

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 REPRODUCING AND DISSECTING DENOISING LANGUAGE MODELS FOR SPEECH RECOGNITION

Anonymous authors

Paper under double-blind review

ABSTRACT

Denoising language models (DLMs) have been proposed as a powerful alternative to traditional language models (LMs) for automatic speech recognition (ASR), motivated by their ability to use bidirectional context and adapt to a specific ASR model’s error patterns. However, the complexity of the DLM training pipeline has hindered wider investigation. This paper presents the *first independent, large-scale empirical study* of DLMs. We build and release a *complete, reproducible pipeline* to systematically investigate the impact of key design choices. We evaluate dozens of configurations across multiple axes, including various data augmentation techniques (e.g., SpecAugment, dropout, mixup), different text-to-speech systems, and multiple decoding strategies. Our comparative analysis in a common subword vocabulary setting demonstrates that *DLMs outperform traditional LMs, but only after a distinct compute tipping point. While LMs are more efficient at lower budgets, DLMs scale better with longer training, mirroring behaviors observed in diffusion language models.* However, we observe smaller improvements than those reported in prior character-based work, which indicates that the DLM’s performance is conditional on factors such as the vocabulary. Our analysis reveals that a key factor for improving performance is to condition the DLM on *richer information from the ASR’s hypothesis space*, rather than just a single best guess. To this end, we introduce *DLM-sum, a novel method for decoding from multiple ASR hypotheses*, which consistently outperforms the previously proposed DSR decoding method. We believe our findings and public pipeline provide a crucial foundation for the community to better understand, improve, and build upon this promising class of models. The code is publicly available at <https://anonymous.4open.science/r/2025-dlm/>.

1 INTRODUCTION

Automatic speech recognition (ASR) systems often rely on external language models (LMs) to refine initial hypotheses by leveraging vast amounts of text-only data. Traditionally, these LMs are autoregressive, processing text from left to right, which limits their ability to use the full context of a sentence when correcting an error.

An alternative is the denoising language model (DLM) (Gu et al., 2024), an encoder-decoder architecture designed to perform error correction directly in the text domain. It operates by taking a complete hypothesis from an ASR model, which may contain recognition errors, as input and generating a fully corrected version as its output. DLMs are motivated by two key theoretical advantages: they can leverage the full bidirectional context of a noisy ASR hypothesis to make more informed corrections, and they can be directly trained on the specific error patterns of an upstream ASR model. Prior work demonstrated state-of-the-art results using this method with a character-level vocabulary.

To be effective, a DLM must be trained on a massive dataset of (noisy hypothesis, correct text) pairs. While such pairs can be generated from standard transcribed audio corpora, their scale is often limited. To overcome this, the approach pioneered in prior work is to leverage large text-only corpora. This is achieved by first synthesizing audio from the correct text using text-to-speech (TTS); an ASR model then transcribes this synthetic audio to generate the corresponding noisy hypothesis. However, this full pipeline – combining TTS synthesis, ASR inference, and extensive data augmentation – is highly complex. This complexity, combined with the lack of a public implementation, has cre-

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
ated a significant barrier to entry, hindering wider adoption, independent verification, and a deeper understanding of the model’s sensitivities. We make the following contributions:

- **A reproducible open-source pipeline:** We build and release the first complete pipeline for DLM training and inference, providing a robust and reproducible baseline to accelerate future research.
- **A systematic empirical study:** We conduct a large-scale study of the DLM design space, evaluating dozens of configurations across multiple axes including data augmentation techniques, TTS systems, and decoding strategies.
- **A novel decoding method:** We introduce **DLM-sum**, a *novel decoding method* that conditions the DLM on multiple ASR hypotheses in a single pass, improving robustness and consistently outperforming the DSR decoding method from prior work.
- **State-of-the-art on LibriSpeech and Loquacious:** We achieve state-of-the-art (SOTA) results on the LibriSpeech benchmark under the strict condition of using only the official LibriSpeech training data for all components (ASR, DLM, and TTS). *Similarly, we demonstrate the effectiveness of DLMs on the Loquacious dataset.*
- **Comparative analysis with language models:** We provide a direct, comparative analysis against a traditional LM and find that, in a common subword vocabulary setting, *our best DLM outperforms our best traditional LM*. However, we observe *smaller improvements* than those reported in prior character-based work (Gu et al., 2024), which indicates that the DLM’s performance is *conditional on factors such as the vocabulary*.
- **Scaling Laws and Diffusion Parallels:** We analyze the compute-performance trade-off, identifying a tipping point where DLMs surpass autoregressive LMs. We discuss similarities to diffusion models.
- **Novel analytical insights:** Our in-depth analysis uncovers several non-obvious model behaviors. We identify that the DLM’s performance consistently improves when it is conditioned on *richer information from the ASR’s hypothesis space* than a single best guess. We demonstrate this through the success of our *DLM-sum* decoding method and promising results from our exploratory *dense k-probability input to the DLM*. This finding also provides a compelling hypothesis for the performance gap to prior character-based work, as character sequences may inherently offer a more fine-grained representation of errors than a single, incorrect subword token.

2 DENOISING LANGUAGE MODEL

Let a_1^S represent a correct token sequence and let $\tilde{a}_1^{\tilde{S}}$ be a corresponding recognized (potentially noisy) hypothesis from an ASR model. The objective of a denoising language model (DLM) is to learn the conditional probability distribution $p_{\text{DLM}}(a_1^S | \tilde{a}_1^{\tilde{S}})$ of the correct sequence a_1^S given the noisy hypothesis $\tilde{a}_1^{\tilde{S}}$. The DLM is implemented as an attention-based encoder-decoder (AED) model. The encoder reads the *entire* input hypothesis $\tilde{a}_1^{\tilde{S}}$, and the decoder then autoregressively generates the corrected sequence a_1^S . The specific architectural details of our implementation are described in Section 3.2.

2.1 DECODING STRATEGIES

To generate a final corrected hypothesis, the DLM’s output distribution, $p_{\text{DLM}}(a_1^S | \tilde{a}_1^{\tilde{S}})$, is integrated into a search algorithm. The objective is to find an optimal output sequence $\hat{a}_1^{\hat{S}}$ according to a scoring function, which typically combines the DLM’s score with the original ASR model’s score. We investigate several such decoding strategies.

Greedy Decoding. Following Gu et al. (2024), our greedy decoding decision rule is:

$$\hat{a}_1^{\hat{S}} = \arg \max_{a_1^S} p_{\text{DLM}}(a_1^S | \hat{a}_1^{\hat{S}}), \quad (1) \quad \hat{a}_1^{\hat{S}} = \arg \max_{\tilde{a}_1^{\tilde{S}}} p_{\text{ASR}}(\tilde{a}_1^{\tilde{S}} | x_1^T). \quad (2)$$

Equation (1) is approximated with label-synchronous greedy search. Equation (2) is approximated with framewise argmax followed by removing repeated labels and blanks *in case of CTC* (3.2).

Figure 1: Pipeline for training data generation. We introduce additional data augmentation in the “Inference with ASR model” and “Train DLM model” steps.

DSR Decoding. The denoising speech recognition (DSR) decoding method uses

$$\hat{a}_1^* = \arg \max_{a_1^S \in \text{hyp}} \left(\log p_{\text{ASR}}(a_1^S | x_1^T) + \lambda_{\text{DLM}} \cdot \log p_{\text{DLM}}(a_1^S | \hat{a}_1^S) - \lambda_{\text{prior}} \cdot \log p_{\text{prior}}(a_1^S) \right) \quad (3)$$

with \hat{a}_1^S as before (Equation (2)) and rescores on

$$\text{hyp} := \text{n-best}[p_{\text{DLM}}(\cdot | \hat{a}_1^S)] \cup \text{m-best}[p_{\text{ASR}}(\cdot | x_1^T)]. \quad (4)$$

The DSR decoding as introduced in Gu et al. (2024) was slightly simpler: only using the DLM n-best list for rescoring and not including the prior probability term. The prior probability is the same as we use in LM rescoring (see Section 3.2 and Appendix D.1.3). The scales $\lambda_{\text{DLM}}, \lambda_{\text{prior}} \in \mathbb{R}^+$ are tuned on LibriSpeech dev-other. In our case, we use time-synchronous beam search for the ASR model and label-synchronous beam search for the DLM (in Equation (4); see Appendix C).

DLM-Sum Decoding. Previous work (Gu et al., 2024) has only investigated to feed the single best ASR hypothesis into the DLM for decoding (as in greedy decoding and DSR decoding). Instead of just using the single best ASR hypothesis \hat{a}_1^S in Equation (2), in *DLM-sum decoding*, we want to take multiple ASR hypotheses into account to approximate

$$p_{\text{sum}}(a_1^S | x_1^T) = \sum_{\tilde{S}, \tilde{a}_1^{\tilde{S}}} p_{\text{DLM}}(a_1^S | \tilde{a}_1^{\tilde{S}}) \cdot p_{\text{ASR}}(\tilde{a}_1^{\tilde{S}} | x_1^T). \quad (5)$$

We approximate this sum as

$$p_{\text{sum}'}(a_1^S | x_1^T) = \sum_{\tilde{a}_1^{\tilde{S}} \in \text{n-best}[p_{\text{ASR}}(\cdot | x_1^T)]} p_{\text{DLM}}(a_1^S | \tilde{a}_1^{\tilde{S}}) \cdot \left(p_{\text{ASR}}(\tilde{a}_1^{\tilde{S}} | x_1^T) / Z \right) \quad (6)$$

with $Z = \sum_{\tilde{a}_1^{\tilde{S}} \in \text{n-best}[p_{\text{ASR}}(\cdot | x_1^T)]} p_{\text{ASR}}(\tilde{a}_1^{\tilde{S}} | x_1^T)$. We use time synchronous beam search and deduplication to generate the n-best list of ASR hypotheses. The final decision rule becomes

$$\hat{a}_1^* = \arg \max_{a_1^S} \left(\log p_{\text{ASR}}(a_1^S | x_1^T) + \lambda_{\text{DLM}} \log p_{\text{sum}'}(a_1^S | x_1^T) - \lambda_{\text{prior}} \cdot \log p_{\text{prior}}(a_1^S) \right), \quad (7)$$

which is approximated by label-synchronous beam search on the joint scores, unlike DSR decoding which uses rescoring. See Appendices C and C.9 for more details on the search procedure.

Note that we recover a one-pass version of the DSR decoding decision rule if we only use a single ASR hypothesis in the sum, and the greedy decision rule if we further let $\lambda_{\text{prior}} = 0, \lambda_{\text{DLM}} \rightarrow \infty$ and beam size 1. So we consider this method a generalization of the previous two. Typically we use a beam size of 12 for the one-pass search, and an ASR n-best list size of 20.

3 EXPERIMENTAL DESIGN

3.1 DLM TRAINING DATA SOURCES AND GENERATION PIPELINE

Our primary goal is to generate (noisy hypothesis, correct text) pairs to train the DLM. We use the text-only LibriSpeech LM corpus as the source for the correct text transcriptions. Figure 1 illustrates

162 our two-stage process for generating the corresponding noisy hypotheses. First, we synthesize audio
 163 from the source text using a TTS system. Second, this synthetic audio is transcribed by a pre-trained
 164 ASR model to produce the noisy hypothesis. We perform TTS and ASR inference in a single
 165 forward pass, which avoids the need to store large intermediate audio files on disk. In addition
 166 to this synthetic data, we generate hypotheses from the real audio of the LibriSpeech ASR training
 167 corpus.

168

169 3.2 MODELS

170

ASR Models. We use a [non-autoregressive](#) Conformer-based (Gulati et al., 2020) connectionist
 171 temporal classification (CTC) model (Graves et al., 2006) for ASR. We use three different vocab-
 172 uaries: Character (char)¹, SentencePiece² with 128 subwords (spm128) and SentencePiece with
 173 10240 subwords (spm10k). We train all ASR models on LibriSpeech ASR 960h training data and
 174 optionally also with TTS audios generated from the LibriSpeech LM text data in a 1:1 ratio. All
 175 Conformer models have 16 layers, model dimension 1024, feedforward dimension 4096 and 8 at-
 176 tention heads. See Appendix D.1.1 for model and training details. The ASR baseline performances
 177 and model sizes are shown in Table D.1.

178

179

Language Models. A standard language model can be combined with the ASR model in a similar
 180 way to DSR decoding (Section 2.1):

181

182

183

$$a_1^* = \arg \max_{a_1^S} \left(\log p_{\text{ASR}}(a_1^S \mid x_1^T) + \lambda_{\text{LM}} \cdot \log p_{\text{LM}}(a_1^S) - \lambda_{\text{prior}} \cdot \log p_{\text{prior}}(a_1^S) \right) \quad (8)$$

184

185

The prior probability $p_{\text{prior}}(a_1^S)$ is estimated from the ASR model (Appendix D.1.3). We use either
 two-pass rescoring or one-pass search (Appendix C).

186

187

188

189

190

191

We use Transformer-based (Vaswani et al., 2017) Llama-based (Touvron et al., 2023) attention-based
 decoder-only language models, trained on the LibriSpeech LM dataset. We use the same vocabulary
 as we do in our ASR models (mostly spm10k). We train models with 8 and 32 layers respectively,
 model dimension 1024, feedforward dimension 4096, and 8 attention heads. More details are given
 in Appendix D.1.2. Our results for both two and single pass rescoring are shown in Table D.3.

192

193

194

195

196

197

198

199

TTS Models. We train a Glow-TTS model (Kim et al., 2020) on the train-clean-460h subset of the
 Librispeech ASR training data. To allow for direct comparison with Gu et al. (2024), we also use
 the same pre-trained YourTTS (Casanova et al., 2022) model. The YourTTS model has been trained
 on the LibriTTS (Zen et al., 2019) and CML-TTS (Oliveira et al., 2023) datasets. Both TTS models
 are stochastic and have length scale and temperature τ (or noise scale) which can be adjusted during
 inference to control the speed and diversity of the generated audio. See Appendix D.1.4 for more
 details. ASR WER results for hypotheses generated with Glow-TTS and YourTTS are shown in
 Table D.8.

200

201

202

203

204

205

Denoising Language Models. Our DLMs (Section 2) share the Llama-based (Touvron et al.,
 2023) architecture of our LMs (Section 3.2) but utilize an encoder-decoder structure with cross-
 attention. Our DLMs have 24 encoder layers, 8 decoder layers, model dimension 1024, feedforward
 dimension 4096 and 8 attention heads. We use the same vocabulary as we do in our ASR
 models (mostly spm10k). We compare greedy decoding, DSR decoding and DLM-sum decoding. See
 Appendix D.1.5 for further details.

206

207

3.3 DATA AUGMENTATION STRATEGIES

208

209

210

211

212

213

During the combined TTS + ASR inference (Section 3.1), we can apply various data augmentation
 techniques to expose the DLM to a wider range of errors. This is especially important as the ASR
 models have overfitted significantly to the TTS audios, resulting in very low WERs of about 2%,
 while errors on real audio in the validation and test sets is higher, with up to 4.8% WER (cf. Ta-
 ble D.1). See Appendix D.2 for more details.

214

215

¹Char. vocab.: A case-insensitive alphabet, space, apostrophe, and a special end-of-sentence token.

²SPM vocab.: A data-driven subword vocabulary generated using the SentencePiece algorithm (Kudo & Richardson, 2018).

216 **Early ASR checkpoints.** We use intermediate checkpoints from the ASR training process in
 217 which the ASR system has not yet converged, and use those hypotheses as training data for the
 218 DLM. Results for different checkpoints are shown in Table D.9. Even for epoch 10 out of 100, the
 219 WER is reasonably low with 12.4% on dev-other.

220 **SpecAugment.** We use SpecAugment (Park et al., 2019) during ASR inference as shown by Gu
 221 et al. (2024). See Appendix D.2.2 for details and Table D.10 for hypotheses WERs.

223 **Dropout.** We use dropout (Srivastava et al., 2014) at inference time to generate diverse hypotheses,
 224 following prior work (Hrinchuk et al., 2020). However, instead of keeping a fixed dropout rate, we
 225 randomly sample a dropout rate for each input sequence from a uniform distribution $\mathcal{U}(p_{\min}, p_{\max})$.
 226 Results for $p_{\min} = 0.0$ and different p_{\max} are shown in Figure D.3. Both ASR models respond
 227 similarly to increasing dropout, with WER increasing slowly at first, and then faster beyond 50%.

228 **Token Substitution.** We sample the random substitution rate for each sentence $p \sim \mathcal{U}(p_{\min}, p_{\max})$,
 229 and then each token in that sentence is substituted with a random token from the vocabulary with
 230 probability p . Training data WER for different Token substitution rates is shown in Table D.12. We
 231 use rates that increase the hypotheses WER up to 55%.

232 **Mixup.** We linearly interpolate the spectrogram of the current audio sequence with the spectro-
 233 grams of n other randomly chosen sequences from a buffer (see Appendix D.2.5 for details).

235 **Sampling from ASR Model.** Instead of taking the greedy decoding output of the ASR model,
 236 we sample from the ASR model using a variant of top-k sampling (details in Appendix D.2.6). For
 237 $k = 32$, the hypotheses WER increases to 10% on dev-other.

238 **Combining Multiple Data Augmentation Techniques.** We combine multiple data augmentation
 239 techniques to further increase the diversity of the generated hypotheses. We construct multiple com-
 240 bination variants, ordered in increasing amounts of data augmentation applied, where baseline
 241 uses no data augmentation at all, low uses a small amount, medium uses a moderate amount, and
 242 the high configuration uses a higher amount, using the best parameter for every data augmentation
 243 method as determined by individual DLM training experiments, reaching 60% WER on hypotheses
 244 on dev-other. More variants, the exact configurations and their respective hypotheses WERs are
 245 specified in Appendix D.2.8.

247 3.4 ALTERNATIVE DLM INPUTS: DENSE K-PROBABILITY

249 So far we have restricted ourselves to selecting a single label sequence as the ASR hypothesis (Equation
 250 (2)). The ASR model, however, produces a substantially richer output in the form of a probabili-
 251 ty distribution over all possible labels for each audio frame. Storing the full probability distribution
 252 on disk is infeasible so we restrict ourselves to the top k most probable labels for each label posi-
 253 tion. Then we use a weighted embedding of these k labels as the input to the DLM encoder. See
 254 Appendix D.3 for details.

255 4 RESULTS AND ANALYSIS

258 4.1 DLM VS. STANDARD LANGUAGE MODEL

260 We use the 32 layer standard LM and compare it to our DLM with 24 encoder and 8 decoder layers³.
 261 LMs and DLM performance is compared in Table 1 (see Appendix E.1 for further comparisons).
 262 When training for 10 epochs, the *DLM using DLM-sum decoding outperforms the standard LM* in
 263 both one-pass and rescoring modes⁴. These results represent the *state-of-the-art for the LibriSpeech*
 264 *benchmark* under a strict data constraint⁵.

265 ³Both models have a model dimension of 1024. The standard LM has 422M parameters, while the DLM has
 266 466M. Note that a larger standard LM with 1280 model dimension and 663M parameters was slightly worse in
 267 WERs, see Table E.1.

268 ⁴We trained both with 5 and 10 epochs, and we chose the best result for each model for this comparison.
 269 When only trained for 5 epochs, there is no performance difference between DLM and LM.

⁵A slightly better performance can be achieved with model dimension 1280, that result is shown in Table 2.

270 Table 1: Standard LM vs DLM performance comparison. The ASR model was trained with or
 271 without TTS data, spm10k vocab. The DLM uses data augmentation configuration `low`.

273 274	ASR trained with TTS	LM	Decoding	WER [%]			
				275 276 277 278 279 280	dev-clean	dev-other	test-clean
281 282 283 284 285 286	No	None	greedy	2.29	5.02	2.42	5.33
			rescoring	1.93	4.18	2.09	4.50
		Standard	one-pass	1.85	3.93	2.00	4.27
			greedy	2.49	4.63	2.41	5.19
			DSR	1.76	3.95	1.91	4.37
			DLM-sum	1.68	3.70	1.83	4.15
287 288 289 290 291 292	Yes	None	greedy	1.75	4.13	2.03	4.44
			rescoring	1.59	3.57	1.80	3.84
		DLM	one-pass	1.56	3.41	1.73	3.70
			greedy	2.31	4.06	2.32	4.57
			DSR	1.49	3.43	1.79	3.70
			DLM-sum	1.49	3.29	1.72	3.53

293 Figure 2: Various DLM and standard LM sizes
 294 and training epochs, resulting in different training
 295 compute budgets. Results on LibriSpeech
 296 dev-other, using DLM-sum and one-pass stan-
 297 dard LM decoding.

(a) Comparing standard
 298 LM and DLM recogni-
 299 tion speed in terms of
 300 real-time factor (RTF).

(b) DLM-sum recogni-
 301 tion speed w.r.t. number
 302 of ASR hypotheses used.

Figure 3: Recognition speed comparisons.

303 We note that Gu et al. (2024) reports stronger absolute numbers, however, their system utilizes a TTS
 304 model trained on external data. Other factors likely also contribute to the performance gap, such as
 305 the different vocabulary (we use spm10k, they use char; see Appendix B for a detailed comparison
 306 and discussion of differences).

307 To analyze the scaling behavior of DLMs in comparison to standard LMs, we run various exper-
 308 iments with different model sizes and training epochs, resulting in different training compute budgets.
 309 Results by training time and number of parameters are shown in Figure 2. There is a tipping point,
 310 both in training time and model size, after which DLMs start to outperform standard LMs, while for
 311 smaller compute budgets standard LMs are better. This is similar to recent observations for diffusion
 312 language models under a fixed data-constrained setting (Prabhudesai et al., 2025; Ni et al., 2025)
 313 (Appendix G.1). Overfitting occurs for standard LMs after a certain point, consistent to previous
 314 findings (Ni et al., 2025).

315 Despite the pure DLM training time, the DLM requires more total preprocessing time and its pipeline
 316 is more complex compared to standard LM training, specifically the TTS model and DLM training
 317 data generation. Although using TTS data for ASR training is beneficial in general (Table 1).

318 Figure 3a compares the recognition speed of standard LMs and DLMs. We see that DLMs are
 319 generally faster than standard LMs in one-pass decoding, as they perform well already with smaller
 320 beam sizes (E.3.1) and the encoder can be run in parallel for all ASR hypotheses over all frames.

321 We further test our DLM approach on the **Loquacious dataset** (Parcollet et al., 2025). Results are
 322 shown in Table 3. We see that the DLM improves over the ASR baseline and standard LM. See
 323 Appendix E.6 for details.

324 Table 2: Comparison to state-of-the-art results and other related work on LibriSpeech test sets. Error
 325 correction-based approaches are in the middle section. For details on best model, see Appendix E.5.
 326

327 System	328 External Data	329 test-clean [%]	330 test-other [%]
328 Conformer (Gulati et al., 2020)	329 -	330 1.9	331 3.9
329 E-Branchformer + ILME (Kim et al., 2023)	330 -	331 1.81	332 3.65
330 LAS + SC + LM (Guo et al., 2019)	331 -	332 4.28	333 -
331 Hrinchuk et al. (2020)	332 BERT	333 3.5	334 9.27
332 N-best T5 (Ma et al., 2023a)	333 T5	334 2.53	335 6.27
333 LLM-based correction (Pu et al., 2023)	334 ChatGPT, more datasets	335 1.3	336 3.4
334 Denoising LM (Gu et al., 2024)	335 YourTTS	336 1.5	337 3.3
335 Conformer + larger DLM (Ours)	336 -	337 1.70	338 3.44

336 Table 3: Trained ASR model, (D)LM on Loquacious, WERs [%] on Loquacious evaluation sets.
 337

338 Method	339 Loquacious		340 LibriSpeech		341 CommonVoice		342 VoxPopuli		343 Yodas	
	340 dev	341 test	341 dev	342 test	342 dev	343 test	343 dev	344 test	344 dev	345 test
340 ASR only	341 6.45	342 7.16	343 4.08	344 4.26	345 9.20	346 11.17	347 6.61	348 6.46	349 11.98	350 12.24
341 ASR + LM	342 5.63	343 6.44	344 3.35	345 3.56	346 7.20	347 9.02	348 6.30	349 6.30	350 12.40	351 12.89
342 ASR + DLM	343 5.52	344 6.26	345 3.40	346 3.58	347 7.24	348 9.07	349 6.02	350 5.99	351 11.43	352 11.78

344 Table 4: Training data generation strategy comparison, using the best setting for each individual
 345 augmentation, and some combined augmentation schemes, to train the DLM.
 346

347 Method	348 Setting	349 WER [%]				350 Details Table
		351 dev-clean	352 dev-other	353 test-clean	354 test-other	
349 Baseline	350 baseline	351 1.55	352 3.67	353 1.84	354 4.00	355 E.3
350 Inc. TTS noise	351 (0.3, 1.5)	352 1.51	353 3.61	354 1.76	355 3.83	356 E.7
351 Combined TTS	352 Glow-TTS + YourTTS	353 1.57	354 3.64	355 1.82	356 3.91	357 E.9
352 Early ASR Chkpt.	353 Epoch 40	354 1.52	355 3.57	356 1.76	357 3.88	358 E.10
353 SpecAugment	354 Time + freq.	355 1.49	356 3.47	357 1.76	358 3.76	359 E.11
354 Dropout	355 (0.0, 0.5)	356 1.49	357 3.52	358 1.81	359 3.85	360 E.12
355 Token Sub.	356 20%	357 1.50	358 3.47	359 1.80	360 3.79	361 E.13
356 Mixup	357 $\lambda_{\text{max}} = 0.4$	358 1.51	359 3.58	360 1.77	361 3.87	362 E.14
357 ASR sampling	358 $k = 16$	359 1.55	360 3.67	361 1.83	362 3.95	363 E.15
358 Resplit Subw.	359 -	360 1.63	361 3.81	362 1.95	363 4.13	364 E.16
359 Combined aug.	360 low	361 1.51	362 3.40	363 1.74	364 3.66	365 E.3
	361 medium	362 1.56	363 3.42	364 1.75	365 3.72	
	362 high	363 1.67	364 3.56	365 1.81	366 3.89	

362

4.2 IMPACT OF TRAINING DATA GENERATION STRATEGIES

363 Table 4 summarizes the impact of data augmentation techniques on DLM performance. Most config-
 364 urations are quite similar in performance. The combination of multiple augmentation methods gives
 365 the best performance. Choosing the best configuration from every individual ablation (medium
 366 and high combined configurations) does not lead to optimal DLM performance. Rather our low
 367 configuration gives the best results. See Appendix E.2.1 for more details and further results.

368 **Augmentation Methods.** When *increasing the TTS noise* (E.2.3) beyond usual values to achieve
 369 a stronger variation, we see a slight increase in performance until the maximum scale of 1.5. Any
 370 *variation in the length scale* had no effects. *Combining both TTS systems* (E.2.4) gave only smaller
 371 improvements, which is surprising as YourTTS is trained on additional data beyond LibriSpeech.
 372 This is inconsistent with results from Gu et al. (2024), where the combination gives consistent
 373 improvement.

374 *SpecAugment* (E.2.6), *dropout* (E.2.7), *token substitution* (E.2.8) and *mixup* (E.2.9) each display
 375 some improvements over the baseline. Also, using an *earlier ASR checkpoint* (E.2.5), in this case
 376 from epoch 40 instead of 100, yields slightly better DLM training.

378 *Sampling ASR outputs* (E.2.10) does not bring improvements over the baseline. Furthermore, *re-*
 379 *splitting subwords* (E.2.11) even causes minor degradations.
 380

381 **Training Data Conditions.** There is a 7 – 23% relative improvement across all decoding con-
 382 ditions when using an ASR system trained with TTS data during the recognition process. In contrast,
 383 for the generation of DLM training data it does not matter if we use the baseline ASR system or an
 384 ASR system trained with additional TTS data. See Appendix E.2.13 for details.

385 We do not see substantial improvements when generating different DLM training data for each
 386 training epoch by using new seeds for the augmentation methods. We assume that the initial training
 387 data amount already has a sufficient size and variety. See Appendix E.2.14 for details.

388 We observe minimal degradation when removing the original LibriSpeech ASR training data from
 389 the DLM training. Still, over-sampling the LibriSpeech data up to a point that one third of the
 390 data is the original ASR data does not change the performance. See Appendix E.2.15 for details.
 391 In comparison, when only using the original LibriSpeech ASR training data and no TTS data, we
 392 see a substantial degradation, even when generating large amount of data using data augmentation
 393 methods. See Appendix E.2.16 for details.

394 **Relevance of TTS-ASR Data.** Previous work used heuristics such as masking or random substi-
 395 tutions for pretraining of error correction models (Hrinchuk et al., 2020; Dutta et al., 2022; Ma et al.,
 396 2023a). We compare the DLM performance when trained on data generated via TTS-ASR versus
 397 heuristic error generation (E.2.17) in Table E.23: Training on TTS-ASR data is clearly superior,
 398 consistent to the findings of Gu et al. (2024).

400 4.3 ANALYSIS OF INFERENCE AND MODEL BEHAVIOR

401 **Decoding Methods.** Table 1 compares our different decoding methods (DLM greedy, DSR de-
 402 coding, DLM-sum). We note that the DLM greedy WER can be even worse than the ASR baseline
 403 (without LM). This is different to Gu et al. (2024), where the DLM greedy decoding clearly out-
 404 performs the ASR baseline. We assume that the different vocabulary (subwords vs. characters) is
 405 an important contributing factor to this difference (Appendix G.2). The DLM with DSR decoding
 406 is already slightly outperforming a standard LM. The DLM-sum decoding consistently outperforms
 407 DSR decoding. The prior contributes only minimally to DSR and DLM-sum performance. Beam
 408 size of 8 and 32 ASR hypotheses (in the sum in Equation (6)) seem to be sufficient for onepass
 409 DLM-sum decoding⁶. Figure 3b shows the DLM-sum recognition speed with respect to the number
 410 of ASR hypotheses used. We see that using more ASR hypotheses is generally faster and better. See
 411 Appendix E.3.1 for further comparisons.

412 **Search and Model Errors.** Counted search errors are $\leq 1\%$ across the board, while model error
 413 rates are significantly higher. Including the DLM beam (DSR) in rescoring nearly halves the Oracle
 414 WER versus using the ASR beam alone (DLM rescore). See Appendix E.3.2 for details.

415 **Training convergence behaviour.** Convergence of DSR and DLM-sum decoding methods during
 416 training is quite stable, already surpassing the ASR baseline after the first epoch of training. Greedy
 417 decoding is an unreliable indicator for training convergence. See Appendix E.3.3 for details.

418 **WER Distribution.** We group individual sentences into bins based on their WER, and compare the
 419 distribution of sentence WERs across different training data configurations. Notably, configurations
 420 with similar overall WER can exhibit distinct sentence-level distributions. See Appendix E.3.4 for
 421 details.

423 **Correlations.** We investigate correlations between training data metrics and DLM performance.
 424 For this, we collect the results of all ablation experiments, compute metrics on the their training
 425 data and final models, and create scatter plots (Figures E.20 to E.23). Greedy and DSR performance
 426 are weakly correlated, if at all. DSR and DLM-sum performance are strongly correlated. Our best
 427 DLMs have training data with a WER between 10% and 20%, but this is not a strong predictor of
 428 DLM performance. The correlation to DLM performance is a bit stronger with the measured LM
 429 perplexity of the training data. We calculate the expected calibration error (ECE) (Lee & Chang,
 430 2021), and find that our DLMs are quite well calibrated, with ECE values below 0.1. There does not
 431 seem to be a strong correlation between ECE and DLM performance however. The mean entropy

⁶When scales are tuned properly.

432 of the DLM output distribution has an almost linear relationship with ECE, and thus is not strongly
 433 correlated with DLM performance either. See Appendix E.3.5 for details.
 434

435 **Error Analysis by Categorization.** We analyze substitution errors, which make up the majority
 436 of mistakes, by categorizing them, and comparing ASR and DLM performance across these cate-
 437 gories. DLMs struggle more with rare words compared to common or medium-frequency words, but
 438 generally correct errors across all word frequencies about equally well. When categorized by part
 439 of speech (e.g., proper nouns, verbs, etc.), apart from statistically insignificant outliers, the DLM
 440 improves errors across all categories in a fairly uniform manner. See Appendix E.3.7 for details.
 441

442 **Correction vs. Degradation Analysis.** While advanced decoding methods like DSR and DLM-
 443 sum show clear improvements over greedy search, our analysis reveals a surprising reason for their
 444 effectiveness. The primary benefit of DSR over a greedy search is a *drastic reduction in miscor-
 445 rections* (newly introduced errors by the DLM over the ASR output) while maintaining a similar
 446 number of correct fixes. DLM-sum then further improves performance by also significantly increas-
 447 ing the number of correct fixes, with only a slight increase in miscorrections. See Appendix E.3.10
 448 for details.
 449

450 **Error Examples.** Manual inspection of the recognition output reveals that, under greedy decod-
 451 ing, hallucinations impact our DLMs quite significantly. In one instance, just four sentences alone
 452 account for an increase of 0.35% in absolute WER on the test-other set. We also note that DLMs
 453 show a tendency to correct more errors in longer sentences, and refrain from making corrections in
 454 shorter sentences. See Appendix E.3.11 for details.
 455

456 **Softmax Temperature.** Through our correlation study (Appendix E.3.5), we hypothesize that a
 457 higher entropy of the DLM output distribution leads to better performance in model combination
 458 decoding methods like DLM-sum. Artificially increasing the entropy of a baseline model to match
 459 that of our best model through softmax temperature does not improve performance though (Ap-
 460 pendix E.3.6).
 461

462 **Out-of-Domain Generalization.** DLMs generalize worse on out-of-domain (OOD) evaluation
 463 sets compared to standard LMs. See Appendix E.4.6, Table E.44.
 464

465 **Generalization to Other ASR Models.** We further test the generalization of the DLM to ASR
 466 outputs from another ASR model, different from the one used for DLM training data generation.
 467 Results are shown in Table E.45. We see that the DLM improves over the ASR baseline and standard
 468 LM even for the other ASR model. See Appendix E.4.7 for details.
 469

470 4.4 ABLATIONS ON MODEL AND TRAINING VARIATIONS

471 **Randomness.** We train three different DLMs with unique random seeds for weight initializa-
 472 tion to assess the statistical significance of our results. Performance on DSR and DLM-sum decoding
 473 stays within $\pm 0.06\%$ absolute WER around the mean. Greedy decoding results are less reliable. See
 474 Appendix E.4.1 for details.
 475

476 **Different Vocabularies.** We compare DLMs trained on char, spm128 and spm10k vocabularies.
 477 The spm10k vocabulary performs best, followed by spm128 and then char. This likely stems from
 478 the lower baseline performance of spm128 and char ASR models. See Appendix E.4.3 for details.
 479 We further discuss character vs. subword vocabularies in Appendix G.2.
 480

481 **Joint AED and CTC Model.** We design an auxiliary CTC loss in the DLM encoder for error
 482 correction, which is able to make (limited) insertion, substitution and deletion corrections. On the
 483 trained DLM, we run evaluations with joint AED and CTC decoding. Overall, we see no improve-
 484 ment over AED-only DLMs. See Appendix E.4.4 for details.
 485

486 **Dense k-Probability Input to DLM.** Following Section 3.4, we save the top $k = 5$ labels and
 487 probabilities from the ASR output. Results are shown in Table 5. DLM-sum is not applicable here,
 488 because the dense k-probability model does not condition on ASR hypotheses, but on the ASR
 489 output probabilities. We see much better greedy performance, and DSR roughly matches that of the
 490 baseline DLM-sum performance. This shows that the dark knowledge (Hinton et al., 2014) in the
 491 dense ASR output distribution provides additional useful information for the DLM. This confirms
 492 our hypothesis that the DLM can benefit from a richer input representation. See Appendix E.4.5 for
 493 further details.
 494

486
 487 Table 5: Dense k -probability input to DLM. Baseline model uses standard labelwise argmax from
 488 ASR model, while $k = 5$ experiment sees top 5 labels from label-synchronous search of ASR model.
 489 DLM-sum decoding is not applicable for dense-input models.

DLM	k	Decoding	WER [%]			
			dev-clean	dev-other	test-clean	test-other
None	-	greedy	1.75	4.13	2.03	4.44
Baseline	-	greedy	1.95	4.05	2.25	4.60
		DSR	1.54	3.54	1.77	3.84
		DLM-sum	1.45	3.45	1.76	3.69
Dense Input	5	greedy	1.49	3.66	1.75	3.91
		DSR	1.48	3.48	1.72	3.71
	10	greedy	1.47	3.65	1.73	3.85
		DSR	1.45	3.54	1.72	3.73

5 RELATED WORK

The core question is how the large amount of text-only data can be leveraged to improve performance of speech recognition. A popular approach is to train a separate LM on the text-only data, and combine it with the ASR model during inference time through shallow fusion, deep fusion or cold fusion (Toshniwal et al., 2018). A LM can also be used during training of the ASR model with minimum WER training (Prabhavalkar et al., 2018; Peyser et al., 2020; Meng et al., 2021b).

A straightforward approach to use text-only data is to generate synthetic audio using TTS systems, and then train the ASR model on this additional data, similar to backtranslation in neural machine translation (Hayashi et al., 2018; Rossenbach et al., 2020).

Another approach is to use error correction models (Tanaka et al., 2018; Hrinchuk et al., 2020; Peyghan et al., 2025). To train such a model, one needs pairs of (noisy hypothesis, correct) text. Audio is typically fed through an ASR model which then generates the noisy hypotheses. Text-to-speech (TTS) can additionally be used to increase the amount of audio data available for error correction model training (Guo et al., 2019; Gu et al., 2024). **A comparison of our results to prior work is shown in Table 2.**

Advances in large language models (LLMs) have also inspired research into using them for error correction (Ma et al., 2023b; 2025; Tur et al., 2024). LLMs can be used to pick the best hypothesis from an n-best list, or to directly generate corrected text from a single hypothesis.

6 CONCLUSION

Our comprehensive analysis leads to several findings:

- We investigated DLMs and show that they can outperform traditional LMs under data-constrained settings, given enough compute budget. The scaling behavior is similar to diffusion LMs.
- Our novel DLM-sum decoding method consistently outperforms greedy and DSR decoding.
- ASR + DLM decoding is faster than ASR + LM decoding.
- We achieve state-of-the-art results on LibriSpeech and Loquacious under a data-constrained setting.
- Providing the DLM with richer information about the ASR hypothesis space is beneficial, as shown by two findings: The improvements of dense k -probability input to the DLM in DSR decoding and the consistent improvements of DLM-sum decoding. We assume that using character-based hypotheses has a similar effect.
- We provide a fully open-source, reproducible pipeline to reproduce all the numbers reported in this work, i.e. for training the ASR models, TTS models, LMs and DLMs, data generation with TTS, all the used decoding strategies, and all the evaluations.

See Appendix G for further discussions.

540 7 REPRODUCIBILITY STATEMENT
541

542 We spend great effort to make our work reproducible. We release all code used for training and
543 evaluating our models, as well as all code for the complete pipeline, as well as the best model
544 checkpoints and generated data. The released code can generate every single number reported in
545 this paper, including all of the analysis. The code is publicly available at <https://anonymous.4open.science/r/2025-dlm/>.
546

547
548 REFERENCES
549

550 Edresson Casanova, Julian Weber, Christopher D Shulby, Arnaldo Candido Junior, Eren Gölge, and
551 Moacir A Ponti. YourTTS: Towards zero-shot multi-speaker TTS and zero-shot voice conversion
552 for everyone. In *International conference on machine learning*, pp. 2709–2720. PMLR, 2022.

553 Samrat Dutta, Shreyansh Jain, Ayush Maheshwari, Souvik Pal, Ganesh Ramakrishnan, and Preethi
554 Jyothi. Error correction in ASR using sequence-to-sequence models. arXiv:2202.01157, 2022.

555 Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation.
556 arXiv:1805.04833, 2018.

557 Marco Gaido, Mauro Cettolo, Matteo Negri, and Marco Turchi. CTC-based compression for direct
558 speech translation. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.), *Proceedings of the
559 16th Conference of the European Chapter of the Association for Computational Linguistics: Main
560 Volume*, pp. 690–696, Online, April 2021. Association for Computational Linguistics. doi: 10.
561 18653/v1/2021.eacl-main.57. URL <https://aclanthology.org/2021.eacl-main.57/>.

562 Alex Graves. Sequence transduction with recurrent neural networks. arXiv:1211.3711, 2012.

563 Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist tempo-
564 ral classification: labelling unsegmented sequence data with recurrent neural networks. In *Proc.
565 ICML*, pp. 369–376, Pittsburgh, PA, June 2006.

566 Zijin Gu, Tatiana Likhomanenko, He Bai, Erik McDermott, Ronan Collobert, and Navdeep
567 Jaitly. Denoising LM: Pushing the limits of error correction models for speech recognition.
568 arXiv:2405.15216, 2024. URL <https://doi.org/10.48550/arXiv.2405.15216>.

569 Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
570 Wang, Zhengdong Zhang, Yonghui Wu, and Ruoming Pang. Conformer: Convolution-augmented
571 transformer for speech recognition. In *Proc. Interspeech*, pp. 5036–5040, Shanghai, China, Oc-
572 tober 2020.

573 Jinxi Guo, Tara N Sainath, and Ron J Weiss. A spelling correction model for end-to-end speech
574 recognition. In *ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and
575 Signal Processing (ICASSP)*, pp. 5651–5655. IEEE, 2019.

576 Tomoki Hayashi, Shinji Watanabe, Yu Zhang, Tomoki Toda, Takaaki Hori, Ramon Astudillo, and
577 Kazuya Takeda. Back-translation-style data augmentation for end-to-end ASR. In *Proc. IEEE
578 SLT*, pp. 426–433, Athens, Greece, December 2018. IEEE.

579 Michael Hentschel, Yuta Nishikawa, Tatsuya Komatsu, and Yusuke Fujita. Keep decoding parallel
580 with effective knowledge distillation from language models to end-to-end speech recognisers. In
581 *ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing
582 (ICASSP)*, pp. 10876–10880. IEEE, 2024.

583 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Dark knowledge. Presented as the keynote in
584 BayLearn, 2014.

585 Takaaki Hori, Shinji Watanabe, and John Hershey. Joint CTC/attention decoding for end-to-end
586 speech recognition. In Regina Barzilay and Min-Yen Kan (eds.), *Proceedings of the 55th Annual
587 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 518–529,
588 Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/
589 P17-1048. URL <https://aclanthology.org/P17-1048/>.

594 Oleksii Hrinchuk, Mariya Popova, and Boris Ginsburg. Correction of automatic speech recognition
 595 with transformer sequence-to-sequence model. In *Icassp 2020-2020 ieee international conference*
 596 *on acoustics, speech and signal processing (icassp)*, pp. 7074–7078. IEEE, 2020.

597

598 Jaehyeon Kim, Sungwon Kim, Jungil Kong, and Sungroh Yoon. Glow-TTS: A generative flow for
 599 text-to-speech via monotonic alignment search. In *Advances in Neural Information Processing*
 600 *Systems*, volume 33, pp. 8067–8077, 2020.

601

602 Kwangyoun Kim, Felix Wu, Yifan Peng, Jing Pan, Prashant Sridhar, Kyu J Han, and Shinji Watan-
 603 abe. E-branchformer: Branchformer with enhanced merging for speech recognition. In *2022*
 604 *IEEE Spoken Language Technology Workshop (SLT)*, pp. 84–91. IEEE, 2023.

605

606 Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword
 607 tokenizer and detokenizer for neural text processing. arXiv:1808.06226, 2018.

608

609 Mun-Hak Lee and Joon-Hyuk Chang. Deep neural network calibration for E2E speech recognition
 610 system. In *Proc. Interspeech*, pp. 4064–4068, 2021.

611

612 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
 613 Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-
 614 training for natural language generation, translation, and comprehension. In Dan Jurafsky,
 615 Joyce Chai, Natalie Schluter, and Joel Tetraeault (eds.), *Proceedings of the 58th Annual Meet-
 616 ing of the Association for Computational Linguistics*, pp. 7871–7880, Online, July 2020. As-
 617 sociation for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.703. URL <https://aclanthology.org/2020.acl-main.703/>.

618

619 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *Proc. ICLR*, New
 620 Orleans, LA, May 2019.

621

622 Rao Ma, Mark J. F. Gales, Kate M. Knill, and Mengjie Qian. N-best T5: Robust ASR error correc-
 623 tion using multiple input hypotheses and constrained decoding space. In *Interspeech 2023*, pp.
 624 3267–3271, 2023a. doi: 10.21437/Interspeech.2023-1616.

625

626 Rao Ma, Mengjie Qian, Potsawee Manakul, Mark Gales, and Kate Knill. Can generative large
 627 language models perform ASR error correction? arXiv:2307.04172, 2023b.

628

629 Rao Ma, Mengjie Qian, Mark Gales, and Kate Knill. ASR error correction using large language
 630 models. *IEEE Transactions on Audio, Speech and Language Processing*, 2025.

631

632 Vimal Manohar, Daniel Povey, and Sanjeev Khudanpur. Semi-supervised maximum mutual infor-
 633 mation training of deep neural network acoustic models. In *Interspeech 2015*, pp. 2630–2634,
 634 2015. doi: 10.21437/Interspeech.2015-561.

635

636 Linghui Meng, Jin Xu, Xu Tan, Jindong Wang, Tao Qin, and Bo Xu. MixSpeech: Data augmentation
 637 for low-resource automatic speech recognition. In *Proc. IEEE ICASSP*, pp. 7008–7012, Toronto,
 638 Ontario, Canada, June 2021a. IEEE.

639

640 Zhong Meng, Yu Wu, Naoyuki Kanda, Liang Lu, Xie Chen, Guoli Ye, Eric Sun, Jinyu Li, and Yifan
 641 Gong. Minimum word error rate training with language model fusion for end-to-end speech
 642 recognition. arXiv:2106.02302, 2021b.

643

644 Jinjie Ni, Qian Liu, Longxu Dou, Chao Du, Zili Wang, Hang Yan, Tianyu Pang, and Michael Qizhe
 645 Shieh. Diffusion language models are super data learners. arXiv:2511.03276, 2025.

646

647 Frederico S Oliveira, Edresson Casanova, Arnaldo Candido Junior, Anderson S Soares, and Ar-
 648 lindo R Galvão Filho. CML-TTS: A multilingual dataset for speech synthesis in low-resource
 649 languages. In *International Conference on Text, Speech, and Dialogue*, pp. 188–199. Springer,
 650 2023.

651

652 Titouan Parcollet, Yuan Tseng, Shucong Zhang, and Rogier C. van Dalen. Loquacious set: 25,000
 653 hours of transcribed and diverse English speech recognition data for research and commercial use.
 654 In *Interspeech 2025*, pp. 4053–4057, 2025. doi: 10.21437/Interspeech.2025-720.

648 Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D. Cubuk, and
 649 Quoc V. Le. SpecAugment: A simple data augmentation method for automatic speech recogni-
 650 tion. In *Proc. Interspeech*, pp. 2613–2617, Graz, Austria, September 2019.

651

652 Mohammad Reza Peyghan, Fatemeh Rajabi, Saman Soleimani Roudi, Saeedreza Zouashkiani, Saj-
 653 jad Amini, and Shahrokh Ghaemmaghami. A survey on non-intrusive ASR refinement: From
 654 output-level correction to full-model distillation. arXiv:2508.07285, 2025.

655 Cal Peyer, Sepand Mavandadi, Tara N Sainath, James Apfel, Ruoming Pang, and Shankar Ku-
 656 mar. Improving tail performance of a deliberation E2E ASR model using a large text corpus.
 657 arXiv:2008.10491, 2020.

658

659 Rohit Prabhavalkar, Tara N Sainath, Yonghui Wu, Patrick Nguyen, Zhifeng Chen, Chung-Cheng
 660 Chiu, and Anjuli Kannan. Minimum word error rate training for attention-based sequence-to-
 661 sequence models. In *Proc. IEEE ICASSP*, pp. 4839–4843, Calgary, Alberta, Canada, April 2018.

662 Rohit Prabhavalkar, Takaaki Hori, Tara N Sainath, Ralf Schlüter, and Shinji Watanabe. End-to-
 663 end speech recognition: A survey. *IEEE/ACM Transactions on Audio, Speech, and Language
 664 Processing*, 32:325–351, 2023.

665

666 Mihir Prabhudesai, Mengning Wu, Amir Zadeh, Katerina Fragkiadaki, and Deepak Pathak. Diffu-
 667 sion beats autoregressive in data-constrained settings. In *The Thirty-ninth Annual Conference on
 668 Neural Information Processing Systems*, 2025. URL [https://openreview.net/forum?
 id=W5Ht05jf4c](https://openreview.net/forum?id=W5Ht05jf4c).

669

670 Jie Pu, Thai-Son Nguyen, and Sebastian Stüker. Multi-stage large language model correction for
 671 speech recognition. arXiv:2310.11532, 2023.

672

673 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 674 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 675 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

676

677 Nick Rossenbach, Albert Zeyer, Ralf Schlüter, and Hermann Ney. Generating synthetic audio data
 678 for attention-based speech recognition systems. In *IEEE International Conference on Acoustics,
 Speech, and Signal Processing*, pp. 7069–7073, Barcelona, Spain, May 2020.

679

680 Meet Soni, Ashish Panda, and Sunil Kumar Kopparapu. Generalized SpecAugment: Robust online
 681 augmentation technique for end-to-end automatic speech recognition. In *2024 Asia Pacific Signal
 682 and Information Processing Association Annual Summit and Conference (APSIPA ASC)*, pp. 1–5.
 683 IEEE, 2024.

684

685 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 686 Dropout: a simple way to prevent neural networks from overfitting. *The journal of machine
 687 learning research*, 15(1):1929–1958, 2014.

688

689 Tomohiro Tanaka, Ryo Masumura, Hirokazu Masataki, and Yushi Aono. Neural error corrective
 690 language models for automatic speech recognition. In *Interspeech*, pp. 401–405, 2018.

691

692 Shubham Toshniwal, Hao Tang, Liang Lu, and Karen Livescu. Multitask learning with low-level
 693 auxiliary tasks for encoder-decoder based speech recognition. In *Proc. Interspeech*, Stockholm,
 694 Sweden, August 2017.

695

696 Shubham Toshniwal, Anjuli Kannan, Chung-Cheng Chiu, Yonghui Wu, Tara N Sainath, and Karen
 697 Livescu. A comparison of techniques for language model integration in encoder-decoder speech
 698 recognition. In *Proc. IEEE SLT*, pp. 369–375, Athens, Greece, December 2018.

699

700 László Tóth, György Kovács, and Dirk Van Compernolle. A perceptually inspired data augmenta-
 701 tion method for noise robust cnn acoustic models. In *International Conference on Speech and
 Computer*, pp. 697–706. Springer, 2018.

702

703 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 704 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 705 tion and fine-tuned chat models. arXiv:2307.09288, 2023.

702 Ada Defne Tur, Adel Moumen, and Mirco Ravanelli. Progres: Prompted generative rescoring on asr
 703 n-best. In *2024 IEEE Spoken Language Technology Workshop (SLT)*, pp. 600–607. IEEE, 2024.
 704

705 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 706 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in neural information
 707 processing systems*, volume 30, 2017.

708 Shinji Watanabe, Takaaki Hori, Suyoun Kim, John R Hershey, and Tomoki Hayashi. Hybrid
 709 CTC/attention architecture for end-to-end speech recognition. *IEEE Journal of Selected Topics in
 710 Signal Processing*, 11(8):1240–1253, 2017.

711 Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J. Weiss, Ye Jia, Zhifeng Chen, and Yonghui
 712 Wu. LibriTTS: A corpus derived from LibriSpeech for text-to-speech. In *Interspeech 2019*, pp.
 713 1526–1530, 2019. doi: 10.21437/Interspeech.2019-2441.

714 Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
 715 risk minimization. arXiv:1710.09412, 2017.

716

718 CONTENTS

721 1	Introduction	1
722		
723 2	Denoising Language Model	2
724		
725 2.1	Decoding Strategies	2
726		
727 3	Experimental Design	3
728		
729 3.1	DLM Training Data Sources and Generation Pipeline	3
730		
731 3.2	Models	4
732		
733 3.3	Data Augmentation Strategies	4
734		
733 3.4	Alternative DLM Inputs: Dense k-Probability	5
735 4	Results and Analysis	5
736		
737 4.1	DLM vs. Standard Language Model	5
738		
739 4.2	Impact of Training Data Generation Strategies	7
740		
741 4.3	Analysis of Inference and Model Behavior	8
742		
741 4.4	Ablations on Model and Training Variations	9
743 5	Related Work	10
744		
745 6	Conclusion	10
746		
747 7	Reproducibility statement	11
748		
749 A	Abbreviations and Notation	17
750		
751 B	Differences to Previous Work	17
753		
754 C	Decoding Details	18
755		
	C.1 Time-Synchronous Search	18

756	C.2	Label-Synchronous Search	18
757	C.3	Beam Search	19
758	C.4	Greedy Search	19
759	C.5	Rescoring	19
760	C.6	One-pass Search	19
761	C.7	Optimizing Scales	19
762	C.8	CTC Soft Collapsing	19
763	C.9	DLM-Sum Decoding Details	19
764			
765	D	Experimental Design Details	20
766	D.1	Models	20
767	D.1.1	ASR Model Details	20
768	D.1.2	LM Details	21
769	D.1.3	Prior	21
770	D.1.4	TTS Details	22
771	D.1.5	DLM Details	24
772	D.2	Data Augmentation Strategies	25
773	D.2.1	Early ASR checkpoints	26
774	D.2.2	SpecAugment	26
775	D.2.3	Dropout	27
776	D.2.4	Token Substitution	27
777	D.2.5	Mixup	28
778	D.2.6	Sampling from ASR Model	29
779	D.2.7	Other Data Augmentations	30
780	D.2.8	Combining Multiple Data Augmentation Techniques	30
781	D.3	Alternative Training Inputs: Dense k-Probability	30
782			
783	E	Results and Analysis Details	31
784	E.1	DLM vs. Standard LM	32
785	E.2	Impact of Training Data Generation Strategies	33
786	E.2.1	Combining Data Augmentation Techniques	33
787	E.2.2	Training longer	33
788	E.2.3	TTS Noise & TTS Length	34
789	E.2.4	Combining TTS Systems	36
790	E.2.5	Early ASR Checkpoints	36
791	E.2.6	SpecAugment	37
792	E.2.7	Dropout	37
793	E.2.8	Token Substitution	38
794	E.2.9	Mixup	38

810	E.2.10 Sampling from ASR Model	38
811	E.2.11 Resplit Subwords	39
812	E.2.12 Additional Phoneme Representations	40
813	E.2.13 ASR trained with and without TTS data	40
814	E.2.14 More Training Data	41
815	E.2.15 LibriSpeech ASR Training Data	42
816	E.2.16 Only LibriSpeech ASR Training Data	43
817	E.2.17 Relevance of TTS-ASR Data	44
818	E.3 Analysis of Inference and Model Behavior	45
819	E.3.1 Decoding Methods	45
820	E.3.2 Search and Model Errors	45
821	E.3.3 Evaluation over the course of training	47
822	E.3.4 WER Distribution	47
823	E.3.5 Correlations	63
824	E.3.6 Softmax Temperature	65
825	E.3.7 Error Analysis by Categorization	68
826	E.3.8 Word Frequency	68
827	E.3.9 Part of Speech	69
828	E.3.10 Correction vs. Degradation Analysis	70
829	E.3.11 Error Examples	70
830	E.4 Ablations on Model and Training Variations	72
831	E.4.1 Randomness	72
832	E.4.2 Looping the Error Correction Model	72
833	E.4.3 Different Vocabularies	73
834	E.4.4 Joint AED and CTC Model	74
835	E.4.5 Dense k-Probability Input to DLM	75
836	E.4.6 Out-of-Domain Generalization.	76
837	E.4.7 Generalization to Other ASR Models	76
838	E.5 Our Best Models	76
839	E.6 Experiments on Another Corpus: Loquacious	77
840	F Implementation Details	78
841	F.1 Bugs	78
842	G Extended Conclusions & Discussion	78
843	G.1 Comparison to Diffusion Language Models	79
844	G.2 Character vs. Subword Vocabulary	80
845	H Usage of Large Language Models	80

864
865 Table B.1: Overview of main differences and similarities between our DLM implementation and
866 that of [Gu et al. \(2024\)](#).
867

Aspect	Our work	Gu et al. (2024)
Vocabulary	spm10k, spm128, char	char
DLM Architecture	Transformer enc-dec	Transformer enc-dec
Encoder layers	24	16
Decoder layers	8	4
Model dim	1024	1280
Size	466M	484M
Positional Emb	Rotary	Sinus
Feedforward	SwiGLU	ReLU
Batch Size	20k tokens	160k tokens (distributed)
GPUs	$1 \times \text{H100 96GB}$	$8 \times \text{A100 80GB}$
LR Schedule	One Cycle	Step decay
ASR architecture	Conformer-CTC	Transformer CTC
Other	-	Dropout and Layer dropout 10%

882

A ABBREVIATIONS AND NOTATION

ASR	Automatic Speech Recognition
LM	Language Model
DLM	Denoising Language Model
TTS	Text-To-Speech
WER	Word Error Rate
DSR	Denoising Speech Recognition
POS	Part Of Speech
CTC	Connectionist Temporal Classification (Graves et al., 2006)
Conformer	Convolutional Transformer (Gulati et al., 2020)

$x_1^T = x_1 \dots x_T$	input feature sequence of length T (audio features)
$a_1^S = a_1 \dots a_S$	label sequence of length T
$\tilde{a}_1^{\tilde{S}} = \tilde{a}_1 \dots \tilde{a}_{\tilde{S}}$	noisy label sequence of length \tilde{S} from the ASR model
$n\text{-best}[p_{\text{ASR}}(\cdot x_1^T)]$	n most probable ASR hypotheses
$\mathcal{U}(\min, \max)$	uniform random distribution between min and max

899

B DIFFERENCES TO PREVIOUS WORK

900 An overview of the main differences and similarities from our implementation to [Gu et al. \(2024\)](#) is
901 shown in Table B.1. Note that we varied the DLM architecture and size in preliminary experiments
902 and found that the chosen architecture and size worked best in our setting. We also tested the exact
903 same architecture as [Gu et al. \(2024\)](#) (16 encoder layers, 4 decoder layers, model dimension 1280;
904 also positional encoding, feedforward style), but it performed worse in our setting.
905

906 After all our experiments (compare Table 1), we still see some gap to [Gu et al. \(2024\)](#) in absolute
907 WER results. Some relevant differences which could explain this gap are the following:
908

- 909 • [Gu et al. \(2024\)](#) uses a character vocabulary, while we mostly use a subword vocabulary.
910 See Appendix G.2 for further discussion on the difference of character and subword vocab-
911 uaries.
- 912 • Another aspect is that [Gu et al. \(2024\)](#) uses a TTS model trained on external data, while
913 our best result is achieved with only LibriSpeech data. But our results using the same TTS
914 model (Appendix E.2.4) only shows small improvements. Also, [Gu et al. \(2024\)](#) reports
915 that the differences between TTS models does not have such a big impact (see Table 7 in
916 [Gu et al. \(2024\)](#), where the relevant WER for DSR decoding is between 3.6% and 3.8%).
- 917 • Further, [Gu et al. \(2024\)](#) trains for more epochs. The exact number of epochs is not stated
918 in [Gu et al. \(2024\)](#) and difficult to estimate from the details that they provide, but given

Figure C.1: Speed comparison in terms of real-time factor (RTF) of time-synchronous and label-synchronous search for ASR CTC + LM one-pass decoding.

their specified LR schedule and batch size, we estimate that they train for about 40 epochs, but this might not be accurate.

C DECODING DETAILS

Decoding is the search procedure to find $\arg \max_{a_1^S}$ given some scoring (for example ASR + LM (Equation (8)), ASR + DLM (DSR, Equation (3)), or ASR + weighted DLM (DLM-sum, Equation (7))).

C.1 TIME-SYNCHRONOUS SEARCH

Once an ASR model (with CTC) is involved in the score (as in most of our experiments, except DLM alone), we can use *time-synchronous search* (where the outer loop goes over time frames $t = 1, \dots, T$ (Graves, 2012; Prabhavalkar et al., 2023)). We make use of the *maximum-approximation* of CTC (Equation (10)) in this case. During search, recombine hypotheses with the same label sequence but different alignment label sequences (including blank labels) by maximum approximation.

C.2 LABEL-SYNCHRONOUS SEARCH

In all cases, we can use *label-synchronous search* (where the outer loop goes over labels $s = 1, \dots, S$ (Prabhavalkar et al., 2023)). Label-synchronous search also works with CTC (Hori et al., 2017). In case of label-synchronous search with CTC, we do *not* use the *maximum approximation* of CTC but instead compute the exact CTC probability (Hori et al., 2017). So, our label-synchronous search results can potentially be slightly better for CTC than our time-synchronous search results, while time-synchronous search is more standard for CTC in the ASR community. However, in our experiments, we don't really see any difference between time-synchronous and label-synchronous search for CTC+LM combination when using the same beam size.

However, we see a difference in compute time, which depends on the LM size, encoder sequence length, vocabulary size. See Figure C.1 for a speed comparison of time-synchronous and label-synchronous search for ASR CTC + LM one-pass decoding. We can see that label-synchronous search is generally faster. This is the case for our large 32 layer Transformer LM. Also, this uses CTC soft collapsing (Appendix C.8) to reduce the encoder sequence length, but consistently for both time-synchronous and label-synchronous search.

972
973

C.3 BEAM SEARCH

974
975
976
977

In both label-synchronous search or time-synchronous search, for each step, we have a fixed number of active hypotheses, which is the *beam size*, which is just 1 in the first step, and then expands to some fixed beam size. Thus, the search is also called *beam search*. See [Prabhavalkar et al. \(2023\)](#) for more.

978
979
980
981
982
983

C.4 GREEDY SEARCH

984
985
986
987
988

This is beam search with beam size 1. It means that in every single step, we take the arg max over the possible next labels. This can be done with time-synchronous search or label-synchronous search.

989
990
991
992
993

For time-synchronous search for CTC using the maximum approximation (Equation (10)), the solution becomes trivial: We just take the most probable alignment label (including blank) at each time step t , and this gives us the final alignment label sequence. Then we remove blanks and merge repeated labels to get the final label sequence. This is exactly what is usually called *greedy decoding* for CTC.

994
995

C.5 RESCORING

996
997
998
999

The search can be done first with CTC only (or with the DLM only), to generate an N-best list of hypotheses, which is then rescored with the LM or DLM. This is called *rescoring*.

1000

C.6 ONE-PASS SEARCH

1001

Alternatively, the LM or DLM can be integrated into the search itself, which is called *one-pass* search. This can be done both with time-synchronous search and label-synchronous search.

1002

Our DLM-sum decoding results are all with one-pass label-synchronous search.

1003
1004
1005
1006
1007
1008
1009
1010

The CTC+LM one-pass results use time-synchronous search, as this is more consistent to what is usually done in the ASR community. In our experiments, we don't really see any difference between time-synchronous and label-synchronous search for CTC+LM combination.

1011
1012
1013

C.7 OPTIMIZING SCALES

1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

When we combine multiple models in the score, we usually use some scale factors (e.g. λ_{LM} , λ_{prior} in Equation (8)). We usually generate an N-best list using only the CTC model (or also with the DLM, and then combine it with the CTC hypotheses), then we score those hypotheses which each model individually (rescoring), and then tune the scale factors on the N-best list on the validation set (LibriSpeech dev-other). After that, we use the tuned scale factors for the final evaluation on the other test sets.

1026

C.8 CTC SOFT COLLAPSING

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
102100
102101
102102
102103
102104
102105
102106
102107
102108
102109
102110
102111
102112
102113
102114
102115
102116
102117
102118
102119
102120
102121
102122
102123
102124
102125
102126
102127
102128
102129
102130
102131
102132
102133
102134
102135
102136
102137
102138
102139
102140
102141
102142
102143
102144
102145
102146
102147
102148
102149
102150
102151
102152
102153
102154
102155
102156
102157
102158
102159
102160
102161
102162
102163
102164
102165
102166
102167
102168
102169
102170
102171
102172
102173
102174
102175
102176
102177
102178
102179
102180
102181
102182
102183
102184
102185
102186
102187
102188
102189
102190
102191
102192
102193
102194
102195
102196
102197
102198
102199
102200
102201
102202
102203
102204
102205
102206
102207
102208
102209
102210
102211
102212
102213
102214
102215
102216
102217
102218
102219
102220
102221
102222
102223
102224
102225
102226
102227
102228
102229
102230
102231
102232
102233
102234
102235
102236
102237
102238
102239
102240
102241
102242
102243
102244
102245
102246
102247
102248
102249
102250
102251
102252
102253
102254
102255
102256
102257
102258
102259
102260
102261
102262
102263
102264
102265
102266
102267
102268
102269
102270
102271
102272
102273
102274
102275
102276
102277
102278
102279
102280
102281
102282
102283
102284
102285
102286
102287
102288
102289
102290
102291
102292
102293
102294
102295
102296
102297
102298
102299
102300
102301
102302
102303
102304
102305
102306
102307
102308
102309
102310
102311
102312
102313
102314
102315
102316
102317
102318
102319
102320
102321
102322
102323
102324
102325
102326
102327
102328
102329
102330
102331
102332
102333
102334
102335
102336
102337
102338
102339
102340
102341
102342
102343
102344
102345
102346
102347
102348
102349
102350
102351
102352
102353
102354
102355
102356
102357
102358
102359
102360
102361
102362
102363
102364
102365
102366
102367
102368
102369
102370
102371
102372
102373
102374
102375
102376
102377
102378
102379
102380
102381
102382
102383
102384
102385
102386
102387
102388
102389
102390
102391
102392
102393
102394
102395
102396
102397
102398
102399
102400
102401
102402
102403
102404
102405
102406
102407
102408
102409
102410
102411
102412
102413
102414
102415
102416
102417
102418
102419
102420
102421
102422
102423
102424
102425
102426
102427
102428
102429
102430
102431
102432
102433
102434
102435
102436
102437
102438
102439
102440
102441
102442
102443
102444
102445
102446
102447
102448
102449
102450
102451
102452
102453
102454
102455
102456
102457
102458
102459
102460
102461
102462
102463
102464
102465
102466
102467
102468
102469
102470
102471
102472
102473
102474
102475
102476
102477
102478
102479
102480
102481
102482
102483
102484
102485
102486
102487
102488
102489
102490
102491
102492
102493
102494
102495
102496
102497
102498
102499
102500
102501
102502
102503
102504
102505
102506
102507
102508
102509
102510
102511
102512
102513
102514
102515
102516
102517
102518
102519
102520
102521
102522
102523
102524
102525
102526
102527
102528
102529
102530
102531
102532
102533
102534
102535
102536
102537
102538
102539
102540
102541
102542
102543
102544
102545
102546
102547
102548
102549
102550
102551
102552
102553
102554
102555
102556
102557
102558
102559
102560
102561
102562
102563
102564
102565
102566
102567
102568
102569
102570
102571
102572
102573
102574
102575
102576
102577
102578
102579
102580
102581
102582
102583
102584
102585
102586
102587
102588
102589
102590
102591
102592
102593
102594
102595
102596
102597
102598
102599
102600
102601
102602
102603
102604
102605
102606
102607
102608
102609
102610
102611
102612
102613
102614
102615
102616
102617
102618
102619
102620
102621
102622
102623
102624
102625
102626
102627
102628
102629
102630
102631
102632
102633
102634
102635
102636
102637
102638
102639
102640
102641
102642
102643
102644
102645
102646
102647
102648
102649
102650
102651
102652
102653
102654
102655
102656
102657
102658
102659
102660
102661
102662
102663
102664
102665
102666
102667
102668
102669
102670
102671
102672
102673
102674
102675
102676
102677
102678
102679
102680
102681
102682
102683
102684
102685
102686
102687
102688
102689
102690
102691
102692
102693
102694
102695
102696
102697
102698
102699
102700
102701
102702
102703
102704
102705
102706
102707
102708
102709
102710
102711
102712
102713
102714
102715
102716
102717
102718
102719
102720
102721
102722
102723
102724
102725
102726
102727
102728
102729
102730
102731
102732
102733
102734
102735
102736
102737
102738
102739
102740
102741
102742
102743
102744
102745
102746
102747
102748
102749
102750
102751
102752
102753
102754
102755
102756
102757
102758
102759
102760
102761
102762
102763
102764
102765
102766
102767
102768
102769
102770
102771
102772
102773
102774
102775
102776
102777
102778
102779
102780
102781
102782
102783
102784
102785
102786
102787
102788
102789
102790
102791
102792
102793
102794
102795
102796
102797
102798
102799
102800
102801
102802
102803
102804
102805
102806
102807
102808
102809
102810
102811
102812
102813
102814
102815
102816
102817
102818
102819
102820
102821
102822
102823
102824
102825
102826
102827
102828
102829
102830
102831
102832
102833
102834
102835
102836
102837
102838
102839
102840
102841
102842
102843
102844
102845
102846
102847
102848
102849
102850
102851
102852
102853
102854
102855
102856
102857
102858
102859
102860
102861
102862
102863
102864
102865
102866
102867
102868
102869
102870
102871
102872
102873
102874
102875
102876
102877
102878
102879
102880
102881
102882
102883
102884
102885
102886
102887
102888
102889
102890
102891
102892
102893
102894
102895
102896
102897
102898
102899
102900
102901
102902
102903
102904
102905
102906
102907
102908
102909
102910
102911
102912
102913
102914
102915
102916
102917
102918
102919
102920
102921
102922
102923
102924
102925
102926
102927
102928
102929
102930
102931
102932
102933
102934
102935
102936
102937
102938
102939
102940
102941
102942
102943
102944
102945
102946
102947
102948
102949
102950
102951
102952
102953
102954
102955
102956
102957
102958
102959
102960
102961
102962
102963
102964
102965
102966
102967
102968
102969
102970
102971
102972
102973
102974
102975
102976
102977
102978
102979
102980
102981
102982
102983
102984
102985
102986
102987
102988
102989
102990
102991
102992
102993
102994
102995
102996
102997
102998
102999
102100
102101
102102
102103
102104
102105
102106
102107
102108
102109
102110
102111
102112
102113
102114
102115
102116
102117
102118
102119
102120
102121
102122
102123
102124
102125
102126
102127
102128
102129
102130
102131
102132
102133
102134
102135
102136
102137
102138
102139
102140
102141
102142
102143
102144
102145
102146
102147
102148
102149
102150
102151
102152
102153
102154
102155
102156
102157
102158
102159
102160
102161
102162
102163
102164
102165
102166
102167
102168
10216

1026 The first search on the ASR model is done with time-synchronous beam search to get the N-best list
 1027 of ASR hypotheses. There can be potentially different alignment label sequences for the same label
 1028 sequence (after merging repeated labels and removing blanks). We also tested label-synchronous
 1029 search for this step, or some sampling variants, to get a more diverse set of hypotheses, but we did
 1030 not see any consistent improvements.

1031 The second search for the final combined score is done with one-pass label-synchronous beam
 1032 search.

1034 D EXPERIMENTAL DESIGN DETAILS

1036 Here we provide more details about our experimental design (Section 3).

1038 D.1 MODELS

1040 D.1.1 ASR MODEL DETAILS

1042 **Model Details.** We use a Conformer encoder (Gulati et al., 2020). The feedforward layers use
 1043 ReLu squared activation function. We use a convolutional frontend consisting of three convolutional
 1044 layers as with kernel sizes 3, 3, 3, strides in the time dimension 1, 3, 2 and 1, 1, 1 in the frequency
 1045 dimension, and max pooling of 2 for the frequency dimension only in the first layer. For the char
 1046 and spm128 models we use stride 1, 3, 1 to get less downsampling. Out dims are 32, 64, 64. We use
 1047 log mel filterbank features with 80 channels, 25ms window size and 10ms step size and batch norm
 1048 over the feature dimension.

1049 This is a standard CTC ASR model (Graves et al., 2006): The model output is a linear layer to the
 1050 vocabulary size plus one for the CTC blank symbol, followed by softmax, resulting in the probability
 1051 distribution $p_{\text{ASR},t}(y_t \mid x_1^T)$ over the vocabulary including blank at each output time step t . The
 1052 sequence probability is the given as

$$1053 \quad 1054 \quad p_{\text{ASR}}(a_1^S \mid x_1^T) = \sum_{y_1^{T'}: a_1^S} \prod_{t=1}^{T'} p_{\text{ASR},t}(y_t \mid x_1^T), \quad (9)$$

1057 where the sum is over all sequences $y_1^{T'}$ that map to a_1^S after removing blanks and merging repeated
 1058 symbols. Due to downsampling in the encoder (by striding in the convolutional frontend), we have
 1059 $T' = \lceil \frac{T}{6} \rceil$.

1060 In some cases, we use the maximum approximation:

$$1062 \quad 1063 \quad p_{\text{ASR}'}(a_1^S \mid x_1^T) = \max_{y_1^{T'}: a_1^S} \prod_{t=1}^{T'} p_{\text{ASR},t}(y_t \mid x_1^T). \quad (10)$$

1065 **Training Details.** The TTS audio we use for ASR training is generated using our Glow-TTS model
 1066 (Section 3.2) with constant noise scale 0.7 and length scale 1.0 for all of the LibriSpeech LM text
 1067 (800M words). The noise scale parameter of the TTS data is tuned to optimize performance of ASR
 1068 models trained on this data, as measured by WER on LibriSpeech dev-other. This results in about
 1069 75k hours of synthetic audio. Due to the large amount of TTS data, we disperse it over multiple
 1070 epochs, such that each epoch contains a subset of $\frac{1}{75}$ of the TTS data (about 1000h) and the entire
 1071 LibriSpeech ASR 960h training data. We train for 100 epochs in total, which means that we see
 1072 about 96k hours of the LibriSpeech ASR 960h data and about 100k hours of TTS data in total,
 1073 i.e. about 1:1 ratio of real to synthetic data, with about 200k hours of audio training data in total.

1074 Dropout of 0.1 is applied to prevent overfitting. The models are trained with the AdamW optimizer
 1075 and 1e-2 weight decay with batch size 16.6min (spm10k) or 8.3min (char, spm128) for 100 epochs,
 1076 and global gradient clipping of 5.0. To improve memory efficiency, we use bfloat16 for training.
 1077 We use one cycle learning rate schedule with linear increase from 1e-5 to 1e-3 lr in the first 45%
 1078 of training, then linear decrease to 1e-5 at 90% of training then linear decrease to 1e-6 to the end
 1079 of training. Audios that are longer than 19.5s in length are removed from the dataset. Input audio
 is speed perturbed with factors 0.7, 0.8, ..., 1.1, and we use SpecAugment (Park et al., 2019)

Table D.1: Word error rates of our Conformer baseline models on LibriSpeech dev and test sets. Additionally we report the WER on TTS audios generated with our Glow-TTS system (last column) with noise scale $\sim \mathcal{U}(0.3, 0.9)$ and length scale $\sim \mathcal{U}(0.7, 1.1)$, both uniform random sampled for each sentence. The ASR model 'spm10k' is only trained on LibriSpeech ASR 960h, while all other models had additional TTS data in their training data (see text for details). Number of Parameters includes auxiliary decoder and CTC losses in the encoder.

ASR Baselines	Number of Parameters	WER [%]				
		dev-clean	dev-other	test-clean	test-other	tts
spm10k	471M	2.29	5.02	2.42	5.33	8.73
spm10k (TTS)	471M	1.75	4.13	2.03	4.44	2.17
char (TTS)	435M	1.83	4.56	1.98	4.78	2.55
spm128 (TTS)	435M	1.79	4.41	1.94	4.55	2.42

Table D.2: LM performance (perplexity (PPL) on spm10k level) on LibriSpeech dev-other for different LM architectures and number of training epochs.

Model	Num Epochs	PPL
n8-d1024	5	37.2
n32-d1024	5	33.9
n32-d1024	10	34.4
n32-d1280	5	32.9

as additional data augmentation. For the SentencePiece model we randomly stop tokenizing mid-word with 1% probability to stochastically generate non-deterministic subword splits. An auxiliary decoder with 6 layers and model dimension 512 is used during training as per [Hentschel et al. \(2024\)](#). Additionally an auxiliary CTC loss is applied at layer 4 and 8 of the encoder.

Most hyperparameters of our ASR are hand-tuned on dev-other, resulting in a slight overfit to the validation sets.

Performance. The performance of our ASR models and their parameter count is shown in Table D.1.

D.1.2 LM DETAILS

The models are trained with AdamW optimizer ([Loshchilov & Hutter, 2019](#)) and 1e-2 weight decay with batch size 20k, 15k tokens for 5 epochs on LibriSpeech LM corpus, and global gradient clipping of 5.0. We use cross entropy loss, which is averaged over all sequences and tokens in a batch. The learning rate schedule is one cycle with linear increase from 1e-5 to 1e-3 lr in the first 45% of training, then linear decrease to 1e-5 at 90% of training, then linear decrease to 1e-6 to the end of training. See Table D.2 for perplexities (PPL) of our LMs on LibriSpeech dev-other.

The combined ASR + LM results are computed with shallow fusion and internal LM subtraction, and scales (λ_{LM} , λ_{prior}) are tuned on LibriSpeech dev-other. See Tables D.3, E.1 and E.2 for results.

D.1.3 PRIOR

The prior probability $p_{prior}(a_1^S)$ is estimated from the ASR model. We take the average of $p_t(y | x_1^T)$ over all frames of the training dataset, i.e.

$$p_{\text{framewise-prior}}(y) = \frac{1}{\sum_{T', x_1^T \in \mathcal{D}} T'} \sum_{T', x_1^T \in \mathcal{D}} \sum_{t=1}^{T'} p_{ASR,t}(y | x_1^T) \quad (11)$$

following [Manohar et al. \(2015\)](#). This method is sometimes referred to as the *softmax average*. This is a context-independent framewise prior over the vocabulary including the CTC blank symbol.

1134
 1135 Table D.3: Word error rates of our spm10k (TTS) ASR baseline model with external language
 1136 model decoding on LibriSpeech dev and test sets. Rescoring refers to the two-pass approach where
 1137 an ASR n-best list is rescored. The one-pass approach uses joint decoding with shallow fusion.
 1138 n8-d1024 refers to a Transformer decoder-only LM with 8 decoder blocks and model dimension
 1139 1024, other LMs are named accordingly. The LMs are trained for 5 epochs here. LM n8-d1024
 1139 uses $\lambda_{LM} \approx 0.37$, $\lambda_{prior} \approx 0.27$, and n32-d1024 uses $\lambda_{LM} \approx 0.42$, $\lambda_{prior} \approx 0.28$.

LM	Number of Parameters	Decoding	WER [%]			
			dev-clean	dev-other	test-clean	test-other
None	0	-	1.75	4.13	2.03	4.44
n8-d1024 LM	113M	rescoring	1.63	3.59	1.83	3.90
		one-pass	1.62	3.53	1.81	3.82
n32-d1024 LM	422M	rescoring	1.59	3.57	1.80	3.84
		one-pass	1.56	3.41	1.73	3.70

1140
 1141
 1142 We define a context-independent labelwise prior by removing the blank symbol and renormalizing:
 1143
 1144

$$p_{\text{labelwise-prior}}(a) = \frac{p_{\text{framewise-prior}}(a)}{\sum_{a' \in \mathcal{V}} p_{\text{framewise-prior}}(a')} \quad (12)$$

1145 for $a \in \mathcal{V}$, where \mathcal{V} is the vocabulary without the CTC blank symbol.
 1146

1147 The prior probability of a (non-blank) label sequence is then
 1148

$$p_{\text{prior}}(a_1^S) = \prod_{s=1}^S p_{\text{labelwise-prior}}(a_s). \quad (13)$$

1149 D.1.4 TTS DETAILS

1150
 1151 **Glow-TTS.** Our Glow-TTS system is a normalizing flow-based generative model utilizing a bi-
 1152 directional mapping between audio features and latent variables. The latent variable for each frame
 1153 is sampled from a Gaussian distribution, parameterized by a text encoder model. For each input
 1154 token, the text encoder predicts mean and variance vectors. Then the number of output frames for
 1155 each input token is determined by a duration model, and the distribution parameters are repeated
 1156 accordingly for each position. After sampling the latent variable for each position, the spectrograms
 1157 are computed via the inverse of the normalizing flow function.
 1158

1159 The Glow-TTS model has two straightforward ways to adjust the output of the TTS system: length
 1160 scale and temperature.
 1161

1162 The length scale is a multiplicative factor applied to the predicted durations of each input token.
 1163 We observe that the TTS produces well recognizable audio for length scales between 0.6 and 2.0,
 1164 with the WER increasing considerably outside this range (cf. Figure D.1). The non-TTS trained
 1165 ASR model seems to be more robust to slower speech (higher length scale) than the TTS-trained
 1166 ASR model, which may be due to the TTS training data having a smaller proportion of slow speech
 1167 compared to the LibriSpeech ASR training data⁷.
 1168

1169 Temperature (from here on called noise scale) is a multiplicative factor applied to the standard
 1170 deviation of the predicted latent distribution. Consider the sampling procedure for the latent variable
 1171 z in the Glow-TTS model:
 1172

$$z \sim \mathcal{N}(\mu, (\sigma\tau)^2) \quad (14)$$

$$z = \mu + \sigma\tau \cdot \epsilon \text{ with } \epsilon \sim \mathcal{N}(0, 1) \quad (15)$$

1173 where z is the sampled latent variable, μ and σ are the mean and standard deviation vectors of the
 1174 latent distribution predicted by the text encoder model, $\tau \in \mathbb{R}^+$ is the noise scale hyperparameter
 1175 (temperature), and ϵ is a vector of standard normal random variables. Increasing the noise scale τ
 1176 increases the variance of the latent distribution, which leads to more diverse outputs. Noise scales
 1177

1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276

1188 Table D.4: WER of training data, ablation over TTS Length Scale uniformly distributed. TTS Noise
 1189 scale $\tau \sim \mathcal{U}(0.3, 0.9)$ is used.
 1190

TTS Length Scale over a uniform distribution	DLM Training Data WER [%]	
	spm10k	spm10k (TTS)
	Glow-TTS	Glow-TTS
$\mathcal{U}(1.0, 1.0)$	7.46	1.88
$\mathcal{U}(0.7, 1.1)$	8.73	2.17
$\mathcal{U}(0.6, 2.0)$	8.04	2.16
$\mathcal{U}(0.5, 2.5)$	9.31	3.18
$\mathcal{U}(0.4, 3.0)$	12.06	6.90

1199 Table D.5: WER of training data, ablation over TTS Length Scale. TTS Noise scale $\tau \sim \mathcal{U}(0.3, 0.9)$
 1200 is used.
 1201

TTS Length Scale	DLM Training Data WER [%]	
	spm10k	spm10k (TTS)
	Glow-TTS	Glow-TTS
0.2	96.09	96.47
0.4	70.33	54.31
0.5	36.28	14.64
0.6	19.34	5.17
0.8	9.83	2.39
1.0	7.46	1.88
1.2	6.72	1.74
1.4	6.58	1.76
2.0	7.85	2.72
2.5	11.43	8.85
3.0	18.41	26.85
3.5	28.63	51.29
4.0	40.12	72.52

1218
 1219 up to 0.8 seem to produce well recognizable audio for the TTS-trained ASR model, while the non-
 1220 TTS trained ASR model has already doubled its WER at that point (cf. Figure D.2). Again, the
 1221 TTS-trained ASR model performs better than the non-TTS trained model on the noise parameters it
 1222 has seen during training.
 1223

1224 We generate TTS audio with different length scales and measure the WER of the resulting ASR
 1225 hypotheses, shown in Figure D.1. WER for different levels of noise scale is shown in Figure D.2.
 1226

1227 **YourTTS.** We download the YourTTS model from the public Coqui-ai Github repository⁸ and use
 1228 it in its default configuration (unless otherwise stated). The YourTTS model has been trained on the
 1229 LibriTTS (Zen et al., 2019) and CML-TTS (Oliveira et al., 2023) datasets.
 1230

1231 Similar to the Glow-TTS system, YourTTS also has length and noise scale parameters that can
 1232 be adjusted during inference. We keep length scale $\in [1.0, 1.5]$ and noise scale $\tau = 0.3$ unless
 1233 otherwise stated. The default values for these parameters are 1.5 and 0.3 respectively, so we believe
 1234 that our results are comparable to that of Gu et al. (2024).
 1235

1236 **Generated Data WERs** WER results for hypotheses generated with Glow-TTS and YourTTS on
 1237 different ASR models are shown in Table D.8. WER for spm10k is about the same as for the Glow-
 1238 TTS system, and the relative change from non-TTS to the TTS-trained ASR models is similar to that
 1239 of the LibriSpeech validation and test sets (cf. Table D.1). This indicates that the YourTTS audios
 1240 are meaningfully different from the Glow-TTS audios, and should introduce additional diversity into
 1241 the training data when both systems combined.
 1242

⁸<https://github.com/coqui-ai/TTS>

1242
1243

Table D.6: TTS Noise Scale Uniform.

1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258

TTS Noise Scale Uniform	DLM Training Data WER [%]	
	spm10k	spm10k (TTS)
	Glow-TTS	Glow-TTS
$\mathcal{U}(0.3, 0.4)$	5.12	1.55
$\mathcal{U}(0.3, 0.5)$	5.31	1.55
$\mathcal{U}(0.3, 0.6)$	5.59	1.58
$\mathcal{U}(0.3, 0.7)$	6.03	1.63
$\mathcal{U}(0.3, 0.8)$	6.62	1.72
$\mathcal{U}(0.3, 0.9)$	7.46	1.88
$\mathcal{U}(0.3, 1.0)$	8.61	2.15
$\mathcal{U}(0.3, 1.1)$	10.18	2.64
$\mathcal{U}(0.3, 1.2)$	12.19	4.11
$\mathcal{U}(0.3, 1.3)$	14.69	6.66
$\mathcal{U}(0.3, 1.4)$	17.70	9.89
$\mathcal{U}(0.3, 1.5)$	20.98	13.57

1259
1260

Table D.7: Ablation over TTS Noise Scale. Constant length scale of 1.0 is used.

1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272

TTS Noise Scale τ	DLM Training Data WER [%]	
	spm10k	spm10k (TTS)
	Glow-TTS	Glow-TTS
0.0	4.89	1.64
0.2	4.92	1.59
0.4	5.26	1.55
0.6	6.64	1.69
0.8	10.12	2.33
1.0	17.88	4.57
1.2	32.43	23.27
1.4	52.36	47.74

1273
1274
1275
1276Table D.8: Recognition performance of ASR baselines on Glow-TTS and YourTTS audio data. Glow-TTS audio data is generated with noise scale $\tau \sim \mathcal{U}(0.7, 1.1)$ and length scale $\sim \mathcal{U}(0.7, 1.1)$, YourTTS audios use noise scale $\tau = 0.3$, length scale $\sim \mathcal{U}(1.0, 1.5)$, all uniformly sampled for each sentence.1277
1278
1279
1280
1281
1282
1283
1284
1285
1286

ASR Baselines	WER [%]	
	Glow-TTS	YourTTS
spm10k	8.73	8.47
spm10k TTS	2.17	6.11
char TTS	2.55	6.29
spm128 TTS	2.42	6.10

D.1.5 DLM DETAILS

We follow the design principles of Llama (Touvron et al., 2023) like with our LMs.

1288
1289
1290

The input hypotheses for the encoder are postfixed with a special end-of-sequence token from the vocabulary.

1291
1292
1293
1294
1295

We use label smoothing of 0.1 for the cross entropy loss. We train most DLMs for 5 epochs, where we will use the one-cycle learning rate schedule as with our LMs, but with the learning rate halved at every step. So the learning rate increases linearly from 5e-6 to 5e-4 in the first 45% of training, then decreases linearly to 5e-6 at 90% of training, then decreases linearly to 5e-7 at the end of training. For the experiments with our best results we train for 10 epochs, where we use the exact same learning rate schedule without halving the learning rate at every step.

Figure D.1: Length scale of TTS vs. WER of the ASR hypotheses. Noise scale $\tau \sim \mathcal{U}(0.3, 0.9)$. See Table D.5 for raw data.

Figure D.2: Noise scale of TTS vs WER of the ASR hypotheses. Length scale = 1.0 was used. See Table D.7 for raw data.

D.2 DATA AUGMENTATION STRATEGIES

The goal is to find training data that leads to the best DLM performance.

Unless otherwise stated, we apply each technique to the LibriSpeech ASR validation sets with real audio, and to Glow-TTS audio from a random subset of 53890 sentences with total 1068186 words, about 0.13% of the LM corpus. A 0.01% change in WER on this set corresponds to about 106 word errors. Given the great cost of generating the full training data, this is a reasonable compromise to get an estimate of the impact of each technique. We use the *spm10k* Conformer ASR models, with and without TTS training data, to measure the WER of the generated hypotheses. Since there is no indication that the data augmentation methods should behave differently across different vocabularies, we chose not to conduct additional experiments with the *spm128* and *char* vocabularies.

Table D.9: WER on early ASR checkpoints. The ASR model here is 'spm10k (TTS)'.

ASR checkpoint (out of 100)	DLM Training Data WER [%]		
	dev-clean	dev-other	Glow-TTS
Epoch 10	5.24	12.39	7.24
Epoch 20	3.76	9.14	5.53
Epoch 40	3.19	8.37	4.89
Epoch 80	2.08	5.00	2.76
Epoch 100	1.75	4.13	2.17

Table D.10: Training data WER for different SpecAugment settings.

SpecAugment	DLM Training Data WER [%]					
	spm10k			spm10k (TTS)		
	dev-clean	dev-other	Glow-TTS	dev-clean	dev-other	Glow-TTS
Off	2.29	5.02	8.73	1.75	4.13	2.17
On (only frequency masking)	2.46	5.95	9.79	1.90	4.92	2.54
On (only time masking)	3.94	8.38	16.79	3.27	7.01	6.54
On (time + frequency)	4.88	10.21	19.45	3.82	8.99	8.02

Figure D.3: Dropout is sampled uniformly from $\mathcal{U}(0.0, p_{\max})$ for each sequence. p_{\max} vs. WER of the ASR hypotheses. Data shown is TTS audio from Glow-TTS.

D.2.1 EARLY ASR CHECKPOINTS

Generated training data statistics for different checkpoints are shown in Table D.9.

D.2.2 SPECAUGMENT

We use a variant of SpecAugment (Park et al., 2019): we do frequency masking with 2 to 5 masks of max size 16, and time masking with 2 to $\frac{\text{len}}{25}$ masks with max size 20 where len is the length of the time dimension. We do not apply time warping. We test whether only time masking, only frequency masking, or both combined lead to the best DLM performance.

Generated training data statistics using SpecAugment are shown in Table D.10.

Table D.11: Training data WER for different dropout percentages.

(p_{\min}, p_{\max})	DLM Training Data WER [%]					
	spm10k			spm10k (TTS)		
	dev-clean	dev-other	Glow-TTS	dev-clean	dev-other	Glow-TTS
(0.0, 0.0)	2.29	5.02	8.73	1.75	4.13	2.17
(0.0, 0.1)	2.36	5.41	9.29	1.83	4.36	2.29
(0.0, 0.2)	2.62	5.97	10.01	1.99	4.67	2.48
(0.0, 0.3)	3.00	6.77	11.19	2.35	5.44	2.82
(0.0, 0.4)	3.79	8.52	13.57	2.99	7.02	3.51
(0.0, 0.5)	6.15	12.82	19.23	4.89	11.22	5.39
(0.0, 0.6)	14.67	22.84	30.54	13.96	22.69	12.01
(0.0, 0.7)	28.14	34.00	41.40	28.16	35.56	22.91
(0.0, 0.8)	37.91	42.16	49.67	37.71	44.51	31.64
(0.0, 0.9)	43.93	47.96	55.64	43.96	50.32	39.02
(0.1, 0.5)	7.36	14.68	21.60	5.88	13.00	6.29
(0.2, 0.5)	9.06	17.79	24.98	7.10	15.65	7.58
(0.5, 0.5)	34.17	51.87	57.28	26.36	46.43	24.64

Table D.12: Training data WER for different token substitution percentages. A percentage is uniformly sampled for each sentence, and that percentage of tokens in the sentence are randomly replaced with other tokens.

Token substitution	DLM Training Data WER [%]					
	spm10k			spm10k (TTS)		
	dev-clean	dev-other	Glow-TTS	dev-clean	dev-other	Glow-TTS
0% to 0%	2.29	5.02	8.73	1.75	4.13	2.17
5% to 5%	8.64	11.22	14.59	8.19	10.50	8.58
10% to 10%	14.98	16.95	20.30	14.33	16.23	14.96
20% to 20%	26.76	28.36	31.46	26.91	27.73	27.11
30% to 30%	38.78	39.86	42.21	38.28	39.26	38.91
0% to 30%	20.95	22.45	25.91	20.13	21.98	20.96
0% to 40%	26.59	28.50	31.16	26.34	27.93	26.88
0% to 90%	54.20	55.33	56.69	53.79	54.13	54.47

D.2.3 DROPOUT

We use dropout (Srivastava et al., 2014) at inference time to generate diverse hypotheses. See Figure D.3 for dropout rate vs. WER. See Table D.11 for generated training data statistics using different dropout rates.

D.2.4 TOKEN SUBSTITUTION

We expect that the WER of the hypotheses will approximately increase by $\frac{\min+\max}{2}$ over the whole corpus. The actual WER increase is typically higher than this, due to two reasons: First, the substitution probability is per token, not per word. Because a word can consist of more than one token, the probability of a word having at least one substitution is higher than the probability of a single token having a substitution. Secondly, a substitution may result in a word being split into two smaller words because of a mid-word token replaced with one that begins with a space. Such a substitution produces two errors for a single token substitution (an insertion error and a substitution error).

Training data WER for different Token substitution rates is shown in Table D.12.

1458 D.2.5 MIXUP
14591460 Mixup (Zhang et al., 2017) is a data augmentation technique that enforces the model to learn a linear
1461 relationship between any two training examples:

1462
$$\tilde{x} = \lambda x_i + (1 - \lambda)x_j, \quad \text{with } x_i, x_j \text{ input vectors} \quad (16)$$

1463
$$\tilde{y} = \lambda y_i + (1 - \lambda)y_j, \quad \text{with } y_i, y_j \text{ output vectors} \quad (17)$$

1464 or:
$$\mathcal{L}_{\text{mixspeech}} = \lambda \mathcal{L}(\tilde{x}, y_i) + (1 - \lambda) \mathcal{L}(\tilde{x}, y_j), \quad \text{where } \mathcal{L} \text{ is the original loss} \quad (18)$$

1465 with $\lambda \in [0, 1]$ (19)

1466 It has been shown that this leads to improvements when applied to ASR model training (Meng et al.,
1467 2021a).1468 Because we only want to generate DLM training data, and are not interested training ASR models,
1469 we only need equation equation 16, where we mix the spectrograms of multiple audio sequences
1470 together. We extend the mixup equation to more than two sequences as follows:

1471
$$\tilde{x} = (1 - \lambda)x_i + \lambda x_{\text{sum}} \quad (20)$$

1472 with $x_{\text{sum}} = \sum_j^n \alpha_j x_j$ and $\sum_j^n \alpha_j = 1$ (21)

1473 where x_j are randomly chosen input features of other sequences
1474 and α_j are random weights unique to an x_i 1475 Rather than linearization, this approach can be best understood as adding some background noise to
1476 an audio sequence. For consistency to other training data ablations, we have inverted the usage of
1477 λ to be the amount of noise added instead of the amount of original signal kept. This way $\lambda = 0$
1478 means no noise, and $\lambda = 1$ means 100% noise. At inference time, audio sequence spectrograms are
1479 continuously appended to a buffer, and for mixup we randomly pick n offsets from which we copy
1480 the input spectrograms. This sometimes results in multiple adjacent spectrograms from the buffer
1481 being mixed into the current sequence. We randomly pick $n \in \{1, 2\}$ for every sequence and set λ
1482 to a constant value in Figure D.4 and Table D.13.1506 Figure D.4: Mixup λ_{max} vs. WER of the ASR hypotheses.
15071508 As expected, the WER increases sharply near $\lambda \approx 0.5$, where the noise begins to dominate the
1509 original signal. Before this point, the WER remains remarkably stable. For our training experiments
1510 we pick $n \in \{1, 2\}$ randomly, but sample $\lambda \sim \mathcal{U}(0, \lambda_{\text{max}})$ for every sequence with some constant
1511 λ_{max} .

1512 Table D.13: Training data WER for different Mixup λ values. The λ value decides how much noise
 1513 from other audios is added to each sample.

1514

Mixup λ	DLM Training Data WER [%]					
	spm10k			spm10k (TTS)		
	dev-clean	dev-other	Glow-TTS	dev-clean	dev-other	Glow-TTS
0.0	2.29	5.02	8.70	1.75	4.13	2.16
0.1	2.33	5.20	8.97	1.76	4.23	2.26
0.2	2.51	5.96	9.94	1.89	4.88	2.71
0.3	3.22	9.55	13.17	2.62	7.97	4.69
0.4	11.01	26.00	27.66	9.37	23.34	19.39
0.5	57.24	67.04	68.51	54.93	65.13	67.99
0.6	95.23	96.00	95.63	95.05	96.39	98.12
0.7	102.87	102.51	101.94	103.23	103.35	103.95

1525

1526

1527

Table D.14: Training data WER for different Mixup λ_{\max} values.

1528

Mixup λ_{\max}	DLM Training Data WER [%]					
	spm10k			spm10k (TTS)		
	dev-clean	dev-other	Glow-TTS	dev-clean	dev-other	Glow-TTS
0.0	2.29	5.02	8.70	1.75	4.13	2.16
0.1	2.31	5.05	8.80	1.76	4.11	2.19
0.2	2.35	5.22	9.10	1.79	4.34	2.32
0.3	2.51	5.94	9.80	1.94	4.89	2.69
0.4	3.26	8.43	12.02	2.55	6.95	4.43
0.5	9.25	15.82	19.22	7.49	13.86	12.18
0.6	21.02	26.79	30.21	18.30	25.04	24.59
0.7	32.24	37.82	40.29	29.32	34.84	35.74
0.8	41.49	45.97	48.22	37.81	43.03	44.42
0.9	48.33	52.33	54.39	44.70	49.60	51.20
1.0	54.18	57.71	59.41	50.38	55.22	56.72

1542

1543

1544 D.2.6 SAMPLING FROM ASR MODEL

1545

1546 A good approximation for the top hypothesis of a CTC-based ASR model is to take the most probable
 1547 token at each frame, and then collapse the resulting sequence by removing blanks and repeated
 1548 tokens. This approach is called greedy decoding and it is what we use for our training data genera-
 1549 tion. At recognition time however, we use an n-best list of ASR hypotheses in DLM-sum Decoding
 1550 to improve performance (see Section 2.1). To reflect this, we can generate training data that contains
 1551 more suboptimal hypotheses to prepare the DLM for this scenario. To do this, we first collapse the
 1552 frames as we would do for greedy decoding, i.e. remove blanks and repeated tokens according to
 1553 the most probable label at each frame. But instead of taking the most probable label, we collect the
 1554 top k token labels for each collapsed frame, normalize their probabilities back to 1, and then sample
 1555 from this distribution at every label position. A similar sampling approach for language modeling is
 1556 described in Fan et al. (2018). This approach is negligible in terms of additional compute resources⁹
 1557 as the operation is parallelizable over all frames and can be done in a single pass. The impact on the
 1558 WER of the hypotheses is shown in Table D.15.

1559

1560 We see diminishing changes after $k \geq 8$, indicating that most of the probability mass is concentrated
 1561 on the top few tokens.

1562

1563 Through our approach, we disregard a significant amount of the frames of the input sequence which
 1564 may contain additional, possibly important, information. One could instead take the average or the
 1565 maximum over all collapsed frames and store this information in the resulting combined frame, but
 1566 we leave this for future work. Nucleus sampling is also an interesting alternative to explore.

1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 20100
 20101
 20102
 20103
 20104
 20105
 20106
 20107
 20108
 20109
 20110
 20111
 20112
 20113
 20114
 20115
 20116
 20117
 20118
 20119
 20120
 20121
 20122
 20123
 20124
 20125
 20126
 20127
 20128
 20129
 20130
 20131
 20132
 20133
 20134
 20135
 20136
 20137
 20138
 20139
 20140
 20141
 20142
 20143
 20144
 20145
 20146
 20147
 20148
 20149
 20150
 20151
 20152
 20153
 20154
 20155
 20156
 20157
 20158
 20159
 20160
 20161
 20162
 20163
 20164
 20165
 20166
 20167
 20168
 20169
 20170
 20171
 20172
 20173
 20174
 20175
 20176
 20177
 20178
 20179
 20180
 20181
 20182
 20183
 20184
 20185
 20186
 20187
 20188
 20189
 20190
 20191
 20192
 20193
 20194
 20195
 20196
 20197
 20198
 20199
 20200
 20201
 20202
 20203
 20204
 20205
 20206
 20207
 20208
 20209
 20210
 20211
 20212
 20213
 20214
 20215
 20216
 20217
 20218
 20219
 20220
 20221
 20222
 20223
 20224
 20225
 20226
 20227
 20228
 20229
 20230
 20231
 20232
 20233
 20234
 20235
 20236
 20237
 20238
 20239
 20240
 20241
 20242
 20243
 20244
 20245
 20246
 20247
 20248
 20249
 20250
 20251
 20252
 20253
 20254
 20255
 20256
 20257
 20258
 20259
 20260
 20261
 20262
 20263
 20264
 20265
 20266
 20267
 20268
 20269
 20270
 20271
 20272
 20273
 20274
 20275
 20276
 20277
 20278
 20279
 20280
 20281
 20282
 20283
 20284
 20285
 20286
 20287
 20288
 20289
 20290
 20291
 20292
 20293
 20294
 20295
 20296
 20297
 20298
 20299
 202100
 202101
 202102
 202103
 202104
 202105
 202106
 202107
 202108
 202109
 202110
 202111
 202112
 202113
 202114
 202115
 202116
 202117
 202118
 202119
 202120
 202121
 202122
 202123
 202124
 202125
 202126
 202127
 202128
 202129
 202130
 202131
 202132
 202133
 202134
 202135
 202136
 202137
 202138
 202139
 202140
 202141
 202142
 202143
 202144
 202145
 202146
 202147
 202148
 202149
 202150
 202151
 202152
 202153
 202154
 202155
 202156
 202157
 202158
 202159
 202160
 202161
 202162
 202163
 202164
 202165
 202166
 202167
 202168
 202169
 202170
 202171
 202172
 202173
 202174
 202175
 202176
 202177
 202178
 202179
 202180
 202181
 202182
 202183
 202184
 202185
 202186
 202187
 202188
 202189
 202190
 202191
 202192
 202193
 202194
 202195
 202196
 202197
 202198
 202199
 202200
 202201
 202202
 202203
 202204
 202205
 202206
 202207
 202208
 202209
 202210
 202211
 202212
 202213
 202214
 202215
 202216
 202217
 202218
 202219
 202220
 202221
 202222
 202223
 202224
 202225
 202226
 202227
 202228
 202229
 202230
 202231
 202232
 202233
 202234
 202235
 202236
 202237
 202238
 202239
 202240
 202241
 202242
 202243
 202244
 202245
 202246
 202247
 202248
 202249
 202250
 202251
 202252
 202253
 202254
 202255
 202256
 202257
 202258
 202259
 202260
 202261
 202262
 202263
 202

1566 Table D.15: Training data WER for different Top-k sampling k values. $k = 1$ corresponds to the
 1567 baseline (no sampling).

k	DLM Training Data WER [%]					
	spm10k			spm10k (TTS)		
	dev-clean	dev-other	Glow-TTS	dev-clean	dev-other	Glow-TTS
1	2.29	5.02	8.77	1.75	4.13	2.16
2	4.51	7.34	11.29	4.01	6.37	4.45
4	6.38	9.28	13.19	5.69	8.08	6.21
8	6.68	9.88	13.59	5.99	8.56	6.53
16	6.73	9.51	13.62	6.08	8.68	6.60
32	6.61	9.65	13.68	6.04	8.64	6.62

1578 Table D.16: Combined data augmentation configurations. All configs use TTS length scale
 1579 $\sim \mathcal{U}(0.7, 1.1)$. TTS noise scale is sampled from $\mathcal{U}(0.3, \tau_{\max})$ and mixup $\lambda \sim \mathcal{U}(0.0, \lambda_{\max})$ uni-
 1580 formly for every sequence. Configs are sorted according to WER on hypotheses from TTS audio,
 1581 see Table D.17 for hypotheses WERs.

Name	TTS Noise τ_{\max}	SpecAugment	Dropout	Token Substitution	Mixup λ_{\max}
baseline	0.9	Time	(0.0, 0.0)	0%	0.0
verylow			(0.0, 0.1)	0% to 10%	0.2
stdPerturb			(0.1, 0.5)	10%	0.0
low			(0.0, 0.2)	0% to 10%	0.2
very low (ASR ep. 40)		Time+Freq	(0.0, 0.1)		
low ⁺			(0.0, 0.2)	10%	
lowmedium	1.2		(0.0, 0.0)	0% to 20%	0.4
high (no ASR augment)	1.5	-		20%	0.0
medium	1.2	Time+Freq	(0.0, 0.5)	10%	0.4
high	1.5		(0.1, 0.5)	20%	0.6

D.2.7 OTHER DATA AUGMENTATIONS

We tried Generalized SpecAugment (Soni et al., 2024) which, instead of masking blocks in the spectrogram to zero, replaces them with white noise. Training data generation with this method yielded very broken sequences ($\approx 50\%$ WER) and we did not run DLM training on this data. To lower the WER, we tried Generalized SpecAugment during ASR training, but this led to a significantly worse ASR model, so we excluded this data augmentation method from further testing.

A max-pooling-like data augmentation method is proposed in Tóth et al. (2018), where only the loudest parts of the spectrogram are kept, and the rest is masked to zero. The intuition behind this approach is that the features most robust to noise are usually the loudest ones, and that only these are needed to understand speech. We chose not to implement it for DLM training data generation due to similarity to SpecAugment and dropout, but it could be an interesting data augmentation method to try in future work.

D.2.8 COMBINING MULTIPLE DATA AUGMENTATION TECHNIQUES

Parameters for all configurations are shown in Table D.16, and the respective hypotheses WERs of the training datasets are shown in Table D.17. The degradation caused by the data augmentation methods is quite severe, especially for the high dataset. Interestingly, for some of the configurations the WER of the TTS hypotheses is now higher than for dev-other, even though it was lower in almost all individual data augmentation experiments.

D.3 ALTERNATIVE TRAINING INPUTS: DENSE K-PROBABILITY

Instead of having the DLM guess a correction for some label sequence, we can give it more information from the ASR model about which labels are considered probable alternatives.

1620 Table D.17: Putting it all together: Training data (hypotheses) WER for different data augmentation
 1621 configurations from Table D.16.

Data Augmentation Configuration	DLM Training Data WER [%]		
	dev-clean	dev-other	Glow-TTS
baseline	1.75	4.13	2.17
very low	9.90	13.85	13.73
stdPerturb	18.89	24.93	19.55
low	16.45	20.02	20.15
very low (ASR ep. 40)	13.35	21.00	20.63
low ⁺	17.06	22.24	21.87
low medium	18.38	26.06	31.98
high (no ASR augment)	26.91	27.73	36.65
medium	27.05	37.97	41.63
high	52.69	60.55	69.86

1635
 1636 A conservative approximation to store the full probability distribution of the needed storage space
 1637 to save the probability distributions for the entire LibriSpeech LM corpus reveals that this is not
 1638 feasible:

$$\text{Dataset Size} \approx \text{num_frames} \times \text{vocab_size} \times \text{float_size} \quad (22)$$

$$\geq \text{num_words} \times \text{vocab_size} \times \text{float_size} \quad (23)$$

$$\approx 800 \text{ Million} \times 10000 \times 4 \quad (24)$$

$$\approx 32\text{TB} \quad (25)$$

1644 We propose a more efficient approach:

1. Only store the top k probabilities and their corresponding token indices
2. Instead of storing the probability distribution at every audio frame, do label synchronous search and store the label probabilities at every step

1650 With this approach, we can reduce the storage requirements for a full generation of the LibriSpeech
 1651 LM corpus to about 38GB with $k = 5$. Instead of storing the data as text lines like we do in our
 1652 other experiments, we store this data using the HDF5 format¹⁰. Token substitution is adjusted to
 1653 work with this data format to allow for any of the top- k tokens from the beam to be substituted.

1654 The input to the DLM encoder is then computed as a weighted sum of the top- k token embeddings
 1655 at every label position:

$$e_i = \sum_{j=1}^k p_{i,j} \cdot \text{emb}(t_{i,j}) \quad (26)$$

1660 with $p_{i,j}$ the probability of the j -th most probable token at position i
 1661 and $t_{i,j}$ the corresponding token index

1663 E RESULTS AND ANALYSIS DETAILS

1664 We train DLMs using the training data augmentation techniques described in Section 3 and evaluate
 1665 their performance on the LibriSpeech validation and test sets. Unless stated otherwise, all DLMs
 1666 in this Chapter are trained for 5 epochs and contain 10x LibriSpeech ASR data. Sometimes we
 1667 run experiments with the stdPerturb configuration, which is a combination of multiple data
 1668 augmentation techniques that produces well-performing DLMs. Its exact parameters are described
 1669 in Section 4.2. This configuration is not necessarily optimal, but we found it quite early in our
 1670 research and therefore used it for many experiments. Sometimes we mention that an experiment
 1671 is run without additional data augmentation, or do not explicitly state any data augmentation. In
 1672

10¹⁰<https://www.hdfgroup.org/solutions/hdf5/>

1674
1675
1676
1677 Table E.1: Traditional LM vs DLM performance comparison. The DLM uses data augmentation
1678 configuration `low`. DLM rescore for the DLMs is rescore using only ASR hypotheses and thus
1679 compares to LM rescore. The ASR model was trained on TTS data.

LM	Num. Param.	Num. Epochs	Decoding	WER [%]			
				dev-clean	dev-other	test-clean	test-other
None	0	0	greedy	1.75	4.13	2.03	4.44
n8-d1024 LM	113M	5	rescoring	1.63	3.59	1.83	3.90
			one-pass	1.62	3.53	1.81	3.82
		10	rescoring	1.59	3.57	1.80	3.84
			one-pass	1.56	3.41	1.73	3.70
n32-d1024 LM	422M	5	rescoring	1.61	3.54	1.81	3.83
			one-pass	1.60	3.45	1.74	3.72
		10	rescoring	1.58	3.57	1.80	3.83
			one-pass	1.58	3.46	1.77	3.73
DLM	466M	5	greedy	2.10	4.12	2.25	4.56
			DLM rescore	1.58	3.72	1.84	3.95
			DSR	1.53	3.50	1.76	3.81
			DLM-sum	1.51	3.40	1.74	3.66
		10	greedy	2.31	4.06	2.32	4.57
			DLM rescore	1.59	3.68	1.85	3.88
			DSR	1.49	3.43	1.79	3.70
			DLM-sum	1.49	3.29	1.72	3.53

1695
1696 Table E.2: Traditional LM vs DLM performance comparison. The DLM uses data augmentation
1697 configuration `low`. DLM rescore for the DLMs is rescore using only ASR hypotheses and thus
1698 compares to LM rescore. The ASR model was trained without TTS data, only on LibriSpeech
1699 960h. This is the only difference to Table E.1.

LM	Num. Param.	Num. Epochs	Decoding	WER [%]			
				dev-clean	dev-other	test-clean	test-other
None	0	0	greedy	2.29	5.02	2.42	5.33
n32-d1024 LM	422M	5	rescoring	1.93	4.18	2.09	4.50
			one-pass	1.85	3.93	2.00	4.27
		10	rescoring	1.95	4.22	2.09	4.56
			one-pass	1.90	3.94	2.00	4.27
DLM	466M	10	greedy	2.49	4.63	2.41	5.19
			DLM rescore	1.98	4.32	2.11	4.70
			DSR	1.76	3.95	1.91	4.37
			DLM-sum	1.68	3.70	1.83	4.15

1711
1712
1713 that case we still typically use TTS noise and length scales with noise scale $\sim \mathcal{U}(0.3, 0.9)$ and
1714 length scale $\sim \mathcal{U}(0.7, 1.1)$, as these are the default parameters of our training data generation pro-
1715 cess.

1716 E.1 DLM vs. STANDARD LM

1717
1718 We compare the DLMs (presented in Section 3.2) with these standard LMs (presented in Sec-
1719 tion 3.2): n32-d1024 has exactly the same layers as the encoder+decoder of our DLMs with
1720 the same model dimension, and n8-d1024 is exactly the same as the DLM decoder. Both models
1721 still have less parameters than our DLM because of the lack of cross attention and embedding in
1722 the encoder, thus we also include an even bigger LM with model dimension 1280. DSR decoding
1723 includes both the ASR and DLM beams for rescoring, while LM rescoring only includes the ASR
1724 beam. Thus, we also include DLM rescore, which only rescores the ASR hypotheses. LMs and
1725 DLM performance is compared in Tables E.1 and E.2. DLMs and LMs trained with 5 epochs have
1726 matching performance, while with 10 epochs of training, DLMs surpass LMs. So the longer training
1727 is crucial to see the benefits of DLMs.

Table E.3: Putting it all together.

Data Augmentation Configuration	Decoding	DLM Performance: WER [%]			
		dev-clean	dev-other	test-clean	test-other
baseline	greedy	1.82	3.98	2.05	4.49
	DSR	1.56	3.78	1.89	4.08
	DLM-sum	1.55	3.67	1.84	4.00
very low	greedy	1.87	4.09	2.12	4.47
	DSR	1.51	3.54	1.76	3.81
	DLM-sum	1.52	3.43	1.74	3.71
stdPerturb	greedy	1.95	4.05	2.25	4.60
	DSR	1.54	3.54	1.77	3.84
	DLM-sum	1.45	3.45	1.76	3.69
low	greedy	2.10	4.12	2.25	4.56
	DSR	1.53	3.50	1.76	3.81
	DLM-sum	1.51	3.40	1.74	3.66
very low (ASR ep. 40)	greedy	2.10	4.15	2.43	4.81
	DSR	1.56	3.50	1.79	3.82
	DLM-sum	1.50	3.41	1.72	3.64
low ⁺	greedy	2.12	4.06	2.32	4.42
	DSR	1.51	3.47	1.79	3.82
	DLM-sum	1.49	3.40	1.75	3.60
low medium	greedy	2.45	4.25	2.60	5.05
	DSR	1.52	3.50	1.79	3.84
	DLM-sum	1.51	3.44	1.73	3.76
high (no ASR augment)	greedy	2.03	4.14	2.45	4.76
	DSR	1.57	3.58	1.79	3.92
	DLM-sum	1.50	3.49	1.74	3.79
medium	greedy	2.37	4.37	2.66	5.14
	DSR	1.60	3.52	1.80	3.84
	DLM-sum	1.56	3.42	1.75	3.72
high	greedy	4.71	5.66	4.50	6.58
	DSR	1.61	3.60	1.82	3.95
	DLM-sum	1.67	3.56	1.81	3.89

E.2 IMPACT OF TRAINING DATA GENERATION STRATEGIES

E.2.1 COMBINING DATA AUGMENTATION TECHNIQUES

We investigate how combining multiple data augmentation techniques (see Appendix D.2.8) affects DLM performance. The different configurations are described in Appendix D.2.8. Results of DLM training are shown in Table E.3. Notably, the high (no ASR augment) configuration performs worse than the similar in WER configurations low medium and medium, indicating that artificial augmentations for the ASR model are essential to getting good DLM performance.

E.2.2 TRAINING LONGER

For this ablation, we extend the learning rate schedule by stretching it out over more epochs, i.e. if we double the number of epochs, the learning rate increases and decreases twice as slowly but we keep the same minimum and maximum learning rate. Learning rate is halved for the 5 epoch configuration, but for the higher epoch configurations we keep the same peak learning rate. All other hyperparameters are kept the same, and we use the stdPerturb data augmentation configuration for all models. The results are shown in Table E.4. Going from 5 to 10 epochs helps, but we see diminishing returns after that. We hypothesize this may be caused by the learning rate schedule not being optimal for longer training, or the DLM reaching its plateau. To test the first hypothesis, we run an additional experiment with a step decay learning rate schedule, inspired by the one used in

1782 Table E.4: DLMs trained for different numbers of epochs. All models use data augmentation con-
 1783 figuration `stdPerturb`. The first model is trained for 5 epochs with a lower base learning rate of
 1784 0.5 instead of 1.0.

DLM Training Epochs	Decoding	DLM Performance: WER [%]			
		dev-clean	dev-other	test-clean	test-other
5	greedy	1.95	4.05	2.25	4.60
	DSR	1.54	3.54	1.77	3.84
	DLM-sum	1.45	3.45	1.76	3.69
10	greedy	2.26	3.96	2.47	4.70
	DSR	1.51	3.46	1.78	3.73
	DLM-sum	1.50	3.32	1.80	3.57
15	greedy	2.60	4.00	2.60	5.11
	DSR	1.51	3.43	1.72	3.73
	DLM-sum	1.49	3.34	1.71	3.61
20	greedy	2.40	4.03	2.35	4.70
	DSR	1.47	3.44	1.77	3.68
	DLM-sum	1.47	3.34	1.74	3.53

1800
 1801 Table E.5: A single DLM trained with step decay learning rate schedule and evaluated at different
 1802 epochs. Model uses data augmentation configuration `stdPerturb`.

Step decay results per Epoch	Decoding	DLM Performance: WER [%]			
		dev-clean	dev-other	test-clean	test-other
4	greedy	2.24	4.17	2.69	4.75
	DSR	1.56	3.62	1.84	3.92
	DLM-sum	1.53	3.51	1.76	3.79
8	greedy	2.61	4.02	2.59	5.11
	DSR	1.54	3.55	1.81	3.84
	DLM-sum	1.54	3.46	1.77	3.73
16	greedy	3.15	4.46	3.27	5.40
	DSR	1.47	3.50	1.78	3.80
	DLM-sum	1.51	3.36	1.78	3.73
25	greedy	2.89	4.48	3.16	5.57
	DSR	1.51	3.44	1.71	3.77
	DLM-sum	1.50	3.34	1.70	3.62
32	greedy	2.99	4.45	3.45	5.51
	DSR	1.55	3.42	1.74	3.70
	DLM-sum	1.55	3.33	1.79	3.65

1822 **Gu et al. (2024)**: warmup for 2.17 epochs to 0.0005, then constant for another 10.2 epochs, then
 1823 decay by a factor of 0.5 every 6.8 epochs and stop training after a total of 32 epochs¹¹. Results for
 1824 different checkpoints of this training run are shown in Table E.5. It appears that we reach a similar
 1825 performance ceiling with the step decay learning rate schedule.

1826 We also train a DLM with the low data augmentation configuration for 10 epochs with our usual
 1827 learning rate schedule, which results in our best DLM, see Table E.6.

1829 E.2.3 TTS NOISE & TTS LENGTH

1831 We sample the noise level T uniformly for every sequence, and fix a minimum noise level of $\tau_{\min} =$
 1832 0.3 and vary $\tau_{\max} \in \{0.6, 0.9, 1.2, 1.5\}$. Results are shown in Table E.7. Performance seems to
 1833 increase with rising noise scale, and we see consistent gains even up to $\tau_{\max} = 1.5$.

1834
 1835 ¹¹Gu et al. (2024) use peak lr 0.001. Through preliminary experiments we found that this was unstable, so
 we reduced lr by factor 0.5. We believe this is necessary because our batch size is 8x smaller.

1836 Table E.6: DLMs trained with data augmentation configuration low.
1837

DLM Training Epochs	Decoding	DLM Performance: WER [%]			
		dev-clean	dev-other	test-clean	test-other
5 epochs	greedy	2.10	4.12	2.25	4.56
	DSR	1.53	3.50	1.76	3.81
	DLM-sum	1.51	3.40	1.74	3.66
10 epochs	greedy	2.31	4.06	2.32	4.57
	DSR	1.49	3.43	1.79	3.70
	DLM-sum	1.49	3.29	1.72	3.53

1847 Table E.7: TTS Noise Scale Ablation Experiment. For each sequence, a noise scale is uniformly
1848 sampled from $\mathcal{U}(\tau_{\min}, \tau_{\max})$.
1849

$(\tau_{\min}, \tau_{\max})$	Decoding	DLM Performance: WER [%]			
		dev-clean	dev-other	test-clean	test-other
(0.3,0.6)	greedy	1.69	4.00	2.03	4.39
	DSR	1.59	3.81	1.89	4.12
	DLM-sum	1.55	3.73	1.84	4.00
(0.3,0.9)	greedy	1.83	4.15	2.04	4.50
	DSR	1.57	3.78	1.89	4.12
	DLM-sum	1.54	3.68	1.80	3.97
(0.3,1.2)	greedy	1.86	4.01	2.12	4.59
	DSR	1.60	3.70	1.86	4.04
	DLM-sum	1.55	3.62	1.82	3.92
(0.3,1.5)	greedy	1.96	4.23	2.24	4.79
	DSR	1.54	3.67	1.82	3.97
	DLM-sum	1.51	3.61	1.76	3.83

1865 Table E.8: TTS Length Scale Ablation Experiment. For each sequence, a length scale is uniformly
1866 sampled from $\mathcal{U}(d_{\min}, d_{\max})$.
1867

(d_{\min}, d_{\max})	Decoding	DLM Performance: WER [%]			
		dev-clean	dev-other	test-clean	test-other
(1.0, 1.0)	greedy	1.83	4.15	2.04	4.50
	DSR	1.57	3.78	1.89	4.12
	DLM-sum	1.54	3.68	1.80	3.97
(0.6, 2.0)	greedy	1.66	4.00	2.03	4.37
	DSR	1.62	3.77	2.10	4.10
	DLM-sum	1.54	3.71	1.82	3.97
(0.5, 2.5)	greedy	1.73	3.99	2.01	4.42
	DSR	1.55	3.75	1.87	4.06
	DLM-sum	1.51	3.68	1.81	3.92
(0.4, 3.0)	greedy	1.69	3.99	2.04	4.34
	DSR	1.58	3.69	1.85	4.02
	DLM-sum	1.56	3.68	1.83	3.95

1884 We choose multiple minimum and maximum length scales such that the WER at the minimum and
1885 maximum length scales is roughly equal. Then, we sample the length scale uniformly between the
1886 minimum and maximum for every sequence. Training data WER for these configurations is shown
1887 in Table D.4. Results are shown in Table E.8. There does not seem to be any noticeable difference
1888 between the different length scales we test. With increasing length scale, the audio data increases
1889 in length and thus training data generation becomes slower, so we stick to more moderate length
scales $\sim \mathcal{U}(0.7, 1.1)$ for all other experiments.

1890 Table E.9: Different TTS systems and their combinations used for generating hypotheses. First three
 1891 use no data augmentation, last three use data augmentation configuration `stdPerturb`. Trained
 1892 for 5 epochs.

TTS System	Decoding	DLM Performance: WER [%]			
		dev-clean	dev-other	test-clean	test-other
Glow-TTS	greedy	1.82	3.98	2.05	4.49
	DSR	1.56	3.78	1.89	4.08
	DLM-sum	1.55	3.67	1.84	4.00
YourTTS	greedy	2.31	4.53	2.46	4.93
	DSR	1.60	3.74	1.83	3.96
	DLM-sum	1.58	3.70	1.81	3.88
50% Glow-TTS, 50% YourTTS	greedy	1.84	4.16	2.11	4.38
	DSR	1.58	3.70	1.83	3.96
	DLM-sum	1.57	3.64	1.82	3.91
Glow-TTS (stdPerturb)	greedy	1.95	4.05	2.25	4.60
	DSR	1.54	3.54	1.77	3.84
	DLM-sum	1.45	3.45	1.76	3.69
YourTTS (stdPerturb)	greedy	2.58	4.69	2.88	5.51
	DSR	1.58	3.58	1.79	3.84
	DLM-sum	1.55	3.51	1.74	3.76
50% Glow-TTS, 50% YourTTS (both stdPerturb)	greedy	2.19	4.02	2.26	4.66
	DSR	1.55	3.53	1.80	3.82
	DLM-sum	1.49	3.48	1.73	3.79

1914
 1915
 1916 It may be necessary to choose a different random distribution that favors extreme values (\sim Beta
 1917 distribution with $\alpha = \beta$) because most values in the middle do not seem to affect the ASR system
 1918 performance much, but we leave this to future work.

1921 E.2.4 COMBINING TTS SYSTEMS

1923 We combine the two TTS systems to generate more diverse synthetic audio data. First we train
 1924 baseline DLMs using each TTS system individually, then we combine the two systems by passing
 1925 half the text data through one system and the other half through the second system. We run the same
 1926 experiments again using the `stdPerturb` data augmentation configuration. Results are shown in
 1927 Table E.9.

1928 It is difficult to determine which TTS system or combination performs best, and it seems that the
 1929 data augmentation configuration has a far greater impact on DLM performance than the choice of
 1930 TTS system. If there is a positive effect of combining multiple TTS systems as reported by [Gu et al.](#)
 1931 ([2024](#)), it is too small for us to measure or our system of choice (YourTTS) does not differ enough
 1932 from the Glow-TTS system. It is also possible that all data has to be generated by both TTS systems
 1933 to get more variations of the same text, but the results from our ablation 'More training data' in
 1934 Appendix E.2.14 do not indicate that significant gains should be expected from this approach.

1936 E.2.5 EARLY ASR CHECKPOINTS

1938 We choose epochs 10, 40 and 100 (final) of our spm10k (TTS) ASR model to generate DLM training
 1939 data. Results are shown in Table E.10. While greedy performance decreases with earlier ASR
 1940 checkpoints, DSR and DLM-sum performance improves. Going from epoch 100 to 40 yields gains,
 1941 but going from 40 to 10 brings little improvement. even though the difference in WER of the training
 1942 data is quite significant. This suggest that this early ASR checkpoint may already be too different
 1943 from the final ASR model and the additional WER in the training data does not seem to help the
 DLM.

1944 Table E.10: DLM ablation results with training data from early ASR checkpoints. Trained for 5
 1945 epochs. See Table D.9 about the training data (hypotheses) WERs.

1946

ASR checkpoint (of 100)	Decoding	DLM Performance: WER [%]			
		dev-clean	dev-other	test-clean	test-other
Epoch 10	greedy	2.06	4.17	2.23	4.78
	DSR	1.59	3.66	1.80	3.87
	DLM-sum	1.56	3.55	1.77	3.87
Epoch 40	greedy	1.86	4.07	2.16	4.70
	DSR	1.58	3.70	1.82	3.94
	DLM-sum	1.52	3.57	1.76	3.88
Epoch 100	greedy	1.82	3.98	2.05	4.49
	DSR	1.56	3.78	1.89	4.08
	DLM-sum	1.55	3.67	1.84	4.00

1958

1959 Table E.11: SpecAugment ablation experiment for DLM training. Trained for 5 epochs. See Sec-
 1960 tion 3.3 for the DLM training data WERs for each case.

1961

SpecAugment	Decoding	DLM Performance: WER [%]			
		dev-clean	dev-other	test-clean	test-other
Off	greedy	1.82	3.98	2.05	4.49
	DSR	1.56	3.78	1.89	4.08
	DLM-sum	1.55	3.67	1.84	4.00
On (only frequency masking)	greedy	1.94	3.99	2.02	4.42
	DSR	1.57	3.77	1.89	4.01
	DLM-sum	1.58	3.67	1.81	3.92
On (only time masking)	greedy	1.87	4.05	2.10	4.49
	DSR	1.54	3.62	1.80	3.91
	DLM-sum	1.52	3.53	1.78	3.83
On (time + frequency)	greedy	1.89	4.03	2.17	4.50
	DSR	1.54	3.62	1.79	3.87
	DLM-sum	1.49	3.47	1.76	3.76

1975

E.2.6 SPECAUGMENT

1979

We test all configurations described in Section 3.3. For this ablation we resplit subwords (cf. Appendix E.2.11) and only use 1x LibriSpeech ASR data due to an oversight in parameter selection. Results are shown in Table E.11. We see improving performance with increasing WER of the training data, and the best performance for SpecAugment with time and frequency masking. Even with the small difference with only frequency masking from the baseline configuration, we already see an improvement for {dev, test}-other of 0.1%. Performance of the highest configuration roughly matches those of the dropout ablation with similar training data WER.

1985

E.2.7 DROPOUT

1988

For each sentence, the dropout in the ASR model is sampled $p \sim \mathcal{U}(p_{\min}, p_{\max})$. We test multiple configurations where we keep $p_{\min} = 0$ but vary $p_{\max} \in \{0.0, 0.1, 0.2, 0.5, 0.9\}$. We also test whether grounding p_{\min} in zero is necessary and vary $p_{\min} \in \{0.1, 0.2\}$ while we fix $p_{\max} = 0.5$. For this ablation we resplit subwords (cf. Appendix E.2.11) and only use 1x LibriSpeech ASR data due to an oversight in parameter selection. Results are shown in Table E.12.

1993

It seems that $p \sim \mathcal{U}(0.0, 0.5)$ is the sweet spot for $p_{\min} = 0$, and performance decreases in either direction. Surprisingly, we get even better results if we also increase p_{\min} , and we get our best results with $p \sim \mathcal{U}(0.1, 0.5)$ using DLM-sum decoding on test-other. This is unexpected, as this configuration moves it away from the test-time data distribution, as the training data will always have at least 10% dropout applied. One may hypothesize that there could be some optimal WER (or similar metric) which best trains the DLM, and with the more varied dropouts we move our train-

Table E.12: Dropout Ablation Experiment. Trained for 5 epochs.

(p_{\min}, p_{\max})	Decoding	DLM Performance: WER [%]			
		dev-clean	dev-other	test-clean	test-other
(0.0,0.0)	greedy	1.82	3.98	2.05	4.49
	DSR	1.56	3.78	1.89	4.08
	DLM-sum	1.55	3.67	1.84	4.00
(0.0,0.1)	greedy	1.70	3.99	2.00	4.46
	DSR	1.61	3.80	1.89	4.09
	DLM-sum	1.57	3.69	1.81	3.91
(0.0,0.2)	greedy	1.94	4.00	2.15	4.40
	DSR	1.61	3.75	1.84	4.07
	DLM-sum	1.54	3.64	1.83	3.91
(0.0,0.5)	greedy	1.90	3.94	1.99	4.54
	DSR	1.54	3.63	1.82	3.92
	DLM-sum	1.49	3.52	1.81	3.85
(0.0,0.9)	greedy	2.07	4.17	2.09	5.03
	DSR	1.62	3.66	1.82	4.05
	DLM-sum	1.59	3.55	1.83	3.95
(0.1,0.5)	greedy	1.89	3.97	2.06	4.52
	DSR	1.55	3.64	1.82	3.92
	DLM-sum	1.49	3.54	1.74	3.84
(0.2,0.5)	greedy	1.98	3.96	2.09	4.45
	DSR	1.54	3.57	1.78	3.83
	DLM-sum	1.52	3.52	1.76	3.78

ing data distribution approximately in the right direction but with high variance, while the dropout configuration with higher p_{\min} also approaches this optimal WER but with less variance.

It is also interesting to see that the $\mathcal{U}(0.0, 0.9)$ configuration still performs reasonably well, even though a large portion of the hypotheses provide very little useful information.

E.2.8 TOKEN SUBSTITUTION

We test constant token substitution for $p \in \{0.0, 0.05, 0.1, 0.2, 0.3\}$ and varying token substitution with $p_{\min} = 0.0$ and $p_{\max} \in \{0.4, 0.9\}$. Results are shown in Table E.13.

It appears that, as long as there is any level of token substitution, we get consistent gains of about 0.2% for {dev, test}-other. Only with $p_{\max} = 0.9$ do we start to see a significant degradation, as the input data becomes very unreliable for the DLM.

E.2.9 MIXUP

We sample the mixing factor λ from a uniform random distribution $\mathcal{U}(0, \lambda_{\max})$ with $\lambda_{\max} \in \{0.0, 0.2, 0.4, 0.6, 0.8\}$. When $\lambda > 0.5$, the noise audio from other sequences starts to dominate, and the audio becomes almost unrecognizable for the ASR system, as shown in Figure D.4. Results for different λ_{\max} are shown in Table E.14.

We see gains until $\lambda_{\max} = 0.6$, after which the greedy performance degrades significantly.

E.2.10 SAMPLING FROM ASR MODEL

We use the sampling procedure as described in Section 3.3 with $k \in \{1, 16\}$. Results are shown in Table E.15.

We see less gains as expected for the increase in WER, and conclude that Top-k Sampling does not meaningfully help DLM performance.

Table E.13: Token Substitution Ablation Experiment. Trained for 5 epochs.

Token substitution	Decoding	DLM Performance: WER [%]			
		dev-clean	dev-other	test-clean	test-other
0% to 0%	greedy	1.82	3.98	2.05	4.49
	DSR	1.56	3.78	1.89	4.08
	DLM-sum	1.55	3.67	1.84	4.00
5% to 5%	greedy	1.71	3.98	2.07	4.47
	DSR	1.53	3.62	1.80	3.94
	DLM-sum	1.50	3.53	1.77	3.83
10% to 10%	greedy	1.82	4.00	2.16	4.40
	DSR	1.57	3.62	1.81	3.93
	DLM-sum	1.52	3.53	1.76	3.79
20% to 20%	greedy	1.90	4.11	2.35	4.49
	DSR	1.56	3.58	1.83	3.92
	DLM-sum	1.50	3.47	1.80	3.79
30% to 30%	greedy	2.15	4.21	2.44	4.72
	DSR	1.57	3.62	1.83	4.00
	DLM-sum	1.54	3.50	1.80	3.82
0% to 40%	greedy	1.79	3.98	2.18	4.41
	DSR	1.55	3.58	1.83	3.92
	DLM-sum	1.50	3.49	1.75	3.78
0% to 90%	greedy	2.06	4.01	2.27	4.65
	DSR	1.57	3.67	1.85	3.99
	DLM-sum	1.55	3.58	1.78	3.94

Table E.14: Mixup Ablation Experiment. $\lambda \sim \mathcal{U}(0, \lambda_{\max})$. Trained for 5 epochs.

Mixup λ_{\max}	Decoding	DLM Performance: WER [%]			
		dev-clean	dev-other	test-clean	test-other
0.0	greedy	1.82	3.98	2.05	4.49
	DSR	1.56	3.78	1.89	4.08
	DLM-sum	1.55	3.67	1.84	4.00
0.2	greedy	1.91	4.01	2.07	4.69
	DSR	1.60	3.75	1.89	4.04
	DLM-sum	1.54	3.65	1.84	3.96
0.4	greedy	1.80	3.99	2.03	4.43
	DSR	1.56	3.67	1.85	3.98
	DLM-sum	1.51	3.58	1.77	3.87
0.6	greedy	3.03	4.05	2.70	4.93
	DSR	1.59	3.65	1.85	4.00
	DLM-sum	1.55	3.55	1.79	3.87
0.8	greedy	4.39	5.25	4.38	6.53
	DSR	1.58	3.67	1.79	4.00
	DLM-sum	1.99	3.55	1.82	4.00

One could try to use a different sampling procedure, for example with label-synchronous search as we do in Section 3.4 or increasing diversity with softmax temperature, but we leave these ideas for future work.

E.2.11 RESPLIT SUBWORDS

In this work, both the ASR model and the DLM model use the same vocabulary, which for spm10k and spm128 is based on subword units. For vocabularies like this, it is possible to have the same word represented by multiple different subword sequences, such as "example" being represented as

2106 Table E.15: Top-k Sampling Ablation Experiment. Trained for 5 epochs.
2107

2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119	2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119	Decoding	DLM Performance: WER [%]			
			2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119	2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119	2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119	2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
1 (baseline)	greedy	1.82	3.98	2.05	4.49	
	DSR	1.56	3.78	1.89	4.08	
	DLM-sum	1.55	3.67	1.84	4.00	
16	greedy	1.71	3.98	2.05	4.56	
	DSR	1.53	3.73	1.87	4.00	
	DLM-sum	1.55	3.67	1.83	3.95	

2116 Table E.16: We test whether ASR hypotheses should be normalized by resplitting the subwords
2117 before being passed to the DLM. This experiment uses 1x LibriSpeech ASR data, and DLMs are
2118 trained for 5 epochs.
2119

2120 2121 2122 2123 2124 2125 2126 2127 2128	2120 2121 2122 2123 2124 2125 2126 2127 2128	2120 2121 2122 2123 2124 2125 2126 2127 2128	DLM Performance: WER [%]			
			2120 2121 2122 2123 2124 2125 2126 2127 2128	2120 2121 2122 2123 2124 2125 2126 2127 2128	2120 2121 2122 2123 2124 2125 2126 2127 2128	2120 2121 2122 2123 2124 2125 2126 2127 2128
keep ASR subwords	greedy	1.74	3.97	2.02	4.44	
	DSR	1.62	3.74	1.90	4.11	
	DLM-sum	1.53	3.67	1.83	3.98	
resplit subwords	greedy	1.78	4.03	2.08	4.36	
	DSR	1.59	3.79	1.89	4.12	
	DLM-sum	1.63	3.81	1.95	4.13	

2130 "exam" + "ple" or "ex" + "ample". The tokenizer implements a deterministic mapping of words to
2131 subword tokens, but it is not guaranteed that the models will always output sequences that match
2132 the tokenizers' mapping. This is especially relevant for DLMs, because the ASR hypotheses are
2133 fed directly into the DLM as token sequences. This brings up the question if there is a benefit to
2134 merging the subwords back to words and then deterministically re-splitting them into subwords, and
2135 thus guaranteeing a consistent word-to-token mapping before feeding them into the DLM. We test
2136 both configurations, and show results in Table E.16.2137 We observe that re-splitting the subwords into words and back does not lead to a significant change
2138 for greedy or DSR decoding, and even leads to a slight degradation in DLM-sum decoding.
21392140

E.2.12 ADDITIONAL PHONEME REPRESENTATIONS

2141 During our research, we noticed a bug in the training data generation process, where the TTS system
2142 was given phoneme representations which it was not trained on (but which are otherwise valid). This
2143 leads to a noticeable degradation in the WER of the ASR hypotheses, from which we conclude that
2144 the TTS system is not able to generate accurate audio for these phoneme sequences. Regardless,
2145 one may interpret this as a form of data augmentation for the TTS system, and we compare the
2146 performance of this "bad" training data with the "good" training data, which uses the phoneme
2147 representations that the TTS system is trained on. Results are shown in Table E.17.
21482149 The results show that the "bad" phoneme representations are not a good form of data augmentation
2150 and even lead to a slight performance drop. Unless otherwise stated, we use the "good" phoneme
2151 representations for all other experiments in this work.
21522153

E.2.13 ASR TRAINED WITH AND WITHOUT TTS DATA

2154 As mentioned in Section 3.2, we have two different ASR models available with the SentencePiece
2155 10k subword vocabulary: one trained just on LibriSpeech ASR data, and one additionally trained
2156 with TTS data generated from the LibriSpeech LM corpus. The latter model significantly outper-
2157 forms the former in terms of WER, but the question remains which one is better suited for generating
2158 hypotheses for DLM training. For both models we generate a full DLM training dataset with the
2159 LibriSpeech LM corpus without any data augmentation (only TTS noise and length sampling) and
train DLMs for 10 epochs. Results are shown in Table E.18.
2160

Table E.17: A bug in our implementation used additional phoneme representations that the TTS was not trained on. We test whether these additional phoneme representations are a good form of data augmentation. The first two models are trained without additional data augmentation, the last two with data augmentation configuration `stdPerturb`. All trained for 10 epochs.

Phoneme Representation	Decoding	DLM Performance: WER [%]			
		dev-clean	dev-other	test-clean	test-other
Additional phoneme representations	greedy	2.14	4.42	2.38	4.76
	DSR	1.57	3.72	1.87	3.95
	DLM-sum	1.59	3.68	1.84	3.99
Compatible to TTS	greedy	1.96	4.04	2.19	4.66
	DSR	1.58	3.71	1.87	4.02
	DLM-sum	1.53	3.61	1.81	3.89
Additional phoneme representations (stdPerturb)	greedy	2.71	4.21	2.74	5.25
	DSR	1.56	3.50	1.82	3.75
	DLM-sum	1.49	3.39	1.78	3.68
Compatible to TTS (stdPerturb)	greedy	2.26	3.96	2.47	4.70
	DSR	1.51	3.46	1.78	3.73
	DLM-sum	1.50	3.32	1.80	3.57

Table E.18: Comparison of DLMs trained from hypotheses of an ASR model trained with and without TTS data. All models trained for 10 epochs and without additional data augmentation.

ASR TTS vs non-TTS	Decoding	DLM Performance: WER [%]			
		dev-clean	dev-other	test-clean	test-other
spm10k (TTS)	greedy	1.96	4.04	2.19	4.66
	DSR	1.58	3.71	1.87	4.02
	DLM-sum	1.53	3.61	1.81	3.89
spm10k	greedy	2.63	5.09	2.67	5.88
	DSR	1.69	4.03	1.89	4.41
	DLM-sum	1.68	3.88	1.89	4.29
spm10k, eval with spm10k (TTS)	greedy	2.53	4.54	2.61	5.24
	DSR	1.53	3.57	1.80	3.87
	DLM-sum	1.51	3.44	1.75	3.79

Initially, it seems that the DLM trained with the non-TTS ASR model is worse, but when evaluated with the TTS ASR model it actually outperforms the TTS ASR DLM. This is quite a surprising result, as one would expect that the best DLMs for a particular ASR model would be the ones trained with hypotheses from that same ASR model. We run another experiment where we generate data with data augmentation parameters that are known to produce a good DLM (`stdPerturb` from Section 4.2) and train another two DLMs. Results are shown in Table E.19. While the performance of both DLMs has improved, the gains for the non-TTS ASR DLM are smaller and the TTS ASR DLM is now slightly better. It appears that either the DLMs have hit some ceiling on performance gains, the `stdPerturb` configuration favors the TTS-trained ASR model, or that the gap between the worse hypotheses from the non-TTS trained ASR model was closed by the error-inducing data augmentation configuration. In Section 4.3 we pursue this theory, and test which underlying factors of the training data lead to better gains in DLM performance.

E.2.14 MORE TRAINING DATA

Our training data generation process with data augmentation is not inherently deterministic. Augmentations such as dropout, mixup and SpecAugment depend on random sampling, and we explicitly add noise to the latent vector as part of the TTS audio generation process. We enforce some level of determinism by setting a fixed random seed at the beginning every training data generation run, but this does not guarantee that the same training data will be generated when some augmentations are flipped on or off. But one may argue that this source of randomness is beneficial to DLM training, as it ensures that the DLM is trained on a more diverse set of hypotheses. Therefore we

2214 Table E.19: Comparison of DLMs trained from hypotheses of an ASR model trained with and
 2215 without TTS data. All models trained for 10 epochs with data augmentation configuration
 2216 `stdPerturb`.

ASR TTS vs non-TTS (stdPerturb)	Decoding	DLM Performance: WER [%]			
		dev-clean	dev-other	test-clean	test-other
spm10k (TTS)	greedy	2.26	3.96	2.47	4.70
	DSR	1.51	3.46	1.78	3.73
	DLM-sum	1.50	3.32	1.80	3.57
spm10k	greedy	3.39	5.19	3.04	6.11
	DSR	1.78	3.87	1.87	4.29
	DLM-sum	1.71	3.76	1.90	4.27
spm10k, eval with spm10k (TTS)	greedy	3.46	4.55	3.01	5.46
	DSR	1.63	3.46	1.75	3.77
	DLM-sum	1.56	3.35	1.77	3.68

2229 Table E.20: DLM ablation to test whether using additional data from the same text helps. Additional
 2230 data is made using a different random seed. Trained for 10 epochs, with data augmentation
 2231 configuration `stdPerturb`.

Num hypotheses	Decoding	DLM Performance: WER [%]			
		dev-clean	dev-other	test-clean	test-other
1	greedy	2.71	4.21	2.74	5.25
	DSR	1.56	3.50	1.82	3.75
	DLM-sum	1.49	3.39	1.78	3.68
5	greedy	2.71	4.18	2.78	5.01
	DSR	1.56	3.44	1.79	3.74
	DLM-sum	1.51	3.35	1.75	3.66

2242 experiment with generating a unique training dataset for more DLM epochs instead of reusing the
 2243 same generated data every DLM epoch. We expect additional regularisation effects due to the DLM
 2244 seeing different variations of the same text during training, which may improve generalisation. Re-
 2245 sults are shown in Table E.20. We observe very minor improvements in WER, which we deem not
 2246 statistically significant. We present some plausible explanations for this:

- 2248 • Token substitution is implemented as part of DLM training, thus it already reduces overfitting
 2249 by making the inputs more diverse in each epoch.
- 2250 • The training dataset is so large that there is little need for additional regularization.
- 2251 • The differences between the training data of different random seeds is too small to have a
 2252 significant impact.
- 2253 • We hit some performance ceiling, either in model capacity or the quality of the training
 2254 data.

2255 We can not conclusively determine the reason for the lack of improvement, but we can confidently
 2256 say that the additional effort of generating a new training dataset for every epoch is not worth it¹².

2258 This experiment used phoneme representations of the input text which were different from those
 2259 used in TTS training, thus the training data produced a slightly worse DLM (cf. Appendix E.2.12).

E.2.15 LIBRISPEECH ASR TRAINING DATA

2262 We use both the synthetic TTS data and the real audio from the LibriSpeech ASR training dataset to
 2263 generate hypotheses for DLM training. In their work, [Gu et al. \(2024\)](#) determine that a ratio of 1:1
 2264 between TTS and real audio training data is optimal for ASR model training, but it remains an open
 2265 question what the optimal ratio between real and synthetic audio is for DLM training.

2267 ¹²Generating a single epoch of training data for the DLM is roughly the same computational effort as training
 2268 a DLM for 5.8 epochs.

2268 Table E.21: We vary the amount of LibriSpeech ASR training data used. 0x means no LibriSpeech
 2269 ASR data is used, 40x means 40 times the standard amount (38400 hours). TTS audio of LibriSpeech
 2270 LM corpus is about 75000 hours. Trained for 5 epochs.

LibriSpeech ASR data	Decoding	DLM Performance: WER [%]			
		dev-clean	dev-other	test-clean	test-other
0x	greedy	1.86	4.10	2.24	4.56
	DSR	1.63	3.80	1.95	4.16
	DLM-sum	1.64	3.72	1.98	4.17
1x	greedy	1.74	3.97	2.02	4.44
	DSR	1.62	3.74	1.90	4.11
	DLM-sum	1.53	3.67	1.83	3.98
10x	greedy	1.82	3.98	2.05	4.49
	DSR	1.56	3.78	1.89	4.08
	DLM-sum	1.55	3.67	1.84	4.00
20x	greedy	1.77	4.01	1.99	4.41
	DSR	1.59	3.77	1.91	4.08
	DLM-sum	1.53	3.70	1.85	3.98
40x	greedy	1.82	4.02	2.07	4.52
	DSR	1.59	3.76	1.87	4.05
	DLM-sum	1.56	3.71	1.85	3.95

2291 We generate DLM training data with increasing amounts of LibriSpeech ASR training data, and
 2292 leave the amount of synthetic TTS data constant. Therefore in this setup the total amount of data
 2293 seen during training (and total training time) increases with the amount of ASR data. LibriSpeech
 2294 ASR training data has approximately 50M characters, while the LM corpus has approximately 4.3B
 2295 characters. Therefore with a 40x multiplier on the LibriSpeech ASR data, we have a 1:2 proportion
 2296 of real to synthetic data. Our results are shown in Table E.21.

2297 There may be a slight improvement going from zero to one instance of LibriSpeech ASR training
 2298 data, but the statistical significance is questionable. Surprisingly, further increases in the proportion
 2299 of LibriSpeech ASR training data do not seem to meaningfully change the performance of the DLM,
 2300 and the results are almost indistinguishable from the random seed baseline in Table E.38. We con-
 2301 clude that the DLM may benefit from more variation through the use of additional training data, but
 2302 seeing a higher ratio of data from real audio is not important for DLM training.

2304 E.2.16 ONLY LIBRISPEECH ASR TRAINING DATA

2306 A significant portion of this work is dedicated to generating training data for the DLM from the text-
 2307 only LibriSpeech LM corpus by using TTS and various data augmentation techniques. Naturally
 2308 one may wonder whether the additional data is needed, given that our non-TTS ASR model already
 2309 performs quite well even though the training dataset is much smaller. We therefore generate a DLM
 2310 training dataset using only the LibriSpeech ASR training data and no TTS data at all. For every
 2311 epoch we duplicate LibriSpeech ASR data 85x to match the amount of data seen during typical
 2312 DLM training. We also run this experiment with `stdPerturb` data augmentation configuration,
 2313 and each of the 85 duplicates is generated with a different random seed to increase diversity. The
 2314 results are shown in Table E.22.

2315 Both DLMs overfit to the training data, which is not surprising given the small effective size of the
 2316 training dataset. The training loss plot can be seen in Figure E.1. What is surprising though, is that
 2317 the overfitting effect is much more pronounced in the DLM trained with the `stdPerturb` config-
 2318 uration, which has more data augmentation. In the DLM with `stdPerturb` data augmentation we
 2319 see that the tuned scales for DSR and DLM-sum decoding have a very low value for λ_{DLM} , mostly
 2320 ignoring the DLM output.

2321 We conclude that the LibriSpeech ASR 960h training dataset alone is not sufficient for DLM train-
 2322 ing, even with data augmentation.

2322 Table E.22: DLMs trained with only LibriSpeech ASR data (no TTS data) and without additional
 2323 data augmentation. The first model is a baseline with only TTS audio (no real audio). The sec-
 2324 ond model is trained with only real audio. The third model has data augmentation configura-
 2325 tion stdPerturb applied to real audio. All models trained for 5 epochs.

Only LibriSpeech ASR data	Decoding	DLM Performance: WER [%]			
		dev-clean	dev-other	test-clean	test-other
only TTS audio	greedy	1.86	4.10	2.24	4.56
	DSR	1.63	3.80	1.95	4.16
	DLM-sum	1.64	3.72	1.98	4.17
only real audio	greedy	4.19	4.84	3.11	5.22
	DSR	1.77	4.12	2.09	4.46
	DLM-sum	2.56	4.36	2.53	5.11
only real audio (stdPerturb)	greedy	94.02	97.80	93.69	97.53
	DSR	1.72	3.96	1.95	4.30
	DLM-sum	1.78	3.98	1.99	4.37

2364 Figure E.1: Only LibriSpeech ASR training plots. A DLM epoch corresponds to 20 sub-epochs on
 2365 the x-axis.

E.2.17 RELEVANCE OF TTS-ASR DATA

2370 We can make use of the Librispeech text-only corpus but still avoid the TTS model by generating
 2371 training data via heuristic error generation methods. Previous work (Hrinchuk et al., 2020; Dutta
 2372 et al., 2022; Ma et al., 2023a) used BERT, BART (Lewis et al., 2020) or T5 (Raffel et al., 2020)
 2373 pretraining objectives, where text is corrupted by masking or random token substitution. Gu et al.
 2374 (2024) also experimented with such heuristics, although no numbers were reported. Some prelimi-
 2375 nary results for this approach are shown in Table E.23. For the heuristics, here we use random token
 substitution with a rate that it uniformly sampled between 10% and 50% per sequence. The DLM

2376 Table E.23: DLM performance when trained on data generated via TTS-ASR versus heuristic error
 2377 generation. The DLM trained on errors via such heuristics is a standard error correction model
 2378 baseline.

Model	DLM Training Data Generation Method	WER [%]			
		dev-clean	dev-other	test-clean	test-other
ASR only	-	2.29	5.02	2.42	5.33
ASR + LM		1.85	3.93	2.00	4.27
ASR + DLM	TTS-ASR	1.68	3.70	1.83	4.15
	Heuristics	2.11	4.60	2.28	5.06

2386
 2387
 2388 trained on these data is significantly worse, and also worse than the standard LM. This is consistent
 2389 to findings from Gu et al. (2024). However, we note that the error patterns can be improved a lot,
 2390 and this can be finetuned or mixed with real ASR hypotheses, as done in previous work (Dutta et al.,
 2391 2022; Ma et al., 2023a).

E.3 ANALYSIS OF INFERENCE AND MODEL BEHAVIOR

E.3.1 DECODING METHODS

2397 A comparison of our different decoding methods (DLM greedy, DSR decoding, DLM-sum) is shown
 2398 in Tables 1, E.1 and E.2. We note that the DLM greedy WER is sometimes even worse than the ASR
 2399 baseline (without LM). This is different to Gu et al. (2024), where the DLM greedy decoding clearly
 2400 outperforms the ASR baseline. We assume that the different vocabulary (subwords vs. characters)
 2401 is an important contributing factor to this difference (Appendix G.2). The DSR decoding method
 2402 typically already outperforms a standard LM in both rescoring and first-pass decoding, and the
 2403 DLM-sum decoding consistently achieves the best performance, surpassing all other methods.

2404 A grid search over different λ_{DLM} , λ_{prior} scales for DSR and DLM-sum rescoring is shown in Figures
 2405 E.2 and E.3. ASR and DLM n-best lists are generated with scores once, and grid search is
 2406 performed offline. We see that the optimal prior scale is quite low, and with no prior, we get only
 2407 small degradations in WER. We provide a scale tuning plot for the n32-d1024 LM from Table D.2
 2408 in Figure E.4 for comparison.

2409 We evaluate different beam sizes for their impact on the WER for all three decoding methods.
 2410 The DLM is trained with the `stdPerturb` data augmentation configuration for 10 epochs. The
 2411 method "beam search" refers to DLM greedy, but with beam size $k > 1$. DSR w/o concat is
 2412 rescoring only DLM hypotheses, DSR with concat uses $\frac{\text{beam_size}}{2}$ DLM beam size, $\frac{\text{beam_size}}{2}$ ASR
 2413 beam size and combines both beams for rescoring. DLM rescore is only rescoring ASR hypotheses.
 2414 Results for these methods are shown in Figure E.5. We see that "beam search" slowly approaches
 2415 ASR baseline performance from above, and is thus not very useful. DSR without concat and DLM
 2416 rescore converge to a similar WER, while DLM rescore is slightly better for smaller beam sizes.
 2417 DSR with concat is the best method for all beam sizes.

2418 We plot the performance of DLM-sum decoding in Figure E.6 for different beam sizes and number
 2419 of ASR hypotheses. Both increasing the beam size and number of ASR hypotheses helps. With
 2420 one ASR hypothesis we roughly match DSR decoding performance with concatenation, and surpass
 2421 that with a higher number of ASR hypotheses. For beam size 1, scale tuning is impossible, so we
 2422 re-use scales from DSR decoding with concatenation, beam size 64 and recover usable results. DSR
 2423 decoding defaults to only ASR scoring for beam size 1.

E.3.2 SEARCH AND MODEL ERRORS

2424
 2425 Due to the autoregressive nature of our decoding methods, the most probable output sequence is
 2426 not always found. This happens when a correct label is discarded at an early step in the decoding
 2427 process due to beam size pruning, but this label would lead to a better overall sequence if it were
 2428 included. We only count search errors where the ground truth sequence is not selected but had a

Figure E.2: Plot of different scales for DLM and prior for **DSR decoding** on dev-other. The DLM is trained on `stdPerturb` data augmentation for 10 epochs. The prior scale is relative to the DLM scale, i.e. when the DLM scale is 0.1 and the prior scale is 2.0, the actual prior scale is 0.2. ASR score scale is kept at a constant 1.0.

higher predicted probability than the output sequence found during decoding¹³. In contrast to that, model errors are the percentage of sentences where the ground truth sequence is not the most probable sequence according to the model. We also calculate the Oracle WER by picking the hypothesis with the lowest WER from the beam. Results are shown in Table E.26. Counted search errors are $\leq 1\%$ across the board, while model error rates are significantly higher. This suggests that our search methods are quite effective at finding the most probable output sequence according to the model, and that the main limitation of our decoding methods is the model itself. For comparison we also give results for LM rescoring, where the DLM rescores only the ASR n-best list. Through the Oracle WER we see that the DLM is limited by the quality of the ASR hypotheses in LM rescoring, and that integration of DLM hypotheses into the decoding process as in DSR decoding is essential for further improvements over the ASR model.

¹³This does not count all search errors. We cannot count all search errors, as we never know what would be the highest possible probability for some given input.

Figure E.3: Plot of different scales for DLM and prior for **DLM-sum decoding** on dev-other. The DLM is trained on `stdPerturb` data augmentation for 10 epochs. The prior scale is relative to the DLM scale, i.e. when the DLM scale is 0.1 and the prior scale is 2.0, the actual prior scale is 0.2. ASR score scale is kept at a constant 1.0.

E.3.3 EVALUATION OVER THE COURSE OF TRAINING

We evaluate the DLM performance over the course of training. During DLM training, we keep checkpoints at epochs 1, 2, 4, 8 and 10. At every checkpoint, we run scale tuning as described in Section 2.1 and evaluate the WER on test-other. Here we look at a DLM trained with the `stdPerturb` data augmentation configuration for a total of 10 epochs. The results are shown in Figure E.8.

Greedy decoding improvement looks somewhat unstable, while DSR and DLM-sum decoding steadily approach their final WER. The unstable trend of greedy decoding could be explained by our findings in Section 4.3.

E.3.4 WER DISTRIBUTION

Different data augmentation techniques lead to different WER of the training data, but the WER of the dataset alone does not reveal any information about the variance or distribution of error rates on the sentence-level. Here we look at the WER of individual sentences in the training data, and their length.

Figure E.4: Plot of different scales for LM and prior for **LM rescoring** on dev-other. The LM is n32-d1024 trained for 5 epochs from Table D.2. The prior scale is relative to the LM scale, i.e. when the LM scale is 0.1 and the prior scale is 2.0, the actual prior scale is 0.2. ASR score scale is kept at a constant 1.0.

Figure E.9 shows the distribution of WER among sentences in the training data for no data augmentation, and with `stdPerturb` data augmentation. Note that the y-axis is logarithmic to better visualize the distribution, and each sentence is weighted by its reference length similar to how WER is calculated over a dataset. We see that the shape of the distribution changes significantly, from a monotonic decay in the baseline case to a more hill-like shape with a peak around 10% WER with `stdPerturb`. All three datasets seem to behave similarly, though the dev-other set is biased toward slightly higher WER, which is expected as it is a more difficult validation set.

Figure E.10 shows the distribution of sentence lengths in the training data. The two data augmentation configurations seem to have a very similar length distribution, with an average of around 17-20 words per sentence.

We show WER and length distributions for all combined data augmentation techniques in Figures E.11 to E.19.

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

Figure E.5: Performance of DLM greedy and DSR decoding over different beam sizes on test-other. DSR with concat uses $\frac{\text{beam_size}}{2}$ for DLM and ASR beams and combines both beams for rescoring. DLM is trained on `stdPerturb` data augmentation for 10 epochs. Raw data can be found in Table E.24.

Figure E.6: Performance of DLM-sum decoding over different beam sizes and different number of hypotheses from ASR model. DLM is trained on `stdPerturb` data augmentation for 10 epochs. Same y and x axis as Figure E.5. Raw data can be found in Table E.25.

2643

2644

2645

Figure E.7: Performance of DLM-sum decoding over different beam sizes and different number of hypotheses from ASR model. DLM is trained on `low` data augmentation for 10 epochs. Same y and x axis as Figure E.5 and Figure E.6. Performance breaks down for beam size 2 due to poor scale tuning.

Figure E.8: Performance changes over the course of Standard DLM training. Shown are different checkpoints of the same DLM training run. The DLM is trained with the `stdPerturb` data augmentation configuration for 10 epochs.

Table E.24: Decoding Test: Beam Size.

Decoding Test: Beam Size	Decoding	DLM Performance: WER [%]			
		dev-clean	dev-other	test-clean	test-other
1	greedy	2.26	3.96	2.47	4.70
	DSR	2.26	3.96	2.47	4.70
2	greedy	2.22	3.90	2.28	4.52
	DSR	2.04	3.74	2.13	4.36
4	greedy	2.14	3.89	2.28	4.57
	DSR	1.87	3.67	2.08	4.21
8	greedy	2.09	3.87	2.21	4.49
	DSR	1.75	3.59	1.93	4.11
16	greedy	2.09	3.87	2.21	4.48
	DSR	1.73	3.54	1.91	4.04
32	greedy	2.09	3.87	2.21	4.46
	DSR	1.71	3.50	1.88	3.98
64	greedy	2.09	3.87	2.21	4.46
	DSR	1.69	3.50	1.85	3.95
128	greedy	2.09	3.86	2.21	4.44
	DSR	1.65	3.47	1.86	3.90
1 (with concat 1 ASR hyps)	greedy	2.07	3.94	2.39	4.56
	DSR	1.57	3.70	1.85	4.02
2 (with concat 2 ASR hyps)	greedy	2.21	3.90	2.23	4.44
	DSR	1.51	3.59	1.88	3.89
4 (with concat 4 ASR hyps)	greedy	2.13	3.88	2.22	4.47
	DSR	1.49	3.55	1.77	3.82
8 (with concat 8 ASR hyps)	greedy	2.09	3.87	2.21	4.49
	DSR	1.48	3.50	1.76	3.77
16 (with concat 16 ASR hyps)	greedy	2.09	3.86	2.21	4.47
	DSR	1.49	3.49	1.76	3.75
32 (with concat 32 ASR hyps)	greedy	2.09	3.86	2.21	4.46
	DSR	1.51	3.46	1.79	3.74
64 (with concat 64 ASR hyps)	greedy	2.09	3.86	2.21	4.46
	DSR	1.51	3.46	1.78	3.73

2754

2755

2756

Table E.25: Decoding test: DLM-sum beam size.

DLM-sum beam size	ASR num.hyps	DLM Performance: WER [%]			
		dev-clean	dev-other	test-clean	test-other
2	1	1.53	3.48	1.86	3.88
	2	1.60	3.46	1.85	3.83
	4	1.67	3.46	1.89	3.86
	8	1.70	3.45	1.94	3.88
	16	1.65	3.39	1.86	3.81
	32	1.68	3.40	1.88	3.81
4	1	1.50	3.49	1.84	3.76
	2	1.52	3.44	1.83	3.72
	4	1.53	3.40	1.80	3.75
	8	1.50	3.36	1.81	3.72
	16	1.49	3.34	1.80	3.68
	32	1.51	3.33	1.79	3.64
6	1	1.50	3.50	1.84	3.74
	2	1.53	3.40	1.84	3.66
	4	1.51	3.38	1.82	3.64
	8	1.51	3.36	1.82	3.64
	16	1.51	3.34	1.80	3.64
	32	1.51	3.35	1.77	3.60
8	1	1.51	3.48	1.84	3.73
	2	1.52	3.40	1.84	3.65
	4	1.52	3.38	1.82	3.63
	8	1.50	3.38	1.80	3.59
	16	1.52	3.35	1.80	3.65
	32	1.47	3.33	1.78	3.54
12	1	1.51	3.47	1.84	3.72
	2	1.53	3.41	1.83	3.64
	4	1.51	3.38	1.81	3.65
	8	1.50	3.35	1.79	3.58
	16	1.48	3.34	1.79	3.62
	32	1.51	3.31	1.80	3.54
16	1	1.51	3.47	1.84	3.72
	2	1.54	3.39	1.83	3.65
	4	1.51	3.38	1.80	3.64
	8	1.51	3.35	1.79	3.58
	16	1.51	3.32	1.80	3.59
	32	1.49	3.31	1.79	3.55
32	1	1.52	3.47	1.83	3.72
	2	1.52	3.39	1.83	3.66
	4	1.51	3.38	1.80	3.64
	8	1.50	3.35	1.79	3.58
	16	1.50	3.31	1.80	3.58
	32	1.51	3.31	1.80	3.53

2799

2800

2801

Table E.26: Search/Model errors and Oracle WER for different decoding methods. DLM trained on stdPerturb data augmentation configuration for 10 epochs. DLM rescoring uses the ASR n-best list, DSR uses ASR and DLM beams. Respective beam sizes are shown in parentheses.

2804

2805

2806

2807

Decoding	Search Error %				Decoding	Model Error %				Decoding	Oracle WER %			
	dev-clean	dev-other	test-clean	test-other		dev-clean	dev-other	test-clean	test-other		dev-clean	dev-other	test-clean	test-other
DLM greedy (1)	0.89	0.77	0.69	0.88	DLM greedy (1)	24.20	36.17	25.95	39.61	DLM greedy (1)	2.26	3.96	2.47	4.70
DLM beam search (64)	0.07	0.14	0.00	0.07	DLM beam search (64)	24.60	36.45	26.49	40.12	DLM beam search (64)	0.66	1.73	0.71	1.95
DLM rescoring (64)	0.37	0.84	0.27	0.88	DLM rescoring (64)	20.87	34.29	22.52	36.54	DLM rescoring (64)	0.73	2.17	0.89	2.17
DSR (32+32)	0.92	0.28	0.27	0.68	DSR (32+32)	19.35	33.07	22.44	35.79	DSR (32+32)	0.41	1.54	0.54	1.58

Figure E.9: WER distribution of training data. Both generated with spm10k (TTS) ASR model.

Figure E.10: Length distribution of training data. Both generated with spm10k (TTS) ASR model.

2906 Figure E.11: **Baseline** data augmentation for DLM training. Top: length distribution and DLM-
2907 sum output WER distribution of **training data**, Bottom: WER distribution of DLM-sum output **in**
2908 **recognition**.

2910
2911
2912
2913
2914
2915

2916

2917

2918

2919

2920

2921

2922

2923

Figure E.12: **Verylow-earlyAsr2** data augmentation for DLM training. Top: length distribution and DLM-sum output WER distribution of **training data**, Bottom: WER distribution of DLM-sum output in **recognition**.

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

Figure E.13: **Verylow** data augmentation for DLM training. Top: length distribution and DLM-sum output WER distribution of **training data**, Bottom: WER distribution of DLM-sum output **in recognition**.

3123 **Figure E.15: Low** data augmentation for DLM training. Top: length distribution and DLM-sum out-
 3124 put WER distribution of **training data**, Bottom: WER distribution of DLM-sum output in **recognition**.

3132

3133

3134

3135

3136

3137

3138

3139

Figure E.16: **Lowmedium** data augmentation for DLM training. Top: length distribution and DLM-sum output WER distribution of **training data**, Bottom: WER distribution of DLM-sum output **in recognition**.

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

Figure E.17: **Medium** data augmentation for DLM training. Top: length distribution and DLM-sum output WER distribution of **training data**, Bottom: WER distribution of DLM-sum output in **recognition**.

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3284 Figure E.18: **High-noAsrPerturb** data augmentation for DLM training. Top: length distribution
3285 and DLM-sum output WER distribution of **training data**, Bottom: WER distribution of DLM-sum
3286 output **in recognition**.

3287
3288
3289
3290
3291
3292
3293

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317

3318 (a) WER distribution of **training data**

(b) Length distribution of **training data**

3319 WER distribution
 3320 for base-puttingItTogether(high)-nEp100-lr0.5 on DLM Sum
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335

(c) Trained DLM performance, WER distribution of DLM-sum output **in recognition**

Figure E.19: **High** data augmentation for DLM training. Top: length distribution and DLM-sum output WER distribution of **training data**, Bottom: WER distribution of DLM-sum output **in recognition**.

3341
3342
3343
3344
3345
3346
3347

3348
3349

E.3.5 CORRELATIONS

3350
3351
3352
3353
3354
3355
3356
3357
3358
3359

Our experiments show that some data augmentation techniques lead to great improvements in DLM performance, while others have little effect. We want to understand why this is the case, and if there are any metrics that can predict the effectiveness of a data augmentation technique before a DLM is trained. To do this, we plot various metrics against each other to check for correlations, which may give us further insights into the effects of data augmentation. The data points consist of all the data augmentation techniques we have evaluated in this work, including the experiments where we combine multiple techniques. Due to space constraints, we only show the data augmentation category each point corresponds to, but not its exact parameters. To make these experiments feasible, we only compute and aggregate these metrics over a subset of about 52k sentences from the TTS-generated training data, instead of the full dataset of about 40M sentences.

3360
3361
3362

Before we start with the training data correlations, we want to see how well the different decoding methods correlate with each other. We plot the different decoding methods against each other in Figure E.20.

3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374

It is apparent that there is hardly any correlation between greedy and DSR decoding, but DSR and DLM-sum decoding are highly correlated. There are even some outliers in plot (a) for DSR WER around 4.0% where the greedy WER varies between 4.48% and 6.53%. This is an indication that greedy decoding performance is not a good predictor for performance in model combination methods, as in DSR or DLM-sum decoding. Given that our best results are achieved with DSR and DLM-sum decoding, we will therefore not focus as much on greedy decoding but we still report it for completeness. We do not know the reason for the bad correlation between greedy and DSR, and we cannot rule out that this is not caused by a bug in our implementation¹⁴. A possible explanation is that with more data augmentation the DLM learns to become less peaky or confident in its predictions, which may improve model combination performance but hurt DLM greedy decoding. We explore this possibility in Section 4.3 by artificially adjusting the peakiness of the DLM output distribution through softmax temperature scaling. Another explanation can be given by the presence of unpredictable DLM hallucinations, which we show in Section 4.3.

3375
3376
3377

We plot the WER of the TTS-generated hypotheses from the training data against DLM greedy and DSR decoding in Figure E.21.

3378
3379
3380

While it appears that increasing the training data WER generally leads to better performance, it is not a strong guarantee. Consider plot (b) where the training data WER is around 13.7% but the DLM DSR WER varies between 3.81% (our best result) and 3.97%.

3381
3382
3383

Another metric to measure the quality of text is by scoring it with a language model. Those texts that are good representations of the text distribution in the LibriSpeech LM dataset are scored high, and we expect that the sentences with more errors are scored lower. We use the language model

¹⁴The mismatch between greedy and DSR performance does not seem to occur in the results published by Gu et al. (2024), though the sample size is not very large

3398
3399
3400
3401

Figure E.20: We compare different decoding methods against each other. Every point corresponds to a different data augmentation technique. The purple data points correspond to our data augmentation combination experiments in Section 4.2.

Figure E.21: WER of training data hypotheses plotted against DLM performance on test-other.

Figure E.22: Median LM log-probability of training data hypotheses plotted against DLM performance on test-other. Scores were performed with the n8-d1024 LM from Section 3.2 and length-normalized by dividing by the number of tokens in the hypothesis.

n8 d1024 from Section 3.2 to assign every hypothesis a probability $p_{LM}(a_1^S)$, and then length normalize it by dividing the log-probability with the number of tokens in the hypothesis (including end-of-sentence token). This reduces outliers where very short hypotheses are assigned a very high probability¹⁵. Then we take the median of the log-probabilities over all hypotheses to get a single score for the whole dataset. The median length-normalized LM log-probability is plotted against DLM performance in Figure E.22.

The greedy decoding plot (a) again looks somewhat random, but there seems to be a nice correlation in the DSR decoding plot (b). The best performing DLMs seem to have training data with a median length-normalized LM log-probability between -4.5 and -5.5. But again this does not guarantee good performance, as can be seen by the data points in that range that go up to 4.03% WER.

Motivated by the observation that greedy and DSR decoding seem to be somewhat negatively correlated, meaning that as greedy WER goes up, DSR WER goes down, we hypothesize that the DLM learns some characteristic that makes it less confident in its own predictions but better tolerates model combination. We therefore compute the entropy of the DLM output distribution for every output token and average it over all tokens and all hypotheses to get a single score for the whole

¹⁵Hypothesis shrinking only existed for high dropout values. Other data points moved only by a small amount after applying length normalization.

Figure E.23: Mean label-wise entropy of DLM output distribution plotted against DLM performance on test-other.

dataset. The entropy for a single output token is computed as follows:

$$H(j, p_{\text{DLM}}) = - \sum_{i=1}^{|V|} p_i \log p_i \quad (28)$$

where $p_i := p_{\text{DLM}}(a_j = v_i | a_1^{j-1}, \tilde{a}_1^{\tilde{S}})$
and j is the position of the output token
and $v_i \in V$ is the i -th token in the vocabulary

Results are shown in Figure E.23.

This partially confirms our hypothesis, Greedy WER appears to increase with higher entropy, while DSR WER decreases. But again, the correlation is not perfect, and significant outliers exist.

Another related metric is the Expected Calibration Error (ECE) (Lee & Chang, 2021), which measures how well the predicted probabilities of a model reflect the true accuracy. Intuitively, it is a measure of whether the model is over/underconfident or well-calibrated. When we plot ECE against DLM performance, we arrive at an almost exact replica of Figure E.23, and it turns out that ECE and entropy are highly correlated in our case. We therefore do not show the ECE plots here, but rather the correlation between ECE and entropy in Figure E.24. Further investigation is needed to understand why ECE and entropy are so closely related in our case.

A reliability diagram as per Lee & Chang (2021) is shown in Figure E.25.

For completeness, we also show the correlation between training data WER and entropy in Figure E.26b and between training data WER and LM score in Figure E.26a.

E.3.6 SOFTMAX TEMPERATURE

As motivated by the previous section, we want to see if we can improve DLM performance by adjusting the peakiness of the DLM output distribution. Softmax Temperature scaling is defined as follows:

$$p_i = \frac{\exp(z_i/T)}{\sum_{j=1}^{|V|} \exp(z_j/T)} \quad (29)$$

where z_i are the logits of the DLM output distribution

where T is the temperature. A temperature of $T = 1.0$ corresponds to the original distribution, $T < 1.0$ makes the distribution peakier, and $T > 1.0$ makes it softer (\sim higher entropy). We take a baseline DLM trained without data augmentation, and apply temperature scaling to the output distribution during decoding. We do not use a better DLM with data augmentation because those already have a higher mean entropy, and we want to see if we can recover similar improvements by artificially increasing the entropy. The baseline DLM has a mean entropy of 1.34. If there is a causal relationship between entropy and DLM performance, we expect to see a performance improvement

Figure E.24: Expected Calibration Error plotted against Mean Entropy, both on dev-other.”.

Figure E.25: DLM reliability diagram, as per Lee & Chang (2021). Both Models match their predicted confidence and true accuracy quite well. Confidence is the maximum probability of the model output distribution. Accuracy is the % of how often the argmax of the probability distribution matches the ground truth. Values are binned according to confidence.

Figure E.26: Correlation between different metrics

3564
3565

Table E.27: Softmax Temperature.

3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Softmax Temperature	Decoding	DLM Performance: WER [%]			
		dev-clean	dev-other	test-clean	test-other
0.5	DSR	1.58	3.73	1.87	4.17
	DLM-sum	1.58	3.65	1.85	3.97
0.6	DSR	1.62	3.73	1.89	4.15
	DLM-sum	1.60	3.69	1.85	3.96
0.7	DSR	1.59	3.73	1.90	4.11
	DLM-sum	1.56	3.63	1.85	3.93
0.8	DSR	1.59	3.73	1.89	4.10
	DLM-sum	1.58	3.65	1.82	3.91
0.9	DSR	1.59	3.72	1.87	4.01
	DLM-sum	1.55	3.64	1.83	3.95
0.95	DSR	1.59	3.73	1.86	4.00
	DLM-sum	1.53	3.63	1.82	3.91
0.96	DSR	1.59	3.72	1.87	4.02
	DLM-sum	1.53	3.62	1.81	3.91
0.97	DSR	1.59	3.71	1.86	4.00
	DLM-sum	1.53	3.64	1.82	3.91
0.98	DSR	1.59	3.71	1.86	4.01
	DLM-sum	1.53	3.62	1.82	3.91
0.99	DSR	1.59	3.71	1.86	4.01
	DLM-sum	1.53	3.62	1.81	3.91
1.0	DSR	1.58	3.71	1.87	4.02
	DLM-sum	1.53	3.61	1.81	3.89
1.01	DSR	1.58	3.71	1.86	4.02
	DLM-sum	1.53	3.61	1.81	3.91
1.02	DSR	1.58	3.71	1.86	4.02
	DLM-sum	1.53	3.61	1.81	3.90
1.03	DSR	1.58	3.71	1.86	4.02
	DLM-sum	1.53	3.61	1.81	3.91
1.04	DSR	1.58	3.71	1.86	4.01
	DLM-sum	1.53	3.62	1.81	3.92
1.05	DSR	1.58	3.71	1.86	4.03
	DLM-sum	1.54	3.62	1.83	3.90
1.1	DSR	1.60	3.71	1.89	4.04
	DLM-sum	1.57	3.64	1.83	3.91
1.15	DSR	1.59	3.71	1.87	4.00
	DLM-sum	1.57	3.63	1.85	3.94
1.2	DSR	1.59	3.71	1.88	3.99
	DLM-sum	1.54	3.64	1.83	3.87
1.3	DSR	1.55	3.72	1.87	3.99
	DLM-sum	1.64	3.74	1.86	4.01
1.4	DSR	1.56	3.73	1.87	3.99
	DLM-sum	1.59	3.70	1.85	3.93
1.5	DSR	1.61	3.73	1.89	4.01
	DLM-sum	1.67	3.78	1.89	3.99
1.7	DSR	1.58	3.75	1.89	4.01
	DLM-sum	1.72	3.83	1.92	4.11
2.0	DSR	1.62	3.78	1.90	4.03
	DLM-sum	1.73	3.90	1.90	4.09
2.3	DSR	1.67	3.83	1.86	4.06
	DLM-sum	1.72	3.92	1.92	4.14
2.66	DSR	1.67	3.87	1.91	4.10
	DLM-sum	1.72	3.93	1.96	4.22
3.0	DSR	1.63	3.89	1.90	4.08
	DLM-sum	1.69	3.96	1.92	4.20
3.5	DSR	1.65	3.92	1.91	4.14
	DLM-sum	1.67	3.93	1.93	4.24

Figure E.27: DLM Softmax Temperature plotted against DLM performance on test-other. DLM is a baseline model trained without data augmentation for 10 epochs. Raw data can be found in Table E.27.

with higher temperature. Results for different temperatures are shown in Figure E.27. Greedy results are not shown as they are invariant under softmax temperature scaling.

There does not seem to be a performance improvement for adjusting temperature in either direction, so we conclude that entropy of the output distribution is not causally related to DLM performance, but rather a consequence of another underlying factor.

E.3.7 ERROR ANALYSIS BY CATEGORIZATION

Because DLMs are trained to correct errors, it is interesting to see which types of errors are corrected best. For this we bin all words into categories, and then we look at the WER per category. Only substitution errors are considered here, as those account for 80% of all word errors on test-other for the ASR spm10k (TTS) model¹⁶. When we look at the categories of substitution errors, we consider the word in the reference text, not the word it was substituted with in the hypothesis. For all the following analyses, we use the DLM trained with `stdPerturb` data augmentation for 10 epochs.

E.3.8 WORD FREQUENCY

We concatenate the LibriSpeech LM corpus and the LibriSpeech ASR text data to get a large corpus of text. Then the occurrence of every word in the combined corpus is counted and the words are sorted by their frequency. Three bins are created: "common" words are the words that with their counts combined make up 50% of all word occurrences. "medium" words make up the next 49% of word occurrences, and "rare" words are the remaining 1%. Table E.28 shows a selection of words contained in the bins.

We begin by looking at the WER of the ASR hypotheses in each bin, shown in Table E.29.

Immediately we see that the ASR model struggles with rare words, 58.8% of which are misrecognized. But it seems that the DLM is very effective at correcting errors in all three bins equally, with similar proportional reductions in absolute errors across all bins.

¹⁶On test-other, the ASR model spm10k (TTS) has 3.5% substitution, 0.4% deletion and 0.5% insertion word errors. After correction using DLM-sum with `stdPerturb` DLM trained for 10 epochs, this reduces to 2.8% substitution, 0.3% deletion and 0.4% insertion word errors.

3672 Table E.28: Example words in each frequency bin. The bins were created such that "common"
 3673 words make up 50% of all word occurrences, "medium" words make up the next 49% and "rare"
 3674 words make up the remaining 1%.

	Common	Medium	Rare
Size of bin	83	59244	913464
Selection of words	the	before	masin
	and	other	peschiera
	of	know	balt

	see	gyroscope	marspeaker
	its	brett's	schulberg's
	down	cordie	kerstall

3685 Table E.29: Number of substitution errors categorized by word frequency. "abs" shows the absolute
 3686 number of substitutions in each frequency bin, "rel" shows the percentage of substitutions in that bin
 3687 relative to the number of words in that bin. "abs perc" shows the percentage of absolute substitutions
 3688 relative to the baseline (ASR) model.

Substitutions by Frequency	test-other								
	common			medium			rare		
	abs	abs perc	rel	abs	abs perc	rel	abs	abs perc	rel
ASR	358	-	1.35%	1124	-	4.48%	370	-	58.82%
DLM greedy	339	-5.31%	1.27%	1123	-0.09%	4.47%	327	-11.62%	51.99%
DLM DSR	305	-14.80%	1.15%	924	-17.79%	3.68%	315	-14.86%	50.08%
DLM-sum	287	-19.83%	1.08%	871	-22.51%	3.47%	314	-15.14%	49.92%

3697 Table E.30: Example words for each Part-of-Speech (POS) tag. The POS tags were assigned using
 3698 the SpaCy library. The assignment of word to POS Tag is not perfect, but good enough for our
 3699 purposes.

POS Tag	Count	Example Words
PROPN	578003	shippenburgh, strasburgh, dutchman, ...
NOUN	291990	town, street, mile, ...
VERB	62502	contains, built, saw, ...
ADJ	12818	dirty, pleasant, handsome, ...
ADV	7356	only, thickly, very, ...
ADP	1561	in, of, from, ...
PRON	772	we, the, a, some, ...
other tags	17789	that, if, was, and, three, ...

E.3.9 PART OF SPEECH

3714 Sentences in the english language consist of different types of words, such as nouns, verbs, ad-
 3715 jectives, etc. We are interested in seeing if the DLM is better at correcting certain types of words
 3716 than others. For example, one could hypothesize that ASR models have trouble with recognizing
 3717 names of people and places (= proper nouns¹⁷) which are rare in the training data, and with the
 3718 additional help of the LibriSpeech LM corpus the DLM may be able to correct these errors. We use
 3719 the SpaCy¹⁸ library to automatically assign every word in the corpus a part of speech (POS) tag,
 3720 specifically we use the en_core_web_lg:3.8.0 model. A subset of some common POS tags
 3721 is shown in Table E.30.

3722 The WER categorized by POS tag is shown in Table E.31.

3723 ¹⁷A list of POS tags and their meanings can be found at <https://universaldependencies.org/u/pos/>.

3724 ¹⁸<https://spacy.io>

3726 Table E.31: Number of substitution errors categorized by Part-of-Speech tag. "abs" shows the
 3727 absolute number of substitutions in each frequency bin, "rel" shows the percentage of substitutions
 3728 in that bin relative to the number of words in that bin. "abs perc" shows the percentage of absolute
 3729 substitutions relative to the baseline (ASR) model.

Substitutions by POS	test-other														
	PROPN			NOUN			VERB			ADJ			other		
	abs	abs perc	rel	abs	abs perc	rel	abs	abs perc	rel	abs	abs perc	rel	abs	abs perc	rel
ASR	661	-	11.94%	426	-	5.92%	240	-	2.93%	80	-	3.12%	445	-	1.54%
DLM greedy	618	-6.51%	11.16%	410	-3.76%	5.70%	228	-5.00%	2.78%	80	-0.00%	3.12%	453	-1.80%	1.57%
DLM DSR	567	-14.22%	10.24%	325	-23.71%	4.52%	189	-21.25%	2.30%	69	-13.75%	2.69%	394	-11.46%	1.37%
DLM-sum	536	-18.91%	9.68%	327	-23.24%	4.54%	185	-22.92%	2.25%	57	-28.75%	2.23%	367	-17.53%	1.27%

3735 Table E.32: Number of substitution errors categorized by Part-of-Speech tag. "abs" shows the
 3736 absolute number of substitutions in each frequency bin, "rel" shows the percentage of substitutions
 3737 in that bin relative to the number of words in that bin. "abs perc" shows the percentage of absolute
 3738 substitutions relative to the baseline (ASR) model.

Substitutions by POS (all)	test-other														
	PROPN			NOUN			VERB			ADJ			other		
abs	abs perc	rel	abs	abs perc	rel	abs	abs perc	rel	abs	abs perc	rel	abs	abs perc	rel	
ASR	661	-	11.94%	426	-	5.92%	240	-	2.93%	80	-	3.12%	445	-	1.54%
DLM greedy	618	-6.51%	11.16%	410	-3.76%	5.70%	228	-5.00%	2.78%	80	-0.00%	3.12%	453	-1.80%	1.57%
DLM DSR	567	-14.22%	10.24%	325	-23.71%	4.52%	189	-21.25%	2.30%	69	-13.75%	2.69%	394	-11.46%	1.37%
DLM-sum	536	-18.91%	9.68%	327	-23.24%	4.54%	185	-22.92%	2.25%	57	-28.75%	2.23%	367	-17.53%	1.27%

3739 Table E.33: Correction statistics of a baseline DLM trained without data augmentation and trained
 3740 for 10 epochs. "Before" statistics are from the ASR model, "After" statistics are from the DLM-
 3741 corrected hypotheses. Each number represents a word in LibriSpeech test-other.

(a) Greedy			(b) DSR			(c) DLM-sum			
	After			After			After		
Before	Correct	Incorrect	Total	Before	Correct	Incorrect	Before	Correct	
Before	49939	339	50278	Before	50210	68	50278	Before	50164
Correct	49939	339	50278	Incorrect	273	1792	2065	Incorrect	392
Incorrect	273	1792	2065	Total	50485	1858	52343	Total	1673
Total	50212	2131	52343					Total	50278

3751 Table E.34: Correction statistics of DLM with stdPerturb data augmentation, and trained for 10
 3752 epochs. "Before" statistics are from the ASR model, "After" statistics are from the DLM-corrected
 3753 hypotheses. Each number represents a word in LibriSpeech test-other.

(a) Greedy			(b) DSR			(c) DLM-sum			
	After			After			After		
Before	Correct	Incorrect	Total	Before	Correct	Incorrect	Before	Correct	
Before	49827	451	50278	Before	50181	97	50278	Before	50147
Correct	49827	451	50278	Incorrect	442	1623	2065	Incorrect	131
Incorrect	416	1649	2065	Total	50623	1720	52343	Total	1642
Total	50243	2100	52343					Total	50278

3761 The ASR struggles most with proper nouns (PROPN) and nouns (NOUN). Again, the DLM corrects
 3762 errors of all POS tags about equally well, with some small variations which may not be statistically
 3763 significant. A complete table is shown in Table E.32.

3764 E.3.10 CORRECTION VS. DEGRADATION ANALYSIS

3765 Binary classifiers are often evaluated with so-called confusion matrices, which show how often a
 3766 classifier predicts a positive or a negative class, and how often that prediction is correct. We adapt
 3767 this idea to our DLM to show how often the ASR model correctly predicts a word, and what happens
 3768 after a DLM is applied for error correction. On the vertical axis we show the previous state of the
 3769 word in the ASR hypotheses, whether they are correct or incorrect. On the horizontal axis we show
 3770 the new state of the word after DLM correction. Here, we only consider the words in the reference
 3771 text, so these numbers only capture substitution and deletion errors. See Table E.33 and Table E.34
 3772 for results on a baseline DLM without data augmentation and a DLM trained with stdPerturb
 3773 data augmentation, respectively.

3774 E.3.11 ERROR EXAMPLES

3775 Finally, we look at some specific examples of errors that the ASR model makes, and how the DLM
 3776 corrects them (or fails). We will show examples from the LibriSpeech test-other set, from a DLM
 3777 trained with stdPerturb data augmentation for 10 epochs.

3780 Table E.35: Example 1. The ASR model makes several mistakes, some of which are corrected by
 3781 the DLM. See text for details.

Reference	[...] his note book	which [...] father mestienne's	turn father mestienne	died
ASR	[...] his **** NOTEBO	which [...] father MEIEEN'S	turn father MAIEIENNEEN	died
DLM greedy	[...] his **** NOTEBOOK	which [...] father MAHOMMED'S	turn father MAHOMMED	died
DLM DSR	[...] his note book	which [...] father MAHIEN'S	turn father MAHIEN	died
DLM-sum	[...] his note book	which [...] father MAIEN'S	turn father MAIEN	died

3790 Table E.36: Example 2. The ASR makes mistakes which even the DLM can not correct.

Reference	say awk	ward	in ***	future not awk'ard
ASR	say ***	AWKWARD	in THE	future not AWKWARD
DLM greedy	say ***	AWKWARD	in THE	future not AWKWARD
DLM DSR	say ***	AWKWARD	in THE	future not AWKWARD
DLM-sum	say ***	AWKWARD	in THE	future not AWKWARD

3800 Table E.37: Example 3. The DLM exhibits broken behaviour and hallucinations with greedy decoding.
 3801

Reference	[...] the hashish	the [...] toward porto vecchio
ASR	[...] the hashish	the [...] toward porto vecchio
DLM-greedy	[...] the HASCHICH	the [...] toward porto THE YACHT SEEN <17 words omitted> ALL THE YACHT SEEN OF THE
DLM DSR	[...] the hashish	the [...] toward porto vecchio
DLM-sum	[...] the hashish	the [...] toward porto vecchio

3810 The first example is shown in Table E.35. The ASR model makes several mistakes, it misrecog-
 3811 nizes "notebook" as "NOTEBO", "mestienne's" as "MEIEEN'S", and "maieienneen" as "MAIEI-
 3812 ENNEEN". The DLM with greedy decoding completes "NOTEBO" to "NOTEBOOK", and fig-
 3813 ures out that the two names should be identical, changing both to "MAHOMMED". With DSR and
 3814 DLM-sum decoding, further audio information is available, and "note book" is recognized correctly,
 3815 but the names are still wrong, but now more consistent to each other than in the ASR hypothesis.

3816 Our second example is shown in Table E.36. The ASR model misrecognizes several words in the
 3817 sentence, and the DLM is not able to correct any of them. This is an example where the ASR output
 3818 is already quite different from the reference, and there is not enough context for the DLM to figure
 3819 out what the correct words should be. Anecdotally, from looking at many corrections and mis-
 3820 corrections in the test sets, we find that the DLM generally is better at correcting errors on longer
 3821 sentences than on shorter ones (≈ more context helps).

3822 We observe very strange behaviour with greedy decoding in some cases, where the DLM output is
 3823 completely broken and contains hallucinated words. An example is shown in Table E.37. The ASR
 3824 model makes no mistakes in this sentence, but the DLM with greedy decoding introduces 27 word
 3825 errors, hallucinating 26 extra words at the end of the sentence.

3826 We find three more examples in the test-other set where the DLM with greedy decoding produces
 3827 broken output, with word errors of 35, 40, and 82. All of these sentences are quite long, so we
 3828 assume that the DLM does not perform well on very long sentences. Together these four sentences
 3829 are responsible for an increase of 0.35% in WER on test-other. We believe these types of broken
 3830 behaviour and hallucinations are the reason why our greedy results seem so random, and could
 3831 explain why they are worse than the results reported by Gu et al. (2024). With DSR and DLM-sum
 3832 decoding, this behaviour vanishes. Figuring out the root cause and a solution to this problem is
 3833 left for future work, and could potentially lead to significant improvements in the other decoding
 methods as well.

3834 Table E.38: Random seed experiment. Trained for 5 epochs, data augmentation configuration
 3835 stdPerturb.

3836

3837 Random seed	3838 Decoding	3839 DLM Performance: WER [%]			
		3840 dev-clean	3841 dev-other	3842 test-clean	3843 test-other
3842 1	greedy	1.95	4.05	2.25	4.60
	DSR	1.54	3.54	1.77	3.84
	DLM-sum	1.45	3.45	1.76	3.69
3843 2	greedy	2.09	3.99	2.25	4.53
	DSR	1.55	3.49	1.80	3.86
	DLM-sum	1.53	3.42	1.77	3.69
3844 3	greedy	1.94	3.98	2.23	4.48
	DSR	1.54	3.51	1.77	3.85
	DLM-sum	1.53	3.41	1.76	3.71

3845

3846 Table E.39: DLM with stdPerturb data augmentation trained for 10 epochs is applied for mul-
 3847 tiple iterations, where the output of the DLM is fed back as input to the DLM.

3848

3849 Iteration	3850 DLM Training Data WER [%]			
	3851 dev-clean	3852 dev-other	3853 test-clean	3854 test-other
3855 ASR	1.75	4.13	2.03	4.44
3856 ASR → DLM ¹	2.11	3.80	2.21	4.43
3857 ASR → DLM ²	2.22	3.91	2.39	4.56
3858 ASR → DLM ³	2.24	3.92	2.40	4.57
3859 ASR → DLM ⁴	2.23	3.92	2.40	4.56

3860

3861

E.4 ABLATIONS ON MODEL AND TRAINING VARIATIONS

3862

E.4.1 RANDOMNESS

3863

We evaluate the run-to-run variance of our DLM training. For this test, we generate a single full training dataset from the LibriSpeech LM corpus and 10x the LibriSpeech ASR training data. Then we randomly initialize three DLMs with unique random seeds and train them on the same training data. We use the stdPerturb data augmentation configuration. The results are shown in Table E.38. The greedy results seem a bit less stable than DSR and DLM-sum decoding, but overall the variance stays within $\pm 0.06\%$ WER.

3871

3872

E.4.2 LOOPING THE ERROR CORRECTION MODEL

3873

We briefly experiment with feeding the output of the DLM back into itself and see if it improves the WER further. Here we use the top greedy hyp from the ASR model, and then do beam search with the DLM using beam size 64. The resulting WER of repeatedly applying the DLM is shown in Table E.39.

3874

It appears that applying the DLM twice decreases the WER, and further iterations have limited effect. We create a new training dataset with hypotheses not from the ASR model, but from applying the DLM once with beam size 1, and add these new hypotheses to the original DLM training data. We then train a new DLM from scratch on this new dataset. Because the new dataset has twice the size of the original DLM training data, we reduce the number of epochs to 5 instead of 10. The results are shown in Table E.40.

3885

3886

3887

We observe that the DLM may be more robust to multiple iterations of error correction on test-other, but additional iterations still do not improve over the first one. For dev-other, the WER even increases sharper than before due to one hypothesis that has moved so far from the training distribution that the DLM exhibits broken out-of-domain behavior and generates an incomprehensible

3888 Table E.40: DLM trained for 5 epochs on hypotheses with `stdPerturb` data augmentation **and**
 3889 on outputs from another DLM. The DLM is looped for multiple iterations, where the output of the
 3890 DLM is fed back as input to the DLM.

Iteration	DLM Training Data WER [%]			
	dev-clean	dev-other	test-clean	test-other
ASR	1.75	4.13	2.03	4.44
ASR → DLM ¹	1.88	3.85	2.11	4.29
ASR → DLM ²	1.89	3.91	2.13	4.30
ASR → DLM ³	1.89	3.97	2.13	4.31
ASR → DLM ⁴	1.89	4.09	2.13	4.31

3899 Table E.41: DLMs trained for different vocabularies without additional data augmentation, for 5
 3900 epochs. ASR baselines are all trained with TTS audio data.

Vocabulary	Model	Decoding	DLM Performance: WER [%]			
			dev-clean	dev-other	test-clean	test-other
spm10k	ASR	-	1.75	4.13	2.03	4.44
		greedy	1.82	3.98	2.05	4.49
	DLM	DSR	1.56	3.78	1.89	4.08
		DLM-sum	1.55	3.67	1.84	4.00
spm128	ASR	-	1.79	4.41	1.94	4.55
		greedy	1.72	4.17	1.90	4.29
	DLM	DSR	1.58	3.88	1.77	4.09
		DLM-sum	1.49	3.85	1.74	3.98
char	ASR	-	1.83	4.56	1.98	4.78
		greedy	1.80	4.24	1.92	4.55
	DLM	DSR	1.61	3.94	1.95	4.20
		DLM-sum	1.53	3.95	1.74	4.08

3917 sequence of words that doubles in size with every iteration¹⁹. An arguably critical flaw of this ex-
 3918 periment is that the DLM does not know which iteration it is in, and thus can not adapt its behavior
 3919 to make effective use of additional iterations. We leave a more thorough investigation of this idea to
 3920 future work.

E.4.3 DIFFERENT VOCABULARIES

3924 All DLM experiments so far have been conducted with a Sentence Piece 10k subword vocabulary.
 3925 The prior work by [Gu et al. \(2024\)](#), which this work builds upon, exclusively uses a character vo-
 3926 cabulary with remarkable results. Unlike with Sentence Piece subwords, a character vocabulary
 3927 provides a single unique token representation for every sentence, a 1:1 bijective mapping. Unfor-
 3928 tunately these character token representations become quite long compared to the Sentence Piece
 3929 10k, and we observe that a character DLM takes about 205h to train for 5 full epochs, whereas an
 3930 spm10k DLM with the same hyperparamters takes only about 68h to complete the same training,
 3931 a $\approx 3x$ increase. Similarly, training the ASR model with a character vocabulary further increases
 3932 the computation time for training data generation. Sentence Piece 10k training data generation of
 3933 LibriSpeech LM takes about 75 x 62 minutes, while character data generation takes about 75 x 98
 3934 minutes²⁰.

3935 We train DLMs for each vocabulary with training data from the TTS-trained ASR model with that
 3936 vocabulary, without additional data augmentation. Results are shown in Table E.41.

3937 The performance of the models roughly follows the order of the vocabulary size, with the character
 3938 model being the worst and the spm10k being the best. The differences, especially on the test sets,
 3939

19This doubling occurs because our search limits the output length to twice the input length. Otherwise the WER may have degraded even further.

2075 inference jobs, each taking 62 or 92 minutes to run.

3942 Table E.42: We attempt to replicate the results from [Gu et al. \(2024\)](#). There are significant differ-
 3943 ences between the two experiments, for details see text.
 3944

3945 Replication attempts	3946 Decoding	3947 DLM Performance: WER [%]			
		3948 dev-clean	3949 dev-other	3950 test-clean	3951 test-other
3947 ASR Baseline	3948 -	3949 1.83	3950 4.56	3951 1.98	3952 4.78
3948 Gu et al. (2024) 3949 DLM architecture, 3950 with YourTTS	greedy	5.40	5.99	5.86	7.36
	DSR	3.08	5.01	3.99	5.54
	DLM-sum	1.99	3.95	2.02	4.33
3951 Our DLM architecture, 3952 w/o YourTTS	greedy	4.98	4.91	4.37	6.14
	DSR	2.49	3.76	2.31	4.79
	DLM-sum	1.50	3.61	1.70	3.82

3955 are not that far off, and we may close the gap with additional tuning. It is also likely that the DLMs
 3956 for spm128 and character vocabularies are held back by their worse ASR model. But given the
 3957 significant increase in training and data generation time, we do not pursue the character and spm128
 3958 vocabularies any further in this work.
 3959

3960 We run a few more experiments with the character vocabulary for comparison with [Gu et al. \(2024\)](#).
 3961 To follow their configuration, we increase model dimension to 1280, and set encoder layers to 4
 3962 and decoder layers to 16, dropout and layer drop to 0.1 and gradient clipping to 0.1. We make
 3963 training data with both Glow-TTS and YourTTS, using SpecAugment with only frequency masking,
 3964 and token substitution with $p = 0.1$. We add 10x LibriSpeech ASR data to the training data, and
 3965 train for 10 epochs²¹. We use learning rate schedule of 1e-7 to 1e-3 linear warmup over 1 epoch,
 3966 then constant for 7 epochs, then linear decay to 1e-5 over the last 2 epochs. We use batch size 40k
 3967 through gradient accumulation.
 3968

3969 We start another training, using training data with the data augmentation as specified above, but our
 3970 usual DLM architecture, learning rate, and without YourTTS data, which results in our best character
 3971 vocabulary performance.
 3972

3973 Results for these two experiments are shown in Table [E.42](#).
 3974

3975 Also see Appendix [G.2](#) for some further discussion on character vs. subword vocabularies and the
 3976 comparison to [Gu et al. \(2024\)](#).
 3977

3978 E.4.4 JOINT AED AND CTC MODEL

3979 It has been shown that learning auxiliary tasks can improve the performance of the main task in
 3980 end-to-end ASR models ([Toshniwal et al., 2017](#)). One such approach for encoder-decoder attention
 3981 models involves using a CTC loss on the encoder output in conjunction with the existing cross-
 3982 entropy loss on the decoder output ([Watanabe et al., 2017](#)). This arrangement can be understood
 3983 as two models, a CTC model (the encoder) and an autoregressive transformer model (encoder +
 3984 decoder) where the encoder is shared between both models. This configuration achieves superior
 3985 results compared to only using the cross entropy loss of the transformer.
 3986

3987 We propose a similar approach for DLMs in addition to the decoder cross-entropy loss. Besides
 3988 the existing encoder architecture, we add another Linear layer with input dimension as the model
 3989 dimension, and output dimension twice that of the vocabulary size + blank token. The output of the
 3990 linear layer is split into two equally sized parts (i.e. each input token to the encoder is mapped to two
 3991 auxiliary output tokens), and apply softmax. These additional output tokens are necessary to ensure
 3992 that repeating tokens can be emitted by these auxiliary outputs without them being collapsed by
 3993 the CTC alignment. Finally, we concatenate the tokens of all encoder frames together and compute
 3994 the CTC loss to the target sequence. We postfix the target sequence with an end-of-sentence token,
 3995 just like the input to the encoder. We hypothesize that this makes the task easier to learn as most
 3996 tokens can flow through the residual stream of the encoder unchanged. Given our ASR models'
 3997 splendid performance, we expect that most errors in its hypotheses can be fixed with substitutions
 3998

21Here we consider 1 epoch to consist of 1x LM corpus YourTTS audio, 1x LM corpus Glow-TTS audio and 10x LibriSpeech ASR.

Table E.43: Experiments with Auxiliary Loss in the DLM encoder. All models trained for 10 epochs on `stdPerturb` data augmentation configuration.

Auxiliary Encoder Loss	Decoding	DLM Performance: WER [%]			
		dev-clean	dev-other	test-clean	test-other
no aux loss, baseline	greedy	2.26	3.96	2.47	4.70
	DSR	1.51	3.46	1.78	3.73
	DLM-sum	1.50	3.32	1.80	3.57
with aux loss, weight 1.0	greedy	2.79	4.10	2.70	5.44
	DSR	1.57	3.44	1.82	3.86
	DLM-sum	1.53	3.36	1.76	3.66
	aux CTC only	1.96	4.06	2.25	4.37
	joint CTC + AED greedy	1.93	4.00	2.23	4.41
	joint DSR	1.56	3.49	1.79	3.84
with aux loss, weight 0.1	greedy	2.83	4.17	2.65	5.59
	DSR	1.48	3.48	1.74	3.72
	DLM-sum	1.59	3.37	1.85	3.76
	aux CTC only	1.98	4.12	2.26	4.42
	joint CTC + AED greedy	2.33	4.02	2.64	4.76
	joint DSR	1.48	3.50	1.75	3.80

and deletions, which are particularly easy to learn in this setup. Multiple insertions however are more challenging, as input tokens would need to be shifted around to accommodate the new output tokens given the limited space in the output sequence. We add the auxiliary loss to layers 6, 12 and 24 of the encoder. The parameters of the auxiliary linear layer are shared between all three selected layers. We ran one experiment with a loss scale of 1.0, and one with a loss scale of 0.1 for all auxiliary losses. Our results are shown in Table E.43.

We see slight degradation in performance on the regular AED-only decoding methods. With joint decoding of the auxiliary CTC scores and the decoder scores, we almost reach baseline Greedy performance again. Using the joint DLM scores in DSR decoding is slightly worse than DSR decoding in the baseline DLM. We did not implement joint decoding for DLM-sum. Overall, the results with auxiliary loss are slightly worse than without. The auxiliary loss increases training time by about 20%, from 133h to 160h for 10 epochs.

E.4.5 DENSE K-PROBABILITY INPUT TO DLM

We generate training data with the `stdPerturb` data augmentation configuration. Because preliminary experiments showed slight overfitting, we enable dropout in the DLM with 5% for the Dense k-Probability training.²² Results are shown in Table 5. The performance with DSR decoding of a DLM with dense k-probability input is now matching the performance with DLM-sum decoding of the standard DLM.

One concern with our current approach of using dense k -probabilities to compute the weighted sum of input embeddings is that critical information may be smoothed out, leaving an effectively less informative input representation for the DLM than before. Therefore we also try an alternative approach where we attend over the token embeddings similar to Cross-Attention, attending over the k -axis instead of the encoder spatial dimension. To supply probability information, we scale an additional learned embedding by the token probability before adding it to the token embedding. We also bias the attention weights with the token probabilities. This attention mechanism is applied twice, with feed-forward layers in between. While this approach has faster initial convergence, final performance is equal to the much simpler weighted sum approach.

See Appendix G.2 for further discussion on the relation to Gu et al. (2024) and the character vocabulary.

4050 Table E.44: Trained ASR model, (D)LM on LibriSpeech, WERs [%] on *Out-of-domain* evaluation
 4051 sets.

Method	CommonVoice		VoxPopuli		Yodas	
	dev	test	dev	test	dev	test
ASR only	22.68	27.39	17.33	16.78	22.41	23.01
ASR + LM	20.05	24.17	15.75	15.20	20.69	21.15
ASR + DLM	20.56	25.33	15.90	15.62	21.18	21.99

4058 Table E.45: Trained DLM on Librispeech ASR outputs from different ASR models.

Method	WER [%]			
	dev-clean	dev-other	test-clean	test-other
Conformer ASR + LM	1.83	3.94	1.99	4.26
EBranchformer ASR + LM	1.90	3.96	2.02	4.12
Conformer ASR + DLM	1.68	3.70	1.83	4.15
EBranchformer ASR + DLM	1.73	3.84	1.89	4.10

4059 Table E.46: Results of our best LibriSpeech DLM model. ASR model is Conformer CTC, trained
 4060 with LibriSpeech and TTS audio. For comparison to prior work, see Table 2.

Method	WER [%]			
	dev-clean	dev-other	test-clean	test-other
ASR only	1.75	4.13	2.03	4.44
ASR + DLM (greedy)	2.09	4.08	2.33	4.75
ASR + DLM (DSR)	1.50	3.40	1.74	3.66
ASR + DLM (DLM-sum)	1.48	3.26	1.70	3.44

E.4.6 OUT-OF-DOMAIN GENERALIZATION.

4081 We test how well the DLM generalizes to out-of-domain (OOD) evaluation sets. Specifically, we
 4082 use the ASR model and LM or DLM trained on LibriSpeech data, and test it on CommonVoice,
 4083 VoxPopuli, and Yodas evaluation datasets (here taken from the Loquacious corpus). Results are
 4084 shown in Table E.44.

E.4.7 GENERALIZATION TO OTHER ASR MODELS

4088 We further test the generalization of our DLM approach to ASR outputs from another ASR model.
 4089 We use an EBranchformer (Kim et al., 2023) CTC ASR model here, where the Conformer ASR
 4090 model is the one used for DLM training data generation and the baseline. Results are shown in
 4091 Table E.45. We see that the DLM improves over the ASR baseline and standard LM for both ASR
 4092 models.

E.5 OUR BEST MODELS

4097 Our best LibriSpeech DLM (as shown in Table 2) follows our usual architecture (See Section 3.2,
 4098 Appendix D.1.5) with the following changes: 1280 model dimension, 5120 feed-forward dimension,
 4099 10 training epochs; resulting in a 729M parameter model. We did not use this model in Table 1 as we
 4100 do not have a directly comparable LM of similar size. DLM training data is generated from the TTS
 4101 ASR spm10k model with low data augmentation. Results over all decoding methods are shown in
 4102 Table E.46.

4103 ²²Enabling 5% dropout in normal DLM training did not lead to performance gains.

Figure E.28: Scaling plot for Loquacious ASR with LM and DLM.

E.6 EXPERIMENTS ON ANOTHER CORPUS: LOQUACIOUS

Loquacious (Parcollet et al., 2025) is a large-scale English speech corpus consisting of 25,000 hours of transcribed speech data from diverse sources such as audiobooks, podcasts, YouTube videos, and more.

In contrast to LibriSpeech, there is no separate LM corpus provided with Loquacious. This simplifies the LM vs. DLM comparison: The LM is simply trained on the transcriptions of the ASR training data, while the DLM is trained on hypotheses generated from the ASR model on the speech data of Loquacious. No TTS model is used in this case.

We train a baseline CTC ASR model on Loquacious with the same architecture and hyperparameters as our LibriSpeech ASR models, using a SentencePiece 10k vocabulary.

The main results are shown in Section 4.1, Table 3. Scaling plots are shown in Figure E.28. We see similar trends as with LibriSpeech: The DLM outperforms the LM. For lower training compute budgets, the standard LM performs better, but with increasing training compute the DLM overtakes the LM. Also, the LM starts to overfit with more training compute.

Note that these results are currently the best published WERs on Loquacious, but apart from the original Loquacious paper (Parcollet et al., 2025), there are no other published results on Loquacious for comparison yet.

A recognition speed comparison of ASR + LM vs. ASR + DLM on Loquacious with one-pass search is shown in Figure E.29. This is consistent to the recognition speed comparison on LibriSpeech in Figure 3a.

Figure E.29: Recognition speed comparison of ASR + LM vs. ASR + DLM on Loquacious with one-pass search in terms of real-time-factor (RTF).

F IMPLEMENTATION DETAILS

F.1 BUGS

During our research, we encountered some implementation bugs which we noticed and fixed, and we briefly mention them here for completeness.

To use SpecAugment and dropout during training data generation, we enable the training mode flag during ASR model inference. This inadvertently also triggers BatchNorm layers to use the batch-local statistics rather than global running mean and variance, which degrades the ASR model performance noticeably. We fix this by implementing a more granular interface for training mode flags on individual functions.

Our word-to-phoneme lexicon has multiple entries for the same word with different phoneme representations. The TTS training code however only uses the first entry it finds, which leads to out-of-domain behaviour when we pick a random entry during training data generation inference of the TTS model. See Appendix E.2.12 for more details.

At the beginning of our research, the inference of TTS and ASR models was separate, which caused huge load on our filesystems when 75 parallel jobs read TTS audios simultaneously. We fix this by combining the two inference steps into one job, so that only text data has to be loaded and saved.

G EXTENDED CONCLUSIONS & DISCUSSION

We implemented a data generation pipeline that transforms text data into ASR hypotheses with configurable data augmentation techniques and TTS systems. We present several data augmentation techniques adapted from the field of ASR that can be used to generate more diverse hypotheses for DLM training.

4212 During evaluation of the data augmentation techniques, we found improvements in DLM performance
 4213 for: TTS noise, SpecAugment, dropout, token substitution, mixup, and by using early ASR
 4214 checkpoints to generate hypotheses. We found negligible improvements for: TTS audio length
 4215 scaling, combining TTS systems, top-k sampling and generating multiple epochs of training data.
 4216 Finally, techniques with a negative impact on DLM performance were normalizing subword splits
 4217 by retokenizing them before feeding to the DLM in training, using additional phoneme presenta-
 4218 tions for the TTS which it was not trained on, and only using hypothesis of real audio from the
 4219 LibriSpeech ASR dataset.

4220 We find that DLM performance generally improves with a higher training data WER, but only up
 4221 to a certain point. Data augmentation techniques that produce training data with similar WER train
 4222 DLMs of similar performance, but combining multiple data augmentation techniques leads to better
 4223 DLM performance than ablations on individual techniques would suggest.

4224 There exists a correlation with the LM score of training data, where DLM performance increases as
 4225 the LM-score of training data decreases, until a certain point after which DLM performance degrades
 4226 again. We find that better DLMs have a higher entropy in their output probability distributions
 4227 (\rightsquigarrow less peaky), but artificially increasing the entropy of lower performing DLMs with softmax
 4228 temperature to match that of better ones does not lead to improvements. There appears to be a trend
 4229 between entropy of the output probability distribution and Expected Calibration Error, a metric
 4230 describing the mismatch between predicted probability and actual accuracy.

4231 DLM performance tends to go up with the number of epochs, but we hit a performance ceiling after
 4232 10 epochs of training. LM performance seems to saturate already at 5 epochs. I.e. when constrained
 4233 to a 5 epochs training budget, a traditional LM matches a DLM. But when given more epochs, the
 4234 DLM surpasses the LM.

4235 Search errors for DLMs are $\leq 1\%$ for all test sets, but model error goes up to 39.6% on test-other.

4236 Real audio does not appear to be important for DLM training, as we can train DLMs with only
 4237 TTS data and achieve good performance (see Appendix E.2.15). Only LibriSpeech ASR 960h
 4238 training data, however, is not enough to train a DLM that improves over the ASR baseline (see
 4239 Appendix E.2.16).

4241 We classify DLM corrections by word frequency and part of speech tag, but do not find strong
 4242 evidence that DLMs are better at correcting certain categories of words than others. We find that
 4243 with greedy decoding, the DLM corrects about as many words as it miscorrects previously correct
 4244 words in the ASR hypothesis. With DSR and DLM-sum decoding, the number of miscorrections
 4245 decreases drastically, causing a big jump in performance compared to greedy decoding. Looking
 4246 closer, we find that the DLM exhibits broken behaviour with greedy decoding for a small amount
 4247 of very long sentences in the test-other set, four of which are responsible for an absolute increase of
 4248 0.35% WER on this test set.

4249 We plot the distribution of the WER of individual sentences in the training datasets and their length,
 4250 and find that their distribution shifts significantly towards higher WER with data augmentation, but
 4251 their length stays roughly the same.

4252 We trained DLMs with the vocabularies spm10k, spm128 and character, and found that spm10k
 4253 performs best, but this may be caused by our ASR models for the other vocabularies being worse.

4254 Initial experiments with looping the DLM, i.e. feeding its output back in as input and iterating it
 4255 multiple times, did not lead to improvements (see Appendix E.4.2), but an architecture closer to
 4256 diffusion models could potentially yield better results.

4258 G.1 COMPARISON TO DIFFUSION LANGUAGE MODELS

4259 In Figure 2: There is a tipping point, both in training time and model size, after which denoising
 4260 LMs start to outperform standard LMs, while for smaller compute budgets standard LMs are better.
 4261 This is similar to recent observations for diffusion language models under a fixed data-constrained
 4262 setting (Prabhudesai et al., 2025; Ni et al., 2025).

4263 Diffusion language models share other similarities with DLMs as well. Both operate with an en-
 4264 coder on a corrupted input sequence, and are trained to reconstruct the original sequence. During

4266 training, it is crucial that the model sees a wide variety of corruptions, which is achieved with a noise
 4267 schedule in diffusion LMs, and with data augmentation techniques in DLMs. We assume this ne-
 4268 cessity of diverse corruptions is the reason why both diffusion LMs and DLMs need more compute
 4269 to outperform standard LMs. On the other hand, we believe that operating on the whole sequence
 4270 with an encoder allows both diffusion LMs and DLMs to better model global context, which leads
 4271 to better scaling behavior with more compute.

4272 There are also differences between diffusion LMs and DLMs. Diffusion LMs denoise the input
 4273 with noise in multiple steps, while DLMs use a single step. Also, our DLMs uses an autoregressive
 4274 decoder, while diffusion LMs typically are non-autoregressive encoder-only.

4276 G.2 CHARACTER VS. SUBWORD VOCABULARY

4277 [Gu et al. \(2024\)](#) still has better absolute WER results. We hypothesize that this is due to their use
 4278 of a character vocabulary, while we use subword vocabularies. We realized that a character-based
 4279 hypothesis gives richer information to the DLM, as only some characters in a word may be wrong,
 4280 still allowing the DLM to recognize the word, while a subword-based hypothesis may have the
 4281 whole word wrong.

4282 This was one motivation behind the dense k-probabilities (Section 4.4) as input to the DLM, to
 4283 give the DLM more information about which subwords are likely to be correct. And indeed, our
 4284 preliminary experiments with dense k-probabilities showed promising results.

4285 The DLM-sum decoding method is another way to combine the information from multiple ASR
 4286 hypotheses, which we found to consistently outperform greedy and DSR decoding.

4287 Our character-based ASR model is worse than our subword-based ASR models, which may also
 4288 contribute to the worse performance of the character-based DLM. More investigation is needed on
 4289 our character-based ASR model and DLM. We note that the character-based DLM is quite a bit
 4290 slower than the subword-based DLMs, as the sequence length is much longer.

4293 H USAGE OF LARGE LANGUAGE MODELS

4294 We used large language models such as ChatGPT or Gemini to help with writing and proofreading
 4295 parts of this paper.

4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319