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Abstract

Generative Adversarial Networks (GANs) and Diffusion Models (DMs) have shown
significant progress in synthesizing high-quality object-centric images. However,
generating realistic object-centric images remains challenging when training datasets
are limited or contain degraded images (e.g., privacy-induced face blurring). Under
these conditions, existing generative models frequently produce images that lack
perceptual quality or exhibit overfitting to the training examples. To overcome these
limitations, we propose a novel hybrid generative model, Focused Diffusion-GAN
(FDGAN), targeting low-data object-centric regimes, which integrates a GAN
discriminator directly into the diffusion model at intermediate denoising stages.
Central to FDGAN is an Additional Noise Perturbation Module (ANPM) that
selectively activates the GAN component only for images sufficiently denoised,
ensuring the discriminator receives meaningful input. Additionally, ANPM applies
targeted noise perturbations within predefined bounding-box regions, implicitly
guiding the model’s focus toward key objects. FDGAN differs from other models
like LayoutDiffusion, which explicitly conditions synthesis on fixed bounding-box
layouts, or Diffusion-GAN and StyleGAN2-ADA, which employ noise augmentation
throughout the entire training process, by combining adversarial training with
targeted noise perturbations at specific intermediate diffusion steps. We evaluate
FDGAN on three small object-centric datasets (Cityscapes subset, Traffic-Signs,
and MS-COCO “potted plant”) and, against strong GAN, diffusion, and object-
centric baselines, show improved perceptual quality (Fréchet Distance) and reduced
overfitting (Feature Likelihood Score). Ablation studies indicate that selective mid-
timestep adversarial guidance together with ANPM improves the realism–overfitting
trade-off in limited-data generative tasks.

1 Introduction

Object-centric image generation has gained significant attention due to its ability to produce high-
quality images where specific objects are accurately and realistically represented (Nichol & Dhariwal,
2021; Wang et al., 2023). This capability is crucial in various domains. For example, in smart-city
applications, object-centric generation supports realistic simulations of urban environments for traffic
analysis and emergency response planning (Mohammadi & Al-Fuqaha, 2018). In manufacturing,
generating diverse images of rare defects helps train accurate defect-classification models when actual
defective samples are scarce (Zhong et al., 2023; Duan et al., 2023). Various generative models have
rapidly evolved to meet these needs, including Variational Autoencoders (VAEs) (Kingma & Welling,
2022; Doersch, 2021), Energy-Based Models (EBMs) (Lee et al., 2023; Yang & Ji, 2023; Yu et al.,
2023), GANs (Goodfellow et al., 2020; Salimans et al., 2016), and Diffusion Models (DMs) (Ho et al.,
2020; Nichol & Dhariwal, 2021).

Among these, GANs and DMs have emerged as leading methodologies due to their superior per-
formance in generating high-quality images (Chakraborty et al., 2023). GANs have demonstrated
remarkable realism, whereas DMs are known for stable training and modeling complex distribu-
tions (Nichol & Dhariwal, 2021). However, both methods individually struggle under limited-data
conditions, motivating hybrid approaches that leverage their complementary strengths.
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Despite significant advances, generating high-quality object-centric images remains challenging,
especially under severely limited or degraded training data conditions (e.g., privacy-induced face
blurring) (Karras et al., 2020a; Sauer et al., 2021; Wang et al., 2023; Zhao et al., 2020; Noguchi &
Harada, 2019). Under these constraints, models often show poor quality (Sauer et al., 2021; Noguchi
& Harada, 2019), limited diversity (Karras et al., 2020a; Dubiński et al., 2023; Zhao et al., 2020;
2022), and overfitting (Karras et al., 2020a; Wang et al., 2023; Zhao et al., 2020; 2022). Small or
degraded datasets often cause replication of training samples, limiting generalization for downstream
tasks like object detection (Ultralytics, 2022; Jocher et al., 2023; Jocher & Qiu, 2024). Ensuring
robust generalization, perceptual fidelity, and diverse outputs under these conditions is thus a central
challenge in generative modeling research (Karras et al., 2020a; Sauer et al., 2021; Zhao et al., 2020;
Bau et al., 2019).

Figure 1: Artifacts in generative models under limited-data Cityscapes: structural inaccuracies,
unrealistic textures, blurred details.

Fig. 1 presents examples generated by four recent generative models—Projected GAN, Diffusion-
GAN, ADM, and LayoutDiffusion—to illustrate common issues in object-centric image generation
under constrained conditions. Projected GAN and Diffusion-GAN frequently produce distorted
or anatomically inconsistent objects. ADM often fails to preserve original domain characteristics,
resulting in ambiguous or blurred images. LayoutDiffusion, despite explicitly conditioning on layouts,
sometimes generates outputs lacking critical details. The first column provides original dataset images
for visual reference. Recent diffusion-based methods like LayoutDiffusion (Zheng et al., 2024), which
explicitly condition on bounding-box (BB) layouts, improve compositional coherence but typically
require large datasets to prevent overfitting.

Addressing these limitations, we propose Focused Diffusion-GAN (FDGAN), a hybrid generative
model that integrates a GAN discriminator D directly into a diffusion-based generator. FDGAN
leverages adversarial feedback selectively at intermediate diffusion steps and introduces an Additional
Noise Perturbation Module (ANPM) that applies BB-localized perturbations so that D sees meaningful
partially denoised inputs. This early-timestep adversarial window and localized perturbation act as
an implicit attention signal, improving realism and object fidelity in low-data regimes while leaving
inference cost unchanged.

Scope and intended use-case. FDGAN is explicitly designed for limited-annotation, object-centric
regimes—on the order of ∼2–3k labeled crops per class, often with degraded content (e.g., privacy
blur or occlusion). Such settings are common in practice, where large-scale annotation is infeasible
or inefficient. FDGAN therefore targets scenarios that require effective generation under scarce
supervision, prioritizing generalization, reduced overfitting, and perceptual fidelity. This design
choice directly informs our dataset selection and evaluation protocol. In summary, FDGAN is a
low-data, object-aware synthesizer for augmenting downstream detectors (e.g., YOLO/DETR), rather
than a general, large-scale text-to-image model.

Our key contributions are:
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• We propose FDGAN, a hybrid generative model that integrates adversarial training into the
intermediate stages of a diffusion-based generator, enhancing the quality and diversity of
object-centric images under limited or degraded data conditions (see Section 3).

• We introduce the Additional Noise Perturbation Module (ANPM), which selectively activates
adversarial training only when samples are sufficiently denoised and injects targeted noise
within object-specific BB regions, implicitly guiding attention toward critical object details
(see Section 3.2).

• We devise a selective early-timestep adversarial window together with a timestep-aware
loss aggregation schedule λGAN(t), enabling stable training in low-data settings with no
inference-time overhead; ablations show each component is necessary (see Section 3.2 and
Appendix F).

Furthermore, we evaluate FDGAN under constrained dataset conditions and benchmark it against
diffusion-only (e.g., LayoutDiffusion), GAN-only (e.g., Projected GAN, StyleGAN2-ADA), and
hybrid (e.g., Diffusion-GAN) approaches. Our evaluation spans three curated object-centric datasets:
a Cityscapes–Pedestrian subset with privacy-blurred faces, Traffic-Signs, and an MS-COCO “potted
plant” subset.

2 Related Work

Object-centric image generation focuses on producing high-quality, detailed images in which specific
class objects are accurately represented (Nichol & Dhariwal, 2021; Wang et al., 2023; Sauer et al.,
2021; Jiang et al., 2023). This task remains challenging due to the high dimensionality and structural
complexity inherent in real-world images, particularly when available training data is limited or hard
to obtain.

Likelihood-based methods, such as Variational Autoencoders (VAEs) (Kingma & Welling, 2022;
Kingma & Dhariwal, 2018), offer stable optimization and high-resolution synthesis, but typically
sacrifice perceptual realism compared to GANs. Object-centric VAEs like Multi-Object VAE (MONet)
(Burgess et al., 2019) attempt to decompose scenes into individual objects; however, their performance
often declines with increased scene complexity, occlusion, or interactions between objects. Similarly,
Energy-Based Models (EBMs), including object-centric EBMs (OC-EBMs) (Zhang et al., 2022), can
model object interactions effectively but frequently struggle to capture fine details and accurate object
boundaries, leading to fragmented or merged object representations.

Diffusion Models (DMs) have recently emerged as powerful generative frameworks, synthesizing
images by reversing a gradual noise addition process. UNet-based DDPMs and ADM (Ho et al., 2020;
Nichol & Dhariwal, 2021) and transformer-based DiT-XL/2-G (Peebles & Xie, 2023) significantly
advanced image quality, although often at substantial computational cost. Recent diffusion-based
methods increasingly leverage explicit object-centric representations to enhance spatial coherence.
For example, Object-Centric Slot Diffusion (Wu et al., 2023) conditions latent diffusion on object
slots to better maintain object integrity. Additionally, LayoutDiffusion (Zheng et al., 2024) directly
conditions the generation of BB layouts, effectively improving compositional coherence and explicit
spatial control. However, these purely diffusion-based models typically require large datasets to
generalize effectively, limiting practical applicability when only small or specialized datasets are
available.

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) excel at generating high-resolution,
perceptually realistic images (Brock et al., 2018; Karras et al., 2020b) but often suffer from unstable
optimization and incomplete data coverage (Arjovsky et al., 2017; Heusel et al., 2017; Mescheder et al.,
2018; Metz et al., 2017). Models such as Projected GAN (Sauer et al., 2021) and Pedestrian-Synthesis
GAN (PSGAN) (Ouyang et al., 2018) specifically enhance GAN stability and object-centric generation,
yet their effectiveness is highly domain-specific and sensitive to model configuration. StyleGAN2-
ADA (Karras et al., 2020a) addresses training instability through adaptive D augmentation, and
Pix2PixHD (Isola et al., 2018; Wang et al., 2018a) uses conditional adversarial networks for spatial
coherence; however, these models are constrained by the need for extensive training pairs and
remain limited in generalizability across diverse object classes. Diffusion-GAN (Wang et al., 2023)
integrates diffusion-based noise models into GANs to enhance stability, but the approach remains
computationally expensive and challenging to implement.
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Prior hybrids that mix adversarial objectives with diffusion have shown promise—including GAN-
centric variants such as Diffusion-GAN (Wang et al., 2023) and more recent diffusion-centric
(distillation-style) hybrids. Our setting is complementary: FDGAN targets limited-annotation, object-
centric regimes and couples three elements that, to our knowledge, have not been jointly explored for
this use case: (i) a selective early-timestep adversarial window so the D only sees partially denoised,
informative states; (ii) bounding-box–localized perturbations (ANPM) as a lightweight spatial cue
instead of explicit layout conditioning; and (iii) a timestep-aware adversarial weighting schedule. This
combination targets small-data stability and spatial fidelity without inference-time cost. Removing
any single component degrades DINOv2 metrics and increases overfitting (Table 2).

3 FDGAN: Method and Theoretical Analysis

FDGAN synthesizes high-quality object-centric images by integrating a PatchGAN-style D (Isola
et al., 2017; Wang et al., 2018a) into the DM derived from ADM (Nichol & Dhariwal, 2021). Unlike
existing diffusion models (e.g., LayoutDiffusion (Zheng et al., 2024), GLIGEN (Li et al., 2023)), that
rely solely on conditioning signals (attention or embeddings) to guide object generation, FDGAN
incorporates adversarial feedback at intermediate diffusion steps. Central to FDGAN is our proposed
Additional Noise Perturbation Module (ANPM), which selectively activates the GAN component at
specific intermediate timesteps, ensuring the D receives partially denoised image pairs. Additionally,
the ANPM injects targeted Gaussian noise within predefined BB regions, implicitly guiding the
model’s attention to object details, thus improving spatial coherence, realism, and generative diversity.

3.1 Background for FDGAN

FDGAN’s GAN component operates following the principles described by (Goodfellow et al., 2014),
based on a competitive framework between two neural entities: a G and a D. The G typically converts
random vectors into synthetic data instances, while the D evaluates these synthetic outputs alongside
real data samples, classifying each as either genuine or artificial. This dynamic results in a min-max
game described by the adversarial objective function (Goodfellow et al., 2020):

min
G

max
D

V (G,D) = Ex∼pdt
[logD(x)] + Ez∼px [log(1−D(G(z)))], (1)

where x ∼ pdt represents samples from the real data distribution, and z ∼ px denotes samples from
the noise prior. In FDGAN, z corresponds specifically to partially denoised diffusion states rather
than purely random vectors. Unlike conventional GANs, where G starts from unstructured noise,
FDGAN leverages these intermediate states as more informative adversarial inputs. This allows G to
refine its outputs progressively across timesteps, yielding increasingly realistic generations.

The diffusion component follows the standard forward process (Song et al., 2022; Sohl-Dickstein
et al., 2015):

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√
1− βt xt−1, βtI), (2)

with variance schedule βt. Equivalently, a noisy latent at timestep t can be sampled directly from
clean data x0 as

q(xt|x0) = N
(
xt;
√
ᾱtx0, (1− ᾱt)I

)
, (3)

where ᾱt =
∏t

i=1(1− βi). This formulation enables efficient sampling of intermediate states and
stable training of the reverse denoising process.

The UNet in FDGAN serves as both the neural network for the computation of diffusion loss and the
G in the GAN framework. For timesteps t < tearly, the ANPM selectively modifies the image content
within predefined BB regions by adding Gaussian noise consistent with the diffusion noise level at
that specific timestep. These modified images are then input to the UNet, implicitly guiding the
model’s attention toward these targeted BB regions, enhancing object coherence and spatial fidelity in
the generated images. A detailed description of the UNet’s architecture is provided in the FDGAN
Architecture section.

Our practical motivation for FDGAN stems from scenarios where datasets are small or costly to collect,
yet precise object-focused generation is essential. Accordingly, we evaluate on three representative
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settings—Cityscapes–Pedestrian (occluded urban scenes), Traffic-Signs (simpler structured objects),
and COCO potted plants (diverse objects/backgrounds)—to highlight robustness across complexity.
We also employ a modified sampling strategy in which the model processes fully noised inputs and
receives BB-localized perturbations as conditional cues (details in Appendix B).

By incorporating these steps, FDGAN improves the generative process, producing high-quality,
contextually accurate images. The architecture leverages diffusion’s stability and coverage while
mitigating GAN training instability and limited diversity.

3.2 FDGAN Architecture

The overview of FDGAN is presented in Fig. 2. The images follow the original diffusion model
diffusion paths, forward diffusion (green blocks 1 → 3) and reverse (green blocks 4 → 6) shown in
the figure. During reverse diffusion (blocks 4–6), the U-Net predicts the noise and computes Ldiffusion.
In FDGAN we introduce three new modules (orange blocks): ANPM (7), the GAN branch comprising
the denoised–image output and the D (8→10), and the Loss Aggregator (11). These additions supply
the GAN and Lrecon losses, which are then combined with the diffusion loss to update the G.

Figure 2: FDGAN architecture overview. Green indicates original diffusion components; orange
indicates proposed GAN components (ANPM, D, Loss Aggregator). Solid arrows indicate data flow;
dashed arrows indicate gradient flow.

The ANPM plays two critical roles in FDGAN: selectively activating adversarial training at intermediate
diffusion steps controlled by the hyperparameter tearly, and applying targeted noise perturbations within
BB regions, guiding the model’s attention toward important object details. These targeted perturbations
help enhance the model’s focus, realism, and object-level coherence. FDGAN synthesizes object-
centric images via four integrated steps: (1) an Add-BB-noise Step (block 7), applying targeted
perturbations within BB regions at specific diffusion timesteps; (2) a Sampling Step (blocks 4, 8),
denoising these perturbed samples via the U-Net G to produce partially denoised images and estimate
diffusion losses; (3) a GAN Step (blocks 8–10), where the D evaluates generated images against real
ones, computing adversarial losses; and (4) a Loss Aggregation Step (block 11), combining diffusion,
GAN, and reconstruction losses and backpropagating gradients to update G and D.

Specifically, the Add-BB-noise Step (block 7—ANPM) explicitly enhances object-level coherence
and realism. At timesteps satisfying t < tearly, the ANPM processes selected samples sequentially:
first, the Select Images sub-module (block 7.1) identifies partially denoised samples; next, the Extra
Noise sub-module (block 7.2) injects targeted Gaussian noise (+γϵ) selectively within BB regions
encapsulating objects of interest (see Algorithm 1 in Appendix D); finally, the Output sub-module
(block 7.3) forwards these BB-noised samples (x̃(BB)

t ) to the U-Net generator G. Subsequently, G
denoises these perturbed inputs to produce partially denoised fake images (x̃0) and simultaneously
estimates the noise (ϵ̂θ(xt, t)) necessary for computing Ldiffusion (blocks 4–6). The discriminator Dϕ

then evaluates the realism of these partially denoised images against corresponding real samples (x0),
producing the GAN loss LGAN(t). Finally, diffusion, GAN, and reconstruction losses are aggregated
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(block 11) according to the timestep-dependent weighting strategy detailed in Appendix F, updating
G parameters θ, while D parameters ϕ are updated solely via LGAN.

Generator/UNet. To ensure our model’s performance is not tied to a specific architecture, we utilize
a UNet design with attention mechanisms and timestep embeddings, known to be highly effective
in image-processing tasks. Our UNet comprises multiple down-sampling and up-sampling levels:
specifically, 4 layers each for 64x64 inputs, and 5 layers each for 128x128 inputs. Each level integrates
residual blocks (ResBlocks) as described in (He et al., 2016), and attention blocks to enhance feature
representation, similar to recent approaches (Park et al., 2019; Sun & Wu, 2019; Wang et al., 2018a).
The G receives both the image and timestep embeddings, conditioning the batch normalization
parameters within the UNet on timesteps to adapt dynamically to varying noise levels during training.
Furthermore, G employs a channel multiplier at each level, attention at specified resolutions, and
optional convolutional up-sampling and down-sampling, ensuring flexibility and robust high-quality
image generation.

Discriminator. The D in FDGAN assesses the realism of generated images relative to real images.
We incorporate a three-layer PatchGAN D (N-Layer, fully convolutional) similar to that used in
Pix2PixHD (Isola et al., 2017; Wang et al., 2018a). This design captures local high-frequency details
while keeping the parameter count modest. Only images from timesteps t < tearly, where G inputs
are already largely denoised, participate in adversarial training, ensuring meaningful image pairs for
discrimination. For instance, in a 4,000-step diffusion chain, we set tearly = 400. The D employs
a least squares GAN (LSGAN) loss, stabilizing training and gradient behavior. The targeted noise
applied within BB regions by the ANPM provides an implicit attention mechanism, guiding the
G toward enhanced object realism, finer details, and coherent object placement. Ablation studies
confirm that disabling the GAN component (setting tearly = 0) notably reduces image quality and
detail, validating the effectiveness of D integration.

3.3 Loss Functions

The total objective combines diffusion, adversarial, and pixel-level reconstruction terms:
Ltotal(t) = Ldiffusion + λGAN(t)LGAN(t) + Lrecon(t), (4)

where λGAN(t) is the dynamic weight provided by the scaling algorithm implemented in the Loss
Aggregator (see Appendix F), and where Lrecon(t) represents reconstruction losses defined below.

GAN loss is defined as:

LGAN(t) = λD(t)Ex∼p(x), t<tmax [logD(x)] + λG(t)Ez∼p(z), t<tmax [log (1−D(G(z)))] , (5)
where λD(t) and λG(t) are timestep-dependent weights balancing D and G signals; E[·] de-
notes expectation over the data distribution p(x) or latent noise distribution p(z). The term
Ex∼p(x),t<tmax [logD(x)] calculates the expected log-likelihood of the D correctly identifying real
images, while Ez∼p(z),t<tmax [log(1 − D(G(z)))] measures the expected log-likelihood of the D
incorrectly identifying generated images as real, thus optimizing the G’s ability to fool D.

Diffusion loss: aims to reconstruct the original data from its noisy, diffused state by training the
model to predict and remove noise at each timestep. Following the standard approach in diffusion
modeling introduced by Nichol & Dhariwal Nichol & Dhariwal (2021), the diffusion loss is defined
as the mean squared error between the true noise and the model’s predicted noise:

Ldiffusion = Ex0∼q(x0), t∼U(1,T ), ϵ∼N (0,I)

[
∥ϵ− ϵθ(xt, t)∥2

]
, (6)

where xt =
√
ᾱt x0 +

√
1− ᾱt ϵ, and ϵ ∼ N (0, I) is the Gaussian noise added to the clean image x0.

Here, ϵθ(xt, t) represents the model’s prediction of the noise component at timestep t. In practice, at
each training step, we sample a clean image x0 from the real data distribution q(x0) and a timestep t
uniformly from the total timesteps T . We then generate a noisy image xt by adding Gaussian noise
scaled by the timestep-specific schedule ᾱt. The neural network (a UNet in our case) is tasked with
estimating the noise ϵ. Minimizing this loss allows the model to progressively predict and remove
noise at each diffusion step, effectively reversing the diffusion and reconstructing high-quality images
from noisy inputs.

Reconstruction losses: to stabilize training and encourage pixel-level fidelity, we explicitly define
the reconstruction loss as a combination of global and targeted components:

Lrecon(t) = λL1(t)L1 + λenhancedLenhanced, (7)
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where
L1 = Ex,x̂

[
∥x− x̂∥1

]
, Lenhanced = E

[(
(G(z)− x)2 ·MBB

)]
. (8)

Here, λL1(t) dynamically adjusts the contribution of global L1 loss across different timesteps t, while
λenhanced is a fixed hyperparameter emphasizing detailed reconstruction within BB regions via mask
MBB. By combining Eqs. equation 5, equation 6 and 7 inside Eq. equation 4, FDGAN balances
diffusion-based denoising with adversarial realism and pixel-level accuracy, yielding improved
object-centric synthesis. This careful balancing of objectives is crucial for stable training and helps
FDGAN produce high-quality, diverse images even from limited or degraded datasets.

3.4 Implementation Details

Our FDGAN model 1, implemented in PyTorch (Paszke et al., 2019), was trained on two A100 GPUs
using staged training: diffusion-only followed by adversarial fine-tuning. We employ a UNet G with
GroupNorm32 (Nichol & Dhariwal, 2021) and an N-Layer PatchGAN D. Full architectural and
training details are provided in Appendix E.

Pretrained initialization and early stopping. For the COCO potted plant experiments we fine-tune
author-released checkpoints rather than training from scratch, following evidence that transfer from a
strong source generator is beneficial in low-data regimes (faster convergence, higher quality) (Wang
et al., 2018b; Grigoryev et al., 2022). During fine-tuning we generate validation samples every
20k steps and select the snapshot that minimizes DINOv2 FD while maintaining Recall; training
is stopped once these metrics plateau or begin to degrade, consistent with metric-driven early
stopping in generative modeling (e.g., FID/precision–recall and, when available, diversity proxies
such as MS-SSIM) (Heusel et al., 2018; Kynkäänniemi et al., 2019; Wang et al., 2004). A detailed,
reproducible protocol (including unconditional vs. conditional cases and qualitative checks) is provided
in Appendix J (COCO-specific training utilities in Appendix E.2).

4 Evaluation of FDGAN

For FDGAN’s evaluation, we curated three small object-centric datasets (each < 3k images): a
Cityscapes–Pedestrian subset, a Traffic-Signs dataset, and an MS-COCO “potted plant” subset. All
datasets were standardized to 256 × 256 crops with bounding-box guidance. This setup spans
challenging occlusion-heavy urban scenes, fine-detail signage, and semantically diverse object scenes
with complex backgrounds (COCO), all under low-data constraints (details in Appendix C).

Comparative evaluation. We benchmark FDGAN against three families of baselines: (1) GAN-only
(Projected GAN (Sauer et al., 2021), StyleGAN2-ADA (Karras et al., 2020a), PSGAN (Ouyang
et al., 2018), Pix2Pix (Isola et al., 2018), and our proposed OC-ProjectedGAN (an object-centric
adaptation of Projected GAN detailed in Appendix I); (2) Diffusion-only (ADM (Nichol & Dhariwal,
2021), DiT-XL/2-G (Peebles & Xie, 2023), LayoutDiffusion (Zheng et al., 2024)); and (3) the hybrid
Diffusion-GAN (Wang et al., 2023), integrating diffusion-based noise into GAN training. All explicitly
object-centric baselines (PSGAN, Pix2Pix, LayoutDiffusion, Diffusion-GAN, OC-ProjectedGAN)
are trained with the same BB masks as FDGAN for a fair comparison.

We evaluate models using two complementary sets of metrics computed via the official implementation
2: (1) DINOv2-based metrics (Stein et al., 2023), including Fréchet Distance (FD), FD∞, Kernel
Distance (KD), Feature Likelihood Score (FLS), FLS overfit, and Coverage and Fidelity (CT, CT
mod); and (2) traditional Inception-V3 metrics (Kynkäänniemi et al., 2019; Meehan et al., 2020),
including FID, Precision, Recall, Density, and Coverage. Our primary analysis emphasizes DINOv2
metrics due to their stronger alignment with perceptual quality in object-centric scenarios (detailed
definitions provided in Appendix G).

4.1 Comparison with Conventional GAN and Diffusion Models

To benchmark FDGAN, we compare its performance against recent conventional GAN and DM
models. Specifically, we select ADM (Nichol & Dhariwal, 2021), DiT-XL/2-G (Peebles & Xie,

1Code and data will be released upon acceptance
2https://github.com/layer6ai-labs/dgm-eval
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2023), Projected GAN (Sauer et al., 2021), and StyleGAN2-ADA (Karras et al., 2020a), along with
Diffusion-GAN (Wang et al., 2023), a hybrid approach that integrates diffusion into GAN training
for better sample diversity. Explicit object-centric models are analyzed separately in Section 4.2.
Table 1 summarizes the quantitative results for all three datasets. On the Cityscapes–Pedestrian subset,

Table 1: Results on the three datasets using DINOv2 (FD, KD, FLS Overfit) and Inception-V3 (FID),
where ∗ denotes explicitly object-centric models or our modifications. Lower is better for FD, KD,
and FID; FLS Overfit closer to 0 indicates less overfitting.

Cityscapes–Pedestrian Traffic-Signs COCO (Potted Plant)
Model FD↓ KD↓ FLS-O FID↓ FD↓ KD↓ FLS-O FID↓ FD↓ KD↓ FLS-O FID↓
PSGAN∗ 774.13 5.01 −25.33 78.56 – – – – – – – –
Projected GAN 828.32 3.98 −11.93 15.81 586.91 2.24 −42.60 18.18 1094.78 1.78 −32.86 44.15
OC-ProjectedGAN∗ 1076.03 5.12 −34.87 22.26 693.43 2.93 −43.66 33.66 1316.79 2.52 −33.06 61.75
Pix2Pix∗ 958.23 4.27 −27.64 88.78 828.10 3.16 −48.53 116.92 1623.55 3.98 42.73 62.79
StyleGAN2-ADA 1948.78 8.77 −48.73 71.36 1487.25 5.86 37.57 96.84 1450.62 3.04 −39.26 76.57
ADM 1275.56 4.89 −19.35 42.61 551.36 2.18 33.20 34.76 935.42 1.19 −31.86 56.68
DiT-XL/2-G 2254.54 11.64 −49.13 92.65 1349.91 4.63 −47.66 140.43 926.54 1.53 −30.93 56.10
FDGAN∗ 583.70 2.83 1.39 19.16 416.19 1.54 −22.49 28.19 889.95 1.17 −28.93 43.83
Diffusion-GAN 920.67 4.33 −19.33 14.80 616.85 2.40 −45.63 16.88 1010.54 1.61 −32.40 30.71
LayoutDiffusion∗ 1313.52 5.27 −46.47 75.00 680.03 2.74 −42.80 57.65 1047.62 1.62 −33.93 62.95

FDGAN achieves the lowest DINOv2 FD of 583.70, improving by 32.6% over PSGAN (774.13)
and by 41.9% compared to Projected GAN (828.32). It also surpasses ADM in Inception-V3 FID
(19.16 vs. 42.61), demonstrating the benefit of adding adversarial feedback to diffusion. On the
Traffic-Signs dataset, FDGAN again yields the lowest DINOv2 FD of 416.19, outperforming Projected
GAN by 29.1% (586.91) and Diffusion-GAN by 32.5% (616.85), while maintaining competitive FID
(28.19 vs. 16.88 for Diffusion-GAN). Finally, on the COCO potted plant subset, FDGAN achieves a
DINOv2 FD of 901.76, improving by 17.6% compared to Projected GAN (1094.78) and by 9.7%
relative to Diffusion-GAN (1010.54). FDGAN also improves KD and FLS Overfit over all baselines,
indicating stronger distributional alignment and reduced overfitting even in this semantically diverse
and background-rich setting. Although GAN-centric models sometimes achieve lower raw FID
on simpler domains, FDGAN provides a better overall balance, combining realism, diversity, and
generalization across all three datasets. A complete set of evaluation metrics—including Precision,
Recall, Density, Coverage, FD∞, and CT/CT-mod—is provided in Appendix G, while qualitative
comparisons appear in Appendix H.

Reproducibility note. COCO results were obtained with a training variant detailed in Appendix E.2
(same FDGAN core, minor training utilities—ROI-focused banding and a small ROI discrimina-
tor—enabled for this dataset).

4.2 Comparison with Object-Centric Methods

To further assess FDGAN in explicitly object-centric settings, we benchmark it against specialized
models designed for object-conditioned generation. These include LayoutDiffusion (Zheng et al.,
2024) (evaluated under low-data conditions), OC-ProjectedGAN (our object-centric adaptation of
Projected GAN), PSGAN (Ouyang et al., 2018) (only for Cityscapes), and Pix2Pix (Isola et al.,
2018). FDGAN outperforms these baselines across all three datasets. On Cityscapes–Pedestrian,
FDGAN achieves a DINOv2 FD of 583.70, improving by 55.6% over LayoutDiffusion (1313.52),
24.6% over PSGAN (774.13), and 39.1% over Pix2Pix (958.23). On Traffic-Signs, FDGAN’s FD
of 416.19 represents gains of 32% over LayoutDiffusion (680.03) and 34% over OC-ProjectedGAN
(693.43). On the COCO potted plant subset, FDGAN obtains an FD of 901.76, improving by
14% compared to LayoutDiffusion (1047.62) and 31% relative to Pix2Pix (1623.55). These results
confirm that integrating adversarial training selectively into diffusion, combined with BB-localized
perturbations, yields stronger fidelity, detail, and diversity than models relying on explicit layouts or
paired supervision.

Across datasets, FDGAN achieves quantitatively stronger results on the simpler Traffic-Signs set, as
expected given its reduced complexity. Nevertheless, FDGAN also ranks highest across DINOv2-
based metrics on the more challenging Cityscapes and COCO subsets, achieving the best overall
trade-off between realism, diversity, and generalization. Specifically, FDGAN exhibits the lowest
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Fréchet Distance (FD), improved Kernel Distance (KD), and FLS Overfit values closest to zero,
indicating both higher realism and reduced memorization. Moreover, FDGAN maintains balanced
coverage and fidelity in the extended DINOv2 metrics (CT and CT-mod), confirming robustness
across dense urban scenes, fine-detail signage, and semantically diverse household objects. The
full set of evaluation metrics is reported in Table 6 (Appendix G), with qualitative comparisons in
Appendix H.

4.3 Ablation Studies

We conducted ablations on the Cityscapes–Pedestrian subset to quantify the contribution of each
FDGAN component and training choice. We consider: the full FDGAN (GAN active for timesteps
t < tearly = 400 with ANPM and reconstruction losses), a variant with no GAN/ANPM (No
GAN/ANPM, obtained by setting tearly = 0), a variant without reconstruction losses (No Lrecon), a
version with equal weighting of GAN and diffusion losses (Equal Weighting, λGAN=1), and a version
with extended diffusion engagement (Ext. Diffusion, tearly=4000). We report three DINOv2-based
metrics—Fréchet Distance (FD), Kernel Distance (KD), and FLS Overfit—and Inception-V3 FID.
Lower is better for FD, KD, FLS Overfit (closer to 0 indicates less overfitting), and FID. Removing

Table 2: Ablations on Cityscapes–Pedestrian (256×256). DINOv2 metrics (FD, KD, FLS Overfit)
and Inception-V3 FID.

Model Variant FD↓ KD↓ FLS-O↓ FID↓

No GAN/ANPM (tearly=0, no Lrecon) 1276.70 5.78 −36.90 91.89
No Lrecon (GAN active) 1366.19 6.22 −39.38 105.30
Equal Weighting (λGAN=1) 1104.00 5.36 −33.31 46.04
Ext. Diffusion (tearly=4000) 1142.91 5.18 −33.66 55.61
FDGAN (full, tearly=400) 583.70 2.83 1.39 19.16

both ANPM and the GAN branch (tearly=0) degrades realism and generalization substantially (higher
FD/KD/FID, more negative FLS Overfit), indicating that early-step adversarial feedback is pivotal
when data are limited. Omitting Lrecon similarly harms fidelity and raises overfitting. Forcing equal
GAN/diffusion weighting destabilizes the trade-off, and shifting adversarial engagement to much
earlier timesteps (Ext. Diffusion) hurts quality. The full configuration (FDGAN) achieves the best
overall balance across realism (FD/FID), distributional alignment (KD), and generalization (FLS
Overfit closer to 0).

5 Conclusions

The FDGAN model introduced in this paper has demonstrated promising results in addressing the
inherent challenges of object-centric image generation, particularly when confronted with limited
or degraded training data. By integrating GAN adversarial training directly into intermediate steps
of a diffusion model and applying targeted noise perturbations within bounding-box regions via
the proposed ANPM, FDGAN appears to offer a viable solution to the common issue of overfitting
under constrained dataset conditions. FDGAN demonstrated superior performance across most
evaluation metrics compared to established generative models such as Projected GAN, LayoutDiffusion,
Diffusion-GAN, and StyleGAN2-ADA. Specifically, it achieved lower Fréchet Distance (FD), Kernel
Distance (KD), and optimal Coverage and Fidelity (CT and CT mod) metrics, reflecting enhanced
perceptual quality and diversity. Furthermore, the lowest observed Feature Likelihood Score Overfit
(FLS Overfit) underscores FDGAN’s improved generalization capabilities, further supporting its
practical applicability in real-world tasks.

Future work will focus on expanding the evaluation of FDGAN across more diverse and larger-scale
datasets to further test its robustness, adaptability, and accuracy in object placement. Additionally,
variations in discriminator architectures and extensions to multi-class scenarios will be explored to
further enhance the model’s versatility and broaden the scope of its practical applications.
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A Appendix

B Modified Sampling Method

In standard diffusion models (DMs), image generation begins from a fully noised image xT ∼ N (0, I)
and proceeds through a sequence of reverse denoising steps to recover a clean image x0. FDGAN
modifies this process by injecting localized Gaussian noise within BB regions at sampling time.
This simple but effective change focuses the model’s attention on object-relevant areas during early
denoising, improving placement and fidelity without requiring explicit conditioning.

Figure 3 illustrates the FDGAN sampling pipeline. It starts with an isotropic Gaussian noise image.
Then, in block 2, an additional BB-targeted perturbation is applied. This localized noise is injected
only into the BB-defined region, using a mask MBB and a scalar multiplier γ, to amplify uncertainty
in object regions. The perturbed image is then passed through the standard reverse diffusion loop
guided by the U-Net generator.

Figure 3: FDGAN sampling pipeline. Targeted noise is injected into object-specific BB regions
before reverse diffusion begins.

Sampling Pipeline. The steps are as follows:

• (1) Initialization: A full-noise image xT ∼ N (0, I) is sampled.
• (2) BB Noise Injection: Additional Gaussian noise is applied inside each BB region:

x′
T = xT + γ ·MBB · ϵ, (9)

where MBB is a binary mask (1 inside the BB, 0 elsewhere), ϵ ∼ N (0, I), and γ is a
hyperparameter controlling noise strength (set to 2 in our experiments). The background
remains unaltered, ensuring that noise perturbations are confined to the object regions.

• (3) Generator Input: The BB-perturbed image x′
T is passed to the U-Net generator Gθ,

along with the timestep t = T .
• (4) Iterative Denoising: Reverse diffusion begins, with the generator predicting noise
ϵ̂θ(xt, t) at each step to estimate xt−1. The model learns to progressively refine structure
from high noise, particularly within BBs where uncertainty is greater.

• (5) Output Sample: After T steps, a final image x0 is produced.

Motivation. This strategy implicitly encodes object localization through noise shaping rather than
architectural conditioning. By increasing uncertainty inside BBs, the generator is encouraged to
focus on those regions during early reverse steps—when coarse structure and semantic layout are
established. Unlike layout-based models, this mechanism does not require feeding BB coordinates as
inputs; the generator remains blind to BBs except through the noise pattern.
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Quantitative Use. This modified sampling method is used consistently during evaluation. For all
models trained with BB inputs, the same BB noise scheme is applied to test-time generation, ensuring
fair comparison. Qualitative examples are shown in Fig. 4.

Figure 4: FDGAN samples generated from BB-perturbed noise. Objects emerge within designated
regions, despite no explicit layout conditioning.

C Dataset

For FDGAN’s evaluation, we curated three small, object-centric datasets (each <3k images) that
span distinct scene complexities. From the high-resolution Cityscapes dataset (Cordts et al., 2016)
(native frames 2048 × 1024), we extract a challenging pedestrian subset by retaining only the
person class, obtaining BBs via a pretrained YOLOv5x detector (confidence threshold > 0.8, size
> 70 × 32 pixels). For each detection, we form a 256 × 256 crop—where the box is placed at
a random offset within the crop—yielding dense, occlusion-heavy patches with privacy-blurred
faces. The Traffic-Signs dataset comprises simpler, sparsely populated images obtained by cropping
non-overlapping, sign-centered regions from 1024 × 768 street-view frames and resizing them to
256 × 256. Finally, an MS-COCO potted plant subset is cropped to 256 × 256, exposing diverse
indoor/outdoor contexts. Evaluating FDGAN across these three settings probes robustness from dense
occlusions (Cityscapes) and fine-detail small objects (Traffic-Signs) to semantically diverse object
scenes with complex backgrounds (COCO), all under low-data constraints.

Scope and pipeline overview. The three datasets probe complementary challenges: dense, occlusion-
rich scenes; simpler, well-isolated objects; and semantically diverse objects embedded in varied
indoor/outdoor backgrounds. For all datasets we standardize to 256× 256 crops, construct binary BB
masks aligned with each crop, and apply synchronous transformations (when applicable) to images
and masks. The Cityscapes preparation pipeline is illustrated in Fig. 5.

Cityscapes Subset (Pedestrian Class): From the original Cityscapes dataset, we extract all instances of
the person, rider, group and sitting person classes, merging them into a unified pedestrian
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Figure 5: Dataset generation pipeline diagram.

category. BBs are generated using a YOLOv5x detector with a confidence threshold of 0.8, and
minimum object size of 70×32 pixels. For each detection, a 256×256 patch is randomly cropped
around the BB, ensuring variable object position and context within the image. This randomness
forces the model to generalize beyond centered object placement. We collect 3,000 such samples for
training.

This dataset presents several unique challenges:

• Blurred Details: All pedestrian faces are blurred for privacy, removing high-frequency
visual features critical to photorealism.

• Occlusions and Density: Pedestrians frequently overlap or appear in groups, increasing
ambiguity during training.

• Feature Ambiguity: Blurring and occlusion complicate the model’s ability to learn
consistent object structure.

• Visual Artifacts: The variability of blurred regions introduces nonuniform patterns that the
model must learn to handle.

• Ethical Compliance: The dataset is privacy-compliant and adheres to ethical best practices
when training on real-world scenes involving people.

Traffic-Signs Dataset: To create this dataset, we extract patches from 1024×768 street-view images
containing clean, mostly centered Traffic-Signs. BBs are obtained via YOLOv5x, and we merge the
Traffic Sign and Damaged Traffic Sign categories into a single class. A 256×256 patch is
then cropped around each sign with randomized centering, ensuring positional variability. We again
collect 3,000 images for training.

This dataset is substantially simpler than Cityscapes:

• Single Object per Image: Most samples contain one clearly isolated object.
• No Occlusions: The BBs are visually unobstructed and well-defined.
• Visual Clarity: Signs are typically high-contrast, centered, and free of noise or blur.

COCO potted plant Subset (MS-COCO 2017, class id 58): Starting from MS-COCO 2017
annotations, we select all images containing the potted plant class (category id 58). For each
annotated instance we derive a 256× 256 crop that includes the plant’s bounding box at a random
offset, so the object is not always centered and surrounding context varies. Concretely:

• Instance selection: We iterate over COCO potted plant instances and skip boxes that are
too small to support a 256× 256 crop without extreme upsampling (very small width/height
or degenerate boxes).

16
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• Crop formation: Given an instance box (x, y, w, h), we sample a crop window of size
256× 256 whose placement is randomly offset such that the annotated box lies fully inside
the crop (with a small, uniformly sampled margin). When multiple instances are present, we
generate one crop per instance (crops may overlap if plants are close).

• Resolution and context: Source images come from mixed native resolutions (e.g., many
around 640× 480) and both indoor/outdoor scenes, yielding diverse backgrounds and object
appearances; all crops are standardized to 256× 256.

• Masks and alignment: For each crop we rasterize a binary mask of the selected instance’s
BB into the crop’s coordinates (1 inside the box, 0 outside). Images and masks undergo
synchronous I/O and any dataset-level transforms to preserve alignment.

We cap the subset to fewer than 3k crops to match the low-data regime used throughout. This
construction intentionally exposes background variability and object-placement diversity compared
to the more uniform Traffic-Signs set, complementing the occlusion-rich Cityscapes subset.

D ANPM Details

Images with a timestep t less than a predefined threshold tearly = 400 undergo an additional noising
process performed by the ANPM. This module selectively applies extra Gaussian noise to specific
spatial regions within the images, defined by BBs that encapsulate the target class objects. The noise
is applied only to BB regions, leaving the background unchanged. Importantly, the magnitude of
injected BB noise follows the diffusion model’s native noise schedule for the current timestep t, and
is further amplified by a constant factor γ = 1.2 to increase difficulty inside object regions. This
guides the model to focus more on regenerating structure within those critical areas.

D.1 Additional Noise Application Algorithm

Algorithm 1: Additional Noise Application to Partially Denoised Images
Input: Batch of images micro, conditional data cond, timesteps t
Output: Fake images with additional noise applied in BB regions
Initialize bb_noise_masks as tensor of zeros, same shape as micro;
for j ← 1 to batch size do

Extract BB coordinates (x, y, w, h) from cond[j];
actual_width← w − x;
actual_height← h− y;
noise_scale← diffusion.get_noise_scale_for_timestep(t[j]);
Generate Gaussian noise and apply to BB region:
bb_noise_masks[j, :, y : y + actual_height, x : x+ actual_width] +=
N (0, noise_scale× γ);

noised_images← diffusion.q_sample(micro, t, noise);
fake_images← noised_images + bb_noise_masks;
return fake_images

D.2 Algorithm Details

The algorithm described above applies additional noise to partially denoised images before they are
passed to the discriminator as fake samples. The detailed breakdown of each step is as follows:

Initialization. A tensor bb_noise_mask is initialized to zeros with the same shape as the input batch
of images micro. This tensor will store the additional noise applied to the BB regions. Processing
Each Image in the Batch. The algorithm iterates over each image j in the batch. For each image, the
BB coordinates (x, y, w, h) are extracted from the conditional data cond. These coordinates define
the region where the additional noise will be applied. The actual width and height of the BB are
calculated as actual_width ← w − x and actual_height ← h − y. Calculating Noise Scale. The
noise scale for the current timestep t[j] is calculated using the get_noise_scale_for_timestep
method of the diffusion model. This value follows the model’s native noise schedule and is further
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multiplied by a fixed scalar factor γ = 1.2 to amplify perturbations inside the BBs. This factor is
exposed as a hyperparameter. Generating and Applying BB Noise. Gaussian noise is generated for
the BB region using the calculated noise scale. The generated noise is added to the corresponding
region in the bb_noise_masks tensor. Creating Noised Images. The initial noise is added to the
entire image using the q_sample method of the diffusion model, resulting in noised_images. The
additional BB noise stored in bb_noise_masks is then added to these noised_images, creating
the final fake_images. Return Fake Images. The final fake_images, now containing additional
noise specifically applied within BB regions, are returned for further processing by the discriminator.

This targeted perturbation strategy ensures the discriminator receives informative inputs during early
timesteps, enabling more precise feedback on object regions while maintaining coherent global
structure.

E Detailed Training Configuration

Training for FDGAN was performed on two NVIDIA A100 GPUs (40 GB each), managed by SLURM
with a 48 h time limit.

E.1 Cityscapes and Traffic-Signs setup (base configuration)

We use a two-stage procedure to integrate adversarial components stably. First, FDGAN is trained
as a diffusion-only model (warm-up); subsequently, the Additional Noise Perturbation Module
(ANPM) and the GAN branch are enabled. During adversarial training, only samples at intermediate
denoising levels (measured by the reverse timestep) participate: for timesteps t < tearly, ANPM injects
BB-localized noise and the discriminator evaluates the partially denoised outputs against real images.
Unless otherwise noted, we set tearly=400.

Generator and discriminator. The generator is a UNet with GroupNorm32 and SiLU activations,
consistent with prior diffusion work (Nichol & Dhariwal, 2021). The discriminator is a PatchGAN
N-layer network (Isola et al., 2017; Wang et al., 2018a).

Table 3: FDGAN configuration for Cityscapes/Traffic-Signs.
Discriminator (PatchGAN / N-Layer)

Architecture 3 convolutional layers
Normalization InstanceNorm
Activation LeakyReLU (slope 0.2)
GAN loss LSGAN

Generator and Diffusion
Image resolution 256×256
Diffusion steps / schedule 4000 / linear
UNet channels / resblocks 128 / 2
Attention / head channels 32, 16 / 64
ResBlock up/down; scale-shift True; True
Learn sigma; dropout True; 0.0

Training Hyperparameters
Warm-up diffusion-only, then GAN+ANPM
GAN activation samples with t < tearly=400
Batch / micro-batch 16 / 8
Optimizers AdamW (model), Adam (D/adapters)
Learning rates 7×10−5 (model), 1×10−5 (D)
EMA rate 0.9999
Total iterations ∼3.5×105
ANPM noise multiplier γ = 1.2 (BB-localized)
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Notes. (i) Only samples that are sufficiently denoised (here, t < tearly) are used for adversarial updates.
(ii) For these datasets, the discriminator input is 3 ch RGB (no appended mask).

E.2 COCO training variant (reproducibility)

For the COCO potted plant experiments, we used a training variant tailored to small data with
semantically diverse backgrounds. The FDGAN core is unchanged (GAN integration at intermediate
steps with BB-localized perturbations); the following utilities differ from the base setup:

• Late timestep band for adversarial updates. Instead of a fixed tearly gate, GAN/L1 updates
are applied only when t lies in a late band. We ramp tmin from 700 to 540 (band width 120)
with tmax capped at 820; outside the band, diffusion-only updates are used. GAN warm-up
is disabled.

• ROI-focused noise and mask adapters. For the GAN path, Region-of-Interest ROI-focused
noise is injected with focus multiplier kfocus→1.75 and noise_option=extra_gan_only
(an alternative renorm_shared is available; see code for details); discriminator inputs
receive RGB+mask (4 ch) mapped to 3 ch via a 1×1 adapter.

• Small ROI discriminator (optional R1). Besides the main PatchGAN D, a small ROI
D (3 conv layers) is trained on mask-aligned ROIs; optional R1 on the small D (e.g.,
r1_gamma_small=5.0 every 16 steps) and a small integer translate diff-aug (diffaug_-
translate_px=4) may be enabled.

COCO-specific hyperparameters (concise). Unless noted, unspecified parameters follow Table 3.

Table 4: Key deltas for the COCO variant.
Scheduler / banding

GAN band (late) tmin: 700→540, width 120, tmax≤820
GAN warm-up disabled

ROI utilities
Focus multiplier kfocus=1.75; noise_option=extra_gan_only
ROI crop / padding roi_size=128; roi_pad_ratio=0.03
ROI area cap train_roi_frac_cap=0.15
GAN samples per micro-batch max_gan_per_microbatch=4

Discriminator inputs
Main D real source x_t; small D real source: x0
Small ROI D 3 conv layers; optional R1 (r1_gamma_small=5.0, r1_every=16)
DiffAug (small D) diffaug_translate_px=4

Base run settings (COCO)
Diffusion steps 1000; mixed precision: use_fp16=True
Learning rate 5×10−5; batch / micro-batch: 16 / 8

Sampling utilities. For qualitative COCO samples we used a test-time ROI bump and optional
PNPD (plug-and-play discriminator-guided) guidance within a narrow band (e.g., 140–205), reusing
TorchScript-exported D/adapters (parameters such as d_space, pnp_norm, pnp_gain, etc.).

Remark. These changes affect training utilities only; the FDGAN core remains unchanged.
Baselines are trained with the same BB masks for comparability.

Robustness to box noise / absence. In our target use cases (detector augmentation), BBs are
available or can be pseudo-labeled. FDGAN tolerates moderate localization noise (empirically we
found small jitter had limited impact on DINOv2 metrics); if boxes are unavailable, ANPM can be
disabled to fall back to a generic hybrid diffuser (losing spatial focus), or BBs can be bootstrapped
via off-the-shelf detectors. Exploring weak/learned saliency in place of hard boxes is a promising
direction for future work.
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E.3 Computational overhead

We report wall-clock training time and parameter counts for the base setup (256×256, 4000 steps) on
2×A100 40 GB; inference cost is unchanged because the discriminator is disabled at test time.

Table 5: Compute comparison (2×A100 40 GB). Base: 256×256, 4000 steps; batch/micro-batch
16/8.

Model Params (M) ∆ vs. ADM Train time ∆ vs. ADM
ADM (diffusion backbone) ∼360 – ∼33 h –
FDGAN (base, tearly=400) ∼370 +∼10 M (<3%) ∼39 h +∼18%
Inference overhead: none (discriminator unused at test time).
At 512×512, observed train-time increase is ∼23% (fits in 40 GB).

F Dynamic GAN Loss Scaling

To effectively integrate GAN losses into the diffusion training process, we employ a dynamic scaling
mechanism that modulates the GAN loss contribution based on the diffusion timestep t. This scaling
algorithm progressively adjusts the weight of adversarial losses as denoising advances, amplifying
their influence in later stages of image refinement. The detailed scaling procedure is described below:

Algorithm 2: Dynamic GAN Loss Scaling Algorithm
Input: Current timestep tensor t, maximum diffusion timestep max_t, initial GAN loss scale

initial_scale, final GAN loss scale final_scale
Output: Computed GAN loss scaling factor
Convert timestep tensor to floating-point: t← t.float();
Compute exponential decay rate:

decay_rate←
log

(
final_scale
initial_scale

)
max_t

Calculate scaled GAN loss factor:

scale(t)← initial_scale× exp(decay_rate× t)

return scale(t)

Implementation and Integration Details. At each training iteration, the current timestep t determines
the GAN loss scaling dynamically, ensuring adversarial guidance remains appropriately calibrated
throughout the diffusion process. During early denoising stages (high noise levels, large t), the GAN
loss scale factor remains small. This smaller weighting is critical at initial stages, as the model
primarily concentrates on reconstructing broad image structures and managing substantial noise.
During these initial stages, the diffusion-based reconstruction loss dominates, allowing the model to
learn general image structure and global features without interference from potentially destabilizing
adversarial gradients.

As training proceeds to intermediate and late denoising steps, the noise level decreases, and image
content becomes partially clear. Here, the algorithm progressively increases the GAN loss scaling
factor. The discriminator then provides targeted feedback on fine-grained details, textures, and
object-level realism, precisely when the model is most receptive to these refinements.

The integration of this scaling factor directly modulates the generator’s adversarial loss, complementing
the diffusion loss and L1 reconstruction loss. This balanced, composite loss structure enables FDGAN
to effectively harness GAN-driven realism exactly at the point in training when adversarial guidance
is most beneficial.

Implementation note. We use the same schedule across experiments but apply it at different activation
sets: (i) in the base setup (Cityscapes/Traffic-Signs), the schedule is applied only to samples that
satisfy the early gate t < tearly; (ii) in the COCO variant, the schedule is combined with a late
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timestep band, i.e., adversarial terms are applied only for t∈ [tmin, tmax], and within that band the
per-sample diffusion loss is down-weighted (factor 0.7) to balance objectives.

Rationale for Dynamic Loss Scaling. The primary rationale behind this dynamic loss scaling
strategy is to smoothly transition training from an early-stage focus on diffusion-based noise removal
and structural recovery toward a late-stage emphasis on GAN-driven detail refinement and image
realism. Initially, when the image contains substantial noise, emphasizing GAN losses heavily could
lead to instability and adversely affect model convergence. Conversely, applying limited or no GAN
feedback near the end of denoising would sacrifice crucial fine-grained details and realism that
adversarial training excels at capturing.

By dynamically scaling GAN losses, we carefully calibrate adversarial feedback according to the
instantaneous denoising progress of the image. This ensures stable and effective training, where early
reconstruction is primarily diffusion-driven, and later refinement incorporates powerful adversarial
cues. As a result, the model achieves superior balance, yielding structurally coherent, highly detailed,
and perceptually realistic object-centric images even under challenging limited-data scenarios.

Sensitivity note. Empirically, setting tearly! ≈!0.1T (e.g., 400 of 4000) was most stable; shifts of±200
steps mainly affected sharpness, whereas much smaller/larger values weakened gradients or increased
artifacts.

G DINOv2 metrics

G.1 Discussion of extended metrics

While the main paper focuses on the core metrics (FD, KD, FLS Overfit, and FID), the extended
results reported in Table 6 provide a broader view of model behavior.

First, Precision and Recall highlight the fidelity–diversity trade-off. Across all three datasets,
FDGAN consistently achieves higher recall than GAN-only baselines (e.g., ProjectedGAN, Pix2Pix),
indicating better coverage of real data modes and reduced mode collapse. At the same time, FDGAN
maintains competitive precision, demonstrating that improved diversity does not come at the expense
of fidelity.

Density and Coverage provide complementary perspectives. FDGAN’s density values are stable and
close to those of the strongest baselines, suggesting it produces realistic samples that are not overly
concentrated. Coverage values are consistently higher for FDGAN than diffusion-only models such as
ADM or DiT, confirming that FDGAN balances both realism and distributional breadth.

The Coverage Tests (CT and CT-mod) further reveal that diffusion-only models tend to over-memorize
under low-data conditions, while GAN-only models sometimes fail to generalize. FDGAN achieves
CT values closer to zero, especially on Cityscapes and COCO, suggesting reduced memorization and
stronger generalization.

Finally, FD∞, the bias-corrected variant of FD, supports the same ranking observed with FD.
FDGAN maintains the lowest FD∞ across datasets, reinforcing its advantage even after correcting
for sample-size bias.

Taken together, these extended metrics provide consistent support for the view that FDGAN improves
both diversity and generalization under limited-data conditions, while preserving fidelity. This
consistency across independent measures strengthens the main-paper conclusion that integrating
adversarial guidance at selective diffusion steps with BB-localized perturbations yields a more
balanced generative model.

G.2 Feature-space comparison: DINOv2 vs. Inception-V3

We complement Inception-V3–based evaluation with DINOv2 encoder–based metrics, which provide a
more comprehensive assessment of generative model performance. DINOv2 metrics have been shown
to align better with human perception and capture a broader range of image characteristics (Stein
et al., 2023; Jiralerspong et al., 2024).
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Table 6: Extended metrics on Cityscapes, Traffic-Signs, and COCO potted plant. DINOv2 block (left):
FD, FD∞, KD, FLS, CT, CT-mod, FLS Overfit. Inception-V3 block (right): FID, Precision/Recall,
Density/Coverage. ∗ denotes explicitly object-centric models or our modifications.

Class – Cityscapes Subset 256×256 – 3k
Encoder DINOv2 Inception-V3

Model
Metric FD↓ FD∞ ↓ KD↓ FLS↓ CT CT mod. FLS overfit FID↓ Precision↑ Recall↑ Density↑ Coverage↑

G
A

N
s

PSGAN∗ 774.13 745.47 5.01 191.98 6.95 2.69 –25.33 78.56 0.59 0.48 0.43 0.55
Projected GAN 828.32 791.10 3.98 118.67 9.86 12.51 –11.93 15.81 0.60 0.80 0.52 0.79
OC-ProjectedGAN∗ 1076.03 1036.03 5.12 121.66 20.59 13.84 –34.87 22.26 0.42 0.80 0.26 0.54
Pix2Pix∗ 958.23 929.03 4.27 197.40 16.63 2.76 –27.64 88.78 0.41 0.40 0.22 0.36
StyleGAN2-ADA 1948.78 1912.15 8.77 164.99 4.85 9.62 –48.73 71.36 0.28 0.28 0.12 0.17

D
M

s

ADM 1275.56 1249.34 4.89 137.83 5.01 2.52 –19.35 42.61 0.53 0.55 0.36 0.50
DiT-XL/2-G 2254.54 2219.05 11.64 180.70 –10.35 17.61 –49.13 92.65 0.12 0.15 0.03 0.04
FDGAN∗ 583.70 546.32 2.83 114.67 –6.47 1.94 1.39 19.16 0.62 0.83 0.38 0.65
Diffusion-GAN 920.67 886.07 4.33 118.89 11.03 11.68 –19.33 14.80 0.60 0.80 0.56 0.86
Layout Diffusion∗ 1313.52 1266.11 5.27 127.07 19.66 19.10 –46.47 75.00 0.29 0.19 0.12 0.18

Class – Traffic-Signs 256×256 – 3k
Encoder DINOv2 Inception-V3

Model
Metric FD↓ FD∞ ↓ KD↓ FLS↓ CT CT mod. FLS overfit FID↓ Precision↑ Recall↑ Density↑ Coverage↑

G
A

N
s Projected GAN 586.91 560.09 2.24 247.12 –7.12 –33.07 -42.6 18.18 0.60 0.62 0.56 0.68

OC-ProjectedGAN∗ 693.43 673.93 2.93 256.36 –0.56 33.96 –43.66 33.66 0.32 0.72 0.17 0.28
Pix2Pix∗ 828.10 794.61 3.16 278.75 -8.64 30.55 -48.53 116.92 0.56 0.13 0.46 0.25
StyleGAN2-ADA 1487.25 1461.06 5.86 308.96 –6.37 –10.75 37.57 96.84 0.21 0.08 0.10 0.10

D
M

s

ADM 551.36 527.99 2.18 126.09 –20.63 –14.52 33.20 34.76 0.59 0.64 0.50 0.56
DiT-XL/2-G 1349.91 1326.71 4.63 277.86 –40.02 28.17 -47.66 140.43 0.22 0.16 0.16 0.08
FDGAN∗ 416.19 391.95 1.54 177.94 7.04 5.52 -22.49 28.19 0.61 0.74 0.48 0.57
Diffusion-GAN 616.85 592.92 2.40 249.77 –6.77 32.88 -45.63 16.88 0.63 0.59 0.59 0.67
Layout Diffusion∗ 680.03 661.35 2.74 209.89 1.65 33.40 –42.80 57.65 0.33 0.38 0.18 0.23

Class – COCO potted plant 256×256 – 2.3k
Encoder DINOv2 Inception-V3

Model
Metric FD↓ FD∞ ↓ KD↓ FLS↓ CT CT mod. FLS overfit FID↓ Precision↑ Recall↑ Density↑ Coverage↑

G
A

N
s

Projected GAN 1094.78 1022.45 1.78 141.97 0.97 22.29 -32.86 44.15 0.46 0.69 0.34 0.57
OC-ProjectedGAN∗ 1316.79 1253.33 2.52 144.53 2.63 21.99 -33.06 61.75 0.40 0.64 0.25 0.40
Pix2Pix∗ 1623.55 1411.00 3.98 174.07 -29.70 -35.05 42.73 62.79 0.31 0.29 0.24 0.38
StyleGAN2-ADA 1450.62 1385.83 3.04 153.98 -0.18 18.98 -39.26 76.57 0.25 0.31 0.13 0.25
PSGAN∗ n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

D
M

s

ADM 935.42 862.12 1.19 138.06 -2.13 19.19 -31.86 56.68 0.48 0.46 0.40 0.60
DiT-XL/2-G 926.54 843.84 1.53 126.64 -0.30 20.02 -30.93 56.10 0.45 0.69 0.25 0.33
FDGAN∗ 889.95 803.69 1.17 125.64 -1.65 23.15 -28.93 43.83 0.58 0.69 0.39 0.62
Diffusion-GAN 1010.54 931.19 1.61 142.79 0.15 21.61 -32.40 30.71 0.56 0.70 0.52 0.44
Layout Diffusion∗ 1047.62 963.50 1.62 140.81 -1.31 23.38 -33.93 62.95 0.44 0.49 0.31 0.52

Below, we summarize known limitations of the Inception-V3 model (Szegedy et al., 2015) com-
monly used in FID computation (Heusel et al., 2018), and then highlight the advantages of using
DINOv2 (Caron et al., 2021) for evaluation.

Training and Representation Issues: The Inception-V3 network, traditionally used in FID com-
putation, frequently fails to encode perceptually relevant features for datasets more complex than
simple object-centric benchmarks such as CIFAR-10 or ImageNet (Kynkäänniemi et al., 2019). This
limitation arises because Inception-V3 is trained explicitly for supervised classification on ImageNet,
causing it to prioritize discriminative, class-specific features that may not generalize effectively across
diverse image distributions (Stein et al., 2023). Consequently, metrics based on Inception-V3 often
misalign with human evaluations of image quality, particularly for nuanced generative tasks, failing to
accurately reflect subtle differences in realism or diversity (Naeem et al., 2020).

Advantages of DINOv2: In contrast, DINOv2 leverages self-supervised learning to extract semanti-
cally rich image representations without reliance on class labels (Caron et al., 2021). This training
strategy enables DINOv2 to construct a more generalized and flexible representation space, capturing
diverse image structures, textures, and semantic details more effectively than supervised counterparts
such as Inception-V3 (Stein et al., 2023; Jiralerspong et al., 2024).

Holistic Image Structure: DINOv2 effectively encodes holistic image characteristics while simul-
taneously identifying and emphasizing key objects and their semantic context (Caron et al., 2021;
Stein et al., 2023). This comprehensive representation ensures that important visual features are
consistently captured, offering a richer and more robust evaluation framework for generative models.

Better Alignment with Human Judgments: Recent studies have demonstrated that the DINOv2
representation space aligns significantly better with human perceptions of image realism, diversity,
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and quality compared to Inception-V3-based metrics (Stein et al., 2023; Jiralerspong et al., 2024).
Consequently, metrics derived from DINOv2 feature embeddings more accurately reflect perceptual
fidelity and diversity as evaluated by humans, thereby addressing a critical gap in generative model
evaluation (Kynkäänniemi et al., 2019; Naeem et al., 2020).

Self-Supervised Learning Benefits: Unlike Inception-V3, which is constrained by supervised
classification tasks, DINOv2 benefits from self-supervised learning paradigms that exploit vast
quantities of unlabeled data (Caron et al., 2021). This enables it to generalize effectively across
varying domains and image distributions, producing a representation space more adaptable and
suitable for evaluating generative outputs.

Increased Focus on Image Semantics: DINOv2 emphasizes semantic content in images, facilitating
more meaningful evaluations of synthesized images generated by diffusion and GAN models (Stein
et al., 2023). Its semantic-centric approach ensures critical image aspects—such as contextual
relevance, realism, and subtle perceptual details—are thoroughly captured and assessed. Given these
advantages of DINOv2, we further illustrate its superiority through feature heatmap comparisons
(Fig. 6). By generating heatmaps from both Inception-V3 and DINOv2, we visually demonstrate how
each model interprets and represents image features. These heatmaps highlight differences in their
focus and coverage, providing insights into their respective strengths and weaknesses in evaluating
the quality and fidelity of generative outputs.

Figure 6: Heatmap comparison between DINOv2 and Inception-V3. DINOv2 captures broader
scene context, while Inception-V3 focuses narrowly on object-specific regions.

G.3 Metric definitions

Below, we provide formal definitions and interpretations of the specific metrics we use in conjunction
with the DINOv2 encoder:

Kernel Distance (KD): KD measures the Maximum Mean Discrepancy between real and generated
image distributions in a high-dimensional feature space using a polynomial kernel, capturing
differences in both distribution mean and variance (Bińkowski et al., 2021). Lower is better.

Fréchet Distance (FD): FD generalizes the original FID metric to DINOv2’s feature space by
comparing real and generated distributions modeled as multivariate Gaussians (Stein et al., 2023).
Lower is better.

FD∞ (Bias-Corrected FD): FD∞ corrects the inherent sample-size bias present in the FD metric,
providing an unbiased asymptotic measure of image distribution similarity (Chong & Forsyth, 2020;
Stein et al., 2023). Lower is better.

Coverage Test (CT): CT evaluates whether generated images memorize or copy training samples by
statistically comparing nearest-neighbor distances among training, generated, and test samples in
feature space (Meehan et al., 2020). Lower is better.
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Modified Coverage Test (CT mod): CT mod enhances the standard CT by reducing false positives
and more reliably distinguishing genuine generalization from memorization (Stein et al., 2023). Lower
is better.

Feature Likelihood Score (FLS): FLS assesses how likely generated samples are under the real-
data distribution modeled in the feature space. It effectively balances realism, diversity, and
novelty (Jiralerspong et al., 2024). Lower is better.

FLS Overfit (Percentage of Overfit Gaussians, FLS-POG): FLS Overfit quantifies the extent of
memorization or overfitting, measuring how often generated samples are more similar to training
samples than to unseen test data (Jiralerspong et al., 2024). Closer to zero is better.

Precision: Precision measures the proportion of generated samples close to real data manifold, thus
quantifying image fidelity and realism (Kynkäänniemi et al., 2019). Higher is better.

Recall: Recall evaluates the coverage of the real distribution by generated samples, providing a direct
measure of diversity and indicating mode collapse (Kynkäänniemi et al., 2019). Higher is better.

Density: Density refines precision by quantifying how densely generated samples populate the real
data manifold, giving a nuanced view of realism and detail preservation (Naeem et al., 2020). Higher
is better.

Coverage: Coverage complements recall by explicitly measuring the proportion of distinct real-data
modes covered by generated samples, ensuring comprehensive representation and diversity (Naeem
et al., 2020). Higher is better.

By employing these metrics, we provide a more comprehensive and nuanced evaluation of generative
models. These metrics align better with human perception, capture a more complete structure of
images, and leverage the advantages of self-supervised learning in DINOv2. This approach ensures
that the evaluation of generative models is more accurate, fair, and reflective of their true capabilities
in producing realistic and diverse images.

H Additional Qualitative Results

This section presents example outputs from GAN-based, diffusion-based, and hybrid models (including
FDGAN) across the three datasets considered in this work: Cityscapes–Pedestrian, Traffic-Signs,
and COCO potted plant. For each dataset, we show two image grids: one for GAN-based baselines
(FDGAN included for reference) and one for diffusion-based baselines (FDGAN included as well).
These figures are intended as illustrative samples rather than a controlled qualitative study.

Samples were generated independently by each model using the evaluation settings described in the
main paper; where applicable, bounding-box (BB) layouts or masks were provided to models that
accept them. Because the compared methods differ in conditioning mechanisms (e.g., explicit BB
layouts vs. unconditional generation), the displayed images are not matched on identical seeds or
inputs. The grids thus serve to visualize typical artifacts and visual characteristics that accompany
each approach under the low-data regime, complementing the quantitative metrics.

H.1 Cityscapes Results

GAN-based methods. Figure 7 shows representative samples from GAN-based models alongside
FDGAN. Across methods, one can observe variations in human shape fidelity, textures, and background
coherence characteristic of dense, occluded urban scenes. These examples are provided to illustrate
the range of outputs produced by different models under identical dataset constraints.

Diffusion-based methods. Figure 8 presents examples from diffusion-based baselines and FDGAN.
The images reflect common behaviors in this setting (e.g., blur vs. sharpness trade-offs, texture
consistency, and background handling) and are included to complement the quantitative metrics
reported in the main paper.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 7: Cityscapes–Pedestrian: example outputs from GAN-based models. Columns show
independent generations to visualize typical visual characteristics under low-data conditions.

Figure 8: Cityscapes–Pedestrian: example outputs from diffusion-based models. Images illustrate
typical results; no claim of qualitative superiority is implied.
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H.2 Traffic-Signs Results

GAN-based methods. Figure 9 shows examples from GAN-based models on the Traffic-Signs
dataset. As a simpler, structured domain, typical variations include text legibility, edge sharpness,
and the presence or absence of artifacts around sign boundaries.

Figure 9: Traffic-Signs: example outputs from GAN-based models. Columns show independent
generations illustrative of typical behaviors in this domain.

Diffusion-based methods. Figure 10 displays examples from diffusion-based baselines and FDGAN.

The samples illustrate characteristic outcomes under low data, including differences in small-text
clarity, boundary smoothness, and background treatment.

H.3 COCO potted plant Results

GAN-based methods. Figure 11 shows examples on the COCO potted plant subset, which presents
diverse backgrounds and object appearances (indoor/outdoor). The images illustrate model behaviors
related to object–background compositing, leaf/branch detail, and overall scene coherence.

Diffusion-based methods. Figure 12 presents examples from diffusion-based baselines and FDGAN
on the same subset. The samples visualize typical outcomes for fine structure (e.g., leaves), background
handling, and object placement across varied scenes.

Scope. These qualitative figures are illustrative only and are not a substitute for a dedicated perceptual
study. A systematic qualitative evaluation (e.g., human preference tests or protocolized blind ratings) is
an interesting direction for future work. Here, the figures are intended to complement the quantitative
metrics by providing visual context for typical outputs under the same low-data constraints. Because
methods differ in conditioning mechanisms (e.g., explicit BB layouts vs. unconditional generation),
seeds are not shared across models; instead, we fix a display protocol (panel order, number of samples,
crop size) and keep it identical across datasets.
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Figure 10: Traffic-Signs: example outputs from diffusion-based models. Images are representative
and complement the quantitative comparisons.

Figure 11: COCO potted plant: example outputs from GAN-based models. Columns provide
representative samples across varied contexts.
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Figure 12: COCO potted plant: example outputs from diffusion-based models. These images are
illustrative and not intended as a controlled qualitative study.

H.4 Ablation Study Results

Figure 13 presents qualitative results from the FDGAN ablation study, clearly illustrating the impact of
removing key model components. Specifically, we assess variants without the ANPM/GAN module,

Figure 13: FDGAN ablation study qualitative comparison. Columns represent FDGAN variants
illustrating the effect of various components.
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reconstruction losses (Lrecon), with equal weighting of GAN and diffusion losses, and with extended
diffusion steps. Each ablation significantly degrades image quality, realism, and object-level detail
preservation compared to the complete FDGAN model. The full FDGAN configuration (far right
column) consistently yields the highest-quality images, highlighting the critical roles of targeted
perturbations (ANPM), GAN feedback, and carefully balanced loss functions.

I Object-Centric Adaptation of ProjectedGAN

We adapted ProjectedGAN (Sauer et al., 2021) into an object-centric conditional image generation
framework (OC-ProjectedGAN) to provide an additional comparative baseline against FDGAN. This
appendix details the exact code-level modifications and the intended implications. Evaluating how
effectively OC-ProjectedGAN generates objects within prescribed bounding boxes (BBs) during
inference is beyond the current scope, and thus not quantified here. Instead, we aimed solely to
conditionally integrate bounding-box spatial constraints explicitly into ProjectedGAN.

Generator Modifications. The original ProjectedGAN generator is unconditional, relying solely
on latent noise z for image synthesis. To introduce spatial guidance, the following modification was
implemented in the generator:

Each input bounding-box mask, provided in YOLO-format annotations, is converted into a binary
mask matching the target image dimensions (256×256). This binary mask is flattened and projected
through a learned linear embedding layer to obtain a latent vector aligned with the original latent
vector dimension:

zcond = z + Linear(flatten(BB_mask)). (10)

This additive conditioning method implicitly encodes spatial layout constraints directly into the latent
representation before synthesis, enabling the generator to condition image generation explicitly on
bounding-box annotations.

Discriminator Modifications. To ensure the discriminator considers object placement, the following
explicit spatial conditioning was implemented by augmenting the discriminator’s input channels:

A binary bounding-box mask is concatenated directly with the RGB input images, resulting in a
four-channel input tensor. Subsequently, this augmented input undergoes a single 1× 1 convolutional
layer to reduce channel dimensionality back to three channels compatible with the pre-trained
discriminator backbone:

xdisc = Conv1×1(concat(ximg,BB_mask)). (11)

This explicitly conditions the discriminator to evaluate both realism and spatial consistency, leveraging
the provided bounding-box constraints.

Dataset Preparation. The dataset was structured explicitly to pair each training image with its
corresponding binary bounding-box mask derived directly from YOLO-format annotations. Pixels
within bounding boxes were set to 1, and pixels outside were 0. All image augmentations (such as
flips or crops) were synchronously applied to images and their associated masks to maintain precise
spatial alignment.

Inference Procedure. During inference, OC-ProjectedGAN uses the trained spatial conditioning
mechanism as follows:

Given a noise vector z and an externally specified bounding-box mask provided at test time, the
generator synthesizes images conditioned explicitly on these spatial constraints. In practice, the
bounding-box mask is loaded from a grayscale PNG file (or a directory of such masks). The generator’s
forward pass incorporates the mask embedding precisely as done during training:

img = G(z, label, truncation_psi, noise_mode, bb_mask=current_bb_mask)

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Scope and Limitations. These targeted code-level modifications successfully adapt ProjectedGAN
into a spatially-conditioned image generation model (OC-ProjectedGAN). However, this work does not
include a rigorous quantitative analysis of the model’s accuracy in strictly adhering to bounding-box
placement during inference. Such an evaluation remains a compelling topic for future investigation.

In summary, OC-ProjectedGAN is explicitly designed and implemented as an object-centric model
to complement comparisons with FDGAN, thus enriching our comparative analysis framework for
object-centric generative models.

J Fine-tuning Protocol and Early-Stopping Criteria

Pretrained initialization. For small, object-centric datasets, initializing from author-released
checkpoints is preferable to training from scratch: it leverages prior visual knowledge and consistently
improves convergence and sample quality when the target data are scarce (Wang et al., 2018b;
Grigoryev et al., 2022). We therefore fine-tuned each model on COCO potted plant starting from the
corresponding public checkpoint.

Checkpoint selection and stopping. We evaluate generated samples every 20k optimization steps
using a fixed evaluation protocol. For each snapshot we compute DINOv2 FD (primary), KD, FLS
Overfit, and Inception-V3 FID, Precision, and Recall on a held-out set. We select the snapshot that
minimizes FD subject to maintaining Recall, and stop training once these summary metrics plateau or
begin to degrade. This choice mirrors common practice in generative modeling—selecting the best
checkpoint by FID/precision–recall and terminating when further training yields diminishing returns
or early signs of collapse (Heusel et al., 2018; Kynkäänniemi et al., 2019). When applicable, we also
monitor diversity proxies (e.g., MS-SSIM (Wang et al., 2004)) to flag increasing redundancy.

Qualitative guardrails. Because losses alone are not reliable indicators of generative quality, we
complement metrics with periodic qualitative checks on fixed seeds/prompts (unconditional and
conditional settings, respectively). We halt before outputs become visually repetitive or backgrounds
deteriorate, ensuring the chosen checkpoint captures the target concept while preserving diversity.

Rationale in low-data regimes. Stopping at the first snapshot where target-class fidelity is high
and diversity remains intact reduces overfitting and mode collapse—failure modes that are amplified
when fine-tuning on small datasets. This protocol is consistent with reports that pretrained generators
retain broader coverage than scratch-trained models and benefit from shorter, carefully monitored
fine-tuning schedules (Wang et al., 2018b; Grigoryev et al., 2022).

LLM Usage

We used an LLM (ChatGPT) only for minor copy-editing (e.g., wording, concision, and punctuation).
All suggested edits were reviewed and approved by the authors, who take full responsibility for the
final text.
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