures, we perform 5-10 runs and report the average of
the runs. We report the standard deviation of these results in Sec. C. We also report statistical
significance through trend analysis across multiple datasets with power-law fitting in Sec. C,
including R? values to demonstrate the quality of fit and reliability of our scaling trends.

Guidelines:

* The answer NA means that the paper does not include experiments.

¢ The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* Iferror bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: We include the GPUS, workers, memory, and storage requirements needed for
running the experiments in Appendix D.1.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms to the NeurIPS Code of Ethics, focusing on improving
Al efficiency through better verification methods. Our work aims to improve Al capabilities
responsibly without introducing harmful applications.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

19

https://neurips.cc/public/EthicsGuidelines

* The authors should make sure to preserve anonymity (e.g., if there is a special considera-
tion due to laws or regulations in their jurisdiction).

10. Broader impacts

11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: We discuss broader impacts in Section 8, highlighting potential positive impacts
like improving language model reliability through better verification. Our research doesn’t
introduce significant negative societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper doesn’t release high-risk data or models that would require safeguards.
Our focus is on verification methodology rather than artifacts with misuse potential.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best faith
effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

20

13.

14.

Answer: [Yes]

Justification: We properly cite and credit the creators of all assets used, including datasets
and language models as listed in Table 13. We respect the licenses of all models and datasets
referenced in our work in Sec. C.1.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release our WEAVER implementation code and the configuration files used
in our supplementary materials. We provide documentation for these assets alongside our
code repository.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?

Answer: [NA]

Justification: Our paper doesn’t involve crowdsourcing or research with human subjects. We
use existing datasets and computational experiments without human participants.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

21

paperswithcode.com/datasets

15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution)
were obtained?

Answer: [NA]

Justification: Since our paper doesn’t involve human subjects research, no IRB approval was
required.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in our research does not involve LLMs as
important components. We evaluate language models but didn’t use them in developing our
research methodology.

Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

A Table of Contents

1. WEAVER Methodology (Appendix B)
(a) Discrete Weak Supervision Model with Known Difficulty (Appendix B.1)
(b) Practical Considerations for WEAVER (Appendix B.2)
(c) Implementation Decisions for WEAVER (Appendix B.2.2)
2. Experiments: (Appendix C)
(a) Models and Datasets (Appendix C.1)
(b) Verification Baselines (Appendix C.2)
(c) Scaling Trends of WEAVER (Appendix C.3)
(d) Scaling Candidate Generations (Appendix C.4)
(e) Scaling Verifier Count (Appendix C.5)
(f) Weaver Distillation (Appendix C.6)
(g) Individual Verifier Optimization (Appendix C.7)
3. Miscellaneous (Appendix D)
(a) Compute Requirements (Appendix D.1)

23

B WEAVER Methodology

B.1 Weak Supervision Model
We can construct a data generating model over response correctness y and the binary verifier outputs s.
The model is defined as:

Response Correctness: y;; ~Bernoulli(m) Vi € [n],j € [K],

B 1li ify;; =1
emoutlui): WG~ b vie o] j e [K] ke m)

Verifier S DS, ij ™~
erifier Score: 5ijk | yi; {Bernoulli(lwk,o), ify;; =0,

where:

* 7 is the probability that a response is correct.
* wy,,1 is the true positive rate (TPR) of verifier k, and wy, o is the true negative rate (TNR),
which we refer to as the verifier’s accuracy parameters.

Here, each verifier k emits a binary score 5, € {0,1}, which is assumed to be a noisy indicator of
whether response y;; is correct. The likelihood of the verifier’s binary output X1, € {0,1} is:

Wi, ity =land sy =1,

_ l—wg,1, ify;j=1andS$;;,=0
Pr(Sy =50 |V =) = ! Y
r(Sk Smk‘ yw) W0, if y;; =0and 5;5, =0,

1—wk}0, ifyij =0and gijkzl-

We are interested in estimating the correctness of a response y;; € {0,1} based on assessments from
multiple verifiers 5;; ={5;1,5j2,...,5ijm }. Applying Bayes’ Rule, we get:
_ Pr(§=5i; |y =1)Pr(y;; =1)

Pr(y;;=1]S=3;;)= Pr(si;) ;

where Pr(si;) =3, c 10,13 Pr(8ij | vij =) Pr(yi; =y').
Eq. (6) requires evaluating the full conditional likelihood:
Pr(S=35;;|vyij) =Pr(S1=35ij1,52 =5ij2,---»Sm = Sijm | Yij)
which is a joint distribution over m binary random variables. Since each verifier Sy, € {0,1} is binary,

then there are 2™ possible verifier output configurations for .S € {0,1}™. This results in 2™ —1 free
parameters per class label to construct the distribution Pr(S=5;; | y;;).

Conditional Independence Assumption To avoid this exponential blowup, we can assume that the
verifiers provide conditionally independent outputs:

m

P(S|y) =] P(Sklv),
k=1

which reduces the number of parameters from O(2™) to O(m) and enables efficient inference, under
the assumption that each verifier provides unique information about the correctness of a response.

Then, Eq. (6) simplifies to a Naive Bayes-style estimator:

_ PI‘(Sl:gi‘ly..qu:gi'm‘yilzl)Pr(yi':1)
Pr(y;=1|S=5;) = ’ Pr(Szjgia‘)j J

_ Pr(yi; =1)[T, Pr(Sk =5k | i =1)
> yeronyPr(i =y) Tim Pr(Sk =51 1yi; =Y')

The parameters in Eq. (7) include:

)

* The prior probability of correctness m=Pr(y;; =1).
* The verifier-specific conditional likelihoods P (S, | ;5).

24

B.1.1 Parameter Estimation

Supervised Setting When ground-truth labels y;; are available, parameter estimation reduces to
computing empirical frequencies. We can estimate the prior as:

.1
= Nzl{yij =1}
2,7

For each verifier k, we could estimate:
Zi,jl{yijzl} '
Zi,jl{yij =0}

Weak Supervised Setting When a few labeled y;; are available, we can use it to estimate 7, but we
still need to estimate the verifier accuracy parameters wy, 1,Wy o to compute H,T:lPr(Sk =5k|yij =
1). Instead of using labeled data, we estimate accuracy parameters using moment matching. In
particular, we match observable second moments of verifier outputs to the model-implied moments
under conditional independence assumptions, based on an approach from [27].

Wy, 1=

Wg,0=

Pairwise Statistics. For each pair of verifiers k;,ko and binary outputs a,b € {0,1}, we can express
the joint probability of their outputs using the marginalization rule and the conditional independence
assumption:

PI‘(Skl :a,Sk2 :b) (8)
=Pr(Sk, =alY =1)Pr(Sy, =a|Y =1)Pr(Y =1)+Pr(Sk, =b|Y =0)Pr(Sk, =b|Y =0)Pr(Y =0)
where the conditional distributions for verifier k are:

W1, a=1,

Pr(Sk=a|y=0) = { —w,

Marginal Statistics. Similarly, each verifier’s marginal distribution can be written as:

Pr(Sr=1)=Pr(S,=1|Y =1)Pr(Y =1)4+Pr(Sy=1|Y =0)Pr(Y =0))
Note that this equation holds true regardless of the conditional independence assumption.

Estimation method

2m) X (

« Construct the second order moment matrix O € R(2m) where:

Pr(S; =0 0 .
O2i—1:2i,2i—1:2i = { (8:=0) pr(sizl)} Vi € [m]

Pr(S; =
=

O _ 0) Pr(S;
21—1:24,25—-1:25 = | Pr(S

0,S; = 5 =0,8=1)] \/s s s
1,55 =0) Pr(Si:I,Sj-:lg] Vi#j € [m] (10)
« Construct the conditional probability matrix ;€ R(2Y)*2 where each row encodes:

H2k+a,b = Pr (Sk =a | Y= b)

Wk, ,0 1—wg, 1
1—wyg, 0 W, 1

=

Wk,,,0 1—wk, 1

l-wg,,0 Wk,

* Label prior matrix P € R?*? is a diagonal matrix:

P Pr(yij ZO) 0

25

Then, equation 8 is equivalent to O = Py T on the entries off of the 2 x 2 block diagonal, and equation 9
is equivalent to diag(0) = 1 P¥ T . Therefore, we optimize the following loss to compute /.

2-i-Hdiaug(O)—uPlT| 2,

e T
minimize,,|| Oof-diag — (WPH") oft-diag
By solving via gradient-descent, we obtain estimates of the verifier accuracy parameters {wy, 1,wg o }-

B.1.2 Inference: computing response correctness probabilities

Once the accuracy parameters {wg, 1,wg, o} are estimated and P(y; ; =1) is computed from a small
labeled development dataset, we can compute posterior correctness probabilities for each response:

Pr(y;; =115 =5i;) o< Pr(y;; =1) [[Pr(Su =5ijulyss =1)
k=1

Pr(yij :O‘Szgij) ocPr(yij :0) HPT(Sk :§Z—jk|yij :0)
k=1

Normalizing these, we have a full posterior P(y;; =1|S =5;;), which provides a score with which we
can select a response for each query.

B.2 Adapting Weak Supervision to the Verification Setting

Given a set of verifiers, we describe two modifications to the verifiers that allow us to apply weak
supervision to the verification setting. First, we discuss the motivation for how we binarize verifier
outputs and filter out low-quality verifiers. These two steps before invoking Weak Supervision methods
are critical, as WS assumes that verifiers are binary and are of sufficiently high signal. Second, we will
describe our proposed method for binzarization and filtering, along with results.

B.2.1 Motivation

Binarization The weak supervision algorithm described in the prior section requires binary verifier
outputs. This is suitable for verifiers such as LM judges, which produce {0,1} outputs, but verifiers that
are reward models often produce continuous scores at different scales. In fact, naive thresholding can
result in low-signal verifiers (e.g., outputting all 1s). How do we convert reward models’ continuous
verifier scores into binary scores?

Filtering out low-quality verifiers Beyond directly impacting the quality of an ensemble, low-
quality verifiers reduce the effectiveness of Weak Supervision algorithms. How do we discard verifiers
that have low signal?

* Skewed marginals: Consider a dataset where Pr(y=1)~0.5 and we have a verifier with Pr(S;, =
1)~0.99. A skewed verifier with an extreme marginal (e.g., from naive thresholding for binarization)
and near-constant outputs adds little information to the ensemble. It primarily increases noise in the
objective in Eq. 5 and should thus be discarded. Yet, not at all verifiers that have extreme marginals
add little signal; for instance, if instead Pr(y=1)=0.99, a skewed verifier could be highly accurate.
Therefore, the definition of a low-quality verifier depends on the distribution of correct responses.

* Breaking symmetry in the WS objective: a common assumption of Weak Supervision is that a
majority of the verifiers have better-than-random accuracy [23]. Otherwise, there is a possibility that
the WS algorithm can yield non-unique solutions; the terms in Eq. 5 are the joint probabilities over
pairs of verifiers as well as their marginals, which do not uniquely determine if a verifier satisfies
Wy, 1,Wk,0 > 0.5 or not. Therefore, it is critical to remove as many low-accuracy verifiers as possible
to ensure that the optimization procedure converges to a unique solution.

B.2.2 Adaptation method

We now describe our proposed method for binarization and filtering of verifiers, after which the Weak
Supervision algorithm described in Appendix B.1.

26

Table 4: Ablation of Development Set used for WEAVER Class Balance Estimation: As our reward
model threshold, we set it to the default of the 0.5.

Model Dev Set Benchmarks
Approach Size Size
MATHS500 GPQA Diamond MMLU MMLU Pro Average
Naive Threshold

WEAVER 70B (0.5 Threshold) 88.1% 52.0% 92.4% 83.5% 79.0%
WEAVER 70B 1% 90.4% 67.1% 91.1% 87.0% 84.5%
WEAVER 70B 5% 92.4% 72.7% 93.5% 90.4% 87.5%
WEAVER 70B 20% 92.4% 72.7% 93.5% 90.4% 87.5%
WEAVER 70B 100% 92.4% 72.7% 93.5% 90.4% 87.5%

Table 5: Ablation of Verifier Selection Strategies for WEAVER: Comparison of different strategies
for dropping faulty verifiers by dataset using each verifier’s marginal probability.

Model . . Benchmarks
Approach Size Verifier Selection
MATHS500 GPQA Diamond MMLU MMLU Pro Average
WEAVER 70B No Dropped Verifiers 90.4% 52.0% 91.1% 84.2% 79.4%
Low Marginals Dropped
WEAVER 70B (Mostly Negative Verifiers) 93.4% 60.6% 91.7% 91.0% 84.2%
High Marginals Dropped
WEAVER 70B (Mostly Positive Verifiers) 83.4% 69.7% 87.9% 78.4% 79.9%
Weaver 70B Cxtreme Marginals Dropped g g 2% 924% 850% 85.2%
(Mostly Positive or Negative)
Table 6: Ablation of Adaptive Threshold Dev Set Size for WEAVER.
Model Adaptive Threshold Benchmarks
Approach Size Dev Set Size
MATHS500 GPQA Diamond MMLU MMLU Pro Average
WEAVER 70B 0.01 92.4% 72.7% 93.5% 90.4% 87.5%
WEAVER 70B 0.05 92.4% 72.7% 93.5% 90.4% 87.5%
WEAVER 70B 0.2 92.4% 72.7% 93.5% 90.4% 87.5%
WEAVER 70B 1.0 92.4% 72.7% 93.5% 90.4% 87.5%

1. Binarization: We use a small amount of labeled samples (which we already are using to compute
Pr(y=1)) to determine a threshold for converting continuous verifier outputs to binary outputs.
With only 5 to 10 labeled queries from benchmark development sets (which < 1% of the evaluation
set), we can estimate thresholds that bolster performance by averages of 8.4% for the 70B models
when compared to binary splitting along the median score of the dataset (Table 4).

2. Filtering out low-quality verifiers: To mitigate the impact of low-quality verifiers, we prune
verifiers with extreme marginal behavior, depending on the class balance. For datasets with
estimated class balance between 20% and 80%, we filter out verifiers with positive rates outside this
range. If a dataset has fewer than 20% positive samples overall, we remove verifiers that predict
positives more than 80% of the time. Conversely, for datasets with more than 80% positives, we
drop verifiers that predict positives less than 20% of the time. We find that verifier pruning leads to
12.5% performance improvement for the 70B model setting (Table 5).

27

Table 7: Performance Comparison Between Continuous and Discrete Logistic Regression: For
supervised fine-tuning on the verifier scores, the continuous model consistently outperforms the discrete
variant across all datasets by avoiding the lossy conversion of floats to binary votes required for the
discrete variant.

Continuous vs. Discrete Logistic Regression Performance (%)

Method Dataset

MATH 500 GPQA MMLU College MMLUPro BBH
Discrete LR 93.1 74.3 87.5 87.1 90.1
Continuous LR 97.2 78.1 90.4 92.0 96.5
Improvement +4.1 +3.8 +2.9 +4.9 +6.4

Table 8: Number of Unique Extracted Answers vs. Positive:Negative Sample Ratio per Query -
Correlations for Llama 3.1 Instruct Models

Llama 3.1 8B Instruct Llama 3.1 70B Instruct
Correlation Metrics Correlation Metrics
Dataset Metric Type Dataset Metric Type
Pearson Spearman Kendall’s Tau Pearson Spearman Kendall’s Tau
MATH 500 -0.676 -0.745 -0.565 MATH 500 -0.631 -0.842 -0.709
GPQA -0.312 -0.117 -0.096 GPQA -0.148 -0.093 -0.089
MMLU College -0.595 -0.700 -0.591 MMLU College -0.551 -0.862 -0.769
MMLU Pro -0.590 -0.555 -0.425 MMLU Pro -0.446 -0.693 -0.585
BBH -0.365 -0.386 -0.300 BBH -0.268 -0.594 -0.474

Table 9: Performance of WEAVER with Different Clusters Counts
Clusters for WEAVER Dataset

Cluster Count

Dataset

1 2 3 4 5
MATH 500 934 87.6 83.8 82.8 81.2
GPQA 664 664 664 664 664
MMLU College 949 91.7 90.1 89.6 89.8
MMLU Pro 884 90.2 87.1 84.6 79.8
Average 858 840 819 809 793

C Experiments

C.1 Models and Datasets

Benchmarks: We evaluate our models with several benchmarks for instruction-following, reasoning,
mathematics, and coding: MATHS500 [28], GPQA [62], MMLU [28], MMLU Pro [82], and BBH
[74]. We provide an overview of each dataset in Table 10. For MMLU, we selected the college-level
questions for evaluation: biology, chemistry, physics, mathematics, computer science, and medicine.
For MMLU Pro, we take a random sample of 500 queries out of the 12K queries available. For BBH,
we take four tasks from the dataset of 6K queries available: Penguins in a Table, Causal Judgement,
Logical Deduction (Five Objects), and Tracking Shuffled Objects (Five Objects).

Models: We evaluate candidate generations using a range of weak verifiers—models with imperfect
but better-than-random accuracy. Our verification system) includes two primary classes of weak
verifiers: Reward Models and LM Judges.

28

* Reward Models: A reward model (RM) is a trained language model that assigns a scalar
score to candidate responses based on how well they align with human preferences [39, 71].
Given a query and a candidate response, the RM outputs a value V;; € [0,1] representing the
estimated quality of candidate j according to criteria such as correctness, helpfulness, and
safety.

— Examples of reward models include those from the RewardBench leaderboard [39], such
as INF-ORM [49], QRM Gemma [17], and Skywork Reward [44]. We also include
process reward models (PRMs), which score the reasoning process itself—emphasizing
step-by-step logic and coherence—rather than just the final answer [15, 90].

— For our study, we selected the top-20 reward models from RewardBench and the top-20
process reward models from Process Reward Bench [71] at both 8B and 70B parameter
scales. We exclude any RM or PRM that fails to provide a positive learning signal—i.e.,
those whose rankings perform no better than random selection on benchmark train sets
(Appendix C.1). The diverse training objectives and datasets used for these reward
models introduce systematic biases that affect their verification capabilities [39, 71],
with different loss functions—including Bradley-Terry loss for pairwise preferences
[4], margin loss for fixed score differences [63], and pairwise ranking loss for relative
ordering [6].

— Previous work has noted that it is nontrivial to combine the outputs of reward models
and judges as they provide logits and binary decision rules [76, 88]. Instead, we find that
we can normalize all RM scores to the range [0,1] using robust percentiles: the bottom
5th percentile is mapped to 0 and the top 95th percentile to 1. For models that provide
multiple scoring dimensions (e.g., ArmoRM [79]), we use only their primary output. For
our study, we selected the top-20 reward models from RewardBench [39].

e LM Judges: An LM judge is a language model used to assess the correctness of a candidate
response by generating a binary verdict: V;; € {0,1}, where 1 indicates that the response is
judged correct. These models typically apply chain-of-thought (CoT) reasoning to arrive at
their decisions [86]. Each LM judge takes a query and a response as input and outputs a single
binary verdict.

— We use well-known chat models from ChatBotArena [13] as LM judges, which are
known for their general-purpose reasoning capabilities. To ensure consistency and
determinism, we use greedy decoding (temperature 7'=0) when generating judgments.

Table 10: Benchmark Overview: Evaluation configurations for AlpacaEval 2.0, Arena-Hard-Auto,
AIMO, MATH500, GPQA, MMLU, MMLU Pro, and Big-Bench Hard (BBH).

Benchmark Dataset Size Scoring Type Metric License

MATHS00 500 Ground Truth Pass@1 Apache 2.0

GPQA 646 Ground Truth Pass@1 CCBY 4.0
MMLU College 719 Ground Truth Pass@1 MIT
MMLU Pro 500 Ground Truth Pass@1 MIT

29

RewardBench ChatBot Arena

~
=1
3

=
)
3
—
&
o

Number of LMs
5
8

Reward Model Count
"
g

50

° >
U 3\ 3\
D N A

Months Quarters

Figure 7: Growth of Open-Source RMs and LMs: As more and more RMs and LM judges become
available, the need for better selection and utilization strategies for these models at test-time continues

to grow.

Table 11: Distribution of Generation Accuracy across Datasets for Llama 3.1 8B Instruct Model

Llama 3.1 8B Instruct
Distribution of Positive/Negative Generations

D Percentage of Total Dataset P/N
ataset Ratio
0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0\
AIMO 722% 78% 33% 78% 22% 33% 22% 00% 1.1% 0.0% [10.3%
MATH 500 122% 114% 11.6% 82% 64% 8.0% 84% 6.60% 11.2% 15.0% |49.9%
GPQA 285% 212% 161% 7.4% 73% 53% 37% 33% 29% 2.6% |28.3%

MMLU College 7.8% 7.6% 71% 65% 6.7% 53% 72% 63% 8.6% 22.9% |64.1%
MMLU Pro 224% 9.8% 10.6% 54% 64% 12% 4.0% 7.6% 1.6% 152% |46.6%
BBH 32% 6.7% 103% 83% 10.3% 14.8% 11.6% 10.7% 10.4% 12.1% |56.9%

Table 12: Distribution of Generation Accuracy across Datasets for Llama 3.1 70B Instruct Model
Llama 3.1 70B Instruct
Distribution of Positive/Negative Generations
Percentage of Total Dataset P/N
0.0-0.1 0.1-02 02:0.3 0.3-0.4 0.4-0.5 0.50.6 0.6-0.7 0.7-0.8 0.8-09 0.9-1.0| Ratie

MATH 500 7.0% 42% 38% 2.0% 22% 38% 42% 40% 78% 61.0% |78.0%
GPQA 36.8% 5.6% 51% 37% 62% 43% 45% 48% 8.0% 20.9% |42.9%
MMLU College 8.1% 32% 18% 22% 15% 17% 18% 32% 2.4% 7T4.1% |82.6%
MMLU Pro 164% 42% 18% 3.4% 3.0% 3.0% 32% 48% 6.0% 54.2% |69.9%

Dataset

30

Table 14: WEAVER Verifier Accuracies and Covariances

Model Benchmarks
Approach Size
MATHS500 GPQA MMLU Pro Average
Verifier Accuracy Range 70B 323% 43.6% 36.7% 37.5%
Verifier Covariance 70B 0.0284 0.0341 0.0342 0.0322
Verifier Accuracy Range 8B 25.6% 31.4% 32.1% 29.7%
Verifier Covariance 8B 0.0199 0.0337 0.0240 0.0259

Table 13: Models Tested for WEAVER.

Parameter

Model Source Code License Loss Function
Count
Llama-3.1-70B-Instruct Open-Source 70B Llama 3.1 Community Cross-Entropy Loss
Llama-3.1-405B-Instruct Open-Source 405B Llama 3.1 Community Cross-Entropy Loss
Llama-3.3-70B-Instruct Open-Source 70B Llama 3.1 Community Cross-Entropy Loss
Meta-Llama-3.1-405B-Instruct-quantized.w8al6 Open-Source 405B Llama 3.1 Community Cross-Entropy Loss
DeepSeek LLM 67B Chat Open-Source 67B DeepSeek License Cross-Entropy Loss
DeepSeekLlama70B Open-Source 70B DeepSeek License Cross-Entropy Loss
DeepSeekQwen32B Open-Source 32B DeepSeek License Cross-Entropy Loss
DeepSeekLlama8B Open-Source 8B DeepSeek License Cross-Entropy Loss
DeepSeekQwen7B Open-Source 7B DeepSeek License Cross-Entropy Loss
3 Qwen?2 72B Instruct Open-Source 72B Tongyi Qianwen Cross-Entropy Loss
= Qwen2.5-72B-Instruct Open-Source 72B Tongyi Qianwen Cross-Entropy Loss
= Qwen/Qwen2.5-72B-Instruct Open-Source 72B Tongyi Qianwen Cross-Entropy Loss
= QwQ-32B Open-Source 32B Apache 2.0 Cross-Entropy Loss
- Qwenl.5 110B Chat Open-Source 110B Tongyi Qianwen Cross-Entropy Loss
Qwenl.5 72B Chat Open-Source 72B Tongyi Qianwen Cross-Entropy Loss
Qwen-2.5-7B-Instruct Open-Source 7B Tongyi Qianwen Cross-Entropy Loss
Qwen-2.5-Math-7B-Instruct Open-Source 7B Tongyi Qianwen Cross-Entropy Loss
Mixtral 8x22B v0.1 Open-Source 176B Apache 2.0 Cross-Entropy Loss
Mixtral-8x22B-Instruct-v0.1 Open-Source 176B Apache 2.0 Cross-Entropy Loss
WizardLM 8x22B Open-Source 176B Apache 2.0 Cross-Entropy Loss
WizardLM-2-8x22B Open-Source 176B Apache 2.0 Cross-Entropy Loss
dbrx-instruct Open-Source 132B Databricks Open Model Cross-Entropy Loss
SkyT1 Open-Source 32B Apache 2.0 Cross-Entropy Loss
GRM-Llama3-8B-rewardmodel-ft Open-Source 8B MIT Pairwise Ranking Loss
GRM-Llama3.2-3B-rewardmodel-ft Open-Source 3B Apache 2.0 Pairwise Ranking Loss
GRM-Gemma2-2B-rewardmodel-ft Open-Source 2B Apache 2.0 Pairwise Ranking Loss
2 Skywork-Reward-Llama-3.1-8B-v0.2 Open-Source 8B Skywork License Pairwise Ranking Loss
2 QRM-Llama3.1-8B-v2 Open-Source 8B MIT Quantile Regression Loss
2 URM-LLaMa-3.1-8B Open-Source 8B Skywork License Uncertainty-Aware Loss
e GPM-Llama-3.1-8B Open-Source 8B MIT Pairwise Ranking Loss
; Llama-3-OffsetBias-RM-8B Open-Source 8B Llama 3.1 Community Pairwise Ranking Loss
z ArmoRM-Llama3-8B-v0.1 Open-Source 8B Llama 3.1 Community Pairwise Ranking Loss
§ Qwen2.5-Math-PRM-7B Open-Source 7B Tongyi Qianwen Cross-Entropy Loss
&~ EurusPRM-Stagel Open-Source 7B Apache 2.0 Cross-Entropy Loss
EurusPRM-Stage2 Open-Source 7B Apache 2.0 Cross-Entropy Loss
internlm?2-7b-reward Open-Source 7B Apache 2.0 Pairwise Ranking Loss
Decision-Tree-Reward-Llama-3.1-8B Open-Source 8B Skywork License Decision Tree Loss
—_ Skywork-Reward-Gemma-2-27B-v0.2 Open-Source 27B Skywork License Pairwise Ranking Loss
2 QRM-Gemma-2-27B Open-Source 27B MIT Quantile Regression Loss
T INF-ORM-Llama3.1-70B Open-Source 70B Custom License Binary Cross-Entropy Loss
;:E; Qwen2.5-Math-RM-72B Open-Source 72B Tongyi Qianwen Cross-Entropy Loss
4 Qwen2.5-Math-PRM-72B Open-Source 72B Tongyi Qianwen Cross-Entropy Loss
= internlm2-20b-reward Open-Source 20B Apache 2.0 Pairwise Ranking Loss
~ Decision-Tree-Reward-Gemma-2-27B Open-Source 27B Skywork License Pairwise Ranking Loss

C.2 Verification Baselines

C.2.1 Verifier-Free Approaches

First Sample (Pass@1): This baseline uses only the first generated response without any verification or
selection mechanism. It represents the standard approach where models generate a single response and
provides a lower bound for performance comparison. This method does not scale test-time compute or

employ verification.

Majority Voting: A verifier-free approach that generates multiple candidate responses and selects the
most frequent final answer across all responses [5, 11, 70]. This method leverages repeated sampling
but does not use verification models to assess response quality. Instead, it relies on the assumption that
correct answers will appear more frequently than incorrect ones across multiple generations.

C.2.2 Alternative Verification Strategies

Naive Unweighted Aggregation: We consider three oracle configurations using the top-1, top-5,
and top-10 verifiers (ranked by their agreement with ground-truth labels). Across all datasets, these
oracle ensembles substantially outperform baselines. On average, the best-performing unweighted
ensembles exceed first-sample performance by 20.3% and outperform majority voting by 15.0%
(see Figure 2). For more difficult benchmarks such as GPQA and MMLU Pro, the top-5 and top-10
ensembles consistently outperform top- 1, suggesting that verifier diversity is especially beneficial on
challenging examples. However, these oracle ensembles rely on access to ground truth to rank verifiers,
limiting their use in practice and motivating the need for learned, unsupervised weighting.

Naive Bayes: We implement a Naive Bayes classifier that models the probability of response correctness

. . P31, 885 |yi;=1)P(ys;=1 ..
given verifier scores: P(yij = 1[sij1,.-,8ijm) = e P(gs?:;i.yfj,s,ui)(y” ', Under the conditional

indepepdence assumption, thig factorizes as P(S;j1, ..., Sijm|Yi; = 1) = HZ‘ZI P(sijk|Yij = 1).
We estimate the parameters using labeled data from the development set. This approach provides
a probabilistic framework for aggregating verifier outputs but requires labeled data for parameter
estimation.

Logistic Regression: We train a logistic regression classifier where the input features are the verifier
SCOTeS [8;1,-..,5jm) and the output is the correctness of each response: P(y;; =1|sij) =o(w’'sij+b),
where o is the sigmoid function. The weights w and bias b are learned using labeled training data.
This supervised approach can capture more complex relationships between verifier outputs than naive
averaging but requires substantial labeled data for effective training.

Multi-Agent Verification (MAV) [41]: This approach combines multiple "Aspect Verifiers" (AVs) -
off-the-shelf LLMs prompted to verify specific aspects of candidate outputs through binary True/False
approvals. Unlike reward models, AVs require no additional training and can be easily combined
through voting mechanisms. The MAV framework uses BoON-MAV (Best-of-N with Multi-Agent
Verification), which: (1) samples n candidate outputs from a generator LLM, (2) collects binary
approvals from multiple aspect verifiers that vary across three dimensions (base LLM, aspect to verify,
and verification strategy), and (3) selects the output with the most approvals. In our implementation, we
use Llama 3.3 70B Instruct as the judge model rather than Gemini 1.5 Flash/Pro as used in the original
paper.

Self-Verification [93]: This method implements a sophisticated sampling-based search approach
where models verify their own responses through detailed natural language analysis. The approach
goes beyond simple self-critique by using structured verification prompts that: (1) rewrite candidate
responses in rigorous mathematical theorem-lemma-proof format, (2) systematically scan for errors
through step-by-step analysis, and (3) compare responses to localize potential mistakes. The method
leverages two key principles: comparing across responses provides signals about error locations (since
models struggle with error recall but can identify errors when given their locations), and different output
styles are optimal for different tasks (chain-of-thought for generation, rigorous mathematical format
for verification). This approach differs from naive self-verification by using structured, multi-step
verification protocols rather than simple correctness judgments.

32

Table 15: Logistic Regression and Naive Bayes Performances across Datasets and Dev Set Sizes
Model Dev Set Size
Size 001 005 02 05 1.0
Logistic Regression 70B 70.5% 74.7% 81.4% 93.1% 97.2%

Dataset Approach

MATH-500 " "aive Bayes ~ 70B 67.4% 78.1% 85.0% 89.2% 92.2%

. Logistic Regression 70B 55.9% 59.4% 69.8% 71.4% 72.9%

GPQA Diamond ™G e Bayes ~ 70B 47.2% 49.2% 57.6% 62.1% 64.3%
MMLU Pro Logistic Regression 70B 72.1% 81.0% 84.6% 86.0% 92.0%

Naive Bayes 70B 60.2% 73.1% 73.1% 78.6% 78.6%

C.3 Scaling Trends of WEAVER

Scaling laws describe how performance metrics such as accuracy, sample efficiency or compute cost
change as we scale controllable resources, i.e. the number of trials K, model capacity. [33] showed that,
for fixed-parameter Transformer language models, the cross-entropy loss decreases as a power-law
in both model size and data. This framework has since been extended to explore optimal tradeoffs
between model and data scaling [30], as well as inference-time scaling with multiple samples [5, 12].

First, we establish the power law scaling of the Pass @K rate. Assume the ¢-th problem has an unknown
“difficulty” p; € [0,1], the probability that one response is correct. With K independent samples, the
chance we get at least one correct response is

¢i(pi, K)=1—(1—p;) X ~1—exp(—p;-K) forsmall p;

Define the indicator variable:

Y.— 1, ifthe i-th query is solved at least once (with probability g;),
*710, otherwise,

and let the total number of solved problems be Y = Z?LlX i

The expected coverage (Pass@K) is the expected fraction of problems solved after trying K times per
problem:

N
Pass@K::IE[Y]/N:%Z(l—(l—pi)K)

=1

To model population-level variation in problem difficulty, we assume each problem’s correctness
probability p; is drawn from a Beta distribution: p; ~ Beta(a,(3). This captures the idea that some
problems are easier (high p;) while others are harder (low p;), with the overall distribution controlled
by the shape parameters «, 8. Then, the fraction of problem that can be solved in K attempts follows,

PaSS@K:EpNBeta(a, B) [1 - (1 _p)K]

(a, S+K)

B
L RV SU
=1 EpNBeta(oz,ﬁ)[(l p7]=1 B(a, B) "

by the definition of the Beta function B(-,-). Taking logarithm:

B(a,ﬁ—i—K)) %_B(oz, B+K)
B(a, B) B(a, B)

by log(1—x)~ —x when « is small, which holds for large K. Then, expressing the Beta function in
terms of the Gamma function leads to:

logPass@K =log (1 —

I(6+K)[(a+p3)
LB (a+pB+K)

logPass@K ~ —

33

For large K, we can apply Stirling’s approximation of the Gamma function logT'(z) ~ xzlogx — x4+
Llog(2m)+ 1loga:

log[—logPass@K] =logl'(3+ K) +logl'(a+) —logD'(8) —logl'(a+ 4+ K)
~(B+K)log(B+K)—(a+B+K)log(a+B+K)+ ;log<

~(B+K)logK — (a++ K)log K +const
=—alogK +log(

B+K)
a+B+K

when we retain the leading term. In turn, the log of the expected coverage follows a power law in K,
scaling as:
logPass@K = —exp(—a logK +log()=—(K ¢ (12)

Verifier Success Modeling Now suppose we pass the K candidates through a scoring model
("verifier”) which selects the top-scoring answer. The verification process succeeds if (i) at least one
correct answer was generated and (ii) the verifier ranks a correct answer highest.

Selection@ 1 (K) :=P[top-scoring response is correct] (13)

Assume the verifier assigns scores such that correct responses are drawn from a score distribution f1,
and the incorrect responses from a distribution fo. Let s®V) = {s; :y; = 1} and s(® = {s; :y; =0}
denote the scores of correct and incorrect responses, respectively. Then a query is successfully verified
if:

Selection@1 =P|maxs™) >maxs(®

Our goal is to compute the probability that the maximum of ci.i.d draws from f; exceeds the maximum
of K —cdraws from fj.

To model the correctness of responses, we assume each query ¢ has a latent correctness probability
p; ~ Beta(a, 3), reflecting query-specific difficulty. Given p;, each of the K responses is sampled
independently as:

yij ~Bernoulli(p;), j=1,...K

This implies the number of correct responses follows a Binomial distribution:

K
Ci= yi; ~Binomial(K p;)
=1

assuming (1) conditional independence of responses given p;, (2) identical correctness probabilities
within a query, and (3) a fixed number of responses K.

Because the correctness probability p varies across queries, the dataset-level Selection@1 curve
requires marginalizing over p:

Selection@1(K) =, pew(a,p) [Selection@1 (K | p)]

Combined with the need to model max comparisons over verifier scores, it renders the exact calculation
of Selection@1 analytically intractable.

To enable tractable, smooth modeling of Selection@ 1, we introduce the following parametric form:
Selection@l(K)zexp(—gK—a)-(1-(1-@“) (14)

* The coverage term exp(—(K ~%) approximates the probability that at least one correct
response is generated.

* The verification term 1 — (1 —7)% " approximates the chance that the top-scoring response is
correct, given that at least one correct response exists. The parameter -y controls whether veri-
fier performance improves sublinearly or superlinearly with K. The parameter 7 represents
the effective per-response probability that a correct response is successfully selected by the
verifier, conditioned on the response being correct and included in the candidate set.

34

To obtain practical scaling trends, we fit parametric models in Eq. (14) to the empirical averages
computed from 5 independent runs for each value of K, across each dataset and verification strategy.
Specifically, we use the L-BFGS-B algorithm to optimize a smooth approximation following [29]. To
ensure numerical stability and robustness to outliers or heavy-tailed noise in the observed selection
accuracies, we minimize the Huber loss between the predicted values and the empirical means. The
Huber loss behaves quadratically for small residuals and linearly for large ones, making it less sensitive
to outliers than mean squared error (MSE) while maintaining smooth differentiability for gradient-based
optimization. It is defined as,

1,2 '
(L if|r| <o
Ls(r)= {5(|r| —16) otherwise

where § > 0 is a tunable threshold that controls the transition between the two regimes. We search over
§€{0.01,0.05,0.1,0.25,0.5} to select the value that yields the best fit.

Additionally, we introduce floor and ceiling parameters to bound the predicted values and model
saturation behavior. The floor accounts for the irreducible failure rate even at high K, while the ceiling
models the upper bound on achievable performance (e.g., due to imperfect verifiers or ambiguous
problems). The final fitted form is:

Selection@1(K) = floor+ (ceil — floor) -exp(—(K ~)- (1 - (1—7T)KW) (15)

We can use an unbiased estimator to evaluate best-of-k selection accuracy when a fixed verifier is
used to rank responses, as described in [69]. However, in the case of WEAVER, the development set
constitutes 1% of the data and is itself selected based on the value of K. In turn, the ranking of responses
is no longer independent of K, introducing bias into the best-of-k estimate.As a result, we instead rely
on Monte Carlo estimates to approximate best-of-k performance, sampling k responses multiple times
and computing the average accuracy of the top-ranked output under the K -dependent verifier. We use
an unbiased estimator for coverage, as described in [12].

Fig. 8 and Fig. 9 along with Table 16 illustrate how the different verification strategies scale with
the number of generations and the fit to the parametric form in Eq. (14). Each method exhibits
characteristic scaling behavior that aligns with Eq. (14). WEAVER demonstrates improved performance
over naive ensembles and majority voting. The fitted parameters in Table 16 quantitatively capture
these trends across datasets, providing evidence that the parametric from in Eq. (15) closely model
empirical outcomes. Fig. 10 and Fig. 11 along with Table 17 illustrate the predictive performance of the
parametric form in Eq. (15), showing that models fit on subsets of K can extrapolate to unseen values
of K.

Table 16: Fitted parameters for Scaling Trends in Fig. 8 and Fig. 9.

Dataset Approach Equation floor ceil ¢ a 7 ¥ R2fit MSE fit)
GPQA-v2-Diamond (70B) ~ Pass@K y="floor+ (ceil—floor)-exp(—¢-K () 0.0000 0.9429 0.7603 0.3475 X X 0.9999 0.0000 0.5000
GPQA-v2-Diamond (70B) ~ Weaver y="floor+ (ceil—floor)-exp(—C-K~¢)(1-(1-m)X") 03958 06728 07320 15865 03250 05053 09994 0.0000 0.1000
GPQA-v2-Diamond (70B) ~ Majorityl @K y=floor+(ceil—floor)-exp(—C- K~ ¢)(1—(1—m)X") 04283 04710 0.0499 1.0000 0.1217 1.0091 0.8634 0.0000 0.0100
GPQA-v2-Diamond (70B) Naive Ensemble = floor-+(ceil —floor)-exp(—¢- K ~()(1—(1—-m)%") 03921 0.6071 06553 19147 04224 05000 09975 0.0000 0.2500
MATH-500-v2 (70B) Pass@K y=floor+(ceil—floor)-exp(—(- K~ ¢) 0.6262 1.0000 0.8394 0.6427 X X 0.9994 0.0000 0.2500
MATH-500-v2 (70B) Weaver y="floor+ (ceil - floor)-exp(—¢- K ~¢)(1—(1-x)%") 07870 09371 3.3908 3.0000 0.2869 0.5000 0.9958 0.0000 0.1000
MATH-500-v2 (70B) Majorityl @Ky =floor+ (ceil —floor) -exp(—¢- K ~¢)(1—(1-x)%") 07747 0.8238 10.0000 2.1433 00885 24951 0.8655 0.0001 0.1000
MATH-500-v2 (70B) Naive Ensemble ¢ =floor+ (ceil—floor)-exp(—¢- K ~¢)(1—(1—x)%") 07883 09282 40033 3.0000 02573 0.5000 09961 0.0000 0.0100
MMLU-Pro-v2 (70B) Pass@K y="floor+(ceil —floor)-exp(—¢- K () 0.0000 0.9828 0.3303 0.3465 X X 0.9967 0.0000 0.2500
MMLU-Pro-v2 (70B) Weaver y="floor+ (ceil—floor)-exp(—C-K~¢)(1—(1—m)X") 06912 09148 15284 30000 02764 05000 09987 0.0000 0.1000
MMLU-Pro-v2 (70B) Majorityl @K y=floor+ (ceil —floor)-exp(—C-K~¢)(1—(1-m)%") 0.6933 07399 0.0498 1.0001 0.1531 10123 09451 0.0000 0.0100
MMLU-Pro-v2 (70B) Naive Ensemble y = floor+ (ceil —floor)-exp(—¢- K ()(l*(lf'yr)"ﬁ') 0.6969 0.8874 1.7834 3.0000 0.2403 0.5000 0.9944 0.0000 0.2500
MMLU-College-v2 (70B) Pass@K y="floor+ (ceil—floor)-exp(—¢-K () 0.5924 0.9744 0.5071 0.5682 X X 0.9982 0.0000 0.0100
MMLU-College-v2 (70B) ~ Weaver y="floor+ (ceil—floor)-exp(—C-K~¢)(1—(1—-m)X") 08234 09477 44129 3.0000 03622 05000 09987 0.0000 0.0100
MMLU-College-v2 (70B) ~ Majorityl @K y="floor+(ceil—floor)-exp(—¢- K~ ()(1—(1—=m)%") 0.8197 0.8412 00498 1.0001 02057 1.0173 0.8912 0.0000 0.0100
MMLU-College-v2 (70B) ~ Naive Ensemble 3= floor- (ceil — floor) -exp(—¢- K~ ¢)(1—(1-m)%") 0.8235 09266 3.8766 3.0000 03012 05000 09925 0.0000 0.0500
GPQA-v2-Diamond (8B) Pass@K y="floor+ (ceil - floor) -exp(—C- K C) 02262 09926 25454 08474 X X 0.9996 0.0000 0.1000
GPQA-v2-Diamond (8B) ~ Weaver y="floor+ (ceil —floor)-exp(—¢-K~¢)(1—(1—x)%") 02463 04549 00534 1.0020 0.1953 07089 09948 0.0000 0.0500
GPQA-v2-Diamond (8B) ~ Majorityl @K y=floor+ (ceil —floor)-exp(—¢-K~¢)(1—(1—x)%") 02783 03029 1.2431 0.6756 00630 2.5000 0.5929 0.0000 0.0500
GPQA-v2-Diamond (8B) ~ Naive Ensemble ¢ =floor+ (ceil—floor)-exp(—¢- K ~¢)(1—(1-x)%") 02359 03727 00701 1.0016 03871 0.5000 09408 0.0001 0.0100
MATH-500-v2 (8B) Pass@K y=floor+(ceil—floor)-exp(—¢- K () 0.4099 1.0000 17182 0.8949 X X 0.9976 0.0001 0.0100
MATH-500-v2 (8B) Weaver y="floor+ (ceil - floor)-exp(—C-K~¢)(1—-(1-m)X") 04110 07440 00785 1.0033 03333 05036 09984 0.0000 0.0100
MATH-500-v2 (8B) Majorityl @Ky =floor+ (ceil - floor) -exp(—¢- K ~¢)(1—(1-x)%") 05058 07038 51187 10175 00666 2.5000 09964 0.0000 0.0500
MATH-500-v2 (8B) Naive Ensemble ¢ =floor+ (ceil —floor) -exp(—¢- K ~¢)(1—(1-x)%") 05071 07508 1.8068 3.0000 0.2890 0.5000 0.9796 0.0001 0.0100
MMLU-Pro-v2 (8B) Pass@K y="floor+ (ceil—floor)-exp(—¢-K () 0.3906 1.0000 1.9045 0.7590 X X 0.9991 0.0000 0.0100
MMLU-Pro-v2 (8B) Weaver y=floor+(ceil—floor)-exp(—C- K~ ¢)(1—(1—m)X") 04764 0.6846 27876 3.0000 02136 0.6141 09985 0.0000 0.2500
MMLU-Pro-v2 (8B) Majorityl @K y=floor+ (ceil —floor)-exp(—¢- K ~¢)(1—(1—7)%") 04439 05662 0.1136 09916 02787 0.6659 09084 0.0001 0.0100
MMLU-Pro-v2 (8B) Naive Ensemble y = floor+ (ceil —floor)-exp(—¢- K ~¢)(1—(1-7)K") 04771 07025 2.8863 3.0000 0.1728 0.5181 0.9986 0.0000 0.1000
MMLU-College-v2 (8B) Pass@K y="floor+ (ceil—floor)-exp(—¢-K () 04316 0.9924 0.9887 09123 X X 0.9994 0.0000 0.5000
MMLU-College-v2 (8B) Weaver y="floor+ (ceil —floor)-exp(—C-K~¢)(1—(1-m)%") 06226 08494 12646 3.0000 03346 0.5000 09958 0.0000 0.2500
MMLU-College-v2 (8B) ~ Majorityl @K y=floor+ (ceil —floor) -exp(—¢- K ~¢)(1—(1—7)%") 06359 07368 1.0929 0.5130 00576 2.5000 0.9949 0.0000 0.0500
MMLU-College-v2 (8B) ~ Naive Ensemble ¢ =floor+ (ceil—floor)-exp(—¢-K~¢)(1—(1—7)%") 06283 0.8085 14279 30000 03914 05000 09845 0.0000 0.0100

35

GPQA-v2-Diamond (70B)

MATH-500-v2 (70B)

k (Number of Generations)

100
2 R 904
2 2
& & ’
w (] 801 /—
wv (7] "
8 8
Q Q — Pass@k PL(Exp) (Fit)
3 3 701 — Weaver Bernoulli (Fit)
—— Majority Vote Bernoulli (Fit)
NaiveEns Bernoulli (Fit)
T T T T 60 T T T T
21 23 23 27 2! 23 23 27
k (Number of Generations) k (Number of Generations)
MMLU-Pro-v2 (70B) MMLU-College-v2 (70B)
100 100
95 +
g 0] & 90 4
2 2
=5 80 A & 851 adre———
801
4 70{# o
5 5 75 |
v w
60 70 -
2|1 2I3 2‘5 2|7 il 2I3 2|5 2‘7
k (Number of Generations) k (Number of Generations)
Figure 8: WEAVER Scaling trend fit for 70B models
GPQA-v2-Diamond (70B) MATH-500-v2 (70B)
100 —e-
-@-
S £ 90
2 2
& & y ! o
. w801 f__
%] w0 "
[0 [0
8 8 —— Pass@k PL(Exp) (Fit)
S S 701 — Weaver Bernoulli (Fit)
—— Majority Vote Bernoulli (Fit)
MNaiveEns Bernoulli (Fit)
T T T T 60 T T T T
21 23 23 27 21 23 23 27
k (Number of Generations) k (Number of Generations)
MMLU-Pro-v2 (70B) MMLU-College-v2 (70B)
100 100
- 95 - —a:
3 901 =8 5 :
g < 90
2 2
& 801 S 85+ 2Zr
v e 9
80+
4 701 *# 8
5 5
a a 751
60 701
2|1 2|3 2‘5 2|7 il 2|3 2|5 2‘7

k (Number of Generations)

Figure 10: WEAVER Scaling trend predicted for 70B models

36

GPQA-v2-Diamond (8B) MATH-500-v2 (8B)

100 100
90 +
:\5 801 g 80 -
2 2
5 60 & 707
] 3 6o
Q (] 7
Y 401 o —— Pass@k PL(Exp) (Fit)
L.?] = 3 50 —— Weaver Bernoulli (Fit)
20 - Majority Vote Bernoulli (Fit}
40 1 NaiveEns Bernoulli {Fit)
2I1 2|3 2‘5 2|7 il 2I3 2|5 2‘7
k (Number of Generations) k (Number of Generations)
MMLU-Pro-v2 (8B) MMLU-College-v2 (8B)
100 100
—_ — 90
2 504 2
3 Y 80
[+ [1+]
o o
B 60 @ 701
4] il
(v |9
5 5 .
A & 60
40
501
2|1 2I3 i-” 2|7 il 2I3 2I5 2‘7
k (Number of Generations) k (Number of Generations)
Figure 9: WEAVER Scaling trend fit for 8B models.
GPQA-v2-Diamond (88B) MATH-500-v2 (8B)
100 ps 100
90 4
;\5 5] § 801
2 2
g 60 - E 701
(2] vy
@ 404 -8 | § 601
U 8 —— Pass@k PL(Exp) (Fit)
l..?] = S 501° = Weaver Bernoulli (Fit)
20 - Majority Vote Bernoulli (Fit)
401 NaiveEns Bernoulli (Fit)
2|1 2I3 2‘5 2|7 il 2|3 2I5 2‘7
k (Number of Generations) k (Number of Generations)
MMLU-Pro-v2 (8B) MMLU-College-v2 (8B)
100 100
—_ — 90
2 g0d 2
] Y 80
1] [1+]
o o
f 60 @B 70
Q (]
(] (%]
5 5 .
& n 607
40
501
2|1 2|3 2‘5 2I7 il 2|3 2|5 2‘7
k (Number of Generations) k (Number of Generations)

Figure 11: WEAVER Scaling trend predicted for 8B models

37

Table 17: Fitted parameters for Scaling Trends with 90% of data in Fig. 10 and Fig. 11.

Dataset Approach floor ceil ¢ a = ¥ R2fit MSEfit MSE pred 5
GPQA-v2-Diamond (T0B) ~ Pass@K y= ﬂoor+(ccll ﬂoor) exp(— 00000 09357 07534 03537 X X 09999 0.0000 0.0000 0.1000
GPQA-v2-Diamond (70B) ~ Weaver 04050 0.6756 09195 16227 03163 05000 09993 00000 0.0000 0.0500
GPQA-v2-Diamond (70B) Majorityl @K 04320 04678 00707 09864 0.0414 16541 08601 00000 0.0001 0.0100
GPQA-v2-Diamond (70B) Naive Ensemble 03809 0.6061 05211 19075 04360 05000 09972 00000 0.0000 0.0500
MATH-500-v2 (70B) Pass@K 06639 09952 09836 0.6936 X X 09995 0.0000 0.0000 0.0100
MATH-500-v2 (70B) Weaver 07869 09339 35000 3.0000 02985 05000 09954 00000 00000 0.0500
MATH-500-v2 (70B) Majorityl @K 07747 0.8241 100000 2.1272 0.0888 24999 0.8560 0.0001 0.0000 0.0500
MATH-500-v2 (70B) Naive Ensemble 07879 09221 42081 3.0000 02789 05000 09966 00000 0.0000 0.1000
MMLU-Pro-v2 (70B) Pass@K 00000 09785 03263 03543 X X 09959 0.0000 0.0000 0.1000
MMLU-Pro-v2 (70B) Weaver 06912 09148 15277 3.0000 02765 05000 09984 00000 00000 02500
MMLU-Pro-v2 (70B) Majority] @K 06923 07379 00495 1.0001 01711 10148 09481 00000 0.0000 0.0500
MMLU-Pro-v2 (70B) Naive Ensemble 06979 0.8907 18452 3.0000 02327 05000 09931 00000 0.0000 0.1000
MMLU-College-v2 (70B) ~ Pass@K 07723 09655 13237 07746 X X 09987 0.0000 0.0000 0.1000
MMLU-College-v2 (70B) ~ Weaver 08184 09436 22897 20761 04148 05000 09979 00000 0.0000 02500
MMLU-College-v2 (70B) ~ Majority] @K 08196 08413 00498 10001 02051 10153 08814 00000 0.0000 0.0100
MMLU-College-v2 (70B) Naive Ensemble i 08234 09262 39001 3.0000 03036 05000 09909 00000 00000 0.1000
GPQA-v2-Diamond (8B) ~ Pass@K y="floor+ (ceil - ﬂoor) exp(— 02223 09976 24975 08328 X X 09996 00000 0.0000 0.2500
GPQA-v2-Diamond (8B) Weaver y= ﬂoul+(ce11 ﬁoox) exp(— 02316 04678 00559 1.0027 02347 05940 0995 00000 00002 0.0100
GPQA-v2-Diamond (8B) Majority] @K 02773 02979 0.1335 09633 0.0479 25000 05476 00000 00001 0.0500
GPQA-v2-Diamond (8B) ~ Naive Ensemble K 02871 03845 85633 3.0000 02431 05000 09643 00000 00001 0.0100
MATH-500-v2 (8B) Pass@K K- 03986 1.0000 16393 08786 X X 09976 0.0001 0.0001 0.0100
MATH-500-v2 (88) Weaver K- 04149 07417 00750 10042 03261 05179 09981 00000 0.0000 0.0100
MATH-500-v2 (8B) Majorityl @K K- 05061 0.6976 59901 11205 00782 25000 09960 00000 00000 0.0500
MATH-500-v2 (8B) Naive Ensemble K- 05009 07342 16358 3.0000 03321 05000 09803 0.0001 0.0005 0.0100
MMLU-Pro-v2 (8B) Pass@K K¢) 03877 1.0000 18798 07549 X X 09990 0.0000 0.0000 0.1000
MMLU-Pro-v2 (8B) Weaver K- 04770 0.6937 3.1648 3.0000 02172 05705 09986 0.0000 0.0001 0.0500
MMLU-Pro-v2 (8B) Majorityl @K K- 04663 1.0000 24923 0.1016 0.0362 25000 09600 0.0001 0.0002 0.0500
MMLU-Pro-v2 (8B) Naive Ensemble K- 04777 07207 30170 3.0000 0.1613 05000 09987 00000 00000 0.0100
MMLU-College-v2 (88) Pass@K K- 04442 09912 10258 09265 X X 09993 0.0000 0.0000 0.5000
MMLU-College-v2 (8B) Weaver K- 06178 0.8447 11473 3.0000 03523 05000 09957 00000 00001 0.2500
MMLU-College-v2 (8B) Majorityl @K K- 06254 07186 05765 09281 02058 12287 09736 00000 00001 0.0100
MMLU-College-v2 (8B) Naive Ensemble 3= floor- (ceil - foor)-cxp(— K~ 06074 09813 12560 0.1636 03060 24651 09988 00000 00000 0.0100

38

Table 18: WEAVER with 8B Models Exceeds Majority Voting and Naive Ensemble across All
Datasets: Candidate are generated with Llama 3.1 8B Instruct while the weak verifiers are 8B
parameters or smaller in size.

Datasets
. MATH MMLU MMLU
Methodology Generations () 500 GPQA College Pro Average
First Sample 1 49.8% 283% 64.1% 46.6% 47.2%
. Majority Voting 100 69.0% 30.5% 7127% 564% 57.2%
£ Top-Ranked RM from RewardBench [39] 100 73.8% 254% 70.1% 53.4% 55.7%
2 Top-10 RM Ensemble from RewardBench [39] 100 702% 22.1% 73.9% 49.4% 53.9%
= Multi-Agent Verification [41] 100 65.4% 31.4% 705% 552% 55.6%
Self-Verification [93] 100 71.4% 322% 704% 53.0% 56.8%
WEAVER 100 80.0% 47.1% 857% 672% 70.0%
GPT-40-mini 1 76.8% 38.4% 822% 61.8% 64.8%
Claude 3.5 Haiku 1 70.0% 36.4% 759% 652% = 61.9%
Oracle Verifier (Pass @ 100) 100 99.2% 952% 985% 96.8% 97.4%
C.4 Scaling Candidate Generations
00 MATH500 ” GPQA Diamond ’s MMLU Pro
17.5
20 20
15.0
12.5 15 15 —e— Naive Ensemble

—e— Weaver

75 \\&c’_% 10 10 Weaver Distilled
5.0 %=

False Positives Predicted (%)
5
o

5 5
2.5
0.0 0 0
1 2 3 456 7 8 910 12 3 4 56 7 8 9 10 1 2 3 456 7 8 910
Total Models in Verifier bl Total lels in Verifier bl Total Models in Verifier Ensemble
Figure 12: False Positive Rates across Verification Systems
GPQA Diamond MATH500 MMLU Pro
10 100 ——= 100
- 03-mini P -
90 B e e N I id ’,4’
- L 90 90) jPtas
03-mini
& 8o s I i e i Rt At et
,,,,,,, o3mini______f . s
7] 7 80 +4.6% 80 /
E N '/ Caln // 10.8%
s +10.8%
u 60 / 70 /—I 70 e Gain
o , +17.0% —
Y 50 v Gain
a 60 60
40 / 7’ — ;\7 —
’ First Sample / p -
30 7 z ~——_First Sample~— 50 501 47 / First Sample
20 o1 22 23 24 25 26 27 20 21 22 23 24 25 26 o7 20 21 22 23 24 25 6 7
Number of Repeated Generations Number of Repeated Generations Number of Repeated Generations
—--Pass@K (Oracle) —— Weaver Naive Ensemble —— Majorityl@K —— Multi-Agent Verification Self-Verification

Figure 13: WEAVER Scaling - 8B Generations and Models

C.5 Scaling Verifier Count

In Table 19, we include results of scaling verifier scores. We note that for reward models (RMs),
which are typically deterministic [39, 71], multiple scores must be obtained by varying the prompt;
for LM Judges, we can vary either the prompt or the sampling temperature to generate diverse outputs
from the same model (Table 19). We find that for both types of weak verifiers, RMs and LM judges,
scaling the number of models yields better performance than sampling multiple evaluations from the
same model via prompt tuning or temperature variation. However, we note that these approaches are
complementary.

39

Table 19: Ensembling with Multiple Verifiers Outperforms Increased Sampling with Single
Verifier: Candidate responses are generated with Llama 3.3 70B Instruct while the weak verifiers range
in size from 8B to 72B parameters. For details on prompting, please see Appendix C.7.

Methodology Benchmarks
MATHS500 GPQA MMLU Pro
First Sample 78.0% 42.9% 69.9%
Majority Voting 83.0% 47.4% 74.4%
Best Reward Model 04.4% 58.4% 81.8%
(1 Score)
Best Reward Model

(5 Scores, 5 Prompts) 93:2% 55.3% 82.5%

Top-5 Most Accurate

Reward Models 95.4% 64.1% 87.3%

Best LM Judge
(1 Score)

Best LM Judge
(5 Scores, 5 Prompts)

90.2% 61.1% 79.5%

88.1% 57.2% 80.8%

Top-5 Most Accurate

LM Judges 93.4% 65.2% 85.4%

Accuracy Heatmap: MMLU-Pro (70B)

WS - Discrete WS - Continuous

Naive Ensemble

0.92

FS

087 089

o

085 087 088 089

HoE NN
o

N

085 087 089 089

Number of Verifiers
Selection Accuracy

= A

1 2 4 8 16 32 64 100 1 2 16 32 64 100 2 4 8 16 32 64 100

Number of Repeated Generations Number of Repeated Generations Number of Repeated Generations

Figure 14: WEAVER Performance Improvements from Scaling Generations and Verifiers: In-
creased candidate generations and weak verifiers available generally improves performance.

When breaking down weak verifiers into RMs or LM Judges, individually, we find that additional LMs
leads average gains of 5.4% and 6.1%, respectively (Table 19). In contrast, sampling additional scores
from a single RM or LM judge yields only 0.8% and 1.1% gains on average. These results suggest
that leveraging the complementary strengths of multiple verifiers can be more effective than eliciting
multiple judgments from a single verifier. Sec. C.7 provides additional details on the verifier prompting.
Finally, Figure 14 illustrates the tradeoff of scaling the number of verifiers versus increasing the number
of scores from a single verifier, showing that scaling verifiers is helpful when the coverage increases as
we increase sample count.

In Fig. 14 illustrates how the number of verifiers and repeated generations interact to influence success
rate. We observe that increasing the number of generations tends to be more effective than increasing
the number of verifiers alone—but only when paired with the right verification strategy. For example,
naive ensembling of verifiers plateaus in performance even as more generations are added, whereas
WEAVER continues to improve with both axes. This highlights that generation diversity is a stronger
driver of performance than verifier count alone, and that weak supervision methods like WEAVER are
essential to fully leverage this diversity. We illustrate the verification generation tradeoff for additional
datasets in Appendix C.3.

40

Model GPQA Diamond MATHS500 MMLUPro Average

Weaver with Llama Verifier 59.4% 91.1% 87.4% 79.3%
Naive Ensemble 52.1% 88.9% 84.1% 75.0%
Weaver with Llama Verifiers - Improvement % +8.3% +2.2% +3.3% +4.3%

Table 20: Performance Comparison of WEAVER with Llama Verifiers and Naive Ensemble with
All Verifiers

Method GPQA MATH500 MMLUPro DevSet | Average
Diamond Size

Oracle & Frontier Models

Oracle Verification (pass @ 100) 88.9 99.8 98.4 - 95.7
03-mini 78.3 96.2 85.5 - 86.7
GPT-40 59.1 74.6 73.3 - 69.0
Unsupervised Baselines
Best-of-N (random) 48.7 82.8 70.6 0% 67.4
Majority Voting 512 88.2 79.4 0% 72.9
Self-Verification 52.3 86.5 78.1 0% 72.3
Naive Ensemble (mean) 54.5 90.6 84.3 0% 76.5
Supervised Baselines — 1.0x Dev Set (100% labeled)
Decision Tree 64.5 87.1 86.3 100% 79.3
AdaBoost’ 67.1 90.2 84.1 100% 80.5
Logistic Regression (L1)* 73.1 92.5 90.2 100% 85.3
Logistic Regression (L2) 78.1 97.2 92.0 100% 89.1
Supervised Baselines — 0.01x Dev Set (1% labeled)
Decision Tree 52.1 69.4 71.0 1% 64.2
AdaBoost’ 53.4 72.1 71.4 1% 65.6
Logistic Regression (L2) 559 70.5 72.1 1% 66.2
Logistic Regression (L1)* 54.1 72.4 73.5 1% 66.7
XGBoost® 57.5 75.1 76.3 1% 69.6
Weaver (Ours) 71.1 934 90.2 1% 84.9
Weaver-Distilled (400M) 66.4 91.1 87.8 1% 81.8

Table 21: Comparison of Verification Methods across Reasoning Benchmarks. WEAVER achieves
strong performance with minimal labeled data (0.01x dev set) compared to supervised methods that
require 100x more labels.

TAdaBoost: n_estimators € {25, 50,75, 100, 150}, learning_rate € {0.1, 0.3, 1.0}, max_depth € {1, 2}, selected
via cross-validation.

*L1-Regularized LR: A=0.01, selected via cross-validation.

$XGBoost: default parameters with num_rounds=10, objective=binary:logistic.

C.6 WEAVER Distillation

1
Weaver

(Goerion).
Predictions * G ti Weaver -
Distilled Frozenm |~ | Generation; || pictiiied | Generation,] x
LM 4. LM
* Generation |

I Generation | v/

[Instruction }
+

LM Generation

=
[
o
<
[0}
-

Training Inference

Figure 15: Overview of WEAVER Distillation (Section 6)

41

For the loss function in WEAVER distillation, we utilized cross-entropy loss with Adam [35]. Our
classification architecture comprises a single linear classification layer with 0.1 dropout applied to the
input, which consists of the final hidden state from the [C L.S] token. Regarding learning dynamics, we
implemented linear warmup and linear decay via the Sentence-Transformers library [61], employing a
learning rate of 5e-6 and training batch size of 64 across all experimental setups.

Weaver: Distilled (0.4B) @® Weaver (70.0B)

Majority Voting (0.0B) @ MAV (70.0B)

Self-Verification (70.0B)

Pareto Region

o O ©
N o N U
n o u o

u
=}

Selection Accuracy (%)
0 o} [o}
o
=}

~
N
3]

~95.0

©
N
5

©
o
=)

Selection Accuracy (%
o] [e¢]
.U'| ~
o w

©
N
[

©
o
)

10° 102

0
Verification Compute Budget (ExaFLOPs)

104

* . *
MATH500 GPQA Diamond
” @
. 99.97%
70 Compute Soaved
99.97% 65
Compute Saved 98.2% of
97.4% of Accuracy Gains
Accuracy Gains 60 Preserved
Preserved
55
82.5 o 50 o .
@) N @)
0 10° 10° 104 40 0 10° 10°
* *
MMLU MMLU Pro
. 2 .
99.97%
99.97% 85 Compute Saved
Compute Saved
97.8% of
Accuracy Gains
98.1% of
Accuracy Gains 80 Preserved
Preserved
e " ° O
()
@ 70 @)
65

10° 102

0
Verification Compute Budget (ExaFLOPs)

104

Figure 16: WEAVER Distilled - Pareto Frontiers: *We train/evaluate on an 80:20 split.

Table 22: Distillation Comparison of WEAVER and Naive Ensemble Across Different Training

Set Sizes

Training Set as Percentage of Entire Dataset Full
Methodology Dataset 5% 10% 20% 50% 30% System
MATHS500 78.4% 80.7% 83.9% 88.2% 91.4% 93.4%
WEAVER GPQA Diamond 42.6% 46.8% 52.7% 63.1% 71.8% 73.2%
MMLU College 83.5% 85.2% 87.6% 91.0% 93.1% 94.9%
MMLU Pro 69.2% 72.5% 76.8% 83.7% 87.8% 90.2%
MATH500 77.8% 79.6% 82.1% 86.4% 89.1% 92.4%
NaiveEnsemble GPQA Diamond 42.1% 44.7% 48.9% 56.2% 62.8% 66.2%
) MMLU College 84.0% 85.3% 87.2% 90.8% 93.5% 95.1%
MMLU Pro 69.5% 71.8% 74.9% 80.3% 84.7% 87.4%

42

C.7 Individual Verifier Optimization

While WEAVER primarily focuses on aggregating multiple weak verifiers to improve overall verification
quality, this appendix explores complementary techniques for optimizing individual verifiers. As
mentioned earlier in the paper, existing weak verifiers often suffer from high false positive rates [73],
which can limit their effectiveness, even within an ensemble.

As we scale the number of repeated samples and employ multiple verifiers, the precision of each
individual verifier becomes increasingly important relative to recall. When many candidate solutions
are available, a verifier can afford to miss some correct solutions (false negatives) as long as its positive
predictions are highly reliable (high precision).

This observation motivates exploring methods to enhance individual verifier quality through methods
such as prompt optimization — tailoring verifier prompts to maximize performance, particularly
precision, with minimal or no labeled data.

C.7.1 LM Judge Prompt Optimization

LM judges often suffer from biases such as position bias (favoring answers in certain positions),
verbosity bias (preferring longer answers), and self-enhancement bias (preferring answers similar to
their own generation patterns) [40, 95], suggesting sensitivity to system and input prompt design.

Throughout our WEAVER experiments, we used fixed, manually engineered prompts for our LM judge
verifiers. However, optimizing these prompts could potentially improve individual verifier precision
and reliability. Multi-Agent Verification [41] demonstrates this by crafting specialized prompts for
specific verification aspects.

We explored systematically optimizing verifier prompts using DSPy [34], an open-source library that
provides algorithms for optimizing language model prompts through discrete search over prompt
candidates guided by a metric function. DSPy optimization works by generating, evaluating, and
refining prompts that maximize task performance on a small labeled dataset.

Experimental Setup: We investigate two dimensions of prompt optimization: (1) optimization space
scaling, where we progressively expand what the optimizer can modify from system instruction only
(0-shot) to including 3 demonstrations (3-shot) and 5 demonstrations (5-shot); and (2) training data
size scaling, where we vary labeled data from 1% to 16% to determine how much data is necessary for
effective prompt optimization.

Our experimental setup uses training examples containing instruction-generation pairs. Since our
datasets have multiple generations per instruction (up to 100), we group examples by instruction before
splitting to prevent data leakage between train and validation sets. We hold out 50% of the dataset
instructions (each paired with 100 candidate generations) for evaluation. For the optimization space
scaling experiment, we randomly select n generations such that n x len(dataset) /2 =250, maximizing
training set diversity while maintaining a fixed training set size. For the data scaling experiment, we
train on different percentages (1%, 2%, 4%, and 16%) of the dataset by calculating the number of
instructions as [num_problems_in_dataset x (train_percentage /100)] and selecting repeated samples
for each instruction with samples = min(max(4,num_problems x 2),20) to avoid overfitting. We use
a consistent random seed to ensure identical dataset splits between optimization runs.

Results: Figure 17 shows results across different datasets and optimization configurations. While we
don’t observe clear scaling relationships across all datasets (possibly due to the increased stochasticity
of LLM-based optimization), we observe an average precision gain of 3.8% of the best judge over
the chain-of-thought (CoT) baseline judge. MATHS00 shows the largest jump in precision of 9% and
shows clear improvement in precision as the optimization space is scaled.

The scaling behavior with training data size (Figure 18) shows slight log-linear improvements in
precision as we increase training data, though gains differ by dataset. MMLU-College shows minimal
benefit from additional data, while the remaining datasets see an average boost of 3.2% in precision
when scaling the training data size from 1% to 16% of the original dataset.

(Figure 19) reveals that optimized prompts often improve both precision and accuracy by reducing
false positive rates - essentially making judges more conservative in their correctness assessments.
This is particularly valuable in the repeated sampling regime, where higher precision improves overall
verification quality.

43

.70

0.
%77 3 CoT Baseline mo.aa 0.67
Custom Baseline
| mmm Optimized (0-shot)
B Optimized (3-shot)
mmm Optimized (5-shot)

0.66

0.58

0.54 0.55
050 051 0.51 852 051
0.5+ e

031 0.30

Precision

0.14

i i
] |:[
0.0~

AIMO GPQA MATH 500 MMLU College ~ MMLU Pro

Figure 17: LM judge prompt optimization using 250 labeled examples consistently yields precision
gains. Baseline methods (CoT and Custom) are compared against DSPy-optimized prompts with
varying numbers of demonstrations (0-shot, 3-shot, and 5-shot).

N @ AMO
@ GPQA
MATH 500
0.67 MMLU College
® MMLU Pro
R ! M S A .
c L
2
0.4+
Y]
g L] @ ——mmmmmmmmmmmmmmmmmmm———mmmm—oosm—sossmsooo L]
034 .
0.29
_______________ 2
0.1 @ececmmmm——————= & ——mmmmm === ettt
: T
10° e

Training Data Percentage

Figure 18: Scaling LM judge prompt optimization training data leads to modest precision gains.
The x-axis shows the percentage of training data used (log scale), and the y-axis shows precision.

These findings suggest that prompt optimization can be a valuable complement to WEAVER’s aggrega-
tion approach. Even with limited labeled data, targeted prompt engineering can enhance individual
verifier quality, benefiting the ensemble as a whole. Further research is needed to define a more
systematic recipe for verifier prompt optimization. Additionally, it remains a question of whether we
can extend prompt optimization to discriminative reward models to enjoy similar gains in performance.

D Miscellaneous

D.1 Compute Requirements

Hardware Infrastructure. Our experiments were conducted using 4 compute nodes, each equipped
with 8 NVIDIA H100 GPUs (80GB HBM3 memory per GPU), for a total of 32 H100 GPUs. Each
node was configured with high-bandwidth NVLink connections between GPUs and inter-node commu-
nication was facilitated via NVIDIA NVLink Switch System to minimize communication overhead
during distributed training and inference.

Model Parallelism and Distribution. For our 72B parameter language models, we employed a hybrid
parallelism strategy combining tensor parallelism, pipeline parallelism, and data parallelism:

44

FPR Reduction vs Precision Gain FPR Reduction vs Accuracy Gain

0101 ¢ AIMO e AMO °
e GPQA 054 ® GPQA
0.08 4 MATH 500 MATH 500
MMLU College MMLU College

c c 0.4+
‘T 0061 @ MMLUPro ‘" ® MMLU Pro
Qo Q °
£ 004 ® > 034
-] v
'ﬁ E
G 0029 3 0.2
Q ® v ®
= PY %)
o 0.00 <

: ® ® 0.1

L] L
—0.02 4
0.0 4
[] e @
0:0 0.‘2 0.‘4 0.‘6 0.‘0 0.‘2 0:4 0.‘6
Reduction in False Positive Rate Reduction in False Positive Rate

Figure 19: Optimized prompts often improve LM judge performance by reducing false positive
rates.

 §-way tensor parallelism across GPUs within each node
* 4-way pipeline parallelism across nodes
* Data parallelism for batch processing

Storage Requirements. Processing datasets of 100GB+ required significant storage infrastructure:

* 4TB NVMe SSDs per node for dataset caching and checkpoints
* 100TB shared network storage for full dataset repository

Software Stack. Our experiments were powered by:

* NVIDIA CUDA 12.2

* PyTorch 2.1 with NVIDIA NCCL for distributed communication

* DeepSpeed ZeRO Stage 3 for memory optimization

* Distributed data loading with webdataset format for efficient streaming

45

	Introduction
	Related Work
	Preliminaries
	Weaver: A Framework for Weak Verifier Aggregation
	How to aggregate multiple verifiers: weighted vs unweighted ensembles
	Weaver: weighted ensembling of verifier scores with minimal labeled data
	Weak Supervision Algorithm

	Results
	Weaver Shrinks the Gap with Frontier LMs
	Weaver Improves Compute-Accuracy Trade-Off for Scaling

	Weaver Distillation: Improving Verification Efficiency at Inference
	Conclusion
	Acknowledgements
	Table of Contents
	Weaver Methodology
	Weak Supervision Model
	Parameter Estimation
	Inference: computing response correctness probabilities

	Adapting Weak Supervision to the Verification Setting
	Motivation
	Adaptation method

	Experiments
	Models and Datasets
	Verification Baselines
	Verifier-Free Approaches
	Alternative Verification Strategies

	Scaling Trends of Weaver
	Scaling Candidate Generations
	Scaling Verifier Count
	Weaver Distillation
	Individual Verifier Optimization
	LM Judge Prompt Optimization

	Miscellaneous
	Compute Requirements

