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ABSTRACT

Spiking Neural Networks (SNNs) are attracting growing interest for their energy-
efficient computing when implemented on neuromorphic hardware. However,
directly training SNNs, even adopting batch normalization (BN), is highly challeng-
ing due to their non-differentiable activation function and the temporally delayed
accumulation of outputs over time. For SNN training, this temporal accumulation
gives rise to Temporal Covariate Shifts (TCS) along the temporal dimension, a
phenomenon that would become increasingly pronounced with layer-wise compu-
tations across multiple layers and multiple time-steps. In this paper, we introduce
TAB (Temporal Accumulated Batch Normalization), a novel SNN batch normal-
ization method that addresses the temporal covariate shift issue by aligning with
neuron dynamics (specifically the accumulated membrane potential) and utilizing
temporal accumulated statistics for data normalization. Within its framework,
TAB effectively encapsulates the historical temporal dependencies that underlie
the membrane potential accumulation process, thereby establishing a natural con-
nection between neuron dynamics and TAB batch normalization. Experimental
results on CIFAR-10, CIFAR-100, and DVS-CIFAR10 show that our TAB method
outperforms other state-of-the-art methods.

1 INTRODUCTION

Spiking Neural Networks (SNNs) are known to be biologically inspired artificial neural networks
(ANNs) and have recently attracted great research interest (Chowdhury et al., 2022; Ding et al.,
2022). The attraction of SNNs lies in their ability to deliver energy-efficient and fast-inference
computations when implemented on neuromorphic hardware such as Loihi (Davies et al., 2018)
and TrueNorth (Akopyan et al., 2015; DeBole et al., 2019). These advantages arise from the fact
that SNNs utilize spikes to transmit information between layers, whereby the networks circumvent
multiplication during inference (Roy et al., 2019). However, the discrete and non-differentiable
nature of the binary firing functions makes it difficult to directly train deep SNNs. ANN-to-SNN
conversion (Diehl et al., 2015; Bu et al., 2022; Jiang et al., 2023) and directly training with surrogate
gradients back-propagation (Neftci et al., 2019; Deng et al., 2022; 2023) are two typical solutions.

Batch Normalization (BN) has found extensive use in ANNs and has seen tremendous success in
boosting their performance by reducing the internal covariate shift (ICS) and flattening the loss
landscape (Ioffe & Szegedy, 2015; Santurkar et al., 2018). In ANNs, ICS refers to changes in the
distribution of layer inputs caused by updates of preceding layers, while in SNNs, the Temporal
Covariate Shift (TCS) phenomenon (Duan et al., 2022) has been identified due to updates of preceding
layers and prior time-steps, which transpires along the additional temporal dimension. Within
SNNs, synaptic currents are sequentially fed into spiking neurons, with spike-triggered asynchronous
currents accumulating in the membrane potential. Whenever this accumulated membrane potential
exceeds a threshold, a spike is generated. This temporal dependency on membrane accumulation
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has the potential to amplify the internal covariate shift across the temporal domain. The intertwining
of this temporal dependency with the TCS phenomenon, presents a significant challenge in direct
training of SNNs especially for the integration of BN techniques into SNNs.

When it comes to BN techniques for SNNs, only a few methods have been proposed. These
methods either normalize data jointly by aggregating data across the temporal dimension or perform
independent normalization at each discrete time-step. For example, Kim & Panda (2021) conducts
independent batch normalization separately at each time-step. However, this approach uses separate
sets of mean, variance, and scale and shift parameters at each time-step, failing to account for the
temporal dependencies of the input spikes. While Zheng et al. (2021) merges the data along the time
dimension and utilizes shared batch statistics across all time-steps for normalization. Nonetheless,
introducing such overall statistics may limit the flexibility to capture varying temporal characteristics
at different time-steps. On the other hand, Duan et al. (2022) attempts to tackle the TCS issue by
assigning different weights to each time-step, while still utilizing shared batch statistics across all
time-steps for normalization. Although these methods improve upon the performance of the SNN
models, they do not significantly address the alignment with the neuron dynamics, i.e., the membrane
accumulation dependency, or provide a potential to do so.

In this paper, we propose TAB (Temporal Accumulated Batch Normalization) as a solution to
effectively address these challenges by closely aligning with the neuron dynamics, specifically the
accumulated membrane potential, and providing more accurate batch statistics. This alignment
establishes a natural connection between neuronal dynamics and batch normalization in SNNs.
Neuron dynamics refer to the changes in the membrane potential of a neuron over time as it integrates
input signals and generates spikes. Here, “aligning with neuron dynamics” means that TAB is tailored
to mimic or capture neurons’ behavior as closely as possible, normalizing data in line with the
temporal dependencies and information accumulation within neurons. This alignment ensures that
TAB’s normalization process corresponds well with how neurons naturally operate in SNNs, thus
leading to improved performance by addressing the temporal covariate shift problem.

2 BACKGROUND

2.1 RELATED WORK

SNN Learning Methods. Many works have recently emerged and focused on the supervised training
of SNNs (Wu et al., 2021a; Zhou et al., 2021; Meng et al., 2022; Xiao et al., 2021). These SNN
learning methods can be mainly categorized into two classes: ANN-to-SNN conversion (Diehl et al.,
2015; Deng & Gu, 2021; Ding et al., 2021; Han et al., 2020; Li et al., 2021a; Bu et al., 2022; Hao
et al., 2023; Lv et al., 2023) and end-to-end training with back-propagation (Fang et al., 2021; Zhang
& Li, 2020; Deng et al., 2022; Xiao et al., 2022; Guo et al., 2022; Meng et al., 2023). ANN-to-SNN
conversion takes a pre-trained ANN and converts it into an SNN by preserving the weights and
replacing the ReLU activation function with a spiking activation function. This approach can be
efficient in obtaining an SNN since the ANN has already been trained and the weights can be directly
copied to the SNN. However, the resulting performance of the converted SNN may not be as good as
that of the original source ANN. It usually requires a large number of time-steps for the converted
SNN to achieve performance comparable to the source ANN. Direct end-to-end training usually
employs the surrogate gradients (Wu et al., 2018; 2019; Neftci et al., 2019; Zheng et al., 2021;
Eshraghian et al., 2021) method to overcome the non-differentiable nature of the binary spiking
function to directly train SNNs from scratch. This method can yield comparable performance to that
of traditional ANNs with a few time-steps.

BN Method in ANNs. Batch normalization methods have significantly contributed to the success of
ANNs by boosting their learning and inference performance (Ioffe & Szegedy, 2015; Xiong et al.,
2020; Bjorck et al., 2018). BN is a technique used to stabilize the distribution (over a mini-batch) of
inputs to each network layer during training. This is achieved by introducing additional BN layers
which set the first two moments (mean and variance) of the activation distribution to zero and one.
Then, the batch-normalized inputs are scaled and shifted using learnable/trainable parameters to
preserve model expressiveness. This normalization is performed before the non-linearity is applied.
The BN layer can be formulated as,

BN(xi) = γx̂i + β , x̂i =
xi − µ√
σ2 + ϵ

, i = 1, · · · , b .
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The mini-batch mean µ and variance σ2 are computed by µ = 1
b

∑b
i=1 xi and σ2 = 1

b

∑b
i=1(xi−µ)2.

BN Method in SNNs. Due to the additional temporal dimension, several recent studies have
proposed modifications to batch normalization to fit the training of SNNs. The threshold-dependent
Batch Normalization (tdBN) method (Zheng et al., 2021) is introduced to alleviate the gradient
vanishing or explosion during training SNNs. The tdBN utilizes shared BN statistics and parameters
(as the conventional BN) by merging the data along the temporal dimension. Similar to tdBN, the
TEBN method (Duan et al., 2022) employs shared BN statistics by merging the data along the
temporal dimension, then scales using different weights to capture temporal dynamics. Different
from them, BNTT (Kim & Panda, 2021) uses separate BN statistics and parameters at each time-step
t independently, however, it ignores the temporal dependencies of the input spikes. Differently, our
TAB method leverages the accumulated pre-synaptic inputs in the temporal domain, which is in
alignment with the membrane potential accumulation in the LIF model.

2.2 SPIKING NEURON DYNAMICS AND NEURON MODEL

SNNs use binary spike trains to transmit information between layers. Each neuron maintains its
membrane potential dynamics ui(t) over time, “integrates” the received input with a leakage (much
like an RC circuit), and fires a spike if the accumulated membrane potential value exceeds a threshold.
We adopt the widely used leaky-integrate-and-fire (LIF) model. Neuron dynamics refer to the changes
in the membrane potential of a neuron over time as it integrates input signals and generates spikes,
which can be formulated as a first-order differential equation (ODE),

LIF Neuron Dynamics: τ
dui(t)

dt
= −ui(t) +RIi(t), ui(t) < Vth, (1)

where Ii(t) is the injected input current to the i-th neuron at time t, ui(t) is the membrane potential
of the i-th neuron at time t in the current layer, Vth is the membrane threshold, and τ denotes the
membrane time constant, and R denotes the resistor. For numerical simulations of LIF neurons, we
consider a discrete version of the neuron dynamics. Similar to Wu & He (2018), the membrane
potential ui[t] of the i-th neuron at time-step (discrete) t is represented as:

ui[t] = λui[t− 1] +
∑

j∈pre(i)

Wijoj [t] . (2)

We adopt a simple current model RIi[t] =
∑

j∈pre(i) Wijoj [t], with R absorbed in weights Wij .
Here, oi[t] denotes the binary spike of neuron i at time-step [t], taking a value of 1 when a spike
occurs and 0 otherwise. The index j refers to pre-synaptic neurons. The membrane potential ui[t]
increases with the summation of input spikes from all the pre-synaptic neurons pre(i) connecting the
current i-th neuron through synaptic weight Wij . It also decreases with a leak factor λ (0 < λ ⩽ 1),
where λ and the time constant τ are related by λ = e−

∆t
τ . The discrete LIF model degenerates to

the IF model when λ = 1, therefore in the following, we only use the LIF model with 0 < λ ⩽ 1.
When the neuron’s membrane potential ui[t] exceeds the threshold Vth, the neuron will fire a
spike with oi[t] = 1 and then reset the membrane potential to 0. By combining the sub-threshold
dynamics Eq. (2) and hard reset mechanism, the whole iterative LIF model can be formulated by:

Discrete LIF Neuron Model: ui[t] = λui[t− 1](1− oi[t− 1]) +
∑

j∈pre(i)

Wijoj [t] , (3)

oi[t] = H(ui[t]− Vth) , (4)

where H(x) is the Heaviside step function, i.e., the non-differentiable spiking activation function.
H(x) = 1 if x > 0 and H(x) = 0 otherwise.

3 PROPOSED TAB METHOD

In this section, we will present our TAB method. We begin by introducing the Temporal Dependencies
and Temporal Covariate Shift in SNNs which motivate our method. Following this, we introduce
our TAB method, which addresses these challenges. Finally, we establish a theoretical connection
between the neural dynamics and the TAB method by deriving the closed-form solution of LIF
dynamics ODE.
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3.1 MOTIVATION: TEMPORAL DEPENDENCIES AND TEMPORAL COVARIATE SHIFT

Temporal dependencies in SNNs arise naturally from the sequential nature of spike events, where
synaptic currents (also known as spike trains) are sequentially fed into spiking neurons, playing a
pivotal role in capturing the dynamic evolution of input spikes over time. These networks model the
dynamics of biological neurons through ODEs and utilize spikes to transmit information (Eshraghian
et al., 2021). In SNNs, each neuron maintains a membrane potential, continuously ‘integrating’
and accumulating received spikes over time. It emits a spike only when its accumulated membrane
potential exceeds a threshold, remaining inactive otherwise in the current time-step (Li et al., 2021a).
This process highlights the intrinsic influence of temporal dynamics on the temporally delayed
accumulation of the membrane potential. We refer to this accumulation dependency over the time
dimension as temporal dependencies.

In SNNs, a phenomenon known as Temporal Covariate Shift (TCS) has been identified (Duan et al.,
2022), which represents ICS (Internal Covariate Shift) (Ioffe & Szegedy, 2015) across the additional
temporal dimension, and it refers to changes in the distribution of layer inputs caused by updates
of preceding layers, and prior time-steps. Within the framework of SNNs, synaptic currents are
sequentially fed into spiking neurons, and spike-triggered asynchronous currents are accumulated
into the membrane potential which will trigger a spike when it exceeds the membrane threshold. This
temporal dependency on membrane potential accumulation intensifies the internal covariate shift
along the temporal domain. This temporal dependency, together with the TCS phenomenon, presents
a significant challenge when integrating BN techniques into SNNs.
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·
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·

··
·
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Figure 1: The temporal dependencies and neuron dy-
namics in SNNs, specifically the temporal dependency
associated with the accumulation of membrane potential
in the discrete LIF model. The black arrows represent
the temporally delayed accumulation over time, while
the red arrows indicate the information flow along the
spatial layers (vertical axis) and the temporal domain
(horizontal axis).

Our motivation comes along these lines,
how to perform batch normalization in
training of SNNs, but keeping in mind the
temporal dependency of the data, as well as
the temporal covariate shift. A simple, yet
elegant, method that aligns closely with
this underlying neuron dynamics comes
with Temporal Accumulated Batch nor-
malization (TAB). Generally speaking, our
TAB method addresses the temporal covari-
ate shift issue by aligning with the inherent
temporal dependencies in SNNs. Fig. 1
illustrates the temporal dependencies and
neuron dynamics and showcases the in-
volvement of our proposed TAB method.

Neuronal dynamics refers to the change
in membrane potential over time as a neu-
ron integrates input signals and generates
spikes. This temporal accumulation of the
membrane potential in SNNs enables neu-
rons to process input data by taking into
account both past and current time-steps
(with no access to future information be-
yond t), and the TAB method aligns closely
with this underlying neuron dynamics and
alleviates the TCS issue.

3.2 TEMPORAL ACCUMULATED BATCH NORMALIZATION (TAB)

To address the temporal covariate shift issue and to model the temporal distributions in SNNs, our TAB
method aligns with the inherent temporal dependencies by utilizing the temporal accumulated batch
statistics (µ1:t, σ

2
1:t) over an expanding window [1, t]. To achieve this, we establish the relationship

between the expectations and variances across accumulated time-steps (µ1:t, σ
2
1:t) and those of the
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single time-step (µ[t], σ2[t]), as follows:

µ1:t =
1

t

t∑
s=1

µ[s] , σ2
1:t =

1

t

t∑
s=1

σ2[s] . (5)

Our proposed TAB method utilizes Temporal Accumulated Statistics (µ1:t, σ
2
1:t) for data normaliza-

tion, and then assigns different learnable weights ω[t] > 0 to each time-step to distinguish their effect
on the final result. The TAB method is given by

x̂i[t] = TAB(xi[t]) = ω[t]

(
γ[t]

xi[t]− µ1:t√
σ2
1:t + ϵ

+ β[t]

)
= γ̂[t]

xi[t]− µ1:t√
σ2
1:t + ϵ

+ β̂[t] , ω[t] > 0 . (6)

Given the pre-synaptic inputs xl[t] to layer l at time-step t, the spiking neuron with TAB is as follows,

xl[t] = W lol−1[t] , (7)

ul[t] = λul[t− 1](1− ol[t− 1]) + x̂l[t] , (8)

where x̂l[t] = TAB(xl[t]) = γ̂[t]
xl[t]− µ1:t√

σ2
1:t + ϵ

+ β̂[t] . (9)

Here ul[t] and ol[t] denote the membrane potential and binary spike outputs of all neurons in l-th
layer at time-step t, and W l denotes the synaptic weights between layer l − 1 and layer l. We assign
different positive weights ωl[t] > 0 to each time-step which is different from Deng et al. (2022) and
γ̂[t] = ω[t]γ[t], β̂[t] = ω[t]β[t]. The weights ω[t] and parameters γl[t],βl[t] are learnable, which
are trained during the training process. For details, refer to ?? and ??. Refer to ?? for the learning
rules to compute the gradients.

Computation of the temporal accumulated statistics is dynamically performed, in a moving averaging
fashion, without the need to store batch data from all previous time-steps. This not only saves memory,
but is also an important feature of our novel approach. For the algorithm details of the TAB method,
please refer to ?? in the Appendix.

The rationale behind employing this accumulated spatial-temporal information in TAB comes from
the sequential processing and temporal dependency characteristics intrinsic to spiking neurons.
The TAB method utilizes the accumulated batch statistics (µ1:t, σ

2
1:t) over an expanding window

[1, t]. Fig. 2 illustrates an overview of four typical BN methods used in SNNs: default BN (Ioffe &
Szegedy, 2015), BNTT (Kim & Panda, 2021), tdBN (Zheng et al., 2021), and TEBN (Duan et al.,
2022). A comprehensive overview of statistics and parameters used by these methods is summarized
in ?? in the ??.

As shown in ??, BNTT (Kim & Panda, 2021) considers BN statistics at each time-step individually
and calculates different BN statistics (µ[t], σ2[t]) and BN parameters (γ[t]) at each time-step, which
ignores the temporal dependencies of the input spikes. In contrast, tdBN (Zheng et al., 2021)
computes the same overall BN statistics (µ1:T , σ

2
1:T ) and BN parameters (γ, β) across all time-steps,

but overlooking the temporal differences. Similarly, TEBN (Duan et al., 2022) employs the same
overall BN statistics (µ1:T , σ

2
1:T ) as tdBN, but introduces distinct weight parameters p[t] at each time-

step to capture time-specific variations. However, both tdBN and TEBN, computing BN statistics
over T time-steps, implicitly assume access to data from all T time-steps, that is, even if the current
time-step is t < T , future information up to time-step T can also be obtained, which is not true for
the temporal accumulation of membrane potential nor the neural dynamics. As illustrated in Fig. 2,
the input statistics of tdBN and TEBN consider the statistics of all the time-steps and all effective
batches, while BNTT considers BN statistics at each time-step. Despite these differences, none of the
existing methods have addressed the alignment with the membrane potential accumulation.

3.3 THEORETICAL CONNECTION BETWEEN TAB METHOD AND THE NEURAL DYNAMICS

TAB is tailored to capture the temporal dependencies of neurons as closely as possible by aligning
with the neuron dynamics. To explore the theoretical connection between the TAB method and
the neural dynamics, we need to delve into the LIF dynamics from the perspective of differential
equations. In SNNs, each neuron maintains the dynamics of its membrane potential U(t) over time,
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Figure 2: Comparison of different Batch Normalization methods with one given channel. In conven-
tional BN, there is no time dimension. BNTT independently normalizes data at each time-step. The
tdBN jointly normalizes data across all time-steps. TEBN shares a similar approach with tdBN but
incorporates per-time-step scaling of the normalized data. In contrast, our TAB normalizes data using
temporal accumulated statistics up to time-step t and subsequently applies scaling.

by “integrating” the received input current I(t) with a leakage term until a spike is triggered. This is
described as a first-order linear differential equation (ODE),

Neuron Dynamics as an ODE: τ
dU(t)

dt
= −U(t) +RI(t), U(t) < Vth , (10)

where I(t) represents the input current injected into the neuron at time t, and it is a function of t (note
that I(t) is not a constant value). The closed-form solution of the LIF neuron dynamics (as an ODE)
can be derived with analytical and theoretical methods. Additional details are available in ?? and ??.
Lemma 1. The analytical closed-form solution for the first-order IVP (Initial Value Problem) of the
LIF dynamics ODE is as follows (Gerstner et al., 2014),

U(t) = exp

(
− t

τ

)(∫ t

0

R

τ
I(s)exp

( s
τ

)
ds+ U0

)
. (11)

Remark 1. When the neuron initiates at the value U0 with no further input, i.e., I(t) = 0, the
closed-form solution of the ODE Eq. (11) shows that the membrane potential U(t) will start at
U0 and exponentially decay with a time constant τ , U(t) = U0exp

(
− t

τ

)
. Consequently, we

can determine the membrane potential ratio, often referred to as the leak factor, denoted by λ,

as λ = U(t+∆t)
U(t) =

U0exp(− t+∆t
τ )

U0exp(− t
τ )

= exp
(
−∆t

τ

)
. This relationship enables us to formulate the

discretization scheme as: U [t+ 1] = λU [t].

This remark provides insights into the behavior of the membrane potential in the absence of input
and establishes the discretization principle used for LIF modeling.
Lemma 2. Through applying integration by parts, we derive another equivalent form of the closed-
form solution for the LIF dynamics, denoted as:

U(t) =

exponential decay term︷ ︸︸ ︷
(U0 −RI0)exp

(
− t

τ

)
+

input current model︷ ︸︸ ︷
RI(t)︸ ︷︷ ︸

commonly considered in the discrete LIF model

−
∫ t

0

Rexp

(
s− t

τ

)
dI(s)︸ ︷︷ ︸

absent in the discrete LIF model

. (12)

With the application of the Riemann–Stieltjes integral, the discretization version of the closed-form
solution is represented as:

U [t] =

(U0−RI0)exp(− t
τ )︷ ︸︸ ︷

λU [t− 1] +

WO[t]=RI[t]︷︸︸︷
X[t] −

n∑
i=0

giX[si]︸ ︷︷ ︸
TAB method

. (13)
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In this formulation Eq. (13), the first exponential decay term, λU [t − 1], captures the temporal
dependency of the membrane potential from the preceding time-step. The second term, a simple
current input model, RI[t] = WO[t], incorporates spikes from the pre-connected neurons at the
current time-step [t]. Significantly, the third term, representing the temporal accumulated input across
all previous time-steps through a weighted sum of the input currents X[si] with associated weights
gi, introduces a novel concept. Here 0 = s0 < · · · < si < · · · < sn = t denotes a partition of the
time interval [0, t] with a finite sequence of numbers. Refer to ?? for the details. Importantly, note
that this accumulation mechanism of the inputs is a foundational component of the TAB method,
providing a link that connects the TAB method and the neural dynamics.
Remark 2. The commonly used discrete LIF model in Eq. (2), as denoted by U [t] = λU [t−1]+X[t],
is derived from the first two terms of the discretization version of the closed-form solution Eq. (13).
The third term, representing the temporal accumulated input across all previous time-steps, however,
is not incorporated into the discrete LIF models typically used in practice.
Remark 3. Note that the recursive application of the discrete LIF model, as denoted by U [t] =
λU [t − 1] + X[t], yields the temporal evolution of the membrane potential as U [t] = λtU [0] +∑t

s=1 λ
t−sX[s]. This result shows the temporal dependency of the membrane potential accumulation

in LIF neuron dynamics.

Recalling the TAB method introduced in Sect. 3.2, our TAB method normalizes data utilizing
temporal accumulated batch statistics (µ1:t, σ

2
1:t) across an expanding window [1, t], where µ1:t

and σ2
1:t represent the temporal accumulated information up to time-step [t]. The utilization of the

temporal accumulated batch statistics aligns well with the accumulation mechanism of the membrane
potentialthrough Eq. (13). Consequently, it alleviates the temporal covariate shift issue which refers
to the changes in the distribution of layer inputs resulting from updates of preceding layers and prior
time-steps. The entire TAB method procedure and membrane updates can be linked through Eq. (13),
derived by solving the LIF dynamics ODE. This equation naturally connects TAB batch normalization
to neuron dynamics, as evident in Eq. (13).

Upon comparing the commonly used discrete LIF model in Eq. (2) with the discrete closed-form
solution in Eq. (13), it shows that the TAB method reintroduces the accumulation term into the
normalization procedure. This is achieved by using temporal accumulated batch statistics from
time-step 1 to t. While the temporal accumulated batch statistics employed by the TAB method do
not replicate the exact term in Eq. (13), but as an approximation. Thus, there exists no one-to-one
functional mapping between the two. The adjustment within TAB method brings the discrete LIF
model closer to its analytical closed-form counterpart, thus, TAB can work well in addressing the
temporal covariate shift issue. This establishes a natural connection between neuron dynamics and
batch normalization.

4 EXPERIMENTS

In this section, we conduct extensive experiments on large-scale static and neuromorphic datasets,
CIFAR-10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al., 2009), and DVS-CIFAR10 (Li
et al., 2017), to verify the effectiveness of our proposed TAB method. We utilize the VGG network
architecture and ResNet architecture. Firstly, we perform a comparative analysis of our TAB method
with other BN methods in the context of SNNs. Further, we compare our TAB method with other
state-of-the-art approaches. For implementation details, refer to ??.

4.1 COMPARISON WITH OTHER BN METHODS

We conduct our evaluation by comparing the performance of the proposed TAB method and other
batch normalization methods in the context of SNNs. To ensure fairness in our comparisons, we do
not employ advanced data augmentation techniques like cutout (DeVries & Taylor, 2017). Table 1
provides a comprehensive overview of the the test accuracy on both traditional static dataset CIFAR-
10, CIFAR-100 and neuromorphic dataset DVS-CIFAR10. On the CIFAR-10 dataset, our TAB
method demonstrates remarkable performance improvement, achieving a top-1 accuracy of 94.73%
with the ResNet-19 network using only 2 time-steps. Notably, this surpasses the performance of
TEBN using 6 time-steps. Furthermore, when using the same network architecture, TAB consistently
outperforms other BN methods, even with fewer time-steps T . This pattern holds true for other
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Table 1: Comparison between the proposed TAB method and other BN methods in SNNs.

Dataset Model Method Architecture Time-steps Accuracy (%)

CIFAR-10

SPIKE-NORM (Sengupta et al., 2019) ANN-to-SNN VGG-16 2500 91.55
NeuNorm (Wu et al., 2019) Surrogate Gradient CIFARNet 12 90.53

BNTT (Kim & Panda, 2021) Surrogate Gradient VGG-9 20 90.30
tdBN (Zheng et al., 2021) Surrogate Gradient ResNet-19 6 / 4 / 2 93.16 / 92.92 / 92.34

TEBN (Duan et al., 2022) Surrogate Gradient VGG-9 4 92.81

ResNet-19 6 / 4 / 2 94.71 / 94.70 / 94.57

TAB (Ours) Surrogate Gradient VGG-9 4 93.41
ResNet-19 6 / 4 / 2 94.81 / 94.76 / 94.73

CIFAR-100

SPIKE-NORM (Sengupta et al., 2019) ANN-to-SNN VGG-16 2500 70.90
BNTT (Kim & Panda, 2021) Surrogate Gradient VGG-11 50 66.60

TEBN (Duan et al., 2022) Surrogate Gradient VGG-11 4 74.37
TEBN (Duan et al., 2022) Surrogate Gradient ResNet-19 6 / 4 / 2 76.41 / 76.13 / 75.86

TAB (Ours) Surrogate Gradient VGG-11 4 75.89
ResNet-19 6 / 4 / 2 76.82 / 76.81 / 76.31

DVS-CIFAR10

NeuNorm (Wu et al., 2019) Surrogate Gradient 7-layer CNN 40 60.50
BNTT (Kim & Panda, 2021) Surrogate Gradient 7-layer CNN 20 63.2

tdBN (Zheng et al., 2021) Surrogate Gradient ResNet-19 10 67.8
TEBN (Duan et al., 2022) Surrogate Gradient 7-layer CNN 10 75.10

TAB (Ours) Surrogate Gradient 7-layer CNN 4 76.7

ImageNet

SlipReLU (Jiang et al., 2023) ANN-to-SNN ResNet-34 32 66.61
tdBN (Zheng et al., 2021) Surrogate Gradient ResNet-34 6 63.72
TEBN (Duan et al., 2022) Surrogate Gradient ResNet-34 4 64.29

TAB (Ours) Surrogate Gradient ResNet-34 4 67.78
ResNet-34 2 65.94

datasets as well. For instance, on the DVS-CIFAR10 dataset, our TAB method achieves 1.6% better
performance (76.7% v.s. 75.10%) while utilizing fewer time-steps (4 v.s. 10) than TEBN. Similarly,
on CIFAR-100, our method exhibits a 0.55% increase in accuracy (76.31% v.s. 75.86%) compared to
TEBN when both use 2 time-steps. All the accuracy values for other methods reported in the table
are drawn from the existing literature.

4.2 COMPARISON ON LARGE-SCALE IMAGENET DATASET

In this section, we investigate the effectiveness of our TAB method on the ImageNet dataset, renowned
for its extensive collection of more than 1.25 million training images and 50, 000 test images (Deng
et al., 2009). The training set of ImageNet offers 1, 280 training samples for each label, and we
apply standard preprocessing and augmentation techniques (He et al., 2016) to the training data. Test
data is centered and cropped to dimensions of 224× 224. The evaluation employs the ResNet-34
architecture, a widely recognized model. The network is trained using the AdamW optimizer with
an initial learning rate of 0.00002 and a weight decay of 0.02. Training occurs on an NVIDIA RTX
A6000 with 4 GPUs, each handling a batch size of 24. To ensure unbiased statistics, we follow Zheng
et al. (2021) and synchronize batch mean and variance across devices.

The results, presented in Tables Table 1 and ??, reveal the efficacy of our TAB method. Notably,
even with a modest training duration of 80 epochs for T = 4, the TAB method exhibits a 3.29% im-
provement on ResNet-34 over TEBN at T = 4 (TAB with 67.78% vs. TEBN 64.29%). Impressively,
with only 2 time-steps (T = 2), our TAB method achieves an accuracy of 65.94% on ImageNet,
showcasing its promising performance.

4.3 COMPARISON WITH THE STATE-OF-THE-ART APPROACHES

In this section, we present a comprehensive comparison of our TAB method with other state-of-the-art
learning methods for SNNs using CIFAR-10 as the benchmark dataset, as illustrated in Table 2.
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On the VGG-11 architecture, our TAB method achieves an impressive accuracy of 94.73% while
utilizing 4 time-steps, outperforming all the ANN-to-SNN conversion and hybrid training methods
that require more time-steps. Besides, we follow TEBN (Duan et al., 2022) and adopt the cutout
augmentation (DeVries & Taylor, 2017) on static datasets denoted by “*” in the table. Compared
to other surrogate gradient methods, our TAB method consistently performs better. On ResNet-19,
our TAB method achieves an accuracy of 96.09% with 6 time-steps, which is better than Dspike
(94.25%), TET (94.5%), TEBN (95.6%) while using the same number of time-steps. Even when
using only 2 time-steps T = 2, our TAB method on ResNet-19 achieves a higher accuracy than
TEBN (Duan et al., 2022) which utilizes 6 time-steps. We contribute this elevated performance to the
better representation capability of TAB, achieved by its alignment with the neuron dynamics, thereby
bridging the gap between the discrete LIF model and the underlying neuron dynamics and making the
two closer. For clarity, all reported accuracy values for other methods in the tables are sourced from
the literature. Further experimental results on CIFAR-100 and DVS-CIFAR10 datasets are detailed
in ?? from ??. For a comprehensive comparison with state-of-the-art (SOTA) methods on ImageNet,
please consult ?? provided in ??.

Table 2: Comparison between the proposed TAB and other state-of-the-art approaches on CIFAR-10.

Model Method Architecture Time-steps Accuracy (%)
RMP (Han et al., 2020) ANN-to-SNN ResNet-20 2048 91.36
RTS (Deng & Gu, 2021) ANN-to-SNN ResNet-20 128 93.56
QCFS (Bu et al., 2022) ANN-to-SNN ResNet-20 16 91.62
PTL (Wu et al., 2021b) ANN-to-SNN VGG-11 16 91.24
HC (Rathi et al., 2020) Hybrid Training VGG-11 2500 92.94

TC (Zhou et al., 2021) Time-based Gradient VGG-16 - 92.68
TSSL-BP (Zhang & Li, 2020) Time-based Gradient 7-layer CNN 5 91.41

Dspike (Li et al., 2021b) Surrogate Gradient ResNet-18∗ 6 / 4 / 2 94.25 / 93.66 / 93.13
TET (Deng et al., 2022) Surrogate Gradient ResNet-19∗ 6 / 4 / 2 94.50 / 94.44 / 94.16

TEBN (Duan et al., 2022) Surrogate Gradient VGG-11 4 93.96
TEBN (Duan et al., 2022) Surrogate Gradient ResNet-19∗ 6 / 4 / 2 95.60 / 95.58 / 95.45

TAB (Ours) Surrogate Gradient VGG-11 4 94.73
ResNet-19∗ 6 / 4 / 2 96.09 / 95.94 / 95.62

5 CONCLUSION

Directly training SNNs is extremely challenging, even when adopting BN techniques to enable
more stable training. The presence of the Temporal Covariate Shift (TCS) phenomenon, coupled
with the intrinsic temporal dependency of neuron dynamics, further compounds these challenges
for directly training SNNs. To tackle this, we have introduced TAB (Temporal Accumulated Batch
Normalization), a novel SNN batch normalization approach. TAB closely aligns with the neuron
dynamics, normalizing data using temporal accumulated statistics, effectively capturing historical
temporal dependencies similar to that of the accumulation process of the membrane potential in the
LIF neuron model. Neuron dynamics refer to the changes in the membrane potential of a neuron over
time as it integrates input signals and generates spikes. The alignment with the neuron dynamics
means that the TAB method is tailored to mimic or capture the behavior of neurons as closely as
possible. It aims to normalize the data in a manner that is coherent with the temporal dependencies
and accumulation of information that occur within neurons as they process input signals. This
alignment ensures that TAB’s normalization process corresponds well with the way neurons naturally
operate in SNNs, thereby leading to improved training and performance by addressing the temporal
covariate shift problem.
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