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Abstract

This work proposes “jointly amortized neu-
ral approximation” (JANA) of intractable likeli-
hood functions and posterior densities arising in
Bayesian surrogate modeling and simulation-based
inference. We train three complementary networks
in an end-to-end fashion: 1) a summary network
to compress individual data points, sets, or time
series into informative embedding vectors; 2) a pos-
terior network to learn an amortized approximate
posterior; and 3) a likelihood network to learn an
amortized approximate likelihood. Their interac-
tion opens a new route to amortized marginal like-
lihood and posterior predictive estimation – two
important ingredients of Bayesian workflows that
are often too expensive for standard methods. We
benchmark the fidelity of JANA on a variety of sim-
ulation models against state-of-the-art Bayesian
methods and propose a powerful and interpretable
diagnostic for joint calibration. In addition, we
investigate the ability of recurrent likelihood net-
works to emulate complex time series models with-
out resorting to hand-crafted summary statistics.

1 INTRODUCTION

Surrogate modeling (SM) and simulation-based inference
(SBI) are two ingredients of the new generation of methods
for simulation science (Lavin et al., 2021). From a Bayesian
perspective, SM seeks to approximate the intractable likeli-
hood function, whereas SBI targets the intractable posterior
distribution of a complex probabilistic model. Both prob-
lems are hard, as they involve integrals which cannot be
solved with standard analytical or numerical methods. Thus,
specialized neural approximators have emerged as promis-
ing tools for taming the intractable (Cranmer et al., 2020).

*Shared senior authorship

Neural networks trained on model simulations enable amor-
tized inference: A pre-trained network can be stored and
re-used for Bayesian inference on millions of data sets (von
Krause et al., 2022). Crucially, most previous neural ap-
proaches have tackled either SM or SBI in isolation, but little
attention has been paid to learning both tasks simultaneously.
To address this gap, we propose JANA (“Jointly Amortized
Neural Approximation”), a Bayesian neural framework for
simultaneously amortized SM and SBI, and show how it en-
ables novel solutions to challenging downstream tasks like
the estimation of marginal and posterior predictive distribu-
tions (see Figure 1). JANA also presents a major qualitative
upgrade to the BayesFlow framework (Radev et al., 2020),
which was originally designed for amortized SBI alone.

It is commonly presumed that amortized inference is waste-
ful (Greenberg et al., 2019; Papamakarios & Murray, 2016)
and requires much larger simulation budgets than sequen-
tial inference to make up for the much larger prediction
domain. Our results challenge this premise. Given identical
simulation budgets, JANA outperforms or is on par with se-
quential (i.e., non-amortized) methods, such as ABC-SMC,
SNL, and SNPE (see Figure 4). Furthermore, we hypoth-
esize that modern neural networks benefit strongly from a
broad simulation scope. Thanks to their excellent generaliza-
tion capabilities, they can exploit outcomes from the entire
prior predictive distribution of a simulation to improve local
accuracy for each specific case. In this sense, amortized
inference seems to be a natural by-product of deep proba-
bilistic modeling, and the initial training effort more than
repays with global diagnostics, nearly instant estimation at
test time, and no loss in accuracy.

We show that JANA unlocks the potential of powerful
Bayesian tools for model comparison, validation, and cali-
bration, which are essential in Bayesian workflows (Gelman
et al., 2020), but widely underutilized in current simulation-
based analysis. For one, JANA offers an efficient way to
compute marginal likelihoods via the probabilistic change-
of-variables formula (instead of integration over the model’s
entire prior space) as a prerequisite for prior predictive
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Figure 1: A conceptual illustration of our method for jointly amortized neural approximation (JANA). On the one hand,
the summary and posterior network can perform amortized posterior estimation and detect model misspecification. On
the other hand, the likelihood network can perform amortized likelihood estimation, surrogate simulations, and interact
with probabilistic programming languages. Together, the two networks enable posterior predictive and marginal likelihood
estimation, which allow for amortized Bayesian model comparison and validation.

model selection (i.e., probabilistic Occam’s razor). For an-
other, it can rapidly produce both posterior samples and
normalized likelihood estimates of new data instances, as
are needed in strong validation procedures of the posterior
predictive performance (Vehtari & Ojanen, 2012). In other
words, JANA can directly quantify both prior and posterior
predictive performance without resorting to Markov chain
Monte Carlo (MCMC) sampling or costly model re-fits, in
addition to the well-studied advantages of individual poste-
rior or likelihood networks (see Figure 1).

In summary, our key contributions are:

1. We develop a neural architecture for fully amortized
joint posterior estimation and likelihood emulation;

2. We propose a sensitive and interpretable method to test
for joint calibration of the networks;

3. We extensively validate our new architecture on ana-
lytic toy examples and complex simulation models;

4. We show how our joint architecture solves the chal-
lenges of computing both out-of-sample predictive per-
formance and intractable marginal likelihoods;

5. We demonstrate a recurrent neural likelihood for surro-
gate simulations in a complex time series model.

2 METHOD

2.1 PROBLEM FORMULATION

Bayesian Models We focus on generative Bayesian mod-
els specified as a triple M=

(
G(θ, ξ), p(ξ |θ), p(θ)

)
. Such

models yield observables x ∈ X according to the system

x = G(θ, ξ) with ξ ∼ p(ξ |θ), θ ∼ p(θ), (1)

where G denotes a simulation program, ξ ∈ Ξ denotes exter-
nalized randomness (i.e., noise or pseudorandom program
states) with density function p(ξ |θ), and p(θ) encodes prior
knowledge about plausible simulation parameters θ ∈ Θ.

Forward Inference Running the simulator G with a fixed
parameter configuration θ and different values of ξ is equiv-
alent to random draws from an implicit likelihood p(x |θ):

x ∼ p(x |θ) ⇐⇒ x = G(θ, ξ) with ξ ∼ p(ξ |θ) (2)

In theory, implicit likelihoods can be obtained by marginal-
izing the joint distribution p(ξ,x |θ) over all possible exe-
cution trajectories of the simulation program (i.e., over ξ),
but this is typically intractable (Cranmer et al., 2020).

Inverse Inference In Bayesian analysis, we want to infer
a model’s latent parameters θ from manifest data x through
the probabilistic factorization of the joint distribution into
prior and (implicit) likelihood:

p(θ |x) ∝ p(θ,x) = p(θ)

∫
Ξ

p(ξ,x |θ) dξ. (3)

Since we assume that the likelihood is not available in closed
form, we also cannot access the posterior p(θ |x) and per-
form parameter estimation through gold-standard Bayesian
methods, such as MCMC (Carpenter et al., 2017).

Marginal Likelihoods In addition to estimating parame-
ters, modelers often want to compare and assign preferences



to competing models. From a Bayesian perspective, the
canonical measure of evidence for a given model is the
marginal likelihood (aka the prior predictive distribution),

p(x) =

∫
Θ

∫
Ξ

p(θ) p(ξ,x |θ) dξ dθ, (4)

which is doubly intractable for complex models because
both involved integrals are highly difficult to approximate
with sufficient precision (Meng & Wong, 1996). How-
ever, the estimation of the marginal likelihood is central
to Bayesian model comparison, since it naturally embodies
a probabilistic version of Occam’s razor by penalizing the
prior complexity of a model (MacKay, 2003). Thus, it al-
lows us to express our preference for a simpler model over
a more complex one, given that both models can account
for the observed data equally well.

Posterior Predictive Distribution Bayesian models can
also be compared and validated on the basis of their pos-
terior predictive performance (Vehtari & Ojanen, 2012).
However, many posterior predictive metrics rely on the like-
lihood density being available analytically. In particular,
this is true for the expected log-predictive density (ELPD),
which is a widely-applied, general-purpose metric to mea-
sure (out-of-sample) posterior predictive performance when
no application-specific utilities are known (Vehtari et al.,
2017). For K (new) observations x(k)

new not previously seen
by the model, the ELPD can be defined as

ELPD =

K∑
k=1

log

∫
Θ

p(x(k)
new |θ) p(θ |x) dθ. (5)

The ELPD has a strong connection to information theory
(Vehtari & Ojanen, 2012) and is widely used in Bayesian
cross-validation (Vehtari et al., 2017), where it is one of the
most prominent sources of computational intractability.

Probabilistic Symmetry Our joint training will leverage
the symmetry in the arguments of p(θ |x) and p(x |θ),
along with the fact that a single run of the simulator (Eq. 1)
yields a reusable tuple of parameters and synthetic data
(θ,x). However, many simulation models are characterized
by a relatively low-dimensional parameter space Θ (e.g.,
low-dimensional vectors) and a rather high-dimensional
data space with a rich structure X (e.g., multivariate time
series or sets of exchangeable observations). Thus, we need
different neural architectures, each separately aligned with
the structural properties of p(θ |x) and p(x |θ).

2.2 POSTERIOR NETWORK

The posterior network Pϕ implements a normalizing flow
between θ and a latent variable zθ with a simple density
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Figure 2: Recurrent likelihood networks can emulate com-
plex Bayesian stochastic differential equation models of
disease outbreaks (see Experiment 4).The top and bottom
row each depict 1 000 simulations (same θ) from the surro-
gate and the actual simulator, respectively.

(e.g., Gaussian) given observed or simulated data x:

pϕ(θ |x) = p(zθ)

∣∣∣∣det(∂zθ
∂θ

)∣∣∣∣ (6)

zθ = Pϕ(θ;x). (7)

The normalizing flow is realized via a conditional invertible
neural network (cINN) composed by a series of conditional
coupling layers with affine and/or spline transformations.
Since the observed or simulated data will typically have a
complex structure and/or contain varying numbers of obser-
vations, the posterior cINN includes a trainable summary
network sub-module Hψ (see Radev et al., 2020) which we
optimize alongside to extract maximally informative data
representations Hψ(x) in an end-to-end manner.

The design of the conditional coupling layers follows the
work of (Ardizzone, Kruse, et al., 2019; Ardizzone, Lüth,
et al., 2019; Durkan et al., 2019), since compositions of
such layers exhibit favorable theoretical properties (Draxler
et al., 2022) and remarkable empirical performance on high-
dimensional unstructured data (Dinh et al., 2016; Kingma
& Dhariwal, 2018) or complex Bayesian models in various
domains (Bellagente et al., 2022; Bieringer et al., 2021;
Radev et al., 2021; von Krause et al., 2022). However, any
other coupling design can be used as a plug-in replacement.

2.3 LIKELIHOOD NETWORK

The likelihood network Lη implements a normalizing flow
between x and a (multivariate) Gaussian latent variable
zx = Lη(x;θ) given a parameter configuration θ,

lη(x |θ) = p(zx)

∣∣∣∣det(∂zx
∂x

)∣∣∣∣ . (8)



This formulation is similar to the pushforward expression
for the posterior network (Eq. 6), but with θ swapped for x.
The likelihood network, like the posterior network, is also
implemented as a cINN. As the conditioning information
is now the parameter vector θ (and not a complex data
structure), it can be fed directly to the conditional coupling
layers of the cINN without an additional summary network.

However, since the data x (i.e., simulator outputs) is typi-
cally in non-vector form, the design of the coupling layers
needs to be tailored according to the probabilistic symmetry
of p(x |θ). Learning p(x |θ) in its raw form is typically
much harder than learning the likelihood p(H(x) |θ) of
some (learned or hand-crafted) summary statistics H(x),
since the latter are already in a compressed vector form and
do not require specialized architectures. JANA can learn
either p(H(x) |θ) or p(x |θ), as required by the particu-
lar application or dictated by the (un-)availability of good
summary statistics. In our experiments, we directly target
p(x |θ) and the Appendix details how to design likelihood
networks for exchangeable or Markovian data.

2.4 SIMULATION-BASED TRAINING

In contrast to previous joint learning approaches (Glöck-
ler et al., 2022; Wiqvist et al., 2021), we aim for a fully
amortized approach: Once the networks have converged,
we want to evaluate the normalized densities pϕ(θ |x) and
lη(x |θ) for any pair (θ,x) consistent with a generative
Bayesian model M. In addition, we want to generate con-
ditional random draws θ |x and x |θ from both networks
for parameter estimation and surrogate modeling. Finally,
we want to prescribe a simple distribution to the summary
network outputs p

(
Hψ(x)

)
in order to detect atypical data

during inference (i.e., model misspecification) and highlight
potential posterior errors (Schmitt et al., 2021). Thus, we
minimize the following criterion:

min
ϕ,ψ,η

Ep(θ,x)

[
− (log pϕ(θ |Hψ(x)) + log lη(x |θ))

]
+ λ ·MMD2

[
p(Hψ(x)) || N (0, I)

]
(9)

where MMD2 is the maximum mean discrepancy (MMD;
Gretton et al., 2012) between the distribution of summary
network outputs and a unit Gaussian density. This diver-
gence imposes a probabilistic structure on the summary
space learned by Hψ(x) and enables error detection and
model criticism during inference (to be explained shortly,
see also Schmitt et al., 2021). We approximate the expec-
tation over p(θ,x) via online or offline simulations from
the generative model M and train the three networks until
convergence (see the Appendix for a detailed derivation of
simulation-based training).

Proper minimization of the criterion in Eq. 9 results in cor-
rect posterior and likelihood approximation, along with
an interpretable summary space. However, the objective

promises self-consistency only in the “small world”, as
it does not guarantee correct posterior inference or like-
lihood evaluation in the real world when there may be a
severe simulation gap. This is due to the fact that simulation-
based training optimizes the expectation with respect to the
Bayesian joint model p(θ,x), but not (necessarily) the em-
pirical data distribution p∗(x). Thus, the MMD term allows
us to detect potential simulation gaps during inference via
distribution matching (Schmitt et al., 2021). Moreover, the
posterior network can serve as a “critic” for the likelihood
network by rejecting surrogate simulations which are judged
to be highly unlikely under the true simulator.

2.5 VALIDATION METHODOLOGY: JOINT
CALIBRATION

Faithful uncertainty representation (i.e., calibration) is an
essential precondition for self-consistent and interpretable
simulation-based inference. Simulation-based calibration
(SBC; Talts et al., 2018) is a general diagnostic method
which considers the performance of a sampling algorithm
over the entire joint distribution p(θ,x), regardless of the
specific probabilistic structure of a model.

SBC leverages the generative nature of Bayesian models
as well as the self-consistency of the Bayesian joint model
G(θ, ξ) in the following sense: For all quantiles q ∈ (0, 1),
all uncertainty regions Uq(θ | x) of p(θ |x) are well cali-
brated, as long as the generating distribution of the assumed
model is equal to true data-generating distribution and pos-
terior computation is exact (Talts et al., 2018). We can for-
mally write this property as

q =

∫
X

∫
Θ

I[θ∗∈Uq(θ |x)] p(x |θ∗) p(θ∗) dx dθ∗, (10)

where θ∗ is the true data-generating parameter and I[·] is the
indicator function. If the posterior network Pϕ generates
draws from the true posterior and the likelihood network Lη
mimics the simulator perfectly, then the equality implied
by Eq. 10 holds regardless of the particular form of the
true likelihood or the true posterior. Thus, any violation of
this equality indicates some error incurred by joint training,
so we refer to our validation procedure as joint simulation-
based calibration (JSBC).

The reasons for faulty JSBC can be any combination of
(i) inaccurate representation of the posterior; (ii) inaccu-
rate representation of the likelihood; or (iii) an erroneous
implementation of the simulation model itself. To differ-
entiate between (i) and (ii), we can first run standard SBC
for the posterior network using data draws from the actual
simulator instead of the likelihood network. If this check
passes, but subsequently JSBC fails, the calibration prob-
lems must stem from the likelihood network. Thereby, we
can use the posterior network for model criticism of the
likelihood network, which would otherwise be infeasible



for most Bayesian models.

As part of a Bayesian workflow (Gelman et al., 2020), cali-
bration procedures can quickly become infeasible for non-
amortized methods, as they require independent posterior
draws from hundreds or thousands of simulated data sets.
However, we can effortlessly assess the calibration of amor-
tized methods, since we can obtain many posterior draws
from thousands of data sets in a matter of seconds. In prac-
tice, we follow Säilynoja et al. (2022) by transforming the
posterior draws intro fractional rank statistics and computing
their empirical cumulative distribution functions (ECDFs).
This method provides simultaneous confidence bands and
eliminates the need to manually select a binning parameter
(e.g., as required by histogram-based methods).

2.6 USE CASES FOR JOINT LEARNING

Posterior Predictive Estimation Estimating the expected
predictive performance of a Bayesian model (Eq. 5) requires
an analytic expression for the pointwise p(x

(k)
new |θ) at arbi-

trary new data x
(k)
new (Bürkner et al., 2021). For this reason,

the ELPD cannot be computed for Bayesian models with
intractable likelihoods or sequential neural estimators.

Moreover, even if the likelihood itself were analytic, the
integral in Eq. (5) would still be intractable for most models.
It can be efficiently approximated using posterior draws, but
doing so in the context of cross-validation requires impor-
tance sampling or costly model refits (Vehtari et al., 2017).
Hence, evaluating the ELPD for arbitrary cross-validation
schemes critically requires both the amortized likelihood
and posterior approximator.

Given data used for model fitting x and upcoming data
x
(k)
new, the two networks can estimate a model’s expected

predictive performance in two steps. First, we can obtain
a large amount of S random draws from the amortized
posterior given x:

θ(s) ∼ pϕ(θ |Hψ(x)) for s = 1, ..., S. (11)

Then, the likelihood network can approximate the ELPD at
all x(k)

new given {θ(s)} via its Monte Carlo estimate:

ÊLPD =

K∑
k=1

log
1

S

S∑
s=1

lψ(x
(k)
new |θ(s)) (12)

In the context of cross-validation (CV), x and xnew refer
to a random data split, and we can estimate the predictive
performance of a Bayesian model by summing over the
ÊLPDs from all data splits. In Experiment 3, we demon-
strate this for leave-one-out (LOO)-CV, which is one of the
most expensive validation methods.

Marginal Likelihood Estimation Bayesian (prior) pre-
dictive model comparison depends on computing a marginal

likelihood (Eq. 4). We can leverage the probabilistic change
of variable, which results directly from Bayes’ rule:

log p̂(x) = log lη(x |θ) + log p(θ) (13)
− log pϕ(θ |Hψ(x)).

Thus, for any data set, we can obtain an estimate of the log
marginal likelihood by evaluating Eq. 6 and Eq. 8, along
with the prior density p(θ). Evaluating all above terms is
infeasible with standard Bayesian methods, since either
the normalized posterior, the likelihood, or both quantities
are typically intractable. Bridge sampling (Meng & Wong,
1996) enables the approximation of marginal likelihoods
from posterior draws, but only works for models with analyt-
ical likelihoods and in tandem with non-amortized MCMC.

From a Bayesian perspective, evaluating Eq. 13 across mul-
tiple data sets amounts to amortized bridge sampling. At the
same time, we can use Eq. 13 for assessing non-convergence
or problems during inference by evaluating the right-hand
side for a fixed x and different θ drawn from the approxi-
mate posterior. Under perfect convergence, the right-hand
side of Eq. 13 is independent of θ, so any ensuing variation
is a measure of pure approximation error.

Surrogate Simulators In some modeling scenarios, the
simulator might be a large-scale computer program im-
plementing a complex generative algorithm (Lavin et al.,
2021). Thus, a simulation-based inference workflow might
be severely limited by the inability to obtain a large amount
of simulations in a reasonable time. In such cases, an amor-
tized surrogate simulator can generate additional data for
the posterior network or a black-box optimizer (Gutmann
& Corander, 2016). A notable advantage of neural surro-
gate simulators is that they can directly emulate complex
data without summary statistics (see Figure 2). In addition,
they can render a non-differentiable simulator differentiable
for downstream tasks, such as amortized design optimiza-
tion (Ivanova et al., 2021) or interact with MCMC samplers
(Boelts et al., 2022; Fengler et al., 2021).

3 RELATED WORK

Approximate Bayesian Computation An established ap-
proach to SBI is embodied by approximate Bayesian compu-
tation (ABC; Marin et al., 2012; Sisson et al., 2018). ABC
is a family of algorithms where the simplest one, “ABC
rejection”, generates draws from an approximate posterior
by repeatedly proposing parameters from the prior distri-
bution, and then simulating a corresponding synthetic data
set by running the simulator with the proposed parameters.
More sophisticated ABC samplers are Sequential Monte
Carlo (ABC-SMC; Beaumont et al., 2009; Del Moral et
al., 2012; Picchini & Tamborrino, 2022; Toni, 2011) and
Markov chain Monte Carlo ABC (ABC-MCMC; Marjo-
ram et al., 2003; Picchini, 2014). In ABC, raw data are
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Figure 3: Experiment 1. Example calibration tests for 2 of
the more challenging benchmarks. Top row: Good posterior
and joint calibration of JANA for the Gaussian mixture
model. Bottom row: Posterior and joint calibration can be
used in tandem to detect an underperforming likelihood
network in the SIR model. The posterior network alone
induces no systematic deviations when applied to simulator
outputs (bottom left), but overestimates the parameters given
the outputs of the surrogate network (bottom right).

typically reduced via summary functions. However, hand-
crafted summary statistics are often insufficient, which re-
sults in a leak of information about the parameters (Marin
et al., 2018). Recent work has used neural networks to learn
informative summary statistics of model parameters in ABC
(Chen et al., 2021; Jiang et al., 2017; Wiqvist et al., 2019).

Synthetic Likelihoods and Particle MCMC Despite be-
ing intuitive to grasp and use, the above ABC methods are
notoriously inefficient, typically requiring millions of model
simulations, which can be prohibitive for expensive simu-
lators. Another established SBI alternative, also based on
data-reduction via summary statistics, is synthetic likelihood
(Price et al., 2018; Wood, 2010), which is more suitable for
high-dimensional summary statistics. Since synthetic likeli-
hood is typically implemented in tandem with an MCMC
sampler where multiple data sets are simulated at each pro-
posed θ, it can also be computationally intensive. Particle
MCMC (Andrieu et al., 2010) is a simulation-based method
for exact Bayesian inference which has found considerable
success, especially for state-space models. However, par-
ticle MCMC could be infeasible when multiple inference
runs are required to separately fit several different data sets.

Neural Posterior Estimation Methods for neural poste-
rior estimation either specialize a neural approximator for

inference on a single observation1 (Deistler et al., 2022;
Durkan et al., 2020; Greenberg et al., 2019; Lueckmann
et al., 2017; Papamakarios & Murray, 2016), or inference
across arbitrarily many observations (Ardizzone, Kruse, et
al., 2019; Avecilla et al., 2022; Gonçalves et al., 2020; Pac-
chiardi & Dutta, 2022; Radev et al., 2020). The former
methods perform sequential estimation by iteratively re-
fining the prior to generate simulations in the vicinity of
the observation. Thus, they are not amortized, as each new
observation necessitates a costly re-training of the neural
approximator. In contrast, the latter methods can perform
amortized inference, as the neural approximator is trained
to generalize over the entire prior predictive distribution
and can be queried for any observation assumed to arise
from the Bayesian model. Importantly, amortization can be
performed over any aspect of the model, including data sets
(Gonçalves et al., 2020) or other contextual factors, such as
the number of observations in a data set or the number of
time points in a time series (Radev et al., 2020).

Neural Likelihood Estimation A related family of neu-
ral methods directly targets the intractable likelihood func-
tion instead of the posterior (Boelts et al., 2022; Fengler
et al., 2021; Hermans et al., 2020; Lueckmann et al., 2019;
Munk et al., 2022; Papamakarios et al., 2019). The endpoint
of these methods is an amortized likelihood approximator
which can mimic a complex simulator or be used in tandem
with non-amortized MCMC samplers for posterior estima-
tion. The latter can be prohibitively time-consuming, since
it not only requires expensive simulation-based training, but
also integrating likelihood approximators into MCMC. This
makes validating the posteriors (e.g., via simulation-based-
calibration; SBC; Säilynoja et al., 2022; Talts et al., 2018)
challenging or even impossible in practice. Nevertheless,
likelihood approximators have certain advantages over pos-
terior approximators, for instance, they do not need to be
retrained for different priors and can emulate the behavior
of large-scale simulators (Lavin et al., 2021).

Neural Posterior and Likelihood Estimation In a pi-
oneering work, Wiqvist et al. (2021) attempt to embody
the best of both worlds by training together two networks
for sequential neural posterior and likelihood approxima-
tion (SNPLA). A potential shortcoming of SNPLA is that
it optimizes the reverse Kullback-Leibler (rKL) divergence,
which is prone to mode collapse and instabilities (Arjovsky
et al., 2017). Sequential neural variational inference (SNVI;
Glöckler et al., 2022) improves on SNPLA by targeting
the forward KL (fKL) and using an importance sampling
correction of the posterior estimates. JANA also optimizes

1The term observation may refer to an entire data set, de-
pending on how the data is used to update the posterior. For in-
stance, typical toy models (e.g., two moons) use a single data point,
whereas realistic model applications typically use a set of data
points for inference.
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Figure 4: Experiment 2. Samples from the approximate
posterior distribution (Two Moons, repetition #1). No ev-
ident advantage of non-amortized over amortized neural
methods (i.e., NPE-C and JANA) .

the mode-covering fKL by approximating an expectation
over the Bayesian joint model (Eq. 9). In addition, JANA
operates in a fully amortized manner, such that the poste-
rior network can be applied to any set of observations (i.e.,
data sets; potentially with different sizes) and the likelihood
network can produce instantaneous surrogate simulations
given any parameter configuration. This enables us to amor-
tize some of the most costly procedures in Bayesian analy-
sis, such as simulation-based calibration and leave-one-out
cross-validation. In contrast, both SNPLA and SNVI fo-
cus on sequential (non-amortized) inference and employ a
likelihood network only to support posterior estimation.

4 EXPERIMENTS

In the following, we will illustrate the utility of JANA in
thirteen Bayesian models across five experiments. For Ex-
periments 1–3, we train the networks without the Maximum
Mean Discrepancy (MMD) criterion in Eq. 9 (i.e., λ = 0),
because our validations feature no model misspecification.
The code for running and reproducing all experiments is
available at https://github.com/bayesflow-org/JANA-Paper.
JANA is implemented in the BayesFlow library.

4.1 TEN BENCHMARK EXPERIMENTS

Setup This experiment demonstrates the fidelity of our
proposed architecture as well as the utility of our calibration
checks to diagnose approximation faults on a set of ten
benchmark simulation models proposed by Lueckmann et
al. (2021). Since these benchmarks were originally designed
for gauging the performance of (non-amortized) posterior
estimation, we deviate from the original problem setting
by (i) approximating both posterior and likelihood; and (ii)
validating our results on a much larger held-out set of 1 000
simulations (as compared to just 10).

For each benchmark, we train our networks with a fixed
budget of 10 000 simulations, as we consider this to be a
challenging practical setup with low-to-medium training
data availability. Importantly, our goal here is not to propose
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Figure 5: Experiment 2. Performance with N=10 000 train-
ing simulations, as indexed by the empirical Maximum
Mean Discrepancy (MMD) estimate (lower is better).

a better method for posterior estimation, but to demonstrate
the feasibility of joint amortization and the utility of our
joint calibration diagnostic on a set of popular and rather
diverse models. See the Appendix and the accompanying
code for more details and diagnostics.

Results Overall, we observe stable training and good cal-
ibration across the ten benchmarks models, with the SIR
model exhibiting systematic joint miscalibration due to like-
lihood approximations errors. Figure 3 illustrates the utility
of our calibration diagnostic to reveal both good calibration
(i.e., ECDF trajectories completely contained in the confi-
dence ellipsis for the Gaussian Mixture benchmark) as well
as systematic deviations owing to the likelihood network
(i.e., ECDF trajectories partially outside the confidence el-
lipsis for SIR). Moreover, due to the inherent interpretability
of the ECDF calibration plots, we can pinpoint the reasons
for joint miscalibration of the SIR model: The likelihood
network tends to generate more rapid synthetic outbreaks
than the actual model, which leads to the posterior network
overestimating the parameters of surrogate simulations.

4.2 TWO MOONS: METHOD COMPARISON

Setup Here, we focus specifically on the Two Moons
benchmark (Greenberg et al., 2019; Lueckmann et al., 2021)
and use the code from Wiqvist et al. (2021) to compare
JANA with the popular sequential methods SNL (Papa-
makarios et al., 2019), SNPE-C (Greenberg et al., 2019),
SNRE-B (Durkan et al., 2020), SNPLA (Wiqvist et al.,
2021), SNVI (Glöckler et al., 2022), and a recent ABC-
SMC algorithm with “guided particles” (here abbreviated
with g-SMC, which is the method called “hybrid” in Pic-
chini & Tamborrino, 2022). The model is characterized by a
bimodal posterior with two separated crescent moons for the
observed point xnew = (0, 0)⊤ which a posterior approxi-
mator needs to recover. We train SNL, SNPE-C, SNRE-B,
SNVI, SNPLA, g-SMC, and JANA following the same setup

https://github.com/bayesflow-org/JANA-Paper
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from Wiqvist et al. (2021).2 For each method, we repeat the
experiment ten times using a fixed budget of 2 000, 6 000,
and 10 000 simulations and subsequently obtain 1 000 pos-
terior draws from the converged methods. For a numerical
evaluation, we apply MMD between the approximate and
analytical distributions.

Results JANA consistently explores both crescent moons
throughout all repetitions and already captures the local
patterns of the posterior after 2 000 training samples (see
Figure 4). With respect to posterior performance, JANA is
on par with all sequential methods which are tailored to one
observed data set (see Figure 5a). In terms of joint (posterior
predictive) performance, JANA outperforms non-amortized
sequential methods, see Figure 5b. In light of these and
previous results, amortization across data sets seems to be
a reasonable choice even with limited simulation budgets,
especially since sequential (non-amortized) methods may
be infeasible for large data (Hermans et al., 2021). The
Appendix contains wall-clock times and further details for
training and inference.

4.3 EXCHANGEABLE DIFFUSION MODEL

Setup This example demonstrates amortized log marginal
likelihood (LML) and expected log predictive density
(ELPD) estimation based on a mechanistic model of de-
cision making: the diffusion model (Ratcliff & McKoon,
2008). We benchmark our results against state-of-the-art
likelihood-based methods. First, we compare our marginal
likelihood estimates with those obtained with bridge sam-
pling (Gronau et al., 2017). Second, we compare our leave-
one-out (LOO)-ELPD estimates (Eq. 12) with those ob-
tained using Pareto smoothed importance sampling (Vehtari

2For comparability with Wiqvist et al. (2021), the setup differs
from Lueckmann et al. (2021) in terms of location and size of the
moons. The results of Experiment 2 with the implementation of
Lueckmann et al. (2021) are comparable, see the Appendix.

et al., 2017). Both methods use random draws obtained via
MCMC, as implemented in Stan (Carpenter et al., 2017).

Results Our results indicate well-calibrated joint approx-
imation (see Figure 6b) as well as accurate posterior and
likelihood estimation (see Figure 6c and 6d). For the approx-
imation of marginal likelihoods, we first perform amortized
posterior sampling on the 100 held-out data sets. We then
evaluate the approximate likelihood on these samples, and
finally apply Eq. 13 to compute the LML. Our numerical re-
sults reveal a very close correspondence between our neural
log marginal likelihoods and those obtained via MCMC-
based bridge sampling (see Figure 6c). Furthermore, our
amortized LOO-CV estimates align very closely with the
estimates obtained via PSIS-LOO (see Figure 6d).

MCMC Integration Surrogate likelihoods provide all in-
formation that is needed for MCMC sampling. We provide
an interface to PyMC (Salvatier et al., 2016) to allow for
easy model building and use of existing samplers. Note, that
the performance of gradient-based samplers, such as Hamil-
tonian Monte Carlo, critically depends on the precision of
partial log-likelihood derivatives. Using PyMC’s No-U-Turn
sampler (NUTS) with our neural likelihood, we obtained
results similar to those using Stan. If gradient-based sam-
pling methods fail, we advise to use gradient-free sampling
methods, such as slice sampling. For detailed information,
see the Appendix.

4.4 MARKOVIAN COMPARTMENTAL MODEL

Setup This experiment demonstrates surrogate simula-
tions of a complex non-exchangeable model of infectious
diseases. The model features 34 parameters and thus repre-
sents a considerable extension of the two-parameter toy SIR
model (Lueckmann et al., 2021; Radev et al., 2020). We use
the model specification and posterior network from Radev
et al. (2021). We implement the likelihood network as a
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Figure 7: Experiment 5. Example denoising results from each class of Fashion MNIST. First row: Original image
acting as the “parameters” of the noisy camera simulator. Second row: Blurred image, acting as the output of the camera
simulator. Third and fourth row: Means and standard deviations of the posteriors estimated from the corresponding blurry
“observations”. Note: For standard deviations, darker regions indicate larger variability in the outputs.

recurrent cINN (see Section 2.3) to test its ability to emulate
raw and noisy time series. Further, we train the summary
network with the MMD criterion (Eq. 9) with λ = 1 to
judge the quality of the surrogate simulations numerically.

Results Upon convergence, we use the likelihood network
to generate synthetic outbreak trajectories and compare them
visually with the outputs of the original simulator. We ob-
serve good emulation across a variety of different parame-
ter configurations, each leading to a qualitatively different
simulated scenario (see Figure 2 for an example and the
Appendix for detailed results). Moreover, it seems that the
surrogate network is not only able to accurately approximate
the median trajectory, but also the variability (i.e., aleatoric
uncertainty) in simulated trajectories.

Beyond purely visual comparisons, we also compute the pos-
terior and joint calibration of the two networks using joint
SBC on 1 000 held-out simulations. We confirm the good
posterior calibration observed by Radev et al. (2021). In
addition, the joint calibration results help us highlight some
subtle deficiencies of the likelihood network. For instance, it
tends to overestimate the variability of simulated time series,
thus “tricking” the posterior network into estimating higher
values for the noise parameters (see Appendix). We attribute
this deficiency to the extremely wide magnitude range of the
simulated data (incidence in the order of millions) which is
not captured by our simple input standardization procedure.

4.5 HIGH-DIMENSIONAL BAYESIAN DENOISING

Setup The last experiment demonstrates the feasibility
of JANA for tackling high-dimensional Bayesian models
with relatively low simulation budgets. Similarly to Ramesh
et al. (2022), we consider a Bayesian denoising setup on
the Fashion MNIST data set, where the “parameter vector”

θ ∈ R784 represents the original image and the “observation”
x ∈ R784 is a blurry version of the image generated by a
simulated noisy camera.

We train a JANA architecture comprising two fully con-
nected affine coupling architectures operating on the flat-
tened images (as they would, if the Bayesian model were a
scientific simulator with 784 parameters). Since both “pa-
rameters” and “data” in this unusual example are images,
we use two simple convolutional networks as summary net-
works for both the posterior and likelihood networks.

Results We evaluate the performance of the networks on
the official Fashion MNIST test set. To summarize their
calibration, we report the average expected calibration error
(Radev et al., 2020) for the posterior (≈ 0.03 ± 0.02) and
joint samples (≈ 0.04 ± 0.03), indicating reasonable ap-
proximation fidelity and slightly increased joint miscalibra-
tion. We also inspect the visual quality of random samples
generated from the posterior and the synthetic likelihood
(see Figure 7 for an example of posterior estimation). These
results suggest that the networks have captured the basic
structure of the problem, with “core features” being easier
to reconstruct than “details”. An extended description and
more results are provided in the Appendix.

5 CONCLUSION

We investigated the utility of JANA for Bayesian surro-
gate modeling and simulation-based inference within the
BayesFlow framework. We believe that JANA can greatly
enrich applications of amortized Bayesian inference. Fu-
ture work should investigate weight sharing schemes for
the various network components and advance a framework-
independent benchmark database for joint estimation of
non-trivial scientific models.
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