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ABSTRACT

Scientists often want to make predictions beyond the observed time horizon of
“snapshot” data following latent stochastic dynamics. For example, in time course
single-cell mRNA profiling, scientists have access to cellular transcriptional state
measurements (snapshots) from different biological replicates at different time
points, but they cannot access the trajectory of any one cell because measurement
destroys the cell. Researchers want to forecast (e.g.) differentiation outcomes from
early state measurements of stem cells. Recent Schrödinger-bridge (SB) meth-
ods are natural for interpolating between snapshots. But past SB papers have not
addressed forecasting. Some natural immediate extensions of existing methods
would (1) reduce to following pre-set reference dynamics (chosen without seeing
data) or (2) require the user to choose a fixed, state-independent volatility since
they minimize a Kullback–Leibler divergence. Either case can lead to poor fore-
casting quality. In the present work, we propose a new framework, SnapMMD,
that learns dynamics by directly fitting the joint distribution of both state mea-
surements and observation time with a maximum mean discrepancy (MMD) loss.
Unlike past work, our method allows us to infer unknown and state-dependent
volatilities from the observed data. We show in a variety of real and synthetic
experiments that our method delivers accurate forecasts. Moreover, our approach
allows us to learn in the presence of incomplete state measurements and yields an
R2-style statistic that diagnoses fit. We also find that our method’s performance at
interpolation (and general velocity-field reconstruction) is at least as good as (and
often better than) state-of-the-art in almost all of our experiments.

1 INTRODUCTION

Many scientific modeling problems require forecasting stochastic dynamics from snapshot data.
Here, snapshot data represent observations taken at different time points, without access to individ-
ual trajectories. And forecasting involves predicting future states beyond the observed times. For
example, single-cell RNA sequencing (scRNA-seq) is widely used to study dynamic processes such
as development, immune activation, and cancer progression. A scRNA-seq measurement destroys
the cell, so scientists observe independent biological replicates at discrete times rather than a single
replicate across multiple times. Despite the absence of individual cell trajectories, researchers often
aim to forecast future cellular states; for instance, researchers are interested in forecasting differenti-
ation outcomes of stem cells, immune cell activity after initial signal stimulation, or long-term cancer
cell response to drugs with transcriptomic snapshots taken shortly after treatments. A common ad-
ditional challenge is incomplete state measurement. For instance, although protein expression level
mediates the dynamics of gene expression, protein level cannot be measured by scRNA-seq.

Recent work has addressed the problem of interpolating between snapshots through Schrödinger
bridge (SB) methods (Pavon et al., 2021; De Bortoli et al., 2021; Vargas et al., 2021; Koshizuka
and Sato, 2022; Wang et al., 2024) and their multi-marginal extensions (Shen et al., 2025; Zhang,
2024; Guan et al., 2024; Chen et al., 2024; Lavenant et al., 2024). These methods reconstruct likely
trajectories between snapshots at consecutive times. In settings where the goal is to fill in missing
timepoints between observed snapshots, these techniques can perform well. However, to the best of
our knowledge, no previous papers before the present work presented methodology for forecasting,
ran experiments on forecasting, or had code that could immediately run for the forecasting task.

Nonetheless, we can imagine some natural extensions of existing work to forecasting. One option is
to follow the SB reference dynamic beyond observed time points, but since the reference dynamic
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is typically chosen without considering data, we expect poor extrapolation performance. Chen et al.
(2024) and Shen et al. (2025) incorporate momentum or a learned reference, respectively, so one
might hope they could extend well to extrapolation. But we expect the extrapolation ability of
the latter methods to be limited by an issue shared by all existing SB methods. Namely, existing
methods optimize a Kullback–Leibler divergence between data and a nominal diffusion model, and
this optimization formulation requires a known volatility, fixed across states. In practice, volatility
is often unknown or state-dependent, as in scRNA-seq, where noise arises from a mix of biological
and technical sources. We see in our experiments that missing the state dependence or choosing
an inappropriate (though standard) volatility value can lead to poor forecasts. In addition, most
approaches (with the exception of Shen et al. (2025)) do not take advantage of partial mechanistic
knowledge (e.g., bounded production–decay kinetics in a biological system or vortex structure in
ocean currents), even though such knowledge is often available and can meaningfully constrain the
dynamics. Finally, we note that SB methods often rely on iterative Sinkhorn solvers that offer few
tools for diagnosing model fit. We describe additional related work in Appendix A.

In this work, we propose a new framework, SnapMMD, that shifts the modeling focus from in-
terpolation to accurate, interpretable forecasting. Our approach begins with the observation that
in typical trajectory-inference settings (Lavenant et al., 2024), each sample can be viewed as an
i.i.d. draw from the joint distribution of a system’s state (e.g., mRNA expression level) and the
time of measurement. Then, we characterize a parametric family of stochastic differential equations
(SDEs) and seek the member of this family whose implied joint distribution over state and time best
matches the empirical joint distribution observed in the data. We perform this matching using max-
imum mean discrepancy (MMD) with a specific kernel choice, which we show enjoys a number of
conceptual and computational benefits. Our framework allows data to guide extrapolation beyond
observed times, allows us to learn volatility rather than fixing it in advance, facilitates the use of
domain knowledge when available, and yields interpretable model diagnostics, including an explicit
velocity field and an R2-like metric that quantifies model fit. Our framework offers the added ben-
efit of enabling robust interpolation and forecasting even with incomplete state measurements, as in
the protein expression example above. We evaluate SnapMMD across a range of synthetic and real-
world systems. We find that SnapMMD consistently outperforms Schrödinger bridge baselines in all
forecasting tasks — while still matching or exceeding interpolation performance of both SB-based
and flow-matching baselines in almost all cases.

2 SETUP AND BACKGROUND

Though our work has application beyond scRNA-seq, we next describe our data and goals using
scRNA-seq terminology to clarify and concretize our notation.

Data Setup. We consider single-cell mRNA measurements collected at I distinct time points, la-
beled t1 < t2 < · · · < tI . For convenience, we set t1 = 0. We do not require these time points
to be equally spaced. At each time ti, the observed data consist of Ni cells, each providing a single
mRNA expression level measurement (representing a cell state) in Rd, denoted Y n

ti . After a cell’s
mRNA level is measured, the cell is destroyed. So each cell appears exactly once in the dataset. We
therefore collect N =

∑I
i=1 Ni total observations across all time points. We write Y all

ti for the full
set of measurements taken at time ti.

Goal. If a cell’s mRNA expression level were not measured, the cell would remain alive, and its
mRNA expression would evolve continuously over time along a (latent) trajectory. Formally, we
denote the latent trajectory of the nth cell observed at the ith time step by X

(i,n)
t . The observed

state of the cell at time ti is a single point on this trajectory Y n
ti = X

(i,n)
t=ti . We assume these la-

tent trajectories are independent realizations from an underlying latent distribution. Consequently,
the observed snapshot measurements are also independent. Our objective is to infer a probabilistic
model, chosen from a specified parametric family, that best captures the distribution of these unob-
served trajectories. Our model should provide a distribution over forecasted trajectories beyond the
measured time and also over interpolated trajectories between observed times.

Dataset and independence assumptions. At each observation time ti, the measurements {Y n
ti }n

are modeled as i.i.d. draws from a conditional distribution p(Y | t = ti). Across different time-
points, say ti ̸= tj , the conditional distributions p(Y | t = ti) and p(Y | t = tj) may differ, so the
overall dataset is independent but not identically distributed if we treat times as fixed. But we can
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model the observation times themselves as random draws from a discrete distribution h(t) supported
on the set of measurement times. Then the dataset of pairs {(Y n

ti , ti)}i,n can be regarded as i.i.d.
samples from the joint distribution p(Y, t) = p(Y | t)h(t). This joint view aligns with real biologi-
cal experimental protocols. Indeed, instead of sequencing each sample immediately after collection,
experimenters often tag each sample with a unique identifier that encodes the time it was collected.
Then, all cells are sequenced together in a single batch, with the time information retrieved from the
tags. In Appendix C we discuss situations where this i.i.d. assumption might not hold.

Model. We model each latent trajectory of the (i, n) cell with a stochastic differential equation
(SDE) driven by a d-dimensional Brownian motion W

(i,n)
t , independent across particles:

dX(i,n)
t = b0(X

(i,n)
t , t)dt+ g0(X

(i,n)
t , t)dWt, X

(i,n)
t=0 ∼ π0. (1)

We assume that the drift b0(·, ·) : Rd×[0, tI ] → Rd and initial marginal distribution π0 are unknown.
Previous Schrödinger bridge methods typically assume fixed, known volatility (e.g. De Bortoli et al.,
2021; Vargas et al., 2021; Koshizuka and Sato, 2022; Wang et al., 2024; Shen et al., 2025; Zhang,
2024; Guan et al., 2024; Chen et al., 2024). By contrast, we allow the common case where the
volatility function g0 can be unknown and also state- and time-dependent. For example, in scRNA-
seq, transcriptional noise varies with gene identity, cell state, and developmental stage — and is
further confounded by technical artifacts such as amplification bias and stochastic capture. Volatility
in these systems reflects true biological uncertainty and is rarely known in advance.

Finally, we assume standard regularity conditions on the SDE: Lipschitz continuity and linear growth
for drift and volatility (to ensure existence of strong solutions to the SDE; see Pavliotis, 2016, Chap-
ter 3, Theorem 3.1) and bounded second moments of the particle distributions (ruling out the pos-
sibility that the process exhibits unbounded variability). We state these assumptions formally in
Appendix B.2.

One natural extension of Schrödinger bridges to forecasting highlights limitations of fixed
reference dynamics. SB methods reconstruct distributions of trajectories by matching observed
marginals while penalizing deviation from a predefined reference process, typically Brownian mo-
tion; see Eq. (A1) in Appendix B.1 for a standard setup. These methods are well suited for interpo-
lation between observed marginals. Forecasting, however, has not been a focus in this line of work.
In Appendix B.1, we work through one natural extension of the SB framework to forecasting by
introducing an additional, future marginal. In this setup, under fixed reference dynamics, extrapo-
lation reduces to propagating the final observed marginal forward under the reference process. But
the reference is chosen without considering any data, so we expect poor extrapolation performance.

3 OUR METHOD

To address the forecasting limitations of SBs described above, we propose an alternative approach.
SBs compare the observed data and candidate model directly via Kullback–Leibler divergence. We
instead formulate an optimization problem that directly matches the joint distribution of state–time
pairs predicted by a candidate model to the empirical distribution observed in the data. Below,
we describe precisely how we frame and solve this optimization problem using MMD, introduce
an interpretable diagnostic metric for assessing model fit, and detail how this framework naturally
extends to scenarios involving incomplete state measurements.

3.1 A LEAST SQUARES APPROACH

We formalize our approach by (1) decomposing the joint state–time empirical distribution into
marginal and conditional components and (2) detailing how the resulting matching problem reduces
to a least-squares formulation when using Maximum Mean Discrepancy (MMD) for distance.

Empirical distributions. We let f̂(y; t) denote the empirical measure over state y at any observed
time ti. For unobserved times, we give it a placeholder distribution. Likewise, we let ĥ(t) denote
the (marginal) empirical measure over observed times. Precisely, we have

f̂(y; t) =

{
(Ni)

−1
∑Ni

n=1 δY n
ti
(y) t = ti

δ0(y) else
, and ĥ(t) =

I∑
i=1

(
Ni∑I
j=1 Nj

)
δti(t). (2)
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where δ denotes as usual the Dirac measure. Let f̂(y, t) denote the empirical joint distribution
over observed state-time pairs. This joint decomposes into the empirical marginal and conditional
described above: f̂(y, t) = ĥ(t)f̂(y; t).

Directly matching the joint state–time distributions. We plan to estimate the parameters θ of
a candidate SDE model by aligning its predicted joint distribution over state–time pairs with the
empirical distribution. Let fθ(y|t) denote the predicted state distribution at time t. We will minimize
a discrepancy between (1) the empirical joint f̂(y, t) and (2) the joint implied by the predictive
conditional fθ(y|t) together with the empirical marginal ĥ(t): namely, fθ(y, t) := ĥ(t)fθ(y|t).
For the discrepancy, we choose the MMD (Gretton et al., 2012). MMD computes the squared dis-
tance between the kernel mean embeddings of two distributions in a reproducing kernel Hilbert space
(RKHS). While in principle other measures of divergence (e.g., Wasserstein, Kullback–Leibler)
could be employed, we adopt MMD for its favorable computational and statistical properties. In
particular, MMD admits a closed-form empirical estimator with efficient gradients, remains well
behaved in moderately high dimensions where Wasserstein distances suffer from poor sample com-
plexity, and naturally provides a quantitative model selection criterion, as discussed in Section 3.2.
We refer to Appendix D for further discussion on the computational aspects of MMD.

To apply MMD in practice, one must specify a kernel. For our method, we choose a kernel that fac-
tors across state and time; this choice lets us break the joint MMD into a weighted sum of marginal
MMDs at each time point. The resulting optimization objective is reminiscent of least-squares re-
gression, with time acting as a discrete index. We formalize this idea in the following result.

Proposition 3.1. Let f(y, t) = f(y | t)h(t) and g(y, t) = g(y | t)h(t) be joint distributions over
y ∈ Rd (for dimension d) and discrete time t ∈ T , where T denotes a finite index set of observation
times, h(t) is a probability mass function and f(y | t), g(y | t) are conditional distributions. Use
the kernel K((y, t), (y′, t′)) = Ky(y,y

′)δ(t− t′), where Ky is positive definite on the state space
and, for all t ∈ T , Ey∼f(y|t),y′∼f(y|t)Ky(y,y

′) < ∞, Ey∼f(y|t),y′∼g(y|t)Ky(y,y
′) < ∞, and

Ey∼g(y|t),y′∼g(y|t)Ky(y,y
′) < ∞.1 Then:

MMD2
K(f, g) =

∑
t∈T

h2(t) MMD2
Ky

(f(· | t), g(· | t)) .

This result (proof in Appendix B.3) shows that aligning joint distributions here boils down to match-
ing conditional state distributions across time. We apply Proposition 3.1 with the two joint distribu-
tions from above, fθ(y, t) and f̂(y, t), to obtain the following optimization objective:

MMD2
K(fθ, f̂) =

I∑
i=1

(
Ni∑I
j=1 Nj

)2

MMD2
Ky

(fθ(·|ti), f̂(·; ti)). (3)

It remains to estimate the righthand MMDs and also to choose the MMD state-space kernel, the
model fθ(·|t), and the optimization algorithm.

Estimating MMD at each time point. In practice, we approximate MMD2
Ky

(fθ(·|t), f̂(·; t)) using
the MMD’s U-statistic estimator (Gretton et al., 2012, Lemma 6). To that end, we simulate M
trajectories from the candidate model. For the mth trajectory, we record the state snapshot Zm

ti at
time ti. The U-statistic estimator, which is unbiased and consistent (Hall, 2004), is then given by

MMD2
U,U(fθ(·|ti), f̂(·; ti)) =

1

Ni(Ni − 1)

∑
n̸=n′

Ky(Y
n
ti ,Y

n′

ti )− 2

NiM

∑
n,m

Ky(Y
n
ti ,Z

m
ti )

+
1

M(M − 1)

∑
m̸=m′

Ky(Z
m
ti ,Z

m′

ti ).

The overall optimization problem for parameter fitting then becomes:

θ̂ = argmin
θ

I∑
i=1

wi MMD2
U,U(fθ(·|ti), f̂(·; ti)) with weights wi :=

(
Ni∑I
j=1 Nj

)2

(4)

1Many practical kernels satisfy these assumptions, e.g., radial basis function, Matérn, and Laplace.
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Table 1: MMD for forecast and interpolation tasks. For forecast, we report mean and standard
deviation over 10 random seeds. For interpolation, we aggregate over 10 seeds and validation time
points. The best method (lowest MMD) is shown in bold in a green cell; we also highlight in
green any other methods whose mean is contained in the one-standard deviation interval for the best
method. We show the top three interpolation methods here; full results can be found in Appendix F.4.

Forecast Interpolation

Task Ours SBIRR-ref SB-forward Ours SBIRR DMSB

LV 0.057± 0.03 0.69± 0.11 2.99± 1.88 0.01± 0.01 0.04± 0.08 3.31± 2.18

ReprParam 0.072± 0.080 2.06± 1.34 2.09± 0.74 0.04± 0.03 0.16± 0.10 7.23± 2.00
ReprSemiparam 0.32± 0.15 1.46± 0.55 5.26± 1.66 0.38± 0.38 1.11± 0.82 7.23± 2.00
ReprProtein 0.048± 0.029 2.50± 0.05 2.42± 0.13 0.01± 0.00 1.48± 2.95 5.15± 2.63

GoM 2.36± 0.11 1.41± 0.18 2.59± 0.33 0.07± 0.05 0.01± 0.01 0.05± 0.06

PBMC 0.11± 0.04 0.71± 0.34 2.38± 0.49 0.11± 0.05 0.11± 0.12 0.97± 0.10

The least squares objective from Eq. (4) naturally extends classical regression to distributional set-
tings by measuring discrepancy in the RKHS defined by kernel mean embeddings. Specifically, this
least squares framework reduces to classical Euclidean regression if each predicted distribution is a
Dirac measure and the kernel is linear.

Choosing kernel, optimizer, and SDE model. In practice, we use the radial basis function (RBF)
kernel for the state space; we determine the length scale by the median heuristic (Garreau et al.,
2017) applied to pairwise distances in the data. Additionally, we scale time to lie in [0, 1]. For opti-
mization, we compute gradients with respect to the parameters using the stochastic adjoint method
(Li et al., 2020). We use the Adam optimizer to perform the parameter updates. We pick the can-
didate conditional fθ(·|t) based on domain knowledge by specifying parametric components of the
SDE in every experiment, reflecting the partial mechanistic understanding available in scientific set-
tings. A strength of our method is that it can leverage this information, and in Section 4.6 we show
through ablations that doing so yields clear improvements over fully neural models.

Handling incomplete state measurements. In many practical applications — such as our mRNA
sequencing example — it is common for only a subset of relevant state variables to be observed. For
instance, while mRNA concentrations are routinely measured, corresponding protein levels (which
are also important for modeling the underlying dynamical system) are often unavailable. Our frame-
work can handle these missing-data settings because it relies on matching the joint distribution of
time and the observed dimensions, rather than requiring all dimensions to be measured. More pre-
cisely, since our loss (Eq. (4)) is defined over the observed state variables (together with time), the
model is trained to match the marginal distribution of the observed variables along with time, with-
out making any additional assumptions or imputations for the missing dimensions. We illustrate
with an experiment in Section 4 (Fig. 2, lower row).

3.2 EVALUATING MODEL FIT WITH AN R2-STYLE METRIC

In traditional regression, R2 offers a straightforward diagnostic and basis for model comparison;
we propose a similar metric for distributional data. Recall that R2 quantifies how well a model
explains the data by comparing residual variability against total variability around a baseline constant
prediction, the mean response. Given the least-squares objective of Eq. (4), we might consider a
similar metric in the present distributional case. But first we need to choose an appropriate baseline.

A distributional baseline. Analogous to the response-mean baseline in traditional regression, we
want to find the best constant (time-independent) model within our RKHS-based least squares frame-
work. The barycenter of distributional data is the distribution minimizing the sum of squared RKHS
distances to all observed distributions. For distributions embedded in an RKHS, Cohen et al. (2020)
showed that the barycenter is the weighted mixture of the empirical distributions:

fbary(y) := argmin
f

I∑
i=1

wi MMD2
Ky

(f(y | ti), f̂(y; ti)) =
1∑I

i=1 wiNi

I∑
i=1

Ni∑
n=1

wiδY n
ti
(y), (5)

with weights wi as in Eq. (4).
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Figure 1: Lotka-Volterra results (Section 4.1). We show 200 samples at each of 10 training times
and 1 forecast time (red). Forecast points overlap with the training points at time 0 (blue).

Our RKHS-based R2 metric. With this baseline in hand, we define our metric.

Definition 3.1 (RKHS-based R2 metric). Let fθ(·|t) denote the model-predicted state distribution
at time fθ(·|t). Let f̂(·; ti) be defined as in Eq. (2), fbary as in Eq. (5), and wi as in Eq. (4). The
RKHS-based coefficient of determination R2 is

R2 = 1−
∑I

i=1 wi MMD2
Ky

(fθ(·|ti), f̂(·; ti))∑I
i=1 wi MMD2

Ky
(fbary, f̂(·; ti))

. (6)

The numerator measures the discrepancy between model predictions and empirical distributions,
while the denominator quantifies total variability around the barycenter (analogous to total variance
in standard regression). Thus, R2 captures the fraction of variability explained by the model. By
construction, R2 ≤ 1, with values near 1 indicating good fit and values near or below 0 indicating
performance no better (or worse) than the barycenter. We use this metric for model comparison and
fit diagnostics; see Appendix F.2.

4 EXPERIMENTS

In synthetic and real-data experiments, we find that our SnapMMD method consistently provides
better forecasts than competitors. We also find that, in almost all experiments, SnapMMD provides
better or matching interpolation performance relative to competitors. In Appendix F.1, we further
demonstrate that our method outperforms competitors on vector field reconstruction.

Beyond cell states. Though we use cell-state terminology above for concreteness, our experiments
also include applications beyond cellular dynamics. E.g., states can instead represent predator and
prey counts (Section 4.1) or spatial locations of particles following ocean currents (Section 4.4).

Metrics of success. To evaluate forecasting performance, we reserve a validation snapshot at a
future time point beyond the training horizon. For interpolation, we retain intermediate validation
snapshots between training time points. In both forecasting and interpolation tasks, we measure
discrepancy between the validation data and predictions with two metrics: (1) the MMD and (2)
the earth mover’s distance (EMD)2 between the forecast distribution and the held-out empirical
distribution at the validation time. We also provide visual comparisons.

Forecasting (and vector field reconstruction) baselines. We compare SnapMMD against two
baselines: (1) Schrödinger bridge with iterative reference refinement (SBIRR) (Shen et al., 2025;
Zhang, 2024; Guan et al., 2024), and (2) multimarginal Schrödinger bridge with shared forward
drift (SB-forward) (Shen et al., 2024). Although designed for interpolation (SBIRR) and vector
field reconstruction (SB-forward), they can be adapted for forecasting by extrapolating with their
fitted dynamics. Specifically, we use (1) the best fitted reference of SBIRR (SBIRR-ref) and (2)
the best fitted forward drift of SB-forward. Reference fitting has also been used in prior work
with linear SDE models (Zhang, 2024; Guan et al., 2024), whereas SBIRR and SBIRR-ref allow
general model families. To ensure fairness, both baselines are provided with the same drift structure
as SnapMMD. Their key limitation is that they rely on a fixed, known volatility; following prior
work (Vargas et al., 2021; Wang et al., 2021; Shen et al., 2025), we set it to 0.1. Unlike SnapMMD,
they cannot learn state-dependent diffusion.

2For EMD, we use the implementation provided by Tong et al. (2024b).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

0

2

4

6

8

10

T
im

e

Gene 1 G
en

e
2

G
en

e
3

Ground Truth

Gene 1 G
en

e
2

G
en

e
3

Ours

Gene 1 G
en

e
2

G
en

e
3

SBIRR-ref

Gene 1 G
en

e
2

G
en

e
3

SB-forward

Training Forecast

0

2

4

6

8

10

T
im

e

Gene 1 G
en

e
2

G
en

e
3

Ground Truth

Gene 1 G
en

e
2

G
en

e
3

Ours

Gene 1 G
en

e
2

G
en

e
3

SBIRR-ref

Gene 1 G
en

e
2

G
en

e
3

SB-forward

Training Forecast

Figure 2: Repressilator results: mRNA-only (upper, Section 4.2) and mRNA and protein (lower,
Section 4.3). We show 200 samples at each of 10 training times and 1 forecast time (red).

Interpolation baselines. For interpolation, we compare SnapMMD against five methods: op-
timal transport–conditional flow matching (OT-CFM) and Schrödinger bridge–conditional flow
matching (SB-CFM) (Tong et al., 2024a), simulation-free Schrödinger bridge (SF2M) (Tong et al.,
2024c), deep momentum multimarginal Schrödinger bridge (DMSB) (Chen et al., 2024), and again
Schrödinger bridge with iterative reference refinement (SBIRR) (Shen et al., 2025), where here
we use the main algorithm output (rather than the fitted reference as in SBIRR-ref). Among
these, only SBIRR supports incorporating the same drift structure as SnapMMD. The other meth-
ods cannot accept such inductive bias by design, but we nevertheless include them, since contrasting
structure-free approaches with structured ones highlights the contribution of domain knowledge. For
all methods, we use default code settings.

4.1 LOTKA–VOLTERRA SYSTEM

Setup. We simulated data from a two-dimensional Lotka–Volterra predator–prey system, where
each coordinate’s volatility scales proportionally with its state variable. E.g., we set the volatility
for the prey population X to be σX , with the same constant σ across predator and prey. We train
on 10 time points, each with 200 samples. For methods that take a model choice (ours and SBIRR
variants), we use a parametric Lotka–Volterra model. See Appendix F.5 for full details.

Results. In Fig. 1, we see that our method’s forecast (red dots) is closer to ground truth than the
baselines are. MMD (LV, Forecast in Table 1) and EMD (LV, Forecast in Table 2) agree that our
method performs best. Our method is also best in the interpolation task (LV, Interpolation in Table 1).
See Appendix F.5 for further results.

4.2 REPRESSILATOR: MRNA ONLY

Setup. We simulated mRNA concentration data from a repressilator system, a biological clock
composed of three genes that inhibit each other in a cyclic manner. As for Lotka–Volterra, we let
each coordinate’s volatility scale proportionally with its state variable. We train on 10 time points,
each with 200 samples. For methods that take a model choice, we consider two options. (1) We use
the same parametric model as the data-generating process; see Appendix F.6 for full results. (2) We
use a semiparametric model with a multilayer perceptron; see Appendix F.7.2 for details.

Results. In Fig. 2 (upper row), we see that, when using the semiparametric model, our method’s
forecast (red dots) is closer to ground truth than the baselines are. MMD (ReprSemiparam, Forecast
in Table 1) and EMD (ReprSemiparam, Forecast in Table 2) agree that our method performs best.
Our method is also tied for best in the interpolation task (ReprSemiparam, Interpolation in Table 1).
We find similar results when using the parametric model (Tables 1 and 2, Fig. A8). See Appendix F.6
and Appendix F.7 for further results.
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Figure 3: Gulf of Mexico results (Section 4.4). We show 200 samples at each of 10 training times
and 1 forecast time (red).

4.3 REPRESSILATOR: MRNA AND PROTEIN

Setup. A more-complete biochemical model of the repressilator includes both mRNA and protein
(Eq. (A12)) even though only mRNA concentration is actually observed in practice. We next gener-
ate simulated data using the more-complete model and keep only the mRNA concentrations in our
observations. We again train on 10 time points, each with 200 samples. Since our method has the
capacity to handle incomplete state observations, we can use the full mRNA-protein model with our
method. Since SBIRR methods do not have the capacity to handle models with latent variables, we
use the mRNA-only model in these methods.

Results. In Fig. 2 (lower row), we see that our method’s forecast (red dots) is closer to ground
truth than the baselines are. MMD (ReprProtein, Forecast in Table 1) and EMD (ReprProtein,
Forecast in Table 2) agree that our method performs best. We emphasize that none of the methods
directly observe protein levels. But since our method is aware that protein levels are also driving the
underlying dynamics, it is able to better forecast mRNA concentration. Our method is also best in
the interpolation task (ReprProtein, Interpolation in Table 1). See Appendix F.8 for further results.

4.4 OCEAN CURRENTS IN THE GULF OF MEXICO

Setup. We use real ocean-current data from the Gulf of Mexico: namely, high-resolution (1 km)
bathymetry data from the HYbrid Coordinate Ocean Model (HYCOM) reanalysis.3 We extract a
velocity field centered on a region that appears to exhibit a vortex. We then simulate the motion
of particles — representing buoys or ocean debris — evolving under this field. The training data
consist of 10 time points with 400 particles each. Since the data are real in this experiment, the
models used by any method must be misspecified. For methods that take a model choice, we use
a physically motivated model for the vortex, where the velocity field is the sum of a Lamb-Oseen
vortex and a constant divergence field. The first term accounts for swirling, rotational dynamics
typical of a vortex in low viscosity fluid like water, while the divergence field accounts for vertical
motion or non-conservative forces that may cause a net expansion or contraction of the flow. See
Appendix F.9.3 for more details. Note that physical drifters deployed in the ocean can be tracked
continuously over time. By contrast, in many remote sensing applications each observation is an
image that provides only a distributional snapshot at that time, without tracking the same particles
across times. For example, in oil-spill monitoring from satellite imagery, each image shows the
surface oil distribution but not individual particle paths. See Appendix F.9.2 for discussion.

Results. In Fig. 3, we see that our method’s forecast (red dots) more closely aligns with ground
truth than the baselines do. EMD (GoM, Forecast in Table 2) agrees that our method performs
best. However, MMD (GoM, Forecast in Table 1) prefers SBIRR-ref to our method (SnapMMD);
we suspect we see this behavior because MMD using an RBF kernel can prefer a diffuse, but less
accurate, cloud over a concentrated, geometrically correct one. Recall that the MMD with RBF
mixes two ingredients: (i) how tightly the forecast particles cluster among themselves and (ii) how
far the forecast and ground truth particles are. Our forecast points sit on a lower-dimensional curve
than the baselines’ points, so the “self-similarity” part of the MMD score is higher. All methods
perform well visually at the interpolation task (Fig. A18), but SBIRR yields the best MMD (GoM,
Interpolation in Table 1) and EMD (GoM, Interpolation in Table 2). SBIRR is built to interpolate
every observed snapshot and then smooth between them, so with densely sampled times, it almost

3Dataset available at https://www.hycom.org/data/gomb0pt01/gom-reanalysis.
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Figure 4: PBMC results (Section 4.5). The axes in every plot are the same three principal com-
ponents, computed over the full data: i.e., 41 time steps of the 30-dimensional gene programs.
Leftmost four panels: evolution of the training data at time steps 1, 7, 14, and 20. "Truth" panel:
ground truth snapshot at time step 21. Rightmost three panels: model forecasts at time step 21.

inevitably lands near the held-out validation points. Our method’s aim to recover a smooth velocity
field (rather than enforce exact interpolation) can be an advantage for forecasting, but less so for
interpolation. See Appendix F.9.6 for further results.

4.5 T CELL-MEDIATED IMMUNE ACTIVATION

Setup. We use a real single-cell RNA-sequencing dataset that tracks T cell–mediated immune ac-
tivation in peripheral blood mononuclear cells (PBMCs) (Jiang et al., 2024). Scientists recorded
gene-expression profiles every 30 minutes for 30 hours. We use the 41 snapshots collected between
0 h and 20 h — prior to the onset of steady state; we take 20 alternating snapshots (at integer hours)
for training and the remaining 21 for validation. We use the 30-dimensional projection (“gene pro-
gram”) of the original measurements released by Jiang et al. (2024) as our data. In Fig. 4 (leftmost
four), we show the training snapshots at four time steps. Fig. A20 shows the full progression of
the training points over 20 time steps. Since the data is real in this experiment, the model used by
any method must be misspecified. For methods that use a model, we use the same model as in the
semiparametric repressilator experiment (Appendix F.7.1). Full details are in Appendix F.10.1.

Results. In Fig. 4 (rightmost four), we see that our method’s forecast is closer to ground truth than
the baselines are. MMD (PBMC, Forecast in Table 1) agrees. We do not use EMD in this experiment
as it suffers from the curse of dimensionality and is thus unreliable in our 30-dimensional setting;
see the discussion at the end of Section 2.5.2 in Chewi et al. (2025). Our method ties with SBIRR
in the interpolation task (PMBC, Interpolation in Table 1). See Appendix F.10.5 for more results.

4.6 ABLATIONS: FIXED VOLATILITY AND FULLY NEURAL SDE MODEL

One of the proposed benefits of SnapMMD is the ability to learn the volatility and allow it to be state-
dependent. We test the importance of this flexibility by comparing to a variant of SnapMMD with
volatility fixed to the same constant as in other methods. In almost every forecasting or interpolation
task, errors from the fixed-volatility variant increase by at least a factor of two and often by more
than an order of magnitude, relative to SnapMMD. See Appendix G.1 for full details.

Another proposed benefit of SnapMMD is the ability to incorporate domain knowledge, which is
widely available in scientific applications. We test the role of domain knowledge by replacing the
(parametric or semiparametric with neural residual) SDE families in the experiments above with
fully neural drift and diffusion. Again, in almost every task, performance drops sharply when the
domain knowledge is not incorporated. See Appendix G.2.

5 DISCUSSION

In this work, we introduced a new method for learning SDEs from population-level snapshot data.
Our approach is based on matching state–time distributions using a least squares scheme in a dis-
tributional space. Our proposed method handles real-life challenges such as unknown and state-
dependent volatility, missing dimensions, and diagnostics for performance. Overall, our experiments
indicate that our proposed framework outperforms existing methods in a wide range of applications.
While many scientific applications (including those above) feature useful models, it can nonethe-
less be a limitation that our method requires specification of an appropriate model family. A poorly
chosen model family can lead to bad performance. An overly wide family can face identifiability
challenges. In fact, even the complete time series of marginal distributions need not always uniquely
determine the drift and volatility functions of the SDE; see Appendix H for further discussion. Fi-
nally, our method is not simulation-free, so it requires compute that scales with sample size and state
dimension; development of a simulation-free method is an interesting future direction.
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Ethics statement. This work does not involve human subjects or personally identifiable informa-
tion, and the datasets we use (PBMC, Repressilator simulations, Lotka–Volterra, Gulf of Mexico
HYCOM reanalysis) are all either publicly available or simulated. We believe the main applications
of our method are in scientific forecasting tasks, such as gene regulation, ecological modeling, and
environmental monitoring, which we view as positive in their social impact. Nonetheless, we note
that any forecasting tool could in principle be misapplied in sensitive contexts (e.g., healthcare or
policy). We adhere to the ICLR Code of Ethics in the conduct and reporting of this work.

Reproducibility statement. We have taken several steps to ensure reproducibility. All theoret-
ical results are stated in the main text (Section 3) with complete proofs in Appendix B.3. Ex-
perimental setups, including SDE parameterizations, training details, and evaluation metrics, are
described in Section 4 as well as in Appendix F, where we have one appendix for each experiment.
Code to reproduce all experiments is provided at https://anonymous.4open.science/r/
snapMMD-DD84/.
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SUPPLEMENTARY MATERIAL

A ADDITIONAL RELATED WORK

In this section, we discuss related work covering generative modeling, Schrödinger bridges, flow
matching, and other approaches to trajectory inference.

Generative modeling. The machine learning community has made substantial progress in sampling
from complex, unknown distributions by transporting particles using diffusion models (Ho et al.,
2020; Song and Ermon, 2019; Song et al., 2021), Schrödinger bridges (De Bortoli et al., 2021;
Pavon et al., 2021; Vargas et al., 2021; Wang et al., 2024), continuous normalizing flows (Chen
et al., 2018; Grathwohl et al., 2019), and flow matching (Lipman et al., 2023). These methods are
primarily designed for generative modeling, where the goal is to transform a simple distribution
(e.g., a Gaussian) into a data distribution. While they involve a notion of “time,” it typically serves
as an auxiliary dimension rather than representing physical or real-world temporal dynamics. As
a result, these methods focus on two-marginal transport problems and are not naturally suited to
forecasting or modeling systems with multiple observed time points.

Trajectory inference with Schrödinger bridges, flow matching and normalizing flows. Several
recent works have explored the use of Schrödinger bridges (SBs) and optimal transport for mod-
eling trajectories across time (Schiebinger et al., 2019; Yang and Uhler, 2019). Most SB-based
methods are restricted to pairwise interpolation between consecutive marginals and cannot handle
multiple marginals in a principled way. Several extensions have been proposed to address this.
DMSB (Chen et al., 2024) incorporates momentum into the particles to exploit local information and
model multi-marginal dynamics, while Hong et al. (2025) proposed generalizations using higher-
order derivatives, although these approaches are computationally feasible only in low-dimensional
settings. Shen et al. (2025) introduced SBIRR, a multi-marginal Schrödinger bridge method with
iterative reference refinement. By integrating information from all marginals into the reference dy-
namics, SBIRR enables not only interpolation but also extrapolation via learned dynamics, and
serves as one of the main baselines in our experiments. Tong et al. (2024c) introduced SF2M, a
simulation-free SB method based on score and flow matching, designed for efficiency but limited to
Brownian motion as the reference and two-marginal settings.

Hashimoto et al. (2016) proposed a regularized recurrent neural network trained with a Wasserstein
gradient flow loss for trajectory reconstruction. Bunne et al. (2022) extended this direction with
JKOnet, a neural implementation of the Jordan–Kinderlehrer–Otto (JKO) scheme, enabling learn-
ing of the underlying energy landscape. More recently, Terpin et al. (2024) proposed JKOnet*,
which bypasses the bilevel optimization of JKOnet by exploiting first-order optimality conditions
of the JKO scheme, thereby enabling efficient and accurate recovery of potential, interaction, and in-
ternal energy components from population snapshots. While JKOnet* extends JKOnet by learn-
ing potential, interaction, and internal energies from population snapshots, its core assumption is
that dynamics arise from gradient flow on an energy landscape. This makes it well suited for phys-
ical systems but less natural for regulatory feedback networks like the Repressilator, where oscilla-
tions are driven by transcriptional repression and delayed activation rather than energy minimiza-
tion. Moreover, JKOnet* evaluates performance by splitting train/test data within each timepoint,
whereas our setting holds out entire timepoints to assess extrapolative forecasting ability, making
direct comparison challenging.

Other works use deterministic flows to infer trajectories. TrajectoryNet (Tong et al., 2020)
combines dynamic optimal transport with continuous normalizing flows (CNFs) to generate
continuous-time, nonlinear trajectories from snapshot data. These flows are governed by ODEs
rather than SDEs, and incorporate regularization that encourages short, energy-efficient paths. Tong
et al. (2024a) extended flow matching by modeling marginals as mixtures indexed by a latent vari-
able. They proposed OT-CFM and SB-CFM, where each component evolves under a simple vector
field and the overall dynamics are determined by mixing strategies based on optimal transport or
SB principles. Like many flow-matching methods, these approaches are restricted to two marginals
and are applied piecewise for longer time series. To address issues of geometry in the data space,
Huguet et al. (2022) proposed MIOFlow, which first learns the data manifold and then solves the
flow problem within that learned structure. They use neural ODEs to transport points along this
manifold. Atanackovic et al. (2024) introduced methods to learn multiple flows over a Wasserstein
manifold, though these too are aimed at interpolation rather than forecasting.
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Overall, these methods move particles using learned vector fields and various forms of regulariza-
tion, but they are generally not designed for forecasting. Like many SB-based methods, they suffer
when applied to extrapolation tasks, particularly in the absence of a good prior or reference dynamic.

B PROOFS AND ADDITIONAL RESULTS

B.1 A NATURAL EXTENSION OF SCHRÖDINGER BRIDGES TO FORECASTING

In this section, we analyze one natural extension of the Schrödinger bridge formulation to forecast-
ing. This is not the only possible setup, but it illustrates the limitations that arise when the reference
process is fixed a priori.

The Schrödinger bridge problem. Schrödinger bridges provide a framework for modeling stochas-
tic processes conditioned on observed marginals. Formally, they solve the following constrained op-
timization problem: given a reference process p (typically Brownian motion), we seek a trajectory
distribution q that is closest to p in Kullback–Leibler divergence while matching observed marginals
{π1, . . . , πT }:

argmin
q∈Q

DKL(q || p), Q = {q : qti = πi, i = 1, . . . , T}. (A1)

Typically, both p and q are defined via SDEs sharing the same volatility, and are supported over a
finite time horizon.

A natural forecasting extension. To reason about forecasting, one can extend this setup by intro-
ducing an unknown future marginal πT+1 and solving:

πT+1 = argmin
π

min
q∈Q

DKL(q || p), Q = {q : qti = πi, i = 1, . . . , T, qtT+1
= π}. (A2)

We emphasize that equation A2 is not the only possible formulation of SB forecasting, but it il-
lustrates the limitations of setups that rely on fixed reference dynamics. In this setting, forecasting
amounts to evolving particles forward from the last known marginal πT under the reference process
p. To make this precise, we adopt notation from Lavenant et al. (2024). Let pti,ti+1 and qti,ti+1

denote the transition densities of p and q over [ti, ti+1]. Let qtipti,ti+1 denote the joint trajectory
distribution that begins with marginal qti and evolves forward using the dynamics of p until time
ti+1.

Proposition B.1 (Forecasting limitation of fixed-reference SB methods). Assume that p and q are
SDEs with the same volatility, finite time horizon and satisfying Assumption B.1 and Assumption B.2.
The solution to equation A2 is the marginal at tT+1 of πT ptT ,tT+1

; that is, forecasting at tT+1

reduces to evolving πT forward using the reference dynamics p until tT+1.

Proof. When p and q share volatility and finite horizon, the processes are Markovian. Using Propo-
sition D.1 and Remark D.2 of Lavenant et al. (2024), we decompose the KL objective:

DKL(q || p) = DKL(qt1,t2 || pt1,t2) +
T∑

i=2

DKL(qti,ti+1
|| qtipti,ti+1

) +DKL(qtT ,tT+1
|| qtT ptT ,tT+1

)

(A3)

The first T terms are fixed by the constraints on {π1, . . . , πT } and do not depend on πT+1, so the
final term governs the choice of πT+1. This term is minimized by setting:

qtT ,tT+1
= πT ptT ,tT+1

(A4)
which yields qtT+1

= πT+1 as the marginal of πT evolved forward under p. Thus, the optimal
forecast is the marginal of πT ptT ,tT+1

.

This result shows that in standard SB setups with fixed reference dynamics p, one formulation of
the forecasting problem reduces to propagating the last observed marginal forward under p. Conse-
quently, the quality of SB-based forecasts in this extension is determined entirely by the choice of
reference and does not adapt to earlier snapshots, unless additional structure is introduced (e.g., Shen
et al., 2025). One alternative approach by Chen et al. (2024) augments the dynamics with momen-
tum terms that allow for better extrapolation. However, this approach still relies on a fixed reference
process, and furthermore the released codebase does not provide a forecasting mode (which would
require substantial re-engineering). Thus we benchmark this method only on interpolation tasks in
our experiments.
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B.2 REGULARITY ASSUMPTIONS

For completeness, we state the standard SDE regularity assumptions used in the main text.

Assumption B.1. The drifts and volatility are L and L′-Lipschitz respectively; i.e., for all t ∈ [0, tI ],
x1,x2 ∈ Rd, ∥b0(x1, t)− b0(x2, t)∥ ≤ L∥x1 −x2∥ and |g0(x1, t)− g0(x2, t)| ≤ L′∥x1 −x2∥,
where ∥ · ∥ denotes the usual Euclidean norm of a vector. And we have at most linear growth; i.e.,
there exist K,K ′ < ∞ and constant c such that ∥b0(x1, t)∥ < K∥x1∥ + c and ∥g0(x1, t)∥ <
K ′∥x1∥+ c′ for all t ∈ [0, tI ].

Assumption B.2. At each time step ti, the distribution of the Ni particles has bounded second
moments. Moreover, the initial distribution π0 also has bounded second moments.

B.3 PROOF OF PROPOSITION 3.1

In this section, we prove our main proposition from the main text, Proposition 3.1.

Proof of Proposition 3.1. We start with the definition of the MMD squared between the joint distri-
butions:

MMD2
K(f(y, t), g(y, t)) = E(y,t)∼f,(y′,t′)∼f [K((y, t), (y′, t′))]

− 2E(y,t)∼f,(y′,t′)∼g [K((y, t), (y′, t′))]

+ E(y,t)∼g,(y′,t′)∼g [K((y, t), (y′, t′))]

(A5)

The boundedness assumptions ensure that all these kernel expectations are finite, so that the MMD
and the decomposition above are well-defined. Next we can rewrite the first term in right-hand side
as follows:

E(y,t)∼f,(y′,t′)∼f [K((y, t), (y′, t′))] = E(y,t)∼f, (y′,t′)∼f [Ky(y,y
′) δ(t− t′)]

= Et∼h(t), t′∼h(t′)

[
δ(t− t′)E y∼f(y|t)

y′∼f(y|t′)
[Ky(y,y

′)]

]

=
∑

t,t′∈T

[
δ(t− t′)E y∼f(y|t)

y′∼f(y|t′)
[Ky(y,y

′)]

]
h(t)h(t′)

=
∑
t∈T

Ey,y′∼f(y|t)[Ky(y,y
′)]h2(t)

(A6)

where the first equality uses the factorized form of the kernel, the second equality is by the the law
of iterated expectation conditioning on the time components.

Similarly the second term:

−2E(y,t)∼f,(y′,t′)∼g [K((y, t), (y′, t′))] = E(y,t)∼f, (y′,t′)∼g[Ky(y,y
′) δ(t− t′)]

= Et∼h(t), t′∼h(t′)

[
δ(t− t′) (−2E y∼f(y|t)

y′∼g(y|t′)
[Ky(y,y

′)])

]

=
∑

t,t′∈T

[
δ(t− t′) (−2E y∼f(y|t)

y′∼g(y|t′)
[Ky(y,y

′)])

]
h(t)h(t′)

=
∑
t∈T

−2Ey∼f(y|t)
y′∼g(y|t)

[Ky(y,y
′)]h2(t)

(A7)
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The third term

E(y,t)∼g,(y′,t′)∼f [K((y, t), (y′, t′))] = E(y,t)∼g, (y′,t′)∼g[Ky(y,y
′) δ(t− t′)]

= Et∼h(t), t′∼h(t′)

[
δ(t− t′)E y∼g(y|t)

y′∼g(y|t′)
[Ky(y,y

′)]

]

=
∑

t,t′∈T

[
δ(t− t′)E y∼g(y|t)

y′∼g(y|t′)
[Ky(y,y

′)]

]
h(t)h(t′)

=
∑
t∈T

Ey,y′∼g(y|t)[Ky(y,y
′)]h2(t)

(A8)

Collecting terms, we have

MMD2
K(f(y, t), g(y, t))

=
∑
t∈T

h2(t)

[
Ey,y′∼f(y|t)[Ky(y,y

′)]− 2Ey∼f(y|t)
y′∼g(y|t)

[Ky(y,y
′)] + Ey,y′∼g(y|t)[Ky(y,y

′)]

]
=
∑
t∈T

h2(t)MMD2
Ky

(f(· | t), g(· | t))

In our application, we used the empirical distribution for time, i.e., ĥ(t) from Eq. (2). By doing so,
the two distributions of interest to apply Proposition 3.1 are fθ(y, t) and f̂(y, t), and we can rewrite
the squared MMD as

MMD2
K(fθ, f̂) =

I∑
i=1

(
Ni∑I
j=1 Nj

)2

MMD2
Ky

(fθ(·|ti), f̂(·; ti)).

as noted in the main text.

C ON I.I.D. ASSUMPTIONS ACROSS TIMEPOINTS

Our use of MMD on the joint distribution p(Y, t) assumes that the dataset of pairs (Y n
ti , ti) can be

treated as i.i.d. samples. Within each timepoint ti, the measurements Y n
ti are modeled as i.i.d. from

the conditional distribution p(Y | ti). Across timepoints ti ̸= tj , the conditional distributions may
differ, but by treating the time variable itself as a discrete random variable drawn from a distribution
h(t), the joint pairs (Y n

ti , ti) become i.i.d. from p(Y, t) = p(Y | t)h(t).

This modeling assumption is a tractable approximation. In practice, dependencies may arise: for
example, if multiple cells derive from a shared lineage, or if experimental design enforces balanced
sample counts per timepoint. Similarly, in particle simulations with deterministic observation times,
samples may be structured rather than independent. Real-world datasets (e.g., single-cell RNA-seq)
also exhibit technical artifacts such as batch effects. While these considerations mean that the i.i.d.
assumption is not exact, it is widely adopted in the literature and provides a practical working model.

D ON THE COMPUTATIONAL ASPECTS OF MMD

In this appendix, we briefly discuss the computational reasons for adopting MMD as the discrepancy
measure in our framework.

Computational form of the loss. The MMD loss in Eq. (4) reduces to a closed-form, quadratic
expression over sample pairs. For a batch of N samples, the cost scales as O(N2), and this can be
reduced to O(N) using low-rank kernel approximations or random Fourier features. The resulting
gradients are straightforward to compute through the SDE solver, either via the stochastic adjoint
method or standard automatic differentiation.
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Scaling with dimensionality. MMD remains computationally and statistically robust in moder-
ately high dimensions. The kernel can be applied component-wise or over lower-dimensional em-
beddings, and the U-statistic estimator used for MMD achieves a standard convergence rate inde-
pendent of dimension. In contrast, Wasserstein distances exhibit poor sample complexity in high-
dimensional spaces, making them less practical for datasets such as PBMC, which have embeddings
of dimension 30.

Implementation. One more reason to use MMD is that — from a practical standpoint — MMD is
simple to implement and widely supported in standard ML libraries. In our code, we use a simple
implementation in PyTorch (Paszke et al., 2019).

E ALTERNATIVE VIEW OF R2

An alternative way to view this metric is through the lens of comparing joint distributions to the
product of their marginals. In information theory, mutual information quantifies the dependence
between two random variables by measuring the divergence (typically via the Kullback–Leibler di-
vergence) between the joint distribution and the product of the marginal distributions. Analogously,
by reapplying Proposition 3.1, we can interpret our R2 metric as comparing the joint distribution
of state and time as predicted by the model with the distribution obtained by taking the product of
the marginal (state and time) distributions. In this view, the denominator in Eq. (6) (which uses the
barycenter) reflects the total variation or “spread” in the observed data. And the numerator captures
the remaining error when the model-predicted joint distribution is compared to the empirical joint
distribution. Thus, a higher R2 indicates that the model captures more of the dependence structure
between state and time—just as in regression a higher R2 means the model explains a larger fraction
of the variability in the data. This analogy to mutual information provides an intuitive understanding
of how our metric not only assesses goodness-of-fit but also the degree to which the model captures
the temporal structure of the data.

F FURTHER EXPERIMENTAL DETAILS

In this section, we provide additional details and results for our experiments. First we provide
more details about the vector field reconstruction task. Then, we provide the summary table for the
forecasting and interpolation task for all experiments using EMD. After that, for each experiment
introduced in the main text, we describe: (1) the experimental setup, (2) the choice of model family
used with our method, (3) forecasting results, (4) vector field reconstruction results, and (5) interpo-
lation results. Our experiments are carried out using four cores of Intel Xeon Gold 6248 CPU and
one Nvidia Volta V100 GPU with 32 GB RAM.

F.1 VECTOR FIELD RECONSTRUCTION

In cases where the true underlying drift function is known (e.g., synthetic experiments), we also
evaluate how accurately methods reconstruct the vector field driving the system dynamics. We use
the same baselines as in the forecasting task, since this task also requires recovering a coherent
forward-time dynamic, rather than just interpolating between marginals. We measure reconstruction
accuracy visually and by computing mean squared error (MSE) between the learned drift and ground
truth drift on a dense grid covering the observed data range. Overall, our method provides better
or matching vector field reconstruction performance relative to competitors. Detailed results for
vector field reconstruction are presented in Appendix F.5.4 (for Lotka-Volterra), Appendix F.6.4 (for
repressilator with parametric model family), Appendix F.7.4 (for repressilator with semiparametric
model family), and Appendix F.9.5 (for Gulf of Mexico).

F.2 HOW WE USE R2 IN OUR EXPERIMENTS

In this section, we briefly describe how the proposed R2 metric is used in our experiments. The R2

metric defined in Eq. (6) naturally provides a standardized and interpretable criterion to compare
candidate SDE models, guiding model selection and diagnosing fit quality. Values of R2 close to
1 indicate a high-quality fit, while values near or below 0 signal poor model performance relative
to the simple barycenter model. Finally, note that R2 is always upper bounded by 1 due to the
non-negativity of the MMD, and it may become negative if the candidate model performs worse
than the barycenter, analogous to regression models without an intercept. In our experiments, we
apply it in two main ways. First, for early stopping: we select the number of training epochs such
that R2 increases by less than 0.01 over the last 20 epochs. Second, as a model selection criterion
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when choosing among neural network architectures. In particular, for real-data experiments using
multilayer perceptrons, we perform a small grid search over the number of layers and hidden units,
selecting the model with the highest R2. Specific details for each experiment are provided in the
“Model family choice” subsections in Appendix F.

F.3 EMD TABLE WITH SUMMARY RESULTS ACROSS ALL METHODS AND EXPERIMENTS

In this section, we provide the summary table (Table 2) for comparing forecasting and interpolation
performance in terms of EMD over all the experiments of interest. For the interpolation results, we
report the mean and standard deviation for each method, aggregated over different random seeds and
interpolation held-out time points. Detailed per-time-point results are provided for each experiment
in the corresponding “Interpolation results” subsubsection later in Appendix F.

Table 2: EMD for forecast and interpolation tasks. Bold green = best method; plain green = method
whose mean lies within one standard deviation of the best method.

Forecast Interpolation

Task Ours SBIRR-ref SB-forward Ours SBIRR DMSB

LV 0.21± 0.04 0.79± 0.05 1.82± 0.9 0.06± 0.03 0.10± 0.08 0.82± 0.6

ReprParam 0.19± 0.08 1.55± 0.8 1.39± 0.6 0.10± 0.04 0.17± 0.06 1.89± 0.9
ReprSemiparam 0.35± 0.09 1.18± 0.4 1.16± 0.3 0.21± 0.11 0.39± 0.1 1.89± 0.9
ReprProtein 0.26± 0.04 6.36± 0.5 7.24± 0.5 0.08± 0.03 0.59± 0.8 1.48± 1.0

GoM 0.71± 0.01 0.89± 0.03 0.94± 0.08 0.10± 0.04 0.04± 0.01 0.08± 0.04

PBMC – – – – – –

F.4 FULL RESULTS FOR INTERPOLATION TASK

In this section, we provide summary tables for all methods for the interpolation task. In Table 3
we provide the summary table for MMD. In Table 4 we provide the summary table for EMD. As
in Appendix F.3, we report the mean and standard deviation for each method, aggregated over dif-
ferent random seeds and interpolation held-out time points. We find that in almost all experiments,
SnapMMD provides better or matching interpolation performance relative to competitors.

Table 3: Global summary of MMD across all seeds and validation points

Task Ours SBIRR DMSB OT-CFM SB-CFM SF2M

LV 0.013± 0.011 0.048± 0.082 3.316± 2.175 2.830± 2.929 2.099± 2.245 2.055± 1.915
ReprParam 0.040± 0.034 0.156± 0.102 7.269± 2.001 4.639± 2.123 3.500± 1.878 3.327± 1.157
ReprSemiparam 0.379± 0.381 1.105± 0.815 7.269± 2.001 4.639± 2.123 3.500± 1.878 3.327± 1.157
ReprProtein 0.011± 0.006 1.480± 2.953 5.147± 2.630 4.092± 3.086 2.878± 2.643 3.091± 2.582
Gulf of Mexico 0.073± 0.054 0.008± 0.009 0.053± 0.064 0.651± 0.443 0.693± 0.564 0.624± 0.406
PBMC 0.114± 0.052 0.114± 0.122 0.968± 0.095 0.440± 0.195 0.488± 0.198 0.343± 0.094

Table 4: Global summary of EMD across all seeds and validation points. For the repressilator with
incomplete state measurements, for some random seeds the trajectories generated by SB-CFM and
SF2M diverged significantly, leading to extremely large average EMD values (1138.222±8653.586
for SB-CFM and 1954.050±14737.310 for SF2M). To maintain visualization clarity, we omit these
entries from the summary table.

Task Ours SBIRR DMSB OT-CFM SB-CFM SF2M

LV 0.064± 0.031 0.096± 0.075 0.819± 0.559 0.742± 0.698 0.669± 0.674 0.770± 0.706
ReprParam 0.096± 0.041 0.168± 0.057 1.887± 0.865 1.367± 0.793 1.412± 1.377 23.201± 122.101
ReprProtein 0.080± 0.032 0.591± 0.783 1.480± 1.011 1.328± 1.026 – –
ReprSemiparam 0.210± 0.106 0.394± 0.136 1.887± 0.865 1.367± 0.793 1.412± 1.377 23.201± 122.101
Gulf of Mexico 0.103± 0.040 0.043± 0.012 0.078± 0.037 0.252± 0.109 0.265± 0.136 0.249± 0.102
PBMC – – – – – –
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F.5 LOTKA-VOLTERRA

F.5.1 EXPERIMENT SETUP

In this experiment, we study the stochastic Lotka-Volterra model, which describes predator-prey
interactions over time. The population dynamics are governed by the following system of SDEs:

dX = αX − βXY + σXdWx,

dY = γXY − δY + σY dWy,
(A9)

where [dWx, dWy] denotes a two-dimensional Brownian motion. The true parameter values are set
to α = 1.0, β = 0.4, γ = 0.4, δ = 0.1, and σ = 0.02. Initial population sizes are sampled from
uniform distributions: X0 ∼ U(5, 5.1) and Y0 ∼ U(4, 4.1). We simulate the system over 19 discrete
time points using the Euler–Maruyama method (via the torchsde Python package), with a time
step of 0.5 and 200 samples per time point. We use the 10 odd-numbered time steps as training
data. The 9 even-numbered time steps are held out for evaluating interpolation performance. To
assess forecasting, we simulate one additional time step beyond the final snapshot, using a larger
time increment of 1.0, and hold it out as the test point.

F.5.2 MODEL FAMILY CHOICE

For this experiment, we have access to the data-generating process, as described in Eq. (A9). There-
fore, we select the model family to be the set of SDEs that satisfy this system of equations, Eq. (A9)
with free parameters α, β, γ, δ, σ > 0. We learn the parameters by minimizing the proposed MMD
loss using gradient descent, with a learning rate of 0.05 over 300 epochs. We choose the number of
epochs such that in the last 20 epochs R2 increases by less than 0.01. We implemented the model
family as a Python class using in the torchsde (Li et al., 2020) module.

F.5.3 FORECASTING RESULTS.
In the first row of Table 5 we show the MMD results for the forecast task. The MMD is computed
using a RBF kernel with length scale 1. In each cell, the first number represent the MMD averaged
across 10 different seeds, and the second number (in parenthesis) is the standard deviation over the
same 10 seeds. We color in green the cell corresponding to the method with lowest MMD. We
also highlight in green any other methods whose mean is contained in the one-standard deviation
confidence interval for the best method. From the first row, we can see how our method is (by far)
the best method at the forecasting task. In the second row, we have the same set of results, using
EMD instead of MMD. We can see that our method is, also using EMD, by far the best method at
the forecasting task.

F.5.4 VECTOR FIELD RECONSTRUCTION RESULTS.
If we look at the middle row of Fig. A5, we see that from a visual perspective the reconstructed
vector fields are very similar to the ground truth for all the three methods. Also from the bottom row
of the same figure, we can see that the difference between the reconstructed fields and ground truth
for our method and SBIRR-ref is very similar, whereas for SB-forward it is a bit worse. The
same intuition is confirmed by looking at the bottom row in Table 5 where we compare the MSEs
for the vector reconstruction task, and our method achieves the lowest value.

Table 5: Evaluation metric for Lotka-Volterra (mean (sd)). Drift was evaluated using MSE on a grid.

LV
Metric Ours SBIRR-ref SB-forward
Forecast-MMD 0.057 (0.03) 0.69 (0.11) 2.99 (1.88)
Forecast-EMD 0.21 (0.035) 0.79 (0.053) 1.82 (0.94)
Drift 0.00071 (0.000027) 0.079 (0.0080) 0.59 (0.13)

F.5.5 INTERPOLATION RESULTS

We evaluate model performance on the interpolation task in the classic LV experiment by comparing
both qualitative and quantitative results. Specifically, we assess the quality of inferred trajectories
against held-out validation snapshots using MMD and EMD. In Fig. A6, the held-out validation
snapshots are indicated by x-markers. An interpolation method is successful when its learned trajec-
tories intersect these markers. For visual clarity, we omit the training snapshots: they fall between
consecutive validation times and would excessively clutter the figure without adding interpretive
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Figure A5: Experimental results for the Lotka-Volterra system. Top row: forecast prediction task. A
method is successful if the forecast predicted points (in red) match the red points in the ground truth
figure. Middle row: ground truth vector field (left) and reconstructed vector fields with the three
methods. Bottom row: Difference between reconstructed vector fields and ground truth. For each
point of interest on the grid, we represent the difference between the two vectors with an arrow and
color it according to the magnitude of the difference (colorbar to the right).

value. As shown in Fig. A6, our method produces trajectories that interpolate closely the held-out
data. Among all baselines, SBIRR and the two CFM achieve comparable visual match. This vi-
sual impression is also supported by the quantitative metrics. In Fig. A7, we plot MMD and EMD
values over all validation time points. Our method consistently achieves the lowest values across
time in both metrics. SBIRR performs comparably well at some validation points. In contrast, the
other baselines show significantly higher errors, particularly in later time steps where the trajectory
distribution becomes more complex. The corresponding tables (Table 6 and Table 7) confirm these
trends. For every validation point, our method is always as good as the best baseline (SBIRR) and
in most of the cases it achieves the lowest MMD and EMD values.

Table 6: MMD at each validation point for Lotka-Volterra.

Time Ours SBIRR DMSB OT-CFM SB-CFM SF2M

0.5 0.010± 0.003 0.016± 0.010 2.173± 0.238 0.188± 0.038 0.187± 0.027 0.172± 0.026
1.5 0.006± 0.004 0.014± 0.013 2.170± 0.871 0.197± 0.054 0.203± 0.053 0.190± 0.030
2.5 0.005± 0.003 0.011± 0.007 0.462± 0.364 0.366± 0.066 0.399± 0.102 0.348± 0.045
3.5 0.015± 0.007 0.007± 0.005 2.277± 1.094 0.501± 0.233 0.438± 0.146 0.433± 0.091
4.5 0.010± 0.007 0.015± 0.016 2.974± 0.979 1.254± 0.838 0.850± 0.392 1.126± 0.338
5.5 0.017± 0.010 0.019± 0.006 2.814± 0.969 3.913± 1.804 2.858± 1.257 3.389± 0.689
6.5 0.014± 0.009 0.020± 0.012 3.578± 1.221 6.755± 1.498 5.059± 1.679 5.010± 0.702
7.5 0.016± 0.021 0.080± 0.058 6.330± 0.995 6.322± 1.470 4.006± 1.880 4.044± 0.869
8.5 0.020± 0.015 0.249± 0.084 7.066± 0.778 5.970± 1.508 4.895± 1.414 3.787± 0.502
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Figure A6: LV interpolation
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Figure A7: LV interpolation metrics

Table 7: EMD at each validation point for Lotka-Volterra.

Time Ours SBIRR DMSB OT-CFM SB-CFM SF2M

0.5 0.040± 0.005 0.050± 0.011 0.503± 0.031 0.147± 0.014 0.145± 0.010 0.139± 0.010
1.5 0.037± 0.006 0.053± 0.012 0.503± 0.119 0.157± 0.017 0.155± 0.017 0.149± 0.010
2.5 0.036± 0.005 0.050± 0.009 0.215± 0.088 0.207± 0.018 0.213± 0.026 0.198± 0.012
3.5 0.052± 0.006 0.049± 0.007 0.529± 0.157 0.236± 0.050 0.222± 0.036 0.223± 0.023
4.5 0.049± 0.008 0.073± 0.014 0.647± 0.135 0.382± 0.133 0.321± 0.072 0.383± 0.069
5.5 0.065± 0.012 0.076± 0.010 0.653± 0.134 0.795± 0.254 0.654± 0.188 0.841± 0.173
6.5 0.077± 0.012 0.086± 0.014 0.829± 0.177 1.537± 0.479 1.244± 0.439 1.652± 0.376
7.5 0.096± 0.025 0.148± 0.040 1.510± 0.241 1.705± 0.586 1.246± 0.594 1.751± 0.477
8.5 0.124± 0.019 0.283± 0.037 1.983± 0.323 1.511± 0.454 1.825± 0.662 1.594± 0.298
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Figure A8: Forecasting task for the repressilator system with parametric model family.

F.6 MRNA-ONLY REPRESSILATOR WITH PARAMETRIC FAMILY

F.6.1 EXPERIMENT SETUP

The repressilator is a synthetic genetic circuit designed to function as a biological oscillator, produc-
ing sustained periodic fluctuations in the concentrations of its components. It consists of a network
of three genes arranged in a cyclic inhibitory loop: each gene encodes a protein that suppresses the
expression of the next, with the last gene repressing the first, completing the feedback cycle.

The system’s dynamics can be described by the following stochastic differential equations (SDEs):

dX1 =
β

1 + (X3/k)n
− γX1 + σX1dW1,

dX2 =
β

1 + (X1/k)n
− γX2 + σX2dW2, (A10)

dX3 =
β

1 + (X2/k)n
− γX3 + σX3dW3,

where [dW1, dW2, dW3] represents a three-dimensional Brownian motion. The inhibitory structure
of the system is evident from the drift terms, which describe how each gene’s expression is repressed
by another in the cycle. For our simulations, we set the parameters to β = 10, n = 3, k = 1,
γ = 1, and σ = 0.02. The initial conditions are sampled from uniform distributions: X1, X2 ∼
U(1, 1.1) and X3 ∼ U(2, 2.1). To simulate the system, we numerically integrate the SDEs over
19 discrete time points, with sampling rate 0.5 with the Euler-Maruyama scheme(implemented via
the torchsde Python package) with 200 samples at each step. Out of these 19 time steps, we use
the 10 odd-numbered time steps as training data. The 9 even-numbered time steps are held out for
evaluating interpolation performance. To assess forecasting, we simulate one additional time step
beyond the final snapshot, using a larger time increment of 1.0, and hold it out as the test point.

F.6.2 MODEL FAMILY CHOICE

For this experiment, we have access to the data-generating process, as described in Eq. (A10). There-
fore, we pick as a model family the set of SDEs that satisfy this system of equations, Eq. (A10). The
learning process involves optimizing the parameters using gradient descent, with a learning rate of
0.05 over 500 epochs. We choose this number of epochs such that in the last 20 epochs R2 increases
by less than 0.01. We implemented the model family as a Python class using in the torchsde (Li
et al., 2020) module.

F.6.3 FORECASTING RESULTS.
In this section we further discuss results for the repressilator experiment with parametric model
family. In particular, we analyze the EMD and MMD in Table 8.

In the first row of Table 8, we see that for the forecasting task, our method achieves a much lower
MMD compared to the two baselines. This quantitatively supports the visual intuition from Fig. A8,
where our approach more accurately captures the underlying distribution of the data. In the second
row, we see that also using EMD our method significantly outperforms all the baselines.

F.6.4 VECTOR FIELD RECONSTRUCTION RESULTS.
In the third row of Table 8, we observe that the MSE for the vector field reconstruction task is sig-
nificantly lower for our method, indicating superior performance in recovering the true dynamics.
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Figure A9: Experimental results for the repressilator system using parametric model as model fam-
ily.Top row: forecast prediction task. A method is successful if the forecast predicted points (in red)
match the red points in the ground truth figure. Middle row: ground truth vector field (left) and
reconstructed vector fields with the three methods. Bottom row: Difference between reconstructed
vector fields and ground truth. For each point of interest on the grid, we represent the difference
between the two vectors with an arrow and color it according to the magnitude of the difference
(colorbar to the right).

Table 8: Evaluation metric for repressilator when using the parametric model (mean(sd)). Drift was
evaluated using MSE on a grid.

Repressilator (parametric)
Metric Ours SBIRR-ref SB-forward
Forecast-MMD 0.072 (0.080) 2.06 (1.34) 2.09 (0.74)
Forecast-EMD 0.19 (0.075) 1.55 (0.79) 1.39 (0.62)
Drift 0.027 (0.063) 1.71 (0.20) 12.9 (0.21)

This is further corroborated by the visualizations in Fig. A9: in the middle row, our reconstructed
vector field closely resembles the ground truth, whereas SBIRR-ref exhibits small but notable
deviations, and SB-forward fails both in magnitude and direction. The bottom row further rein-
forces this conclusion, showing that the magnitude of the differences between the reconstructed and
true vector fields is substantially larger for the two baselines compared to our method (for which is
very close to 0 everywhere on the grid).

F.6.5 INTERPOLATION RESULTS

We next assess interpolation performance for the parametric model, again comparing inferred tra-
jectories to held-out snapshots with MMD and EMD. Visual inspection of Fig. A10 shows that our
method interpolates all the validation snapshots very closely, understanding the periodic behavior
of this system. SBIRR yields a qualitatively similar plot with more noisy trajectories, while DMSB,
OT-CFM, SB-CFM, and SF2M provide poor interpolations — OT-CFM fails because they are just
pairwise interpolation methods and so they “connect” training points, missing the long-term behav-
ior of the system; DMSB, SB-CFM , and SF2M fail because they start drifting outward and end up
very far from the actual validation points.

The metric curves in Fig. A11 and tables Table 9–Table 10 corroborate these impressions. Across
all validation times, our method always achieves the lowest MMD and EMD, whereas the second
best method (SBIRR ) is comparable to ours only on one validation time. All the other baselines

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

achieve worse performance. We note that in Fig. A11 we set the y-axis limit to 5 to show meaningful
comparisons. We did this since SF2M ’s EMD explodes after time 5.5 — peaking at ≈ 138 at time
8.5 — signalling complete geometric mismatch with the target distribution. We also refrain from
highlighting the SF2M cell in green, despite it formally satisfying the coloring criterion. This is
because the overlap with the best-performing method arises primarily from SF2M ’s extremely large
mean and standard deviation, rather than from a meaningful proximity in performance.

Figure A10: Parametric interpolation

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
Validation time

0.0

2.5

5.0

7.5

MMD on interpolation

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
Validation time

0.0

2.5

5.0

7.5

EMD on interpolation

Ours
SBIRR-all
DMSB
OT-CFM
SB-CFM
SF2M

Figure A11: Parametric interpolation metric

Table 9: MMD at each validation point for Repressilator parametric.

Time Ours SBIRR DMSB OT-CFM SB-CFM SF2M

0.5 0.022± 0.004 0.151± 0.061 8.104± 0.230 2.767± 0.137 2.768± 0.162 2.639± 0.137
1.5 0.070± 0.020 0.037± 0.024 7.324± 0.625 1.280± 0.469 1.103± 0.498 1.267± 0.370
2.5 0.019± 0.009 0.120± 0.044 6.438± 0.823 5.468± 1.053 3.876± 0.687 3.661± 0.531
3.5 0.059± 0.036 0.148± 0.047 8.262± 0.819 6.943± 1.067 5.393± 1.852 4.792± 0.985
4.5 0.025± 0.031 0.150± 0.054 8.929± 0.245 4.600± 1.465 2.969± 1.475 3.633± 0.684
5.5 0.060± 0.029 0.094± 0.021 8.124± 0.204 3.818± 1.405 2.385± 1.362 2.757± 0.528
6.5 0.032± 0.019 0.214± 0.054 7.610± 0.124 5.015± 1.699 2.926± 1.436 3.134± 0.463
7.5 0.020± 0.013 0.379± 0.058 8.404± 0.130 6.561± 1.667 5.488± 1.984 4.473± 0.695
8.5 0.053± 0.057 0.108± 0.030 2.225± 1.179 5.297± 1.601 4.595± 0.725 3.589± 0.616
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Table 10: EMD at each validation point for Repressilator parametric.

Time Ours SBIRR DMSB OT-CFM SB-CFM SF2M

0.5 0.052± 0.004 0.129± 0.025 1.317± 0.053 0.578± 0.017 0.581± 0.022 0.581± 0.021
1.5 0.091± 0.013 0.080± 0.017 1.192± 0.104 0.384± 0.075 0.436± 0.165 0.569± 0.143
2.5 0.061± 0.009 0.128± 0.021 1.095± 0.131 0.985± 0.145 0.920± 0.164 1.023± 0.152
3.5 0.102± 0.023 0.157± 0.019 1.762± 0.330 1.424± 0.166 1.176± 0.229 1.515± 0.416
4.5 0.070± 0.021 0.153± 0.018 2.086± 0.348 1.104± 0.316 0.984± 0.571 2.618± 1.923
5.5 0.120± 0.025 0.170± 0.020 2.428± 0.409 1.193± 0.312 1.194± 0.986 5.505± 7.561
6.5 0.118± 0.028 0.238± 0.032 3.006± 0.279 2.068± 0.502 1.765± 1.185 14.974± 27.778
7.5 0.099± 0.018 0.257± 0.020 3.270± 0.310 2.556± 0.842 2.306± 1.469 44.051± 96.243
8.5 0.152± 0.061 0.198± 0.021 0.828± 0.266 2.011± 0.534 3.345± 2.295 137.973± 328.155
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F.7 MRNA-ONLY REPRESSILATOR WITH SEMIPARAMETRIC FAMILY

F.7.1 EXPERIMENT SETUP

The experimental setup is the same as the one for the repressilator with the parametric model choice,
as discussed in Appendix F.6.1.

F.7.2 MODEL FAMILY CHOICE

In this experiment, we do not assume that we know the full functional form as in Eq. (A10), but
only up to an unknown activation function fθ : R3

+ → [0, 1]3, that encodes the regulation among
the three genes. In particular, we consider the following model:

dXt = Mfθ(Xt)−LXt +G diag(Xt)dWt (A11)

where M is a diagonal matrix of (positive) maximum production rate, L is a diagonal matrix of
(positive) degradation rate, G is a diagonal matrix of (positive) volatilities, all unknown (parame-
terized by their logarithm). We also parameterize the activation function using an MLP with three
hidden layers of [32, 64, 32] hidden neurons each, ReLU activation, and one final sigmoid layer.

F.7.3 FORECASTING RESULTS.
For what concerns the experiment with the semiparametric model family, we can see in the first row
of Table 11 that also with this model our method achieves a substantially lower MMD compared to
the two baselines. This aligns with the visual evidence from Fig. 2 in the main text (top row), where
our method’s predicted points (in red) more closely match the ground truth. In the second row of
Table 11, we see that EMD results are aligned with the MMD ones.

F.7.4 VECTOR FIELD RECONSTRUCTION RESULTS.
In the third row of Table 11, we see that for this model choice our method and SBIRR-ref achieve
similar results, whereas SB-forward exhibits much higher MSE. Figure A12 confirms this in-
tuition: our reconstructed vector field and the one for SBIRR-ref are quite similar and not too
different from the ground truth, whereas SB-forward performs particularly poorly, failing to re-
cover both the direction and magnitude of the vector field.

Table 11: Evaluation metric for Repressilator using MLP activation function (mean(sd)). Drift was
evaluated using MSE on a grid, while forecast was evaluated using MMD with RBF kernel and
length scale 1 as well as EMD.

Repressilator (semiparametric)
Metric Ours SBIRR-ref SB-forward
Forecast-MMD 0.32 (0.15) 1.46 (0.55) 5.26 (1.66)
Forecast-EMD 0.35 (0.091) 1.18 (0.44) 1.16 (0.33)
Drift 6.25 (0.37) 7.85 (1.85) 12.00 (0.74)

F.7.5 INTERPOLATION RESULTS

We now evaluate interpolation performance in the more realistic semiparametric setting, where nei-
ther our method nor SBIRR have access to the true data-generating process. Instead, both methods
rely on the same semiparametric reference family from Eq. (A11), introducing a meaningful model
mismatch that more closely reflects real-world conditions. As shown in Fig. A13, interpolation
quality for our method and SBIRR is very similar to the parametric case, as they both are still very
good at interpolating all the validation snapshots. The remaining baselines are not affected by this
modeling choice, so the trajectories are exactly as in Fig. A10. The quantitative results in Fig. A14
and tables Table 12–Table 13 reinforce these trends. Although all methods exhibit increased error
relative to the parametric setting, our method continues to outperform all baselines across nearly
all validation times. In terms of MMD, we are the best method at six of nine time points; SBIRR
performs similarly at three time points, but is consistently worse on the rest. EMD results are even
more decisive: our method achieves the lowest error at every time point.
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Figure A12: Experimental results for the repressilator system using semiparametric model as model
family. Top row: forecast prediction task. A method is successful if the forecast predicted points (in
red) match the red points in the ground truth figure. Middle row: ground truth vector field (left) and
reconstructed vector fields with the three methods. Bottom row: Difference between reconstructed
vector fields and ground truth. For each point of interest on the grid, we represent the difference
between the two vectors with an arrow and color it according to the magnitude of the difference
(colorbar to the right).

Figure A13: Semiparametric interpolation of repressilator system.
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Figure A14: Metrics for Semiparametric interpolation of repressilator system.

Table 12: MMD at each validation point for Repressilator with semiparametric model family.

Time Ours SBIRR DMSB OT-CFM SB-CFM SF2M

0.5 0.909± 0.171 2.422± 0.470 8.104± 0.230 2.767± 0.137 2.768± 0.162 2.639± 0.137
1.5 0.137± 0.146 0.633± 0.366 7.324± 0.625 1.280± 0.469 1.103± 0.498 1.267± 0.370
2.5 0.274± 0.277 0.865± 0.355 6.438± 0.823 5.468± 1.053 3.876± 0.687 3.661± 0.531
3.5 0.091± 0.061 1.529± 0.515 8.262± 0.819 6.943± 1.067 5.393± 1.852 4.792± 0.985
4.5 0.424± 0.215 1.761± 0.511 8.929± 0.245 4.600± 1.465 2.969± 1.475 3.633± 0.684
5.5 0.061± 0.031 0.383± 0.259 8.124± 0.204 3.818± 1.405 2.385± 1.362 2.757± 0.528
6.5 0.455± 0.174 0.449± 0.197 7.610± 0.124 5.015± 1.699 2.926± 1.436 3.134± 0.463
7.5 0.994± 0.283 1.663± 0.474 8.404± 0.130 6.561± 1.667 5.488± 1.984 4.473± 0.695
8.5 0.071± 0.035 0.241± 0.101 2.225± 1.179 5.297± 1.601 4.595± 0.725 3.589± 0.616

Table 13: EMD at each validation point for Repressilator with semiparametric model family.

Time Ours SBIRR DMSB OT-CFM SB-CFM SF2M

0.5 0.312± 0.032 0.533± 0.061 1.317± 0.053 0.578± 0.017 0.581± 0.022 0.581± 0.021
1.5 0.111± 0.060 0.255± 0.087 1.192± 0.104 0.384± 0.075 0.436± 0.165 0.569± 0.143
2.5 0.167± 0.082 0.322± 0.065 1.095± 0.131 0.985± 0.145 0.920± 0.164 1.023± 0.152
3.5 0.121± 0.027 0.493± 0.091 1.762± 0.330 1.424± 0.166 1.176± 0.229 1.515± 0.416
4.5 0.222± 0.064 0.483± 0.078 2.086± 0.348 1.104± 0.316 0.984± 0.571 2.618± 1.923
5.5 0.122± 0.023 0.263± 0.079 2.428± 0.409 1.193± 0.312 1.194± 0.986 5.505± 7.561
6.5 0.307± 0.067 0.369± 0.075 3.006± 0.279 2.068± 0.502 1.765± 1.185 14.974± 27.778
7.5 0.374± 0.053 0.542± 0.081 3.270± 0.310 2.556± 0.842 2.306± 1.469 44.051± 96.243
8.5 0.157± 0.023 0.290± 0.074 0.828± 0.266 2.011± 0.534 3.345± 2.295 137.973± 328.155
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F.8 MRNA-PROTEIN REPRESSILATOR

F.8.1 EXPERIMENT SETUP

In Appendix F.6.1 we introduced the repressilator system as a system of SDEs governing changes
in mRNA concentration. A more complete model for this system takes also into account protein
levels. Indeed, each gene produces a protein that represses the next gene’s expression, with the last
one repressing the first. So proteins play a big role in the repressilator feedback loop. And this is
why scientists often consider a more complex version of this system, that evolves according to the
following SDEs:

dX1 = α+
β

1 + (Y3/k)n
− γX1 + σX1dW1

dX2 = α+
β

1 + (Y1/k)n
− γX2 + σX2dW2

dX3 = α+
β

1 + (Y2/k)n
− γX3 + σX2dW3

dY1 = βpX1 − γpY1 + σY1dW4

dY2 = βpX2 − γpY2 + σY2dW5

dY3 = βpX3 − γpY3 + σY3dW6

(A12)

where [dW1, dW2, dW3, dW4, dW5, dW6] is a 6D Brownian motion. X1, X2, X3 represents the
mRNA levels while Y1, Y2, Y3 are the corresponding proteins. As explained above, the actual system
regulation is now mediated by proteins rather than mRNA themselves.

To obtain data, we fix the following parameters: α = 10−5, β = 10, n = 3, k = 1, γ = 1, βp =
1, γp = 1, σ = 0.02. We start the dynamics with initial distribution X1, X2 ∼ U(1, 1.1) and
X3 ∼ U(2, 2.1), while Yi ∼ U(0, 0.1). We simulate the SDEs for 10 instants of time.

To simulate the system, we numerically integrate the SDEs over 19 discrete time points, with sam-
pling rate 0.5 with the Euler-Maruyama scheme(implemented via the torchsde Python package)
with 200 samples at each step. Out of these 19, we used 10 odd numbered time steps as training and
even numbered steps as validation for interpolation task. We further simulate one step further with
time increment of 1 to hold out as test point for forecasting. In all these steps we only took Xi as
observations

F.8.2 MODEL FAMILY CHOICE

Our method. For this experiment, we have access to the data-generating process, as described in
Eq. (A12). Therefore, we select our model family to be the set of SDEs that satisfy this system of
equations, Eq. (A12). We initialize the missing dimensions at all 0. The learning process involves
optimizing the parameters using gradient descent, with a learning rate of 0.05 over 500 epochs. We
choose this number of epochs such that in the last 20 epochs R2 increases by less than 0.01.

A Note on Baselines. Since the two forecasting baseline methods that we consider cannot handle
incomplete state observations we cannot use them to fit Eq. (A12). Instead, we fit a simpler mRNA-
only model as described in Eq. (A10). We do the same for SBIRR in the interpolation experiment.

F.8.3 FORECASTING RESULTS

In this section we give more detail on the forecasting results for mRNA-protein repressilator. We
provide numerical results in EMD and MMD for forecasting in Table 14. Our method outperform
baseline by a large margin, mostly because the correct account of the missing protein observation.
Since the two baselines cannot make vector fields in correct dimension we did not compare vector
field reconstruction.

Table 14: Evaluation metric for Repressilator forecasting with missing protein observations.

Repressilator (with missing protein)
Metric Ours SBIRR-ref SB-forward
Forecast-MMD 0.048 (0.029) 2.50 (0.05) 2.42 (0.13)
Forecast-EMD 0.26 (0.042) 6.36 (0.51) 7.24 (0.48)
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F.8.4 INTERPOLATION RESUTS

We finally consider the interpolation task for this more challenging incomplete state observation
setting. As shown in Fig. A15, despite the mismatch between the observed variables and the true
system state, our method is able to faithfully reconstruct the trajectories. It successfully captures
the geometry of the limit cycle and aligns well with the validation snapshots. SBIRR also performs
reasonably, although its trajectories are more dispersed. All remaining baselines fail to track the cor-
rect dynamics: DMSB and SF2M exhibit severe trajectory drift, while OT-CFM and SB-CFM overly
simplify the structure, failing to represent the circular flow of the system. The lines in Fig. A16
and the numbers in Table 15–Table 16 confirm these findings. Our method consistently achieves the
lowest MMD and EMD across all validation times. In contrast, baseline methods show significantly
higher EMD and MMD throughout, and their confidence intervals do not overlap with ours unless
for SBIRR for EMD in one validation point. As in the previous Repressilator experiment, we cap the
y-axis at 5 in Fig. A16 to enable meaningful visual comparisons across methods. This is necessary
because both SF2M and SB-CFM exhibit rapidly increasing EMD values after time 3.5. In particu-
lar, we observe that for certain random seeds, the inferred trajectories diverge in the wrong direction
early on and continue along that path, resulting in large distributional mismatch. Accordingly, we
also refrain from highlighting the corresponding cells in green, even when the coloring criterion is
formally met, as the overlap with the best method arises from the extremely large variance.

Figure A15: Interpolation of repressilator system with missing protein.
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Figure A16: Metrics for Interpolation of repressilator system with missing protein.
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Table 15: MMD at each validation point for Repressilator with incomplete state observations.

Time Ours SBIRR DMSB OT-CFM SB-CFM SF2M

0.5 0.015± 0.003 9.774± 0.027 9.847± 0.002 9.818± 0.010 9.745± 0.050 9.511± 0.121
1.5 0.019± 0.002 0.433± 0.357 3.606± 0.708 0.192± 0.158 0.531± 0.544 0.748± 0.688
2.5 0.004± 0.001 0.903± 0.131 2.990± 1.024 0.431± 0.129 0.688± 0.396 0.690± 0.306
3.5 0.009± 0.002 0.075± 0.032 3.642± 0.833 1.598± 0.789 1.578± 0.618 1.538± 0.503
4.5 0.008± 0.004 0.065± 0.026 6.131± 0.702 3.389± 1.494 2.254± 0.747 2.345± 0.764
5.5 0.010± 0.003 0.337± 0.038 8.024± 0.147 3.473± 0.950 2.431± 0.713 2.060± 0.470
6.5 0.014± 0.008 0.611± 0.112 7.033± 0.171 6.158± 0.735 2.953± 0.504 3.664± 0.506
7.5 0.007± 0.005 0.135± 0.053 2.830± 0.762 6.583± 0.499 2.850± 0.456 3.954± 0.553
8.5 0.011± 0.006 0.991± 0.191 2.223± 0.892 5.183± 0.978 2.869± 0.859 3.308± 0.446

Table 16: EMD at each validation point for Repressilator with incomplete state observations.

Time Ours SBIRR DMSB OT-CFM SB-CFM SF2M

0.5 0.051± 0.003 2.721± 0.097 3.583± 0.071 2.596± 0.028 2.596± 0.029 2.578± 0.036
1.5 0.054± 0.002 0.209± 0.083 0.686± 0.086 0.166± 0.050 0.581± 0.675 0.874± 1.104
2.5 0.037± 0.001 0.317± 0.023 0.627± 0.131 0.225± 0.032 1.045± 2.139 1.823± 4.516
3.5 0.059± 0.002 0.120± 0.013 0.748± 0.111 0.449± 0.117 3.900± 9.557 7.221± 19.895
4.5 0.068± 0.004 0.144± 0.013 1.192± 0.145 0.794± 0.227 16.018± 44.580 30.671± 89.239
5.5 0.087± 0.005 0.246± 0.010 2.258± 0.192 0.826± 0.163 72.134± 212.668 136.803± 407.955
6.5 0.126± 0.011 0.437± 0.042 2.547± 0.200 2.346± 0.418 354.032± 1056.419 649.221± 1942.159
7.5 0.120± 0.006 0.324± 0.090 1.020± 0.136 2.614± 0.291 1691.087± 5066.068 2986.712± 8953.868
8.5 0.116± 0.005 0.802± 0.238 0.660± 0.150 1.934± 0.762 8102.608± 24292.997 13770.547± 41303.163
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F.9 CURRENT IN THE GULF OF MEXICO

F.9.1 EXPERIMENTAL SETUP

We test our method in fitting and forecasting real ocean-current data from the Gulf of Mexico. We
use high-resolution (1 km) bathymetry data from a HYbrid Coordinate Ocean Model (HYCOM)
reanalysis4 (Panagiotis, 2014). This dataset has been in the public domain since it was released by
the US Department of Defense. The dataset provides hourly ocean current velocity fields for the
region extending from 98◦E to 77◦E in longitude and from 18◦N to 32◦N in latitude, covering every
day since the first day of, 2001.

We then generate particles following Shen et al. (2025). That is, we took the velocity field in a
region where a vortex is observed in June 1st 2024 at 5pm. We then select an initial location near
the vortex and uniformly sample 4,400 initial positions within a small radius (0.05) around this
point and evolve these particles over 11 steps using the ocean current velocity field. The time step
size is 1.0 and left the last time step as validation. At each time point we retain 400 particles. We
approximate the velocity at each particle’s position using the velocity at the nearest grid point when
the particle does not align exactly with a grid point. In addition, between each training time point,
we simulate another 9 intermediate steps at middle point between each pair of consecutive training
time points, with 400 particle each to test for interpolation.

F.9.2 PARTICLE INDEPENDENCE IN THE GULF OF MEXICO EXPERIMENT

In the main text, we model particles at each time point as independent, without assuming continuity
of individual trajectories across time. This reflects applications where repeated measurements of the
same particle are not available.

For example, if the particles were physical buoys or drifters deployed in the ocean, they could be
tracked continuously, and trajectory-based methods would be more appropriate. By contrast, in
many remote sensing applications each observation is an image that provides only a distributional
snapshot at that time, without identifying or tracking the same particles across times. Oil-spill mon-
itoring from satellite imagery is a common example: each image shows the surface oil distribution
but not individual particle paths. Our Gulf of Mexico experiment is designed to mimic this setting
and follows the procedure described in Appendix D.5.1 of Shen et al. (2025).

F.9.3 MODEL FAMILY CHOICE

We employ a physically motivated model to represent the vortex by combining a Lamb-Oseen vor-
tex — a solution of the two-dimensional viscous Navier-Stokes equations (Saffman, 1995) — with
a constant divergence field. The Lamb-Oseen component captures the swirling, rotational dynam-
ics typical of a vortex, while the divergence field is added to account for vertical motion or non-
conservative forces that may cause a net expansion or contraction of the flow. In other words, this
combined model enables us to represent both the core vortex behavior and the secondary effects
influencing particle motion.

Formally, the particle trajectories are modeled by the following family of stochastic differential
equations (SDEs):

dX =

[
−γ

(Y − y0)rv
(Y − y0)2 + (Y − y0)2

(
1− exp

(√
(Y − y0)2 + (Y − y0)2

rv

))
+ d

X − x0,d

rd

]
dt+ σdWx

dY =

[
γ

(X − x0)rv
(Y − y0)2 + (Y − y0)2

(
1− exp

(√
(Y − y0)2 + (Y − y0)2

rv

))
+ d(Y − y0,d)

]
dt+ σdWy

(A13)

In this formulation, the free parameters are:

• Circulation (γ): Controls the strength of the vortex.

• Vortex length scale (rv): Sets the radial decay of the vortex’s influence.

• Vortex center (x0, y0): Specifies the location of the vortex core.

• Divergence (d): Represents the magnitude of the constant divergence field.

4Dataset available at this link.
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• Divergence length scale (rd): Governs the spatial extent of the divergence effect in the
x-direction.

• Divergence center (x0,d, y0,d): Determines the reference location for the divergence field.

• Volatility (σ): Captures the stochastic fluctuations in particle motion.

F.9.4 FORECASTING RESULTS

In this section, we further discuss results for the Gulf of Mexico vortex experiment. In particular,
we analyze the EMD, MMD.

Table 17: Evaluation metric for Gulf of Mexico experiment (mean(sd)). Drift was evaluated using
MSE on a grid.

Gulf of Mexico vortex
Metric Ours SBIRR-ref SB-forward
Forecast-MMD 2.36 (0.11) 1.41 (0.18) 2.59 (0.33)
Forecast-EMD 0.71(0.014) 0.89(0.034) 0.94(0.081)
Drift 0.054 (7.3× 10−5) 0.031 (0.00032) 0.15 (0.023)

In the second row of Table 17, we observe that our method achieves the lowest EMD for the fore-
casting task, indicating the closest match to the ground truth particle distribution. This aligns with
the visual results in Fig. 3 from the main text, where our forecasted particles accurately capture the
spatial structure of the vortex, unlike the baselines which produce more scattered and less coher-
ent predictions. While the MMD metric (first row) slightly favors the SBIRR-ref baseline, this
discrepancy may be attributed to the sensitivity of MMD to particle density and kernel choice.

F.9.5 VECTOR FIELD RECONSTRUCTION

In the third row of Table 17, we compare the drift reconstruction error using MSE on a grid. Here
SBIRR-ref achieves the lowest error, and our method performs comparably and still significantly
outperforms SB-forward. Visualizations in Fig. A17 provide further insight: the reconstructed
velocity fields from all the three methods exhibit a well-formed vortex structure closely resembling
the ground truth (with our method and SBIRR-ref being slightly better, as also shown by the MSE
results).

F.9.6 INTERPOLATION

We now evaluate interpolation performance on the real-world drifter trajectories in the Gulf of Mex-
ico. As shown in Fig. A18, our method captures the overall geometry of the flow and the looping
structure of the trajectories. All baselines also succeed in reconstructing the large-scale circula-
tion, with SBIRR achieving the closest match to the held-out validation points. These patterns are
reflected in the quantitative metrics in Fig. A19 and tables Table 18–Table 19: across nearly all val-
idation times, SBIRR achieves the lowest MMD and EMD values, consistently outperforming our
method and often the second-best method by a considerable margin.

This performance difference highlights a key distinction between modeling objectives. SBIRR is
designed to directly interpolate between training marginals, and in this setting—where particles
are relatively dense and the underlying flow field is smooth—interpolating training points naturally
leads to trajectories that also pass near the validation points, which lie in between. In contrast, our
method is not explicitly optimized to pass through the training marginals, but rather to estimate
a smooth underlying velocity field from the available data. This distinction becomes particularly
relevant in tasks such as forecasting, where the goal is to recover and extrapolate the underlying
dynamics rather than simply interpolate known states.
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Figure A17: Experimental results for the Gulf of Mexico experiment.

Figure A18: Interpolation of Gulf of Mexico current.
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Figure A19: Metrics for Interpolation of Gulf of Mexico current.

Table 18: MMD at each validation point for Gulf of Mexico.

Time Ours SBIRR DMSB OT-CFM SB-CFM SF2M

0.5 0.027± 0.001 0.011± 0.014 0.005± 0.004 0.030± 0.002 0.030± 0.004 0.030± 0.004
1.5 0.108± 0.004 0.004± 0.004 0.030± 0.007 0.109± 0.013 0.097± 0.031 0.108± 0.013
2.5 0.039± 0.003 0.008± 0.006 0.021± 0.009 0.351± 0.043 0.353± 0.136 0.397± 0.030
3.5 0.015± 0.002 0.007± 0.007 0.064± 0.028 0.820± 0.123 0.854± 0.374 0.900± 0.090
4.5 0.130± 0.007 0.009± 0.005 0.031± 0.017 0.723± 0.160 0.797± 0.435 0.745± 0.093
5.5 0.130± 0.010 0.019± 0.009 0.036± 0.039 1.022± 0.205 1.049± 0.434 1.000± 0.070
6.5 0.015± 0.005 0.004± 0.005 0.114± 0.080 1.277± 0.248 1.192± 0.383 1.207± 0.139
7.5 0.154± 0.023 0.005± 0.003 0.133± 0.103 1.022± 0.271 1.000± 0.374 0.884± 0.192
8.5 0.037± 0.006 0.005± 0.007 0.040± 0.044 0.507± 0.239 0.867± 0.772 0.348± 0.141

Table 19: EMD at each validation point for Gulf of Mexico.

Time Ours SBIRR DMSB OT-CFM SB-CFM SF2M

0.5 0.054± 0.001 0.041± 0.017 0.025± 0.007 0.057± 0.002 0.057± 0.004 0.068± 0.004
1.5 0.109± 0.002 0.033± 0.007 0.058± 0.007 0.109± 0.006 0.104± 0.015 0.114± 0.007
2.5 0.072± 0.002 0.038± 0.009 0.054± 0.009 0.194± 0.012 0.194± 0.037 0.210± 0.009
3.5 0.055± 0.002 0.039± 0.011 0.092± 0.017 0.301± 0.024 0.303± 0.069 0.318± 0.016
4.5 0.122± 0.003 0.041± 0.010 0.079± 0.013 0.277± 0.033 0.289± 0.081 0.286± 0.017
5.5 0.126± 0.004 0.055± 0.009 0.070± 0.023 0.333± 0.036 0.342± 0.073 0.336± 0.012
6.5 0.071± 0.005 0.037± 0.007 0.109± 0.036 0.379± 0.040 0.374± 0.062 0.374± 0.023
7.5 0.158± 0.009 0.048± 0.009 0.121± 0.043 0.351± 0.046 0.358± 0.071 0.324± 0.038
8.5 0.160± 0.008 0.053± 0.011 0.094± 0.029 0.264± 0.049 0.361± 0.163 0.210± 0.045

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

F.10 T CELL-MEDIATED IMMUNE ACTIVATION

In this section, we describe details of the T cell-mediated immune activation experiment contained
in the main text. The dataset was released with the paper by Jiang et al. (2024) under CC-BY-NC
4.0 international license.

F.10.1 BACKGROUND FOR THE BIOLOGICAL EXPERIMENT.
Peripheral blood mononuclear cells Peripheral blood mononuclear cells (PBMCs) comprise a
heterogeneous mixture of immune cells, including T cells, B cells, natural killer (NK) cells, and
myeloid lineages. To trigger a coordinated immune response, the PBMC pool from a single healthy
donor was stimulated in vitro with anti-CD3/CD28 antibodies at t = 0 to selectively induce T cell
activation. Cytokines released by activated T cells subsequently induce transcriptional changes and
subsequent cytokine communications in the immune cell populations, yielding a rich, system-wide
dynamical process.

Data acquisition. Cells were sampled every 30 min for 30 h (61 time points) and profiled with
multiplexed single-cell mRNA sequencing (Jiang et al., 2024). Raw counts were library-size nor-
malised and log-transformed following standard scRNA-seq workflows. Each snapshot is very high-
dimensional (there are hundreds of cells and thousands of genes for each cell). Because modelling
all genes directly is infeasible and biologically redundant, we adopt the widely used gene-program
formulation: groups of co-expressed genes are collapsed into latent variables that capture coordi-
nated transcriptional activity.

F.10.2 EXPERIMENT SETUP

We use the 30 biologically annotated programs in Jiang et al. (2024) together with the dataset, which
was computed from orthogonal non-negative matrix factorisation (oNMF) (Ding et al., 2006). Pro-
jecting each cell onto this 30-dimensional program space yields a low-noise, interpretable represen-
tation that is well suited for dynamical modelling. We took data from 0-20 hours (41 snapshots in
total), before the cells reached steady state. We train our model using data at 0, 1, . . . , 19th hours
for training, left measurement at 20th hour to test for forecast, and left 0.5, 1.5, . . . , 18.5th hour to
test for interpolation. We show in Fig. A20 the evolution of the 20 training points and the forecast
validation time point (bottom-left).

F.10.3 MODEL FAMILY CHOICE

We employ the architecture of Eq. (A11), instantiated with a 30-dimensional state space. The drift
is parameterised by a three-layer MLP with hidden widths [128, 128, 128], ReLU activations and
a sigmoid output that keeps gene-program values within biologically plausible bounds. Hyper-
parameters were chosen via a small grid search (two vs. three layers, and 32 vs. 64 vs. 128 hidden
nodes per layer) on the R2 score.

F.10.4 FORECASTING RESULTS

Table 20 reports quantitative forecasting performance. Because the ground-truth vector field is un-
known, we restrict evaluation to distributional metrics. EMD solver failed to converge in 30 dimen-
sions, so we use MMD with an RBF kernel of bandwidth 1. Our method attains an MMD that is
an order of magnitude lower than either baseline, confirming the qualitative superiority observed in
Fig. 4.

Table 20: One-step-ahead forecasting error on the T-cell activation dataset (mean ± s.d. over 10
seeds). MMD is computed with an RBF kernel of bandwidth 1 after scaling each gene program to
unit variance. EMD is not reported because the solver failed to converge in 30 dimensions.

pbmc
Metric Ours SBIRR-ref SB-forward
Forecast-MMD 0.11 (0.04) 0.69 (0.11) 2.99 (1.88)

F.10.5 INTERPOLATION

We now assess interpolation performance on this real-world single-cell dataset. As shown in
Fig. A21, our method produces biologically plausible trajectories that span the principal compo-
nents of the data and remain well-aligned with the progression of held-out validation points. SBIRR,
OT-CFM , and SB-CFM perform similarly well in this task, whereas DMSB produces notably erratic
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Figure A20: Training data for the PBMC experiment and forecasts with the three methods.
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paths with high variance, and SF2M displays more diffuse interpolations. The same pattern ap-
pears if we look at interpolation predictions across the validation time steps, as shown in Fig. A22,
Fig. A23, Fig. A24, and Fig. A25. In particular, we see that our method and SBIRR produce quite
accurate interpolations for most of the time steps. Quantitative results in Fig. A26 and Table 21
support these impressions. Across the full time course, our method consistently achieves the low-
est MMD at most validation points, often by a statistically significant margin. SBIRR performs
competitively, particularly at later times, while the performance of DMSB degrades substantially, as
reflected by persistently high MMD values throughout the trajectory. We note that, in contrast to
previous experiments, we do not report EMD in this setting. Due to the high dimensionality of the
latent space (30 dimensions), EMD becomes increasingly unreliable as a metric, suffering from the
curse of dimensionality and producing unstable estimates. For this reason, we focus our evaluation
on MMD, which remains well-behaved in high-dimensional settings and provides a more robust
comparison of distributional fidelity across methods.

Figure A21: Interpolation of pbmc dataset.
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PBMC Interpolation Comparison (Validation time steps 1-5)

Figure A22: PBMC interpolation results for the first 5 validation time points. The axis are the first
three principal components as in the forecasting experiment. The first row shows the evolution of
cells for ground truth. The other six rows show the predicted cells at the validation time points for
the our method and the five baselines.
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PBMC Interpolation Comparison (Validation time steps 6-10)

Figure A23: PBMC interpolation results for validation time points 6 to 10. The axis are the first
three principal components as in the forecasting experiment. The first row shows the evolution of
cells for ground truth. The other six rows show the predicted cells at the validation time points for
the our method and the five baselines.
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PBMC Interpolation Comparison (Validation time steps 11-15)

Figure A24: PBMC interpolation results for validation time points 11 to 15. The axis are the first
three principal components as in the forecasting experiment. The first row shows the evolution of
cells for ground truth. The other six rows show the predicted cells at the validation time points for
the our method and the five baselines.
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PBMC Interpolation Comparison (Validation time steps 16-20)

Figure A25: PBMC interpolation results for validation time points 16 to 20. The axis are the first
three principal components as in the forecasting experiment. The first row shows the evolution of
cells for ground truth. The other six rows show the predicted cells at the validation time points for
the our method and the five baselines.

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10
.5

11
.5

12
.5

13
.5

14
.5

15
.5

16
.5

17
.5

18
.5

19
.5

Validation time

0

2

4

MMD on interpolation

Ours
SBIRR-all
DMSB
OT-CFM
SB-CFM
SF2M

Figure A26: Metrics for Interpolation of pbmc dataset.

Table 21: MMD at each validation point for PBMC.

Time Ours SBIRR DMSB OT-CFM SB-CFM SF2M

0.5 0.310± 0.013 0.610± 0.052 0.853± 0.041 0.318± 0.010 0.328± 0.009 0.306± 0.008
1.5 0.125± 0.010 0.189± 0.022 0.803± 0.001 0.183± 0.029 0.201± 0.018 0.163± 0.019
2.5 0.125± 0.011 0.175± 0.012 0.804± 0.000 0.264± 0.053 0.270± 0.053 0.236± 0.050
3.5 0.126± 0.012 0.148± 0.015 0.839± 0.000 0.309± 0.064 0.308± 0.059 0.265± 0.050
4.5 0.132± 0.019 0.060± 0.009 0.898± 0.000 0.275± 0.069 0.294± 0.059 0.258± 0.051
5.5 0.144± 0.016 0.092± 0.010 1.019± 0.000 0.318± 0.081 0.339± 0.063 0.301± 0.049
6.5 0.106± 0.013 0.061± 0.007 0.939± 0.000 0.335± 0.096 0.357± 0.072 0.295± 0.049
7.5 0.081± 0.009 0.030± 0.005 0.948± 0.000 0.342± 0.107 0.375± 0.087 0.292± 0.056
8.5 0.093± 0.011 0.037± 0.003 1.052± 0.000 0.374± 0.122 0.422± 0.097 0.329± 0.054
9.5 0.100± 0.016 0.039± 0.002 1.081± 0.000 0.396± 0.130 0.456± 0.105 0.353± 0.056
10.5 0.118± 0.018 0.122± 0.010 1.092± 0.000 0.528± 0.150 0.569± 0.126 0.425± 0.068
11.5 0.077± 0.010 0.069± 0.007 1.066± 0.000 0.505± 0.154 0.554± 0.131 0.397± 0.074
12.5 0.073± 0.010 0.059± 0.006 1.023± 0.000 0.519± 0.156 0.567± 0.129 0.388± 0.073
13.5 0.093± 0.014 0.066± 0.004 1.004± 0.000 0.573± 0.163 0.621± 0.130 0.417± 0.070
14.5 0.096± 0.016 0.071± 0.010 1.131± 0.000 0.591± 0.196 0.679± 0.151 0.448± 0.080
15.5 0.101± 0.016 0.085± 0.008 0.942± 0.000 0.533± 0.163 0.601± 0.125 0.360± 0.058
16.5 0.111± 0.015 0.108± 0.017 1.019± 0.000 0.594± 0.183 0.683± 0.130 0.414± 0.060
17.5 0.077± 0.019 0.071± 0.015 0.978± 0.000 0.598± 0.190 0.688± 0.141 0.404± 0.060
18.5 0.089± 0.023 0.089± 0.015 0.896± 0.000 0.616± 0.185 0.698± 0.134 0.385± 0.055
19.5 0.099± 0.034 0.107± 0.022 0.971± 0.000 0.637± 0.204 0.753± 0.146 0.425± 0.063

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

G ABLATION STUDIES FULL RESULTS

In this appendix, we present extended results for the ablation studies from Section 4.6. We consider
two settings: (i) replacing learned, state-dependent volatility with a fixed scalar volatility, and (ii)
replacing structured SDE drift/volatility with a fully neural parameterization. Tables report mean,
standard deviation, and range across seeds for both SnapMMD and the ablated variants.

G.1 IMPACT OF LEARNING STATE-DEPENDENT VOLATILITY

In our main experiments, SnapMMD learns a volatility term that may vary with state. Here we ablate
this feature by fixing volatility to a constant scalar across states and times (set to 0.1 following prior
SB work).

Across tasks, learning volatility yields clear benefits: in Lotka–Volterra and parametric Repressila-
tor, MMD errors fall by more than an order of magnitude relative to fixed volatility, reflecting the
importance of capturing heterogeneous noise levels. In PBMC, the fixed-volatility variant shows
large instability across seeds (variance over an order of magnitude), while learned volatility pro-
duces consistently low error. The only exception is the Gulf of Mexico forecasting task, where fixed
volatility yields more diffuse predictions that happen to align better with the kernel geometry used
in the MMD metric. Importantly, even in this case, SnapMMD with learned volatility performs
better on the interpolation task, where the goal is reconstructing observed marginals rather than
extrapolating.

Table 22: Forecasting performance: SnapMMD with learned state-dependent diffusion vs. fixed
diffusion.

SnapMMD (learned volatility) Fixed volatility

Experiment Mean SD Range Mean SD Range

LV 0.057 0.030 [0.025, 0.122] 0.156 0.020 [0.128, 0.189]
ReprParam 0.072 0.080 [0.005, 0.243] 7.557 0.001 [7.555, 7.559]
ReprSemiparam 0.320 0.150 [0.150, 0.640] 0.286 0.191 [0.035, 0.656]
ReprProtein 0.067 0.034 [0.018, 0.116] 0.072 0.023 [0.041, 0.128]
GoM 2.360 0.110 [2.192, 2.582] 0.969 0.398 [0.654, 2.079]
PBMC 0.110 0.040 [0.077, 0.236] 0.376 0.542 [0.077, 1.667]

Table 23: Interpolation performance: SnapMMD with learned state-dependent diffusion vs. fixed
volatility. We report mean, standard deviation, and range across seeds.

SnapMMD (learned volatility) Fixed volatility

Experiment Mean SD Range Mean SD Range

LV 0.013 0.011 [0.000, 0.075] 8.771 2.257 [1.599, 9.917]
ReprParam 0.040 0.034 [0.002, 0.166] 8.461 0.588 [7.693, 9.570]
ReprSemiparam 0.379 0.381 [0.005, 1.459] 8.423 1.770 [2.643, 9.919]
ReprProtein 0.011 0.006 [0.002, 0.034] 8.768 1.350 [4.074, 9.889]
GoM 0.073 0.054 [0.007, 0.200] 6.716 3.156 [0.312, 9.904]
PBMC 0.114 0.052 [0.058, 0.327] 4.636 0.880 [3.011, 6.121]

G.2 ROLE OF INDUCTIVE BIAS

We next ablate the use of domain-informed structure by replacing the SDE drift and diffusion with
fully neural parameterizations. This removes all mechanistic scaffolding and corresponds to fitting
an unconstrained neural SDE directly to the snapshot data.

Across tasks, the structured SnapMMD models outperform their fully neural counterparts, often
dramatically. For example, in Lotka–Volterra and Repressilator, the neural SDE fails to recover
qualitative dynamics and produces MMD errors more than two orders of magnitude worse than
SnapMMD. In PBMC, where prior mechanistic knowledge is weaker, the gap is smaller but still
consistent in favor of structured models. The Gulf of Mexico forecasting task again provides an
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exception: here the neural variant produces more diffuse forecasts that achieve a lower MMD score,
though interpolation still favors SnapMMD.

Taken together, these ablations highlight that inductive bias is essential when reliable domain knowl-
edge is available, while semiparametric combinations of structured drift with neural residuals are
most useful when knowledge is partial. Fully neural SDEs, in contrast, often fail to capture mean-
ingful dynamics from snapshot data alone, lacking the guidance that domain structure provides.

Table 24: Forecasting performance: SnapMMD with domain-informed structure vs. fully neural
SDE. We report mean, standard deviation, and range across seeds.

SnapMMD (structured) Fully neural

Experiment Mean SD Range Mean SD Range

LV 0.057 0.030 [0.025, 0.122] 7.230 0.035 [7.173, 7.288]
ReprSemiparam 0.320 0.150 [0.150, 0.640] 3.670 0.467 [2.900, 4.282]
ReprProtein 0.048 0.029 [0.018, 0.116] 3.423 0.387 [2.711, 3.917]
GoM 2.360 0.110 [2.192, 2.582] 0.607 0.113 [0.324, 0.739]
PBMC 0.110 0.040 [0.077, 0.236] 0.292 0.004 [0.286, 0.298]

Table 25: Interpolation performance: SnapMMD with domain-informed structure vs. fully neural
SDE. We report mean, standard deviation, and range across seeds.

SnapMMD (structured) Fully neural

Experiment Mean SD Range Mean SD Range

LV 0.013 0.011 [0.000, 0.075] 8.667 1.734 [1.426, 9.934]
ReprSemiparam 0.379 0.381 [0.005, 1.459] 8.754 2.273 [1.786, 9.917]
ReprProtein 0.011 0.006 [0.002, 0.034] 8.654 1.691 [2.817, 9.889]
GoM 0.073 0.054 [0.007, 0.200] 6.530 3.327 [0.197, 9.709]
PBMC 0.114 0.052 [0.058, 0.327] 4.877 0.413 [3.999, 5.796]

H IDENTIFIABILITY ANALYSIS

In this appendix, we provide further details on the identifiability problem from the the main text
discussion.

Why drift and volatility are not identified in general. Even with complete access to the marginal
distributions πt over time, the pair (b0, g0) is not uniquely determined by the Fokker–Planck equa-
tion

∂πt

∂t
= ∇ ·

[
−b0 πt +

1

2
g0 g

⊤
0 ∇πt

]
For example, suppose (b0, g0) satisfies the equation for a given πt. Then, for any vector field h
that satisfies the continuity condition ∇ · (hπt) = 0, the modified drift b′0 = b0 + h with the
same volatility g0 also satisfies the Fokker–Planck equation. This observation indicates that an
infinite family of drift functions can generate the same evolution of the marginal distribution if no
further constraints are imposed. Furthermore, let A be any orthogonal matrix (i.e., AA⊤ = I).
Then, the pair (b0, g0 A) also satisfies the Fokker–Planck equation. These examples illustrate the
inherent non-uniqueness (or non-identifiability) of the drift and volatility functions based solely on
the evolution of the marginal distributions.

In practice, to achieve identifiability, one must restrict the candidate function classes for b0 and g0.
For instance, assuming that b0 is a gradient field (i.e., b0 = ∇Φ for some potential Φ and that g0
is constant is known to yield identifiability under suitable conditions (Lavenant et al., 2024; Guan
et al., 2024). A complete characterization of identifiability in more general settings is beyond the
scope of this work and constitutes an important direction for future research.
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I LARGE LANGUAGE MODEL (LLM) USE

We used LLM for grammar checks and to polish writing.
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