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Abstract

Mortality risk assessment remains a fundamental challenge in healthcare, with cur-
rent methods relying on chronological age that fails to capture individual variation
in biological aging and proximity to death. Direct prediction of time-to-death from
accessible, non-invasive phenotypic signals could enable more precise aging risk
stratification and targeted longevity interventions. We present FaceTTD, a frame-
work for predicting time-to-death (TTD) from facial images as a measure of biolog-
ical aging. Treating portraits as time series inputs, we train XGBoost and Random
Forest regressors on curated IMDB and Wikipedia datasets. In-distribution perfor-
mance reaches R? = 0.67, but falls to R? = 0.12-0.25 out-of-distribution depend-
ing on TTD subset. Longitudinal facial trajectories improve predictive accuracy, in-
dicating value in temporal coverage. Our findings highlight the promise and limita-
tions of mortality modeling from phenotypic time series, positioning mortality hori-
zon estimation as an imageomics problem where facial trajectories serve as acces-
sible phenotypes of biological aging, and motivating multimodal extensions (voice,
video, wearables, EHRs) for robust health applications. A live demo is available at
https://huggingface.co/spaces/doubleblindanonymous/facettd.

1 Introduction

Accurate mortality risk assessment is fundamental to healthcare resource allocation, clinical decision-
making, and preventive interventions, yet current approaches fail to capture the heterogeneity of
biological aging and individual proximity to death. While extensive research has focused on predicting
chronological age from biomarkers and phenotypic features [IH11], these methods inherently assume
uniform aging trajectories and cannot distinguish between individuals of the same age who may
have vastly different mortality horizons. The inability to directly model time-to-death (TTD) from
accessible, non-invasive signals represents a critical gap in precision medicine, limiting our capacity
to identify high-risk individuals who would benefit most from targeted interventions.

Facial characteristics encode cumulative biological patterns that manifest as visible aging markers,
providing an accessible window into biological rather than chronological age. Unlike single-timepoint
assessments, longitudinal facial changes capture the dynamic progression of biological aging, re-
vealing accelerated or decelerated aging trajectories that correlate with mortality risk [12H14]. TTD
provides a more direct outcome, aligning with chronic disease detection and intrinsic capacity as
defined by the World Health Organization [4} [15]].

We investigate TTD prediction from facial images, treating portraits across time as phenotypic time
series. By learning from temporal sequences rather than isolated snapshots, we aim to capture
mortality-relevant phenotypic changes that static age estimation cannot detect. We evaluate in-
distribution (ID) vs. out-of-distribution (OOD) performance and explore the role of longitudinal
coverage in building robust mortality risk models from facial time series [16} [17].
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2 Data and Methods

Two TTD-labeled datasets were constructed: (1) IMDB (in-distribution), pairing celebrity portraits
from the IMDB-Face corpus [18], [19] with mortality metadata from the IMDB database; and (2)
Wiki (out-of-distribution), built by extracting Wikipedia biographies with recorded birth/death dates
and linking to age-annotated images in the WIKI face set [18} [19]. TTD was computed as the
difference between photo timestamp and death date. Resized 64x64 grayscale facial image pixels
were vectorized along with chronological age and input to XGBoost [20] and Random Forest
regressors. Hyperparameters were tuned via grid search. Performance was evaluated on in-distribution
test sets and out-of-distribution (OOD) subsets stratified by TTD horizon. A complete description of
the training and evaluation procedures can be found in Appendices[A-Tand[A2]
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Figure 1: Distribution of time-to-death (TTD) in IMDB (left, denser near 0—40 years) and Wikipedia
(right, broader coverage).

3 Results

On the IMDB-FaceTTD dataset, models achieve strong in-distribution performance. XGBoost reaches
R? = 0.67 and MAE = 4.1 years on the held-out test set, while training accuracy is near-perfect
(R? = 1.0, MAE < 0.1). Performance improves further when longitudinal coverage is available:
subjects with multiple portraits over time yield higher R? values and lower MAEs than single-image
baselines (Fig. 2] Fig.[3). These results establish that facial time series contain measurable signal for
TTD inference, with temporal information contributing additional gains beyond static portraits.
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Figure 2: XGBoost performance on IMDB-FaceTTD train and test splits.

Out-of-distribution evaluation on Wiki-Face TTD shows substantially weaker results. Here, R? drops
to 0.12-0.25 depending on the TTD subset and regression method, and predictive slopes attenuate
near death (Fig.[d). The in—out distribution gap exhibits a non-monotonic pattern: OOD performance
improves moderately for mid-range horizons (TTD < 50-60) but declines again for shorter horizons
(TTD < 45), suggesting a near-term ‘sweet spot” where TTD distributions align more closely (see
Fig.[T). A complete breakdown of metrics is provided in Tab.[I]

4 Discussion

Our results reveal a critical challenge in mortality modeling: while FaceTTD achieves R9 = 0.67
in-distribution, performance drops to R? = 0.12 — 0.25 out-of-distribution, exposing the brittleness



of facial aging markers between populations [22]. This generalization gap—from 82% to 40%
predictive slope from ID to OOD—suggests our model captures more population-specific signatures
than universal mortality biomarkers.

Our results show that while TTD prediction from facial images is feasible in-distribution, OOD
generalization remains weak. The non-monotonic OOD performance, improving for TTD<50-60
years before declining at TTD<45, reveals a ‘sweet spot’ where facial mortality markers become more
universal—potentially reflecting conserved end-of-life biological processes that transcend
demographics.
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Figure 3: Adding longitudinal portraits improves performance.

Longitudinal coverage improves robustness, but accuracy still collapses under demographic and
contextual shifts. Our finding that temporal sequences outperform single timepoints indicates that
mortality risk is encoded in the rate of facial change, not static appearance. This implies that
clinical deployment requires repeated measurements to capture aging velocity [[11 3], not one-time
assessments.

Table 1: Performance summary across TTD subsets by mean average error (MAE) in years. R? and
v R2 represent model fit and predictive slope, respectively.

Subset Category R? MAE (years) VR?
In-distribution (Train/Test)
Train XGBoost 1.00 0.07 1.00
Test XGBoost 0.67 4.08 0.82
Out-of-distribution (OOD)
OOD TTD Optimized XGBoost ~ 0.12 15.04 0.35
Random Forest 0.19 14.63 0.44
XGBoost 0.04 15.66 0.20
TTD < 60 Optimized XGBoost  0.19 13.09 0.44
Random Forest 0.25 12.80 0.50
XGBoost 0.09 13.76 0.30
TTD < 50 Optimized XGBoost  0.17 11.10 0.41
Random Forest 0.20 10.99 0.45
XGBoost 0.04 11.84 0.20
TTD <45 Optimized XGBoost  0.09 10.34 0.30
Random Forest 0.10 10.36 0.32
XGBoost 0.08 11.70 0.28
5 <TTD <45 Optimized XGBoost 0.12 9.18 0.35
Random Forest 0.18 8.94 0.42
XGBoost 0.05 9.92 0.22

Improvements include filtering unnatural deaths, refining cause-of-death labels, and balancing de-
mographic diversity. Multimodal time series [23]] (voice [24-26]], video [27-H29], wearables [30-34],
proteomic [33]], heart [36]], medical records [37-41]]) may further enhance generalization. Combining
facial trajectories with complementary signals could triangulate mortality risk across biological
systems, achieving robustness needed for clinical deployment and impact.



Figure 4: Predicted vs. true TTD scatter plots across OOD full Wiki dataset and TTD subsets.
Performance degrades as death nears.

4.1 Limitations, Broader Impacts, and Safeguards

Our datasets are celebrity- and Wikipedia-biased, with uneven demographic representation. TTD
labels depend on reported death dates and exclude unobserved causes. Experiments are limited to
tree-based regressors; deep [2, 24]] and foundation [6] models may capture richer signals but may
risk overfitting. Face-based mortality modeling raises concerns of bias, privacy, and misuse (e.g.,
surveillance). Responsible deployment requires safeguards, transparency, and strong ethical oversight.
A usage disclaimer is included on the HuggingFace public demo as a safeguard, stating that it is
intended solely for research purposes.

5 Conclusion

We introduce FaceTTD, a framework for predicting TTD from facial time series. While models
achieve ~80% predictability in-distribution, OOD performance falls to ~40%. These findings
emphasize both the potential and limitations of face-based TTD modeling, and motivate multimodal,
demographically balanced datasets for health applications, such as mortality risk profiling and
nominating longevity interventions [42-44] based on a mechanistic understanding of aging [45] 46].
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A Technical Appendices and Supplementary Material

A.1 Training (IMDB-FaceTTD)

Data assembly. We use the IMDB—FaceTTD dataset constructed by merging per-image metadata
with portrait files and computing time-to-death at photo time (time_to_death_at_face). Records
with missing imdb_id or time_to_death_at_face are dropped. Implementation details are in
intrinsic_capacity.ipynb and best_clean_icfaceage_notebook.ipynb (see repository:
https://anonymous.4open.science/r/facettd-CD51/).

Preprocessing and features. Each portrait is converted to grayscale and resized to 64x64
(PIL convert("L").resize((64,64))), then flattened. We concatenate image pixels with
numeric metadata: (i) chronological age at photo time; (ii) binary gender (female=1,
else 0). In the IMDB pipeline we additionally one-hot encode cause_of_death using
OneHotEncoder (handle_unknown="ignore"). Numeric metadata (age, gender) are standard-
ized with StandardScaler fit on the training split and applied to validation/test columns in place
(feature slice immediately preceding the cause-of-death one-hot block).

Leakage control and splitting. To prevent identity leakage, we split by subject using grouped sam-
plers: (i) GroupShuffleSplit with test_size=0.2, random_state=42; and (ii) a TTD-stratified
subject split via StratifiedGroupKFold with n_splits=5, shuffle=True, random_state=42, using
g=10 quantile bins of TTD for stratification. For reporting, we use a single reproducible train/test
partition (first SGKF fold), which is approximately 80/20 at the subject level.

Models and hyperparameters. We train two regressors on the pixel-metadata vector: Random
Forest (sklearn) and XGBoost (xgboost). When available, we load the best-performing configurations
from serialized artifacts (best_rf.pkl, best_xgb.pkl); otherwise we use the fixed baselines
present in the notebooks. The Random Forest Regressor is configured with n_estimators=100,
max_depth=10, n_jobs=-1, and random_state=42. The XGB Regressor is configured with
n_estimators=100, max_depth=10, n_jobs=-1, verbosity=0, and random_state=42.

No early stopping or external hyperparameter search is used in the notebooks; the “best” variants are
loaded from prior selection and then refit/evaluated as indicated below.

Efficiency. Images are loaded and featurized in parallel using a ThreadPoolExecutor (up to 32
workers). All randomization (splitting and model seeds) uses random_state=42 for reproducibility.

A.2 Evaluation

Metrics and reporting. We report coefficient of determination (R?) and mean absolute error (MAE).
Unless otherwise noted, results are computed once on the held-out test partition induced by the
stratified subject split (no multi-seed averaging in the current notebooks). Plots show train vs. test
scatter with an identity line.

In-distribution (IMDB-FaceTTD). Training, preprocessing, and model selection are performed on
the training portion of the IMDB subject split. The held-out IMDB test subjects are used once for
final ID reporting.

Out-of-distribution (Wiki-FaceTTD). We build OOD evaluation data from wiki.mat by merg-
ing portrait metadata with Wikipedia death years and computing time_to_death = deathYear -
photo_taken (00_wiki_extract.ipynb). The resulting table is then cleaned and preprocessed
(01_wiki_preprocess.ipynb): portraits are converted to grayscale, resized to 64x64, and flat-
tened; photo age is standardized; and entries missing valid death years or corrupted images are
removed. The notebook outputs aligned feature arrays that match the IMDB model expectations.

At test time (02_wiki_test.ipynb), these preprocessed features are loaded and concatenated with
the standardized age at photo time. When model input dimensionality exceeds available wiki features
(e.g., models trained with IMDB-specific one-hot cause-of-death and/or gender), we align dimensions
by zero-padding or truncation to the model’s n_features_in_; gender is set to missing for wiki
(NaN) and not used for scaling. We evaluate pre-trained IMDB models on wiki without refitting and
report R? and MAE overall and under clinically motivated TTD filters: TTD < 60 years, TTD < 45
years, and 5 < TTD < 45 years.
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Longitudinal coverage analysis (IMDB). To probe temporal coverage, we annotate each subject
by the span and count of available portraits: Point (single portrait), I-Year (>1 portrait with age
span <1 year), Full (>1 portrait with span >1 year), and Year+Full (any subject with >1 portrait).
Per-condition train/test subsets are constructed at the subject level, and both Random Forest and
XGBoost are evaluated within each condition (best_clean_icfaceage_notebook.ipynb).

Reproducibility. All ID/OOD code paths are referenced in the notebooks:
intrinsic_capacity.ipynb, best_clean_icfaceage_notebook.ipynb (IMDB);
00_wiki_extract.ipynb, O01_wiki_preprocess.ipynb, 02_wiki_test.ipynb (wiki).
The full repository, including preprocessing and evaluation code, is available at
https://anonymous.4open.science/r/facettd-CD51/. Random seeds are fixed at 42
for splits and model initialization. Scalers used at test time (e.g., age standardization) are loaded
from the saved training artifacts.
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1. Claims Answer: [Yes] . Justification: The abstract and introduction state that the paper
develops ICFaceAge, predicts time-to-death from facial time series, reports in- and out-of-
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4. Experimental result reproducibility Answer: [Yes] . Justification: Data sources, prepro-
cessing steps, model choices, and evaluation methods are described; a HuggingFace demo is
provided.

5. Open access to data and code Answer: [Yes] . Justification: Demo code and curated scripts
are available via HuggingFace.

6. Experimental setting/details Answer: [Yes] . Justification: Data splits, regressors, and
evaluation metrics are specified; hyperparameter tuning described.

7. Experiment statistical significance Answer: . Justification: Error bars are not reported
due to computational cost; results are presented with R? and MAE only.
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a workstation with standard CPU/GPU; requirements are minimal.
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available sources; terms of service respected.
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uses publicly available images; no crowdsourcing or direct human subjects research.

15. Institutional review board (IRB) approvals or equivalent Answer: [NA] . Justification:
No direct human subjects research conducted; data from public sources only.

16. Declaration of LLM usage Answer: [Yes] . Justification: Large language models (LLMs)
were used broadly in the preparation of this work, including for text drafting and editing,
code generation, and figure preparation. All methodological design, experimental execution,
data analysis, and scientific conclusions were conceived and validated by the authors. LLM
usage did not substitute for scientific reasoning and does not affect the rigor, validity, or
integrity of the work.


https://anonymous.4open.science/r/facettd-CD51/
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