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ABSTRACT

Denoising language models (DLMs) have been proposed as a powerful alternative
to traditional language models (LMs) for automatic speech recognition (ASR),
motivated by their ability to use bidirectional context and adapt to a specific ASR
model’s error patterns. However, the complexity of the DLM training pipeline
has hindered wider investigation. This paper presents the first independent, large-
scale empirical study of DLMs. We build and release a complete, reproducible
pipeline to systematically investigate the impact of key design choices. We evalu-
ate dozens of configurations across multiple axes, including various data augmen-
tation techniques (e.g., SpecAugment, dropout, mixup), different text-to-speech
systems, and multiple decoding strategies. Our comparative analysis in a com-
mon subword vocabulary setting demonstrates that DLMs outperform traditional
LMs, but only after a distinct compute tipping point. While LMs are more ef-
ficient at lower budgets, DLMs scale better with longer training, mirroring be-
haviors observed in diffusion language models. However, we observe smaller
improvements than those reported in prior character-based work, which indicates
that the DLM’s performance is conditional on factors such as the vocabulary. Our
analysis reveals that a key factor for improving performance is to condition the
DLM on richer information from the ASR’s hypothesis space, rather than just a
single best guess. To this end, we introduce DLM-sum, a novel method for decod-
ing from multiple ASR hypotheses, which consistently outperforms the previously
proposed DSR decoding method. We believe our findings and public pipeline
provide a crucial foundation for the community to better understand, improve,
and build upon this promising class of models. The code is publicly available at
https://anonymous.4open.science/r/2025-dlm/.

1 INTRODUCTION

Automatic speech recognition (ASR) systems often rely on external language models (LMs) to re-
fine initial hypotheses by leveraging vast amounts of text-only data. Traditionally, these LMs are
autoregressive, processing text from left to right, which limits their ability to use the full context of
a sentence when correcting an error.

An alternative is the denoising language model (DLM) (Gu et al., 2024), an encoder-decoder ar-
chitecture designed to perform error correction directly in the text domain. It operates by taking a
complete hypothesis from an ASR model, which may contain recognition errors, as input and gener-
ating a fully corrected version as its output. DLMs are motivated by two key theoretical advantages:
they can leverage the full bidirectional context of a noisy ASR hypothesis to make more informed
corrections, and they can be directly trained on the specific error patterns of an upstream ASR model.
Prior work demonstrated state-of-the-art results using this method with a character-level vocabulary.

To be effective, a DLM must be trained on a massive dataset of (noisy hypothesis, correct text) pairs.
While such pairs can be generated from standard transcribed audio corpora, their scale is often lim-
ited. To overcome this, the approach pioneered in prior work is to leverage large text-only corpora.
This is achieved by first synthesizing audio from the correct text using text-to-speech (TTS); an ASR
model then transcribes this synthetic audio to generate the corresponding noisy hypothesis. How-
ever, this full pipeline — combining TTS synthesis, ASR inference, and extensive data augmentation
— is highly complex. This complexity, combined with the lack of a public implementation, has cre-
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ated a significant barrier to entry, hindering wider adoption, independent verification, and a deeper
understanding of the model’s sensitivities. We make the following contributions:

* A reproducible open-source pipeline: We build and release the first complete pipeline for DLM
training and inference, providing a robust and reproducible baseline to accelerate future research.

* A systematic empirical study: We conduct a large-scale study of the DLM design space, evalu-
ating dozens of configurations across multiple axes including data augmentation techniques, TTS
systems, and decoding strategies.

* A novel decoding method: We introduce DLM-sum, a novel decoding method that conditions
the DLM on multiple ASR hypotheses in a single pass, improving robustness and consistently
outperforming the DSR decoding method from prior work.

* State-of-the-art on LibriSpeech and Loquacious: We achieve state-of-the-art (SOTA) results on
the LibriSpeech benchmark under the strict condition of using only the official LibriSpeech train-
ing data for all components (ASR, DLM, and TTS). Similarly, we demonstrate the effectiveness
of DLMs on the Loquacious dataset.

* Comparative analysis with language models: We provide a direct, comparative analysis against
a traditional LM and find that, in a common subword vocabulary setting, our best DLM outper-
forms our best traditional LM. However, we observe smaller improvements than those reported
in prior character-based work (Gu et al., 2024), which indicates that the DLM’s performance is
conditional on factors such as the vocabulary.

* Scaling Laws and Diffusion Parallels: We analyze the compute-performance trade-off, identify-
ing a tipping point where DLMs surpass autoregressive LMs. We discuss similarities to diffusion
models.

» Novel analytical insights: Our in-depth analysis uncovers several non-obvious model behaviors.
We identify that the DLM’s performance consistently improves when it is conditioned on richer
information from the ASR’s hypothesis space than a single best guess. We demonstrate this through
the success of our DLM-sum decoding method and promising results from our exploratory dense
k-probability input to the DLM. This finding also provides a compelling hypothesis for the per-
formance gap to prior character-based work, as character sequences may inherently offer a more
fine-grained representation of errors than a single, incorrect subword token.

2 DENOISING LANGUAGE MODEL

Let af represent a correct token sequence and let &f be a corresponding recognized (potentially
noisy) hypothesis from an ASR model. The objective of a denoising language model (DLM) is

to learn the conditional probability distribution pom(ay | sz ) of the correct sequence aj given
the noisy hypothesis @j. The DLM is implemented as an attention-based encoder-decoder (AED)

model. The encoder reads the entire input hypothesis df , and the decoder then autoregressively
generates the corrected sequence aj. The specific architectural details of our implementation are
described in Section 3.2.

2.1 DECODING STRATEGIES

To generate a final corrected hypothesis, the DLM’s output distribution, ppyap(af | df ), is integrated
*

into a search algorithm. The objective is to find an optimal output sequence E'if according to a
scoring function, which typically combines the DLM’s score with the original ASR model’s score.
We investigate several such decoding strategies.

Greedy Decoding. Following Gu et al. (2024), our greedy decoding decision rule is:

ay = arg rsﬂaXpDLM(aig |at), (1) ay = argglaXpASR(af | z). 2)
a;y ay

Equation (1) is approximated with label-synchronous greedy search. Equation (2) is approximated
with framewise argmax followed by removing repeated labels and blanks in case of CTC (3.2).

2
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Figure 1: Pipeline for training data generation. We introduce additional data augmentation in the
“Inference with ASR model” and “Train DLM model” steps.

DSR Decoding. The denoising speech recognition (DSR) decoding method uses

af = arsg max (IngASR(aigv | x{) + ApLwm - 1ngDLM<a’1S | &ig> - )\prior : 1ngprior(af)) 3)
ay €hyps

with df as before (Equation (2)) and rescores on

hyps := n-best[pprm (- | @5)] U m-best[pasr (- | z7)]. (4)

The DSR decoding as introduced in Gu et al. (2024) was slightly simpler: only using the DLM n-
best list for rescoring and not including the prior probability term. The prior probability is the same
as we use in LM rescoring (see Section 3.2 and Appendix D.1.3). The scales ApLm, Aprior € R are
tuned on LibriSpeech dev-other. In our case, we use time-synchronous beam search for the ASR
model and label-synchronous beam search for the DLM (in Equation (4); see Appendix C).

DLM-Sum Decoding. Previous work (Gu et al., 2024) has only investigated to feed the single best
ASR hypothesis into the DLM for decoding (as in greedy decoding and DSR decoding). Instead of

just using the single best ASR hypothesis @7 in Equation (2), in DLM-sum decoding, we want to
take multiple ASR hypotheses into account to approximate

Pam(a? | 2]) = Z poum(al | @7) - pase (@l | =1). o)
5,a8
We approximate this sum as

pam(af al) = Y poaf |af) - (pass(@f | 21)/2) ©

a% en-bestpase (-|27)]

with Z =3 _s enbestpase (27)] pASR(ELf | 2T). We use time synchronous beam search and dedupli-
1 S S 1
cation to generate the n-best list of ASR hypotheses. The final decision rule becomes

af = arg r;lax (IOg pASR(aiS |xr{) + AbLMm 1Og Psum’ (af|$f) - )\prior : log pprior(af)> 5 (7
ay

which is approximated by label-synchronous beam search on the joint scores, unlike DSR decoding

which uses rescoring. See Appendices C and C.9 for more details on the search procedure.

Note that we recover a one-pass version of the DSR decoding decision rule if we only use a single
ASR hypothesis in the sum, and the greedy decision rule if we further let Apior = 0, ApLm — 00
and beam size 1. So we consider this method a generalization of the previous two. Typically we use
a beam size of 12 for the one-pass search, and an ASR n-best list size of 20.

3 EXPERIMENTAL DESIGN

3.1 DLM TRAINING DATA SOURCES AND GENERATION PIPELINE

Our primary goal is to generate (noisy hypothesis, correct text) pairs to train the DLM. We use the
text-only LibriSpeech LM corpus as the source for the correct text transcriptions. Figure 1 illustrates
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our two-stage process for generating the corresponding noisy hypotheses. First, we synthesize audio
from the source text using a TTS system. Second, this synthetic audio is transcribed by a pre-trained
ASR model to produce the noisy hypothesis. We perform TTS and ASR inference in a single
forward pass, which avoids the need to store large intermediate audio files on disk. In addition
to this synthetic data, we generate hypotheses from the real audio of the LibriSpeech ASR training
corpus.

3.2 MODELS

ASR Models. We use a non-autoregressive Conformer-based (Gulati et al., 2020) connectionist
temporal classification (CTC) model (Graves et al., 2006) for ASR. We use three different vocab-
ularies: Character (char)!, SentencePiece? with 128 subwords (spm128) and SentencePiece with
10240 subwords (spm10k). We train all ASR models on LibriSpeech ASR 960h training data and
optionally also with TTS audios generated from the LibriSpeech LM text data in a 1:1 ratio. All
Conformer models have 16 layers, model dimension 1024, feedforward dimension 4096 and 8 at-
tention heads. See Appendix D.1.1 for model and training details. The ASR baseline performances
and model sizes are shown in Table D.1.

Language Models. A standard language model can be combined with the ASR model in a similar
way to DSR decoding (Section 2.1):
aig = arg I;ﬂaX (IngASR(a'f | J,‘,{) + Am - 1ngLM(a/iq) - )\prior : logpprior(aig)) ¥

ay

The prior probability pprim(af ) is estimated from the ASR model (Appendix D.1.3). We use either
two-pass rescoring or one-pass search (Appendix C).

‘We use Transformer-based (Vaswani et al., 2017) Llama-based (Touvron et al., 2023) attention-based
decoder-only language models, trained on the LibriSpeech LM dataset. We use the same vocabulary
as we do in our ASR models (mostly spm10k). We train models with 8 and 32 layers respectively,
model dimension 1024, feedforward dimension 4096, and 8 attention heads. More details are given
in Appendix D.1.2. Our results for both two and single pass rescoring are shown in Table D.3.

TTS Models. We train a Glow-TTS model (Kim et al., 2020) on the train-clean-460h subset of the
Librispeech ASR training data. To allow for direct comparison with Gu et al. (2024), we also use
the same pre-trained YourTTS (Casanova et al., 2022) model. The YourTTS model has been trained
on the LibriTTS (Zen et al., 2019) and CML-TTS (Oliveira et al., 2023) datasets. Both TTS models
are stochastic and have length scale and temperature 7 (or noise scale) which can be adjusted during
inference to control the speed and diversity of the generated audio. See Appendix D.1.4 for more
details. ASR WER results for hypotheses generated with Glow-TTS and YourTTS are shown in
Table D.8.

Denoising Language Models. Our DLMs (Section 2) share the Llama-based (Touvron et al.,
2023) architecture of our LMs (Section 3.2) but utilize an encoder-decoder structure with cross-
attention. Our DLMs have 24 encoder layers, 8 decoder layers, model dimension 1024, feedforward
dimension 4096 and 8 attention heads. We use the same vocabulary as we do in our ASR mod-
els (mostly spm10k). We compare greedy decoding, DSR decoding and DLM-sum decoding. See
Appendix D.1.5 for further details.

3.3 DATA AUGMENTATION STRATEGIES

During the combined TTS + ASR inference (Section 3.1), we can apply various data augmentation
techniques to expose the DLM to a wider range of errors. This is especially important as the ASR
models have overfitted significantly to the TTS audios, resulting in very low WERs of about 2%,
while errors on real audio in the validation and test sets is higher, with up to 4.8% WER (cf. Ta-
ble D.1). See Appendix D.2 for more details.

!Char. vocab.: A case-insensitive alphabet, space, apostrophe, and a special end-of-sentence token.
2SPM vocab.: A data-driven subword vocabulary generated using the SentencePiece algorithm (Kudo &
Richardson, 2018).



Under review as a conference paper at ICLR 2026

Early ASR checkpoints. We use intermediate checkpoints from the ASR training process in
which the ASR system has not yet converged, and use those hypotheses as training data for the
DLM. Results for different checkpoints are shown in Table D.9. Even for epoch 10 out of 100, the
WER is reasonably low with 12.4% on dev-other.

SpecAugment. We use SpecAugment (Park et al., 2019) during ASR inference as shown by Gu
et al. (2024). See Appendix D.2.2 for details and Table D.10 for hypotheses WERs.

Dropout. We use dropout (Srivastava et al., 2014) at inference time to generate diverse hypotheses,
following prior work (Hrinchuk et al., 2020). However, instead of keeping a fixed dropout rate, we
randomly sample a dropout rate for each input sequence from a uniform distribution U (Pmin, Pmax )-
Results for pyi, = 0.0 and different pp,, are shown in Figure D.3. Both ASR models respond
similarly to increasing dropout, with WER increasing slowly at first, and then faster beyond 50%.

Token Substitution. We sample the random substitution rate for each sentence p ~ U (Prmin, Pmax )
and then each token in that sentence is substituted with a random token from the vocabulary with
probability p. Training data WER for different Token substitution rates is shown in Table D.12. We
use rates that increase the hypotheses WER up to 55%.

Mixup. We linearly interpolate the spectrogram of the current audio sequence with the spectro-
grams of n other randomly chosen sequences from a buffer (see Appendix D.2.5 for details).

Sampling from ASR Model. Instead of taking the greedy decoding output of the ASR model,
we sample from the ASR model using a variant of top-k sampling (details in Appendix D.2.6). For
k = 32, the hypotheses WER increases to 10% on dev-other.

Combining Multiple Data Augmentation Techniques. We combine multiple data augmentation
techniques to further increase the diversity of the generated hypotheses. We construct multiple com-
bination variants, ordered in increasing amounts of data augmentation applied, where baseline
uses no data augmentation at all, 1ow uses a small amount, medium uses a moderate amount, and
the high configuration uses a higher amount, using the best parameter for every data augmentation
method as determined by individual DLM training experiments, reaching 60% WER on hypotheses
on dev-other. More variants, the exact configurations and their respective hypotheses WERs are
specified in Appendix D.2.8.

3.4 ALTERNATIVE DLM INPUTS: DENSE K-PROBABILITY

So far we have restricted ourselves to selecting a single label sequence as the ASR hypothesis (Equa-
tion (2)). The ASR model, however, produces a substantially richer output in the form of a probabil-
ity distribution over all possible labels for each audio frame. Storing the full probability distribution
on disk is infeasible so we restrict ourselves to the top & most probable labels for each label posi-
tion. Then we use a weighted embedding of these k labels as the input to the DLM encoder. See
Appendix D.3 for details.

4 RESULTS AND ANALYSIS

4.1 DLM vSs. STANDARD LANGUAGE MODEL

We use the 32 layer standard LM and compare it to our DLM with 24 encoder and 8 decoder layers®.
LMs and DLM performance is compared in Table 1 (see Appendix E.1 for further comparisons).
When training for 10 epochs, the DLM using DLM-sum decoding outperforms the standard LM in
both one-pass and rescoring modes*. These results represent the state-of-the-art for the LibriSpeech
benchmark under a strict data constraint’.

3Both models have a model dimension of 1024. The standard LM has 422M parameters, while the DLM has
466M. Note that a larger standard LM with 1280 model dimension and 663M parameters was slightly worse in
WERSs, see Table E.1.

“We trained both with 5 and 10 epochs, and we chose the best result for each model for this comparison.
When only trained for 5 epochs, there is no performance difference between DLM and LM.

3 A slightly better performance can be achieved with model dimension 1280, that result is shown in Table 2.
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Table 1: Standard LM vs DLM performance comparison. The ASR model was trained with or
without TTS data, spm10k vocab. The DLM uses data augmentation configuration 1ow.

ASR trained . WER [%]
with Trs | IM Decoding | —0—Tean [ dev-other | test-clean | test-other

None greedy 2.29 5.02 242 5.33

Standard rescoring 1.93 4.18 2.09 4.50

No one-pass 1.85 3.93 2.00 4.27

greedy 2.49 4.63 241 5.19

DLM DSR 1.76 3.95 1.91 4.37

DLM-sum 1.68 3.70 1.83 4.15

None greedy 1.75 4.13 2.03 4.44

Standard rescoring 1.59 3.57 1.80 3.84

Yes one-pass 1.56 341 1.73 3.70

greedy 2.31 4.06 2.32 4.57

DLM DSR 1.49 3.43 1.79 3.70

DLM-sum 1.49 3.29 1.72 3.53
"""""" -- ASR-only ~ 3.55 o ASR+LM 333 0
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Figure 2: Various DLM and standard LM sizes
and training epochs, resulting in different train-
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Figure 3: Recognition speed comparisons.

We note that Gu et al. (2024) reports stronger absolute numbers, however, their system utilizes a TTS
model trained on external data. Other factors likely also contribute to the performance gap, such as
the different vocabulary (we use spm10k, they use char; see Appendix B for a detailed comparison
and discussion of differences).

To analyze the scaling behavior of DLMs in comparison to standard LMs, we run various experi-
ments with different model sizes and training epochs, resulting in different training compute budgets.
Results by training time and number of parameters are shown in Figure 2. There is a tipping point,
both in training time and model size, after which DLMs start to outperform standard LMs, while for
smaller compute budgets standard LMs are better. This is similar to recent observations for diffusion
language models under a fixed data-constrained setting (Prabhudesai et al., 2025; Ni et al., 2025)
(Appendix G.1). Overfitting occurs for standard LMs after a certain point, consistent to previous
findings (Ni et al., 2025).

Despite the pure DLM training time, the DLM requires more total preprocessing time and its pipeline
is more complex compared to standard LM training, specifically the TTS model and DLM training
data generation. Although using TTS data for ASR training is beneficial in general (Table 1).

Figure 3a compares the recognition speed of standard LMs and DLMs. We see that DLMs are
generally faster than standard LMs in one-pass decoding, as they perform well already with smaller
beam sizes (E.3.1) and the encoder can be run in parallel for all ASR hypotheses over all frames.

We further test our DLM approach on the Loquacious dataset (Parcollet et al., 2025). Results are
shown in Table 3. We see that the DLM improves over the ASR baseline and standard LM. See
Appendix E.6 for details.
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Table 2: Comparison to state-of-the-art results and other related work on LibriSpeech test sets. Error
correction-based approaches are in the middle section. For details on best model, see Appendix E.5.

| System \ External Data | test-clean [%] | test-other [%] |
Conformer (Gulati et al., 2020) - 1.9 3.9
E-Branchformer + ILME (Kim et al., 2023) - 1.81 3.65
LAS + SC + LM (Guo et al., 2019) - 4.28 -
Hrinchuk et al. (2020) BERT 3.5 9.27
N-best T5 (Ma et al., 2023a) T5 2.53 6.27
LLM-based correction (Pu et al., 2023) ChatGPT, more datasets 1.3 34
Denoising LM (Gu et al., 2024) YourTTS 1.5 3.3

[ Conformer + larger DLM (Ours) \ - \ 1.70 \ 3.44 \

Table 3: Trained ASR model, (D)LM on Loquacious, WERs [%] on Loquacious evaluation sets.

Method Loquacious | LibriSpeech | CommonVoice | VoxPopuli Yodas
dev [ test | dev [ test | dev | test dev [ test | dev [ test
ASR only 6.45 | 7.16 | 408 | 426 | 920 | 11.17 | 6.61 | 6.46 | 11.98 | 12.24
ASR + LM 563 | 644 | 335 | 356 | 7.20 9.02 6.30 | 630 | 1240 | 12.89
ASR+DLM | 552 | 6.26 | 340 | 3.58 | 7.24 9.07 6.02 | 599 | 1143 | 11.78

Table 4: Training data generation strategy comparison, using the best setting for each individual
augmentation, and some combined augmentation schemes, to train the DLM.

. WER [%] Details
Method Setting dev-clean [ dev-other [ test-clean | test-other || Table
| Baseline | baseline [[ 155 | 367 [ 184 | 400 [ E3 |
Inc. TTS noise (0.3,1.5) 1.51 3.61 1.76 3.83 E.7
Combined TTS Glow-TTS + YourTTS 1.57 3.64 1.82 391 E.9
Early ASR Chkpt. Epoch 40 1.52 3.57 1.76 3.88 E.10
SpecAugment Time + freq. 1.49 3.47 1.76 3.76 E.11
Dropout (0.0,0.5) 1.49 3.52 1.81 3.85 E.12
Token Sub. 20% 1.50 3.47 1.80 3.79 E.13
Mixup Amax = 0.4 1.51 3.58 1.77 3.87 E.14
ASR sampling k=16 1.55 3.67 1.83 3.95 E.15
Resplit Subw. - 1.63 3.81 1.95 4.13 E.16
low 1.51 3.40 1.74 3.66
Combined aug. medium 1.56 342 1.75 3.72 E.3
high 1.67 3.56 1.81 3.89

4.2 IMPACT OF TRAINING DATA GENERATION STRATEGIES

Table 4 summarizes the impact of data augmentation techniques on DLM performance. Most config-
urations are quite similar in performance. The combination of multiple augmentation methods gives
the best performance. Choosing the best configuration from every individual ablation (medium
and high combined configurations) does not lead to optimal DLM performance. Rather our 1low
configuration gives the best results. See Appendix E.2.1 for more details and further results.

Augmentation Methods. When increasing the TTS noise (E.2.3) beyond usual values to achieve
a stronger variation, we see a slight increase in performance until the maximum scale of 1.5. Any
variation in the length scale had no effects. Combining both TTS systems (E.2.4) gave only smaller
improvements, which is surprising as YourTTS is trained on additional data beyond LibriSpeech.
This is inconsistent with results from Gu et al. (2024), where the combination gives consistent
improvement.

SpecAugment (E.2.6), dropout (E.2.7), token substitution (E.2.8) and mixup (E.2.9) each display
some improvements over the baseline. Also, using an earlier ASR checkpoint (E.2.5), in this case
from epoch 40 instead of 100, yields slightly better DLM training.



Under review as a conference paper at ICLR 2026

Sampling ASR outputs (E.2.10) does not bring improvements over the baseline. Furthermore, re-
splitting subwords (E.2.11) even causes minor degradations.

Training Data Conditions. There is a 7 — 23% relative improvement across all decoding condi-
tions when using an ASR system trained with TTS data during the recognition process. In contrast,
for the generation of DLM training data it does not matter if we use the baseline ASR system or an
ASR system trained with additional TTS data. See Appendix E.2.13 for details.

We do not see substantial improvements when generating different DLM training data for each
training epoch by using new seeds for the augmentation methods. We assume that the initial training
data amount already has a sufficient size and variety. See Appendix E.2.14 for details.

We observe minimal degradation when removing the original LibriSpeech ASR training data from
the DLM training. Still, over-sampling the LibriSpeech data up to a point that one third of the
data is the original ASR data does not change the performance. See Appendix E.2.15 for details.
In comparison, when only using the original LibriSpeech ASR training data and no TTS data, we
see a substantial degradation, even when generating large amount of data using data augmentation
methods. See Appendix E.2.16 for details.

Relevance of TTS-ASR Data. Previous work used heuristics such as masking or random substi-
tutions for pretraining of error correction models (Hrinchuk et al., 2020; Dutta et al., 2022; Ma et al.,
2023a). We compare the DLM performance when trained on data generated via TTS-ASR versus
heuristic error generation (E.2.17) in Table E.23: Training on TTS-ASR data is clearly superior,
consistent to the findings of Gu et al. (2024).

4.3 ANALYSIS OF INFERENCE AND MODEL BEHAVIOR

Decoding Methods. Table 1 compares our different decoding methods (DLM greedy, DSR de-
coding, DLM-sum). We note that the DLM greedy WER can be even worse than the ASR baseline
(without LM). This is different to Gu et al. (2024), where the DLM greedy decoding clearly out-
performs the ASR baseline. We assume that the different vocabulary (subwords vs. characters) is
an important contributing factor to this difference (Appendix G.2). The DLM with DSR decoding
is already slightly outperforming a standard LM. The DLM-sum decoding consistently outperforms
DSR decoding. The prior contributes only minimally to DSR and DLM-sum performance. Beam
size of 8 and 32 ASR hypotheses (in the sum in Equation (6)) seem to be sufficient for onepass
DLM-sum decoding®. Figure 3b shows the DLM-sum recognition speed with respect to the number
of ASR hypotheses used. We see that using more ASR hypotheses is generally faster and better. See
Appendix E.3.1 for further comparisons.

Search and Model Errors. Counted search errors are < 1% across the board, while model error
rates are significantly higher. Including the DLM beam (DSR) in rescoring nearly halves the Oracle
WER versus using the ASR beam alone (DLM rescore). See Appendix E.3.2 for details.

Training convergence behaviour. Convergence of DSR and DLM-sum decoding methods during
training is quite stable, already surpassing the ASR baseline after the first epoch of training. Greedy
decoding is an unreliable indicator for training convergence. See Appendix E.3.3 for details.

WER Distribution. We group individual sentences into bins based on their WER, and compare the
distribution of sentence WERSs across different training data configurations. Notably, configurations
with similar overall WER can exhibit distinct sentence-level distributions. See Appendix E.3.4 for
details.

Correlations. We investigate correlations between training data metrics and DLM performance.
For this, we collect the results of all ablation experiments, compute metrics on the their training
data and final models, and create scatter plots (Figures E.20 to E.23). Greedy and DSR performance
are weakly correlated, if at all. DSR and DLM-sum performance are strongly correlated. Our best
DLMs have training data with a WER between 10% and 20%, but this is not a strong predictor of
DLM performance. The correlation to DLM performance is a bit stronger with the measured LM
perplexity of the training data. We calculate the expected calibration error (ECE) (Lee & Chang,
2021), and find that our DLMs are quite well calibrated, with ECE values below 0.1. There does not
seem to be a strong correlation between ECE and DLM performance however. The mean entropy

SWhen scales are tuned properly.
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of the DLM output distribution has an almost linear relationship with ECE, and thus is not strongly
correlated with DLM performance either. See Appendix E.3.5 for details.

Error Analysis by Categorization. We analyze substitution errors, which make up the majority
of mistakes, by categorizing them, and comparing ASR and DLM performance across these cate-
gories. DLMs struggle more with rare words compared to common or medium-frequency words, but
generally correct errors across all word frequencies about equally well. When categorized by part
of speech (e.g., proper nouns, verbs, etc.), apart from statistically insignificant outliers, the DLM
improves errors across all categories in a fairly uniform manner. See Appendix E.3.7 for details.

Correction vs. Degradation Analysis. While advanced decoding methods like DSR and DLM-
sum show clear improvements over greedy search, our analysis reveals a surprising reason for their
effectiveness. The primary benefit of DSR over a greedy search is a drastic reduction in miscor-
rections (newly introduced errors by the DLM over the ASR output) while maintaining a similar
number of correct fixes. DLM-sum then further improves performance by also significantly increas-
ing the number of correct fixes, with only a slight increase in miscorrections. See Appendix E.3.10
for details.

Error Examples. Manual inspection of the recognition output reveals that, under greedy decod-
ing, hallucinations impact our DLMs quite significantly. In one instance, just four sentences alone
account for an increase of 0.35% in absolute WER on the test-other set. We also note that DLMs
show a tendency to correct more errors in longer sentences, and refrain from making corrections in
shorter sentences. See Appendix E.3.11 for details.

Softmax Temperature. Through our correlation study (Appendix E.3.5), we hypothesize that a
higher entropy of the DLM output distribution leads to better performance in model combination
decoding methods like DLM-sum. Artificially increasing the entropy of a baseline model to match
that of our best model through softmax temperature does not improve performance though (Ap-
pendix E.3.6).

Out-of-Domain Generalization. DLMs generalize worse on out-of-domain (OOD) evaluation
sets compared to standard LMs. See Appendix E.4.6, Table E.44.

Generalization to Other ASR Models. We further test the generalization of the DLM to ASR
outputs from another ASR model, different from the one used for DLM training data generation.
Results are shown in Table E.45. We see that the DLM improves over the ASR baseline and standard
LM even for the other ASR model. See Appendix E.4.7 for details.

4.4 ABLATIONS ON MODEL AND TRAINING VARIATIONS

Randomness. We train three different DLMs with unique random seeds for weight initialization
to assess the statistical significance of our results. Performance on DSR and DLM-sum decoding
stays within £0.06% absolute WER around the mean. Greedy decoding results are less reliable. See
Appendix E.4.1 for details.

Different Vocabularies. We compare DLMs trained on char, spm128 and spm10k vocabularies.
The spm10k vocabulary performs best, followed by spm128 and then char. This likely stems from
the lower baseline performance of spm128 and char ASR models. See Appendix E.4.3 for details.
We further discuss character vs. subword vocabularies in Appendix G.2.

Joint AED and CTC Model. We design an auxiliary CTC loss in the DLM encoder for error
correction, which is able to make (limited) insertion, substitution and deletion corrections. On the
trained DLM, we run evaluations with joint AED and CTC decoding. Overall, we see no improve-
ment over AED-only DLMs. See Appendix E.4.4 for details.

Dense k-Probability Input to DLM. Following Section 3.4, we save the top k = 5 labels and
probabilities from the ASR output. Results are shown in Table 5. DLM-sum is not applicable here,
because the dense k-probability model does not condition on ASR hypotheses, but on the ASR
output probabilities. We see much better greedy performance, and DSR roughly matches that of the
baseline DLM-sum performance. This shows that the dark knowledge (Hinton et al., 2014) in the
dense ASR output distribution provides additional useful information for the DLM. This confirms
our hypothesis that the DLM can benefit from a richer input representation. See Appendix E.4.5 for
further details.



Under review as a conference paper at ICLR 2026

Table 5: Dense k-probability input to DLM. Baseline model uses standard labelwise argmax from
ASR model, while k£ = 5 experiment sees top 5 labels from label-synchronous search of ASR model.
DLM-sum decoding is not applicable for dense-input models.

. WER [%]
DLM k| Decoding dev-clean | dev-other | test-clean | test-other
| None | - [ greedy [ 175 [ 413 [ 203 [ 444 ]
greedy 1.95 405 225 4.60
Baseline - | DSR 1.54 3.54 1.77 3.84
DLM-sum 1.45 3.45 1.76 3.69
5 greedy 1.49 3.66 1.75 391
Dense Input DSR 1.48 3.48 1.72 3.71
P 10 |_2reedy 147 3.65 .73 385
DSR 1.45 3.54 1.72 3.73

5 RELATED WORK

The core question is how the large amount of text-only data can be leveraged to improve performance
of speech recognition. A popular approach is to train a separate LM on the text-only data, and
combine it with the ASR model during inference time through shallow fusion, deep fusion or cold
fusion (Toshniwal et al., 2018). A LM can also be used during training of the ASR model with
minimum WER training (Prabhavalkar et al., 2018; Peyser et al., 2020; Meng et al., 2021b).

A straightforward approach to use text-only data is to generate synthetic audio using TTS systems,
and then train the ASR model on this additional data, similar to backtranslation in neural machine
translation (Hayashi et al., 2018; Rossenbach et al., 2020).

Another approach is to use error correction models (Tanaka et al., 2018; Hrinchuk et al., 2020;
Peyghan et al., 2025). To train such a model, one needs pairs of (noisy hypothesis, correct) text.
Audio is typically fed through an ASR model which then generates the noisy hypotheses. Text-
to-speech (TTS) can additionally be used to increase the amount of audio data available for error
correction model training (Guo et al., 2019; Gu et al., 2024). A comparison of our results to prior
work is shown in Table 2.

Advances in large language models (LLMs) have also inspired research into using them for error
correction (Ma et al., 2023b; 2025; Tur et al., 2024). LLMs can be used to pick the best hypothesis
from an n-best list, or to directly generate corrected text from a single hypothesis.

6 CONCLUSION

Our comprehensive analysis leads to several findings:

* We investigated DLMs and show that they can outperform traditional LMs under data-constrained
settings, given enough compute budget. The scaling behavior is similar to diffusion LMs.

* Our novel DLM-sum decoding method consistently outperforms greedy and DSR decoding.

* ASR + DLM decoding is faster than ASR + LM decoding.

* We achieve state-of-the-art results on LibriSpeech and Loquacious under a data-constrained set-
ting.

* Providing the DLM with richer information about the ASR hypothesis space is beneficial, as
shown by two findings: The improvements of dense k-probability input to the DLM in DSR de-

coding and the consistent improvements of DLM-sum decoding. We assume that using character-
based hypotheses has a similar effect.

* We provide a fully open-source, reproducible pipeline to reproduce all the numbers reported in
this work, i.e. for training the ASR models, TTS models, LMs and DLMs, data generation with
TTS, all the used decoding strategies, and all the evaluations.

See Appendix G for further discussions.
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7 REPRODUCIBILITY STATEMENT

We spend great effort to make our work reproducible. We release all code used for training and
evaluating our models, as well as all code for the complete pipeline, as well as the best model
checkpoints and generated data. The released code can generate every single number reported in
this paper, including all of the analysis. The code is publicly available at https://anonymous.
4open.science/r/2025-d1lm/.
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Table B.1: Overview of main differences and similarities between our DLM implementation and

that of Gu et al.

(2024).

| Aspect \ Our work \ Gu et al. (2024)
Vocabulary spm10k, spm128, char char
DLM Architecture | Transformer enc-dec Transformer enc-dec
Encoder layers 24 16
Decoder layers 8 4
Model dim 1024 1280
Size 466M 484M
Positional Emb Rotary Sinus
Feedforward SwiGLU ReLU
Batch Size 20k tokens 160k tokens (distributed)
GPUs 1 x H100 96GB 8 x A100 80GB
LR Schedule One Cycle Step decay
ASR architecture Conformer-CTC Transformer CTC
Other - Dropout and Layer dropout 10%

A ABBREVIATIONS AND NOTATION

ASR Automatic Speech Recognition

LM Language Model

DLM Denoising Language Model

TTS Text-To-Speech

WER Word Error Rate

DSR Denoising Speech Recognition

POS Part Of Speech

CTC Connectionist Temporal Classification (Graves et al., 2006)
Conformer Convolutional Transformer (Gulati et al., 2020)

.CC?:JJl...l‘T

af =ap...ag

-5 -~ -

ay =ay...ag
n-best[pASR(-|:r1T)]
U (min, max)

input feature sequence of length 7' (audio features)
label sequence of length T'

noisy label sequence of length S from the ASR model
n most probable ASR hypotheses
uniform random distribution between min and max

B DIFFERENCES TO PREVIOUS WORK

An overview of the main differences and similarities from our implementation to Gu et al. (2024) is
shown in Table B.1. Note that we varied the DLM architecture and size in preliminary experiments
and found that the chosen architecture and size worked best in our setting. We also tested the exact
same architecture as Gu et al. (2024) (16 encoder layers, 4 decoder layers, model dimension 1280;
also positional encoding, feedforward style), but it performed worse in our setting.

After all our experiments (compare Table 1), we still see some gap to Gu et al. (2024) in absolute
WER results. Some relevant differences which could explain this gap are the following:

* Gu et al. (2024) uses a character vocabulary, while we mostly use a subword vocabulary.
See Appendix G.2 for further discussion on the difference of character and subword vocab-
ularies.

* Another aspect is that Gu et al. (2024) uses a TTS model trained on external data, while
our best result is achieved with only LibriSpeech data. But our results using the same TTS
model (Appendix E.2.4) only shows small improvements. Also, Gu et al. (2024) reports
that the differences between TTS models does not have such a big impact (see Table 7 in
Gu et al. (2024), where the relevant WER for DSR decoding is between 3.6% and 3.8%).

¢ Further, Gu et al. (2024) trains for more epochs. The exact number of epochs is not stated
in Gu et al. (2024) and difficult to estimate from the details that they provide, but given
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Figure C.1: Speed comparison in terms of real-time factor (RTF) of time-synchronous and label-
synchronous search for ASR CTC + LM one-pass decoding.

their specified LR schedule and batch size, we estimate that they train for about 40 epochs,
but this might not be accurate.

C DECODING DETAILS

Decoding is the search procedure to find arg max,s given some scoring (for example ASR + LM
(Equation (8)), ASR + DLM (DSR, Equation (3)), or ASR + weighted DLM (DLM-sum, Equa-
tion (7))).

C.1 TIME-SYNCHRONOUS SEARCH

Once an ASR model (with CTC) is involved in the score (as in most of our experiments, except DLM
alone), we can use time-synchronous search (where the outer loop goes over time frames¢ = 1,...7T
(Graves, 2012; Prabhavalkar et al., 2023)). We make use of the maximum-approximation of CTC
(Equation (10)) in this case. During search, recombine hypotheses with the same label sequence but
different alignment label sequences (including blank labels) by maximum approximation.

C.2 LABEL-SYNCHRONOUS SEARCH

In all cases, we can use label-synchronous search (where the outer loop goes over labels s =
1,...,S5 (Prabhavalkar et al., 2023)). Label-synchronous search also works with CTC (Hori et al.,
2017). In case of label-synchronous search with CTC, we do not use the maximum approximation of
CTC but instead compute the exact CTC probability (Hori et al., 2017). So, our label-synchronous
search results can potentially be slightly better for CTC than our time-synchronous search results,
while time-synchronous search is more standard for CTC in the ASR community. However, in our
experiments, we don’t really see any difference between time-synchronous and label-synchronous
search for CTC+LM combination when using the same beam size.

However, we see a difference in compute time, which depends on the LM size, encoder sequence
length, vocabulary size. See Figure C.1 for a speed comparison of time-synchronous and label-
synchronous search for ASR CTC + LM one-pass decoding. We can see that label-synchronous
search is generally faster. This is the case for our large 32 layer Transformer LM. Also, this uses
CTC soft collapsing (Appendix C.8) to reduce the encoder sequence length, but consistently for both
time-synchronous and label-synchronous search.
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C.3 BEAM SEARCH

In both label-synchronous search or time-synchronous search, for each step, we have a fixed number
of active hypotheses, which is the beam size, which is just 1 in the first step, and then expands to
some fixed beam size. Thus, the search is also called beam search. See Prabhavalkar et al. (2023)
for more.

C.4 GREEDY SEARCH

This is beam search with beam size 1. It means that in every single step, we take the arg max
over the possible next labels. This can be done with time-synchronous search or label-synchronous
search.

For time-synchronous search for CTC using the maximum approximation (Equation (10)), the so-
lution becomes trivial: We just take the most probable alignment label (including blank) at each
time step ¢, and this gives us the final alignment label sequence. Then we remove blanks and merge
repeated labels to get the final label sequence. This is exactly what is usually called greedy decoding
for CTC.

C.5 RESCORING

The search can be done first with CTC only (or with the DLM only), to generate an N-best list of
hypotheses, which is then rescored with the LM or DLM. This is called rescoring.

C.6 ONE-PASS SEARCH

Alternatively, the LM or DLM can be integrated into the search itself, which is called one-pass
search. This can be done both with time-synchronous search and label-synchronous search.

Our DLM-sum decoding results are all with one-pass label-synchronous search.

The CTC+LM one-pass results use time-synchronous search, as this is more consistent to what is
usually done in the ASR community. In our experiments, we don’t really see any difference between
time-synchronous and label-synchronous search for CTC+LM combination.

C.7 OPTIMIZING SCALES

When we combine multiple models in the score, we usually use some scale factors (e.g. ALm, Aprior
in Equation (8)). We usually generate an N-best list using only the CTC model (or also with the
DLM, and then combine it with the CTC hypotheses), then we score those hypotheses which each
model individually (rescoring), and then tune the scale factors on the N-best list on the validation
set (LibriSpeech dev-other). After that, we use the tuned scale factors for the final evaluation on the
other test sets.

C.8 CTC SOFT COLLAPSING

Both time-synchronous search and label-synchronous search for CTC are linearly bound to the en-
coder sequence length 7. We use a simple heuristic to reduce 7: We merge consecutive frames of
the probabilities pasr(y | #7) where the argmax is the same and the probability is above some
threshold (0.8 or 0.9 in our experiments). We merge by taking the maximum probability over the
merged frames for each label y and then renormalizing to a probability distribution.

This is similar to the method described in Gaido et al. (2021), but we have the additional threshold
to avoid merging frames where the model is uncertain.

C.9 DLM-SuM DECODING DETAILS

The DLM-sum decoding (Section 2.1) involves two searches: one for the hypotheses from the ASR
model, and one for the final combined score (Equation (7)).

First, we apply CTC soft collapsing to the ASR model probabilities.
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The first search on the ASR model is done with time-synchronous beam search to get the N-best list
of ASR hypotheses. There can be potentially different alignment label sequences for the same label
sequence (after merging repeated labels and removing blanks). We also tested label-synchronous
search for this step, or some sampling variants, to get a more diverse set of hypotheses, but we did
not see any consistent improvements.

The second search for the final combined score is done with one-pass label-synchronous beam
search.

D EXPERIMENTAL DESIGN DETAILS
Here we provide more details about our experimental design (Section 3).

D.1 MODELS

D.1.1 ASR MODEL DETAILS

Model Details. We use a Conformer encoder (Gulati et al., 2020). The feedforward layers use
ReLu squared activation function. We use a convolutional frontend consisting of three convolutional
layers as with kernel sizes 3, 3, 3, strides in the time dimension 1, 3, 2 and 1, 1, 1 in the frequency
dimension, and max pooling of 2 for the frequency dimension only in the first layer. For the char
and spm128 models we use stride 1, 3, 1 to get less downsampling. Out dims are 32, 64, 64. We use
log mel filterbank features with 80 channels, 25ms window size and 10ms step size and batch norm
over the feature dimension.

This is a standard CTC ASR model (Graves et al., 2006): The model output is a linear layer to the
vocabulary size plus one for the CTC blank symbol, followed by softmax, resulting in the probability
distribution pASR7t(yt | xlT) over the vocabulary including blank at each output time step ¢. The
sequence probability is the given as

pasr(af | 27) Z HpASRt yi | 21), (€))

: (1

where the sum is over all sequences y?/ that map to a; after removing blanks and merging repeated
symbols. Due to downsampling in the encoder (by striding in the convolutional frontend), we have

r— [T
=15l
In some cases, we use the maximum approximation:
T/

pasw(af | 1) = max_TTpasre(ye | «7). (10)
vitcaf i)

Training Details. The TTS audio we use for ASR training is generated using our Glow-TTS model
(Section 3.2) with constant noise scale 0.7 and length scale 1.0 for all of the Librispeech LM text
(800M words). The noise scale parameter of the TTS data is tuned to optimize performance of ASR
models trained on this data, as measured by WER on LibriSpeech dev-other. This results in about
75k hours of synthetic audio. Due to the large amount of TTS data, we disperse it over multiple
epochs, such that each epoch contains a subset of — == of the TTS data (about 1000h) and the entire
LibriSpeech ASR 960h training data. We train for 100 epochs in total, which means that we see
about 96k hours of the LibriSpeech ASR 960h data and about 100k hours of TTS data in total,
i.e. about 1:1 ratio of real to synthetic data, with about 200k hours of audio training data in total.

Dropout of 0.1 is applied to prevent overfitting. The models are trained with the AdamW optimizer
and le-2 weight decay with batch size 16.6min (spm10k) or 8.3min (char, spm128) for 100 epochs,
and global gradient clipping of 5.0. To improve memory efficiency, we use bfloat16 for training.
We use one cycle learning rate schedule with linear increase from 1le-5 to le-3 Ir in the first 45%
of training, then linear decrease to le-5 at 90% of training then linear decrease to le-6 to the end
of training. Audios that are longer than 19.5s in length are removed from the dataset. Input audio
is speed perturbed with factors 0.7, 0.8, ..., 1.1, and we use SpecAugment (Park et al., 2019)
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Table D.1: Word error rates of our Conformer baseline models on LibriSpeech dev and test sets.
Additionally we report the WER on TTS audios generated with our Glow-TTS system (last column)
with noise scale ~ £(0.3,0.9) and length scale ~ #/(0.7, 1.1), both uniform random sampled for
each sentence. The ASR model ’spm10k’ is only trained on LibriSpeech ASR 960h, while all other
models had additional TTS data in their training data (see text for details). Number of Parameters
includes auxiliary decoder and CTC losses in the encoder.

ASR Baselines Number of WER [%]

Parameters | dev-clean | dev-other | test-clean | test-other | tts
spm10k 471M 2.29 5.02 2.42 5.33 8.73
spm10k (TTS) 471M 1.75 4.13 2.03 4.44 2.17
char (TTS) 435M 1.83 4.56 1.98 4.78 2.55
spm128 (TTS) 435M 1.79 441 1.94 4.55 2.42

Table D.2: LM performance (perplexity (PPL) on spm10k level) on LibriSpeech dev-other for dif-
ferent LM architectures and number of training epochs.

| Model [ Num Epochs [ PPL |

n8-d1024 5 37.2
n32-d1024 5 33.9
n32-d1024 10 344
n32-d1280 5 329

as additional data augmentation. For the SentencePiece model we randomly stop tokenizing mid-
word with 1% probability to stochastically generate non-deterministic subword splits. An auxiliary
decoder with 6 layers and model dimension 512 is used during training as per Hentschel et al. (2024).
Additionally an auxiliary CTC loss is applied at layer 4 and 8 of the encoder.

Most hyperparameters of our ASR are hand-tuned on dev-other, resulting in a slight overfit to the
validation sets.

Performance. The performance of our ASR models and their parameter count is shown in Ta-
ble D.1.

D.1.2 LM DETAILS

The models are trained with AdamW optimizer (Loshchilov & Hutter, 2019) and 1e-2 weight decay
with batch size 20k, 15k tokens for 5 epochs on LibriSpeech LM corpus, and global gradient clipping
of 5.0. We use cross entropy loss, which is averaged over all sequences and tokens in a batch. The
learning rate schedule is one cycle with linear increase from le-5 to le-3 Ir in the first 45% of
training, then linear decrease to le-5 at 90% of training, then linear decrease to le-6 to the end of
training. See Table D.2 for perplexities (PPL) of our LMs on LibriSpeech dev-other.

The combined ASR + LM results are computed with shallow fusion and internal LM subtraction,
and scales (ALm, Aprior) are tuned on LibriSpeech dev-other. See Tables D.3, E.1 and E.2 for results.

D.1.3 PRIOR

The prior probability pyrior(af ) is estimated from the ASR model. We take the average of p;(y | 27)
over all frames of the training dataset, i.e.

T/
1
pframewise—prior(y) = ZT/ ep T § E pASR,t(y | -’If{) (11)
sTy

T’ 2T eD t=1

following Manohar et al. (2015). This method is sometimes referred to as the softmax average. This
is a context-independent framewise prior over the vocabulary including the CTC blank symbol.
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Table D.3: Word error rates of our spm10k (TTS) ASR baseline model with external language
model decoding on LibriSpeech dev and test sets. Rescoring refers to the two-pass approach where
an ASR n-best list is rescored. The one-pass approach uses joint decoding with shallow fusion.
n8-d1024 refers to a Transformer decoder-only LM with 8 decoder blocks and model dimension
1024, other LMs are named accordingly. The LMs are trained for 5 epochs here. LM n8-d1024
uses ALm = 0.37, Aprior = 0.27, and n32-d1024 uses Apy =2 0.42, A\prior = 0.28.

Number of . WER [%]

LM Parameters | Decoding dev-clean | dev-other | test-clean [ test-other
[None 1 0] - [ 175 | 413 | 205 | 444 |
. rescoring 1.63 3.59 1.83 3.90
n8-d1024 LM IBM G epass | 1.62 3.53 T8 382

] rescoring 1.59 3.57 1.80 3.84
n32-d1024 LM A2 e pass 1.56 3471 73 370

We define a context-independent labelwise prior by removing the blank symbol and renormalizing:

Pframewise-prior (a)
() = 12
Prabetwise-prior ( ) E o’ €y Pframewise-prior ( G,/) 12

for a € V, where V is the vocabulary without the CTC blank symbol.
The prior probability of a (non-blank) label sequence is then

S
pprior(af) = H plabelwise-prior(as)- (13)

s=1
D.1.4 TTS DETAILS

Glow-TTS. Our Glow-TTS system is a normalizing flow-based generative model utilizing a bi-
directional mapping between audio features and latent variables. The latent variable for each frame
is sampled from a Gaussian distribution, parameterized by a text encoder model. For each input
token, the text encoder predicts mean and variance vectors. Then the number of output frames for
each input token is determined by a duration model, and the distribution parameters are repeated
accordingly for each position. After sampling the latent variable for each position, the spectrograms
are computed via the inverse of the normalizing flow function.

The Glow-TTS model has two straightforward ways to adjust the output of the TTS system: length
scale and temperature.

The length scale is a multiplicative factor applied to the predicted durations of each input token.
We observe that the TTS produces well recognizable audio for length scales between 0.6 and 2.0,
with the WER increasing considerably outside this range (cf. Figure D.1). The non-TTS trained
ASR model seems to be more robust to slower speech (higher length scale) than the TTS-trained
ASR model, which may be due to the TTS training data having a smaller proportion of slow speech
compared to the LibriSpeech ASR training data’.

Temperature (from here on called noise scale) is a multiplicative factor applied to the standard
deviation of the predicted latent distribution. Consider the sampling procedure for the latent variable
z in the Glow-TTS model:

2z~ N, (o71)%) (14)
z=p+o7-ewithe ~ N(0,1) (15)

where z is the sampled latent variable, ;2 and o are the mean and standard deviation vectors of the
latent distribution predicted by the text encoder model, 7 € R is the noise scale hyperparameter
(temperature), and € is a vector of standard normal random variables. Increasing the noise scale T
increases the variance of the latent distribution, which leads to more diverse outputs. Noise scales

"TTS audio with Length scale = 1.0 and Noise scale = 0.7 was used for ASR model training.
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Table D.4: WER of training data, ablation over TTS Length Scale uniformly distributed. TTS Noise
scale 7 ~ 14£(0.3,0.9) is used.

TTS Length Scale | DLM Training Data WER [%]
over a uniform spm10k spm10k (TTS)
distribution Glow-TTS Glow-TTS
U(1.0, 1.0) 7.46 1.88
U(0.7, 1.1) 8.73 2.17
U(0.6, 2.0) 8.04 2.16
U(0.5, 2.5) 9.31 3.18
U(0.4, 3.0) 12.06 6.90

Table D.5: WER of training data, ablation over TTS Length Scale. TTS Noise scale 7 ~ /(0.3,0.9)
is used.

DLM Training Data WER [%]

TTS Length Scale spm10k spm10k (TTS)
Glow-TTS Glow-TTS

0.2 96.09 96.47

04 70.33 54.31

0.5 36.28 14.64

0.6 19.34 5.17

0.8 9.83 2.39

1.0 7.46 1.88

1.2 6.72 1.74

14 6.58 1.76

2.0 7.85 2.72

2.5 11.43 8.85

3.0 18.41 26.85

3.5 28.63 51.29

4.0 40.12 72.52

up to 0.8 seem to produce well recognizable audio for the TTS-trained ASR model, while the non-
TTS trained ASR model has already doubled its WER at that point (cf. Figure D.2). Again, the
TTS-trained ASR model performs better than the non-TTS trained model on the noise parameters it
has seen during training.

We generate TTS audio with different length scales and measure the WER of the resulting ASR
hypotheses, shown in Figure D.1. WER for different levels of noise scale is shown in Figure D.2.

YourTTS. We download the YourTTS model from the public Coqui-ai Github repository® and use
it in its default configuration (unless otherwise stated). The YourTTS model has been trained on the
LibriTTS (Zen et al., 2019) and CML-TTS (Oliveira et al., 2023) datasets.

Similar to the Glow-TTS system, YourTTS also has length and noise scale parameters that can
be adjusted during inference. We keep length scale € [1.0,1.5] and noise scale 7 = 0.3 unless
otherwise stated. The default values for these parameters are 1.5 and 0.3 respectively, so we believe
that our results are comparable to that of Gu et al. (2024).

Generated Data WERs WER results for hypotheses generated with Glow-TTS and YourTTS on
different ASR models are shown in Table D.§8. WER for spm10k is about the same as for the Glow-
TTS system, and the relative change from non-TTS to the TTS-trained ASR models is similar to that
of the LibriSpeech validation and test sets (cf. Table D.1). This indicates that the YourTTS audios
are meaningfully different from the Glow-TTS audios, and should introduce additional diversity into
the training data when both systems combined.

$https://github.com/coqui-ai/TTS
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Table D.6: TTS Noise Scale Uniform.

DLM Training Data WER [%]
TTS Noise Scale Uniform spm10k spm10k (TTS)

Glow-TTS Glow-TTS
U(0.3, 0.4) 5.12 1.55
(0.3, 0.5) 5.31 1.55
U4(0.3, 0.6) 5.59 1.58
U(0.3, 0.7) 6.03 1.63
(0.3, 0.8) 6.62 1.72
U4(0.3, 0.9) 7.46 1.88
U(0.3, 1.0) 8.61 2.15
U(0.3, 1.1) 10.18 2.64
U(0.3, 1.2) 12.19 4.11
U(0.3, 1.3) 14.69 6.66
U(0.3, 1.4) 17.70 9.89
U(0.3, 1.5) 20.98 13.57

Table D.7: Ablation over TTS Noise Scale. Constant length scale of 1.0 is used.

DLM Training Data WER [%]
TTS Noise Scale 7 spm10k spm10k (TTS)
Glow-TTS Glow-TTS
0.0 4.89 1.64
0.2 492 1.59
0.4 5.26 1.55
0.6 6.64 1.69
0.8 10.12 2.33
1.0 17.88 4.57
1.2 32.43 23.27
1.4 52.36 47.74

Table D.8: Recognition performance of ASR baselines on Glow-TTS and YourTTS audio data.
Glow-TTS audio data is generated with noise scale 7 ~ 2/(0.7,1.1) and length scale ~ 1/(0.7,1.1),
YourTTS audios use noise scale 7 = 0.3, length scale ~ 1£(1.0, 1.5), all uniformly sampled for
each sentence.

. WER [%]
ASR Baselines Glow-TTS | YourTTS
spm10k 8.73 8.47
spm10k TTS 2.17 6.11
char TTS 2.55 6.29
spm128 TTS 242 6.10

D.1.5 DLM DETAILS

We follow the design principles of Llama (Touvron et al., 2023) like with our LMs.

The input hypotheses for the encoder are postfixed with a special end-of-sequence token from the
vocabulary.

We use label smoothing of 0.1 for the cross entropy loss. We train most DLMs for 5 epochs, where
we will use the one-cycle learning rate schedule as with our LMs, but with the learning rate halved
at every step. So the learning rate increases linearly from 5e-6 to Se-4 in the first 45% of training,
then decreases linearly to 5e-6 at 90% of training, then decreases linearly to 5e-7 at the end of
training. For the experiments with our best results we train for 10 epochs, where we use the exact
same learning rate schedule without halving the learning rate at every step.
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Figure D.1: Length scale of TTS vs. WER of the ASR hypotheses. Noise scale 7 ~ 1£(0.3,0.9).
See Table D.5 for raw data.
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Figure D.2: Noise scale of TTS vs WER of the ASR hypotheses. Length scale = 1.0 was used. See
Table D.7 for raw data.

D.2 DATA AUGMENTATION STRATEGIES

The goal is to find training data that leads to the best DLM performance.

Unless otherwise stated, we apply each technique to the LibriSpeech ASR validation sets with real
audio, and to Glow-TTS audio from a random subset of 53890 sentences with total 1068186 words,
about 0.13% of the LM corpus. A 0.01% change in WER on this set corresponds to about 106 word
errors. Given the great cost of generating the full training data, this is a reasonable compromise to
get an estimate of the impact of each technique. We use the spm10k Conformer ASR models, with
and without TTS training data, to measure the WER of the generated hypotheses. Since there is no
indication that the data augmentation methods should behave differently across different vocabular-
ies, we chose not to conduct additional experiments with the spm 128 and char vocabularies.

25



Under review as a conference paper at ICLR 2026

Table D.9: WER on early ASR checkpoints. The ASR model here is ’spm10k (TTS)’.

ASR checkpoint DLM Training Data WER [%]
(out of 100) dev-clean [ dev-other | Glow-TTS
Epoch 10 5.24 12.39 7.24
Epoch 20 3.76 9.14 5.53
Epoch 40 3.19 8.37 4.89
Epoch 80 2.08 5.00 2.76
Epoch 100 1.75 4.13 2.17

Table D.10: Training data WER for different SpecAugment settings.

DLM Training Data WER [%]
SpecAugment spm10k spm10k (TTS)
dev-clean | dev-other | Glow-TTS [ dev-clean | dev-other [ Glow-TTS
Off 2.29 5.02 8.73 1.75 4.13 2.17
On (only frequency masking) 2.46 5.95 9.79 1.90 4.92 2.54
On (only time masking) 3.94 8.38 16.79 3.27 7.01 6.54
On (time + frequency) 4.88 10.21 19.45 3.82 8.99 8.02

so Dropout max vs WER

—8— spm10k (TTS)
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Figure D.3: Dropout is sampled uniformly from /(0.0 py.y) for each sequence. pmax vs. WER of
the ASR hypotheses. Data shown is TTS audio from Glow-TTS.

D.2.1 EARLY ASR CHECKPOINTS

Generated training data statistics for different checkpoints are shown in Table D.9.

D.2.2 SPECAUGMENT

We use a variant of SpecAugment (Park et al., 2019): we do frequency masking with 2 to 5 masks
of max size 16, and time masking with 2 to 12%‘ masks with max size 20 where len is the length of the
time dimension. We do not apply time warping. We test whether only time masking, only frequency

masking, or both combined lead to the best DLM performance.

Generated training data statistics using SpecAugment are shown in Table D.10.

26



Under review as a conference paper at ICLR 2026

Table D.11: Training data WER for different dropout percentages.

DLM Training Data WER [%]
(Pmin, Pmax) spm10k spm10k (TTS)
dev-clean | dev-other | Glow-TTS | dev-clean | dev-other | Glow-TTS

(0.0, 0.0) 2.29 5.02 8.73 1.75 4.13 2.17
0.0,0.1) 2.36 5.41 9.29 1.83 4.36 2.29
(0.0,0.2) 2.62 5.97 10.01 1.99 4.67 2.48
(0.0,0.3) 3.00 6.77 11.19 2.35 5.44 2.82
0.0,0.4) 3.79 8.52 13.57 2.99 7.02 3.51
(0.0, 0.5) 6.15 12.82 19.23 4.89 11.22 5.39
(0.0, 0.6) 14.67 22.84 30.54 13.96 22.69 12.01
0.0, 0.7) 28.14 34.00 41.40 28.16 35.56 2291
(0.0, 0.8) 3791 42.16 49.67 37.71 44.51 31.64
(0.0, 0.9) 43.93 47.96 55.64 43.96 50.32 39.02
(0.1,05) 7.36 14.68 21.60 5.88 13.00 6.29
0.2,05) 9.06 17.79 24.98 7.10 15.65 7.58
(0.5, 0.5) 34.17 51.87 57.28 26.36 46.43 24.64

Table D.12: Training data WER for different token substitution percentages. A percentage is uni-
formly sampled for each sentence, and that percentage of tokens in the sentence are randomly re-
placed with other tokens.

DLM Training Data WER [%]
Token substitution spm10k spm10k (TTS)
dev-clean | dev-other | Glow-TTS [ dev-clean | dev-other | Glow-TTS

0% to 0% 2.29 5.02 8.73 1.75 4.13 2.17
5% to 5% 8.64 11.22 14.59 8.19 10.50 8.58
10% to 10% 14.98 16.95 20.30 14.33 16.23 14.96
20% to 20% 26.76 28.36 31.46 26.91 27.73 27.11
30% to 30% 38.78 39.86 4221 38.28 39.26 38.91
0% to 30% 20.95 22.45 2591 20.13 21.98 20.96
0% to 40% 26.59 28.50 31.16 26.34 27.93 26.88
0% to 90% 54.20 55.33 56.69 53.79 54.13 54.47

D.2.3 DROPOUT

We use dropout (Srivastava et al., 2014) at inference time to generate diverse hypotheses. See
Figure D.3 for dropout rate vs. WER. See Table D.11 for generated training data statistics using
different dropout rates.

D.2.4 TOKEN SUBSTITUTION

We expect that the WER of the hypotheses will approximately increase by w over the whole
corpus. The actual WER increase is typically higher than this, due to two reasons: First, the substi-
tution probability is per token, not per word. Because a word can consist of more than one token, the
probability of a word having at least one substitution is higher than the probability of a single token
having a substitution. Secondly, a substitution may result in a word being split into two smaller
words because of a mid-word token replaced with one that begins with a space. Such a substitution
produces two errors for a single token substitution (an insertion error and a substitution error).

Training data WER for different Token substitution rates is shown in Table D.12.
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D.2.5 Mixup

Mixup (Zhang et al., 2017) is a data augmentation technique that enforces the model to learn a linear
relationship between any two training examples:

Z=Xx; + (1 —Nzj, with z;, z; input vectors  (16)

7=y + (1 —Nyj, with y;, y,; output vectors  (17)

or: Loixspeech = AL(Z,y;) + (1 — N)L(Z,y;), where L is the original loss (18)
with A € [0, 1] (19)

It has been shown that this leads to improvements when applied to ASR model training (Meng et al.,
2021a).

Because we only want to generate DLM training data, and are not interested training ASR models,
we only need equation equation 16, where we mix the spectograms of multiple audio sequences
together. We extend the mixup equation to more than two sequences as follows:

n n
with Zgym = Z ajz; and Zaj =1 (2D
J J

where z; are randomly chosen input features of other sequences
and o; are random weights unique to an x;

Rather than linearization, this approach can be best understood as adding some background noise to
an audio sequence. For consistency to other training data ablations, we have inverted the usage of
A to be the amount of noise added instead of the amount of original signal kept. This way A = 0
means no noise, and A = 1 means 100% noise. At inference time, audio sequence spectograms are
continuously appended to a buffer, and for mixup we randomly pick n offsets from which we copy
the input spectograms. This sometimes results in multiple adjacent spectograms from the buffer
being mixed into the current sequence. We randomly pick n € {1, 2} for every sequence and set
to a constant value in Figure D.4 and Table D.13.

Amax VS WER
50

—8— spm1Ok (TTS)
spm10k

40 1

30 A

WER

201

101

T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Amax

Figure D.4: Mixup Apax vs. WER of the ASR hypotheses.

As expected, the WER increases sharply near A ~ 0.5, where the noise begins to dominate the
original signal. Before this point, the WER remains remarkably stable. For our training experiments
we pick n € {1, 2} randomly, but sample A ~ (0, Apax) for every sequence with some constant

max -+
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Table D.13: Training data WER for different Mixup A values. The A value decides how much noise
from other audios is added to each sample.

DLM Training Data WER [%]
Mixup A spm10k spm10k (TTS)
dev-clean [ dev-other | Glow-TTS | dev-clean | dev-other [ Glow-TTS

0.0 2.29 5.02 8.70 1.75 4.13 2.16
0.1 2.33 5.20 8.97 1.76 4.23 2.26
02 251 5.96 9.94 1.89 4.88 271
0.3 322 9.55 13.17 2.62 7.97 4.69
0.4 11.01 26.00 27.66 9.37 23.34 19.39
05 57.04 67.04 6851 54.93 65.13 67.99
0.6 95.23 96.00 95.63 95.05 96.39 98.12
0.7 102.87 102.51 101.94 103.23 103.35 103.95

Table D.14: Training data WER for different Mixup A\p.x values.

DLM Training Data WER [%]
Mixup Amax spm10k spm10k (TTS)
dev-clean | dev-other | Glow-TTS | dev-clean | dev-other | Glow-TTS

0.0 2.29 5.02 8.70 1.75 4.13 2.16
0.1 2.31 5.05 8.80 1.76 4.11 2.19
0.2 2.35 5.22 9.10 1.79 4.34 2.32
0.3 2.51 5.94 9.80 1.94 4.89 2.69
0.4 3.26 8.43 12.02 2.55 6.95 443
0.5 9.25 15.82 19.22 7.49 13.86 12.18
0.6 21.02 26.79 30.21 18.30 25.04 24.59
0.7 32.24 37.82 40.29 29.32 34.84 35.74
0.8 41.49 45.97 48.22 37.81 43.03 44.42
09 48.33 52.33 54.39 44.70 49.60 51.20
1.0 54.18 57.71 59.41 50.38 55.22 56.72

D.2.6 SAMPLING FROM ASR MODEL

A good approximation for the top hypothesis of a CTC-based ASR model is to take the most proba-
ble token at each frame, and then collapse the resulting sequence by removing blanks and repeated
tokens. This approach is called greedy decoding and it is what we use for our training data genera-
tion. At recognition time however, we use an n-best list of ASR hypotheses in DLM-sum Decoding
to improve performance (see Section 2.1). To reflect this, we can generate training data that contains
more suboptimal hypotheses to prepare the DLM for this scenario. To do this, we first collapse the
frames as we would do for greedy decoding, i.e. remove blanks and repeated tokens according to
the most probable label at each frame. But instead of taking the most probable label, we collect the
top k token labels for each collapsed frame, normalize their probabilities back to 1, and then sample
from this distribution at every label position. A similar sampling approach for language modeling is
described in Fan et al. (2018). This approach is negligible in terms of additional compute resources’
as the operation is parallelizable over all frames and can be done in a single pass. The impact on the
WER of the hypotheses is shown in Table D.15.

We see diminishing changes after k£ > 8, indicating that most of the probability mass is concentrated
on the top few tokens.

Through our approach, we disregard a significant amount of the frames of the input sequence which
may contain additional, possibly important, information. One could instead take the average or the
maximum over all collapsed frames and store this information in the resulting combined frame, but
we leave this for future work. Nucleus sampling is also an interesting alternative to explore.

“Baseline: 61.6min, Top-k 16: 62.9min
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Table D.15: Training data WER for different Top-k sampling k values. £ = 1 corresponds to the
baseline (no sampling).

DLM Training Data WER [%]
k spm10k spm10k (TTS)
dev-clean [ dev-other | Glow-TTS | dev-clean | dev-other [ Glow-TTS

1 2.29 5.02 8.77 1.75 413 2.16
2 4.51 7.34 11.29 4.01 6.37 4.45
4 6.38 9.28 13.19 5.69 8.08 6.21
8 6.68 9.88 13.59 5.99 8.56 6.53
16 6.73 9.51 13.62 6.08 8.68 6.60
32 6.61 9.65 13.68 6.04 8.64 6.62

Table D.16: Combined data augmentation configurations. All configs use TTS length scale
~ U(0.7,1.1). TTS noise scale is sampled from U£(0.3, Timax) and mixup A ~ U(0.0, Apax ) uni-
formly for every sequence. Configs are sorted according to WER on hypotheses from TTS audio,
see Table D.17 for hypotheses WERs.

TTS Noise Token | Mixup

Name Timax SpecAugment | Dropout | Substitution Amax
baseline - (0.0, 0.0) 0% 0.0
verylow (0.0,0.1) | 0% to 10% 0.2
stdPerturb . (0.1, 0.5) 0.0
Tow 0.9 Time 00.02) 10%

very low (ASR ep. 40) (0.0,0.1) | 0% to 10% 0.2
low™ Time+Fr (0.0,0.2) 10%

Towmedium 12 erreq 0.0.0.0) | 0% 1020% |04
high (no ASR augment) 1.5 - T 20% 0.0
medium 1.2 Time-+Fre 0.0,0.5) 10% 04
high 5 9 01,05 20% 06

D.2.7 OTHER DATA AUGMENTATIONS

We tried Generalized SpecAugment (Soni et al., 2024) which, instead of masking blocks in the spec-
togram to zero, replaces them with white noise. Training data generation with this method yielded
very broken sequences (= 50% WER) and we did not run DLM training on this data. To lower the
WER, we tried Generalized SpecAugment during ASR training, but this led to a significantly worse
ASR model, so we excluded this data augmentation method from further testing.

A max-pooling-like data augmentation method is proposed in Téth et al. (2018), where only the
loudest parts of the spectogram are kept, and the rest is masked to zero. The intuition behind this
approach is that the features most robust to noise are usually the loudest ones, and that only these are
needed to understand speech. We chose not to implement it for DLM training data generation due
to similarity to SpecAugment and dropout, but it could be an interesting data augmentation method
to try in future work.

D.2.8 COMBINING MULTIPLE DATA AUGMENTATION TECHNIQUES

Parameters for all configurations are shown in Table D.16, and the respective hypotheses WERs
of the training datasets are shown in Table D.17. The degradation caused by the data augmentation
methods is quite severe, especially for the high dataset. Interestingly, for some of the configurations
the WER of the TTS hypotheses is now higher than for dev-other, even though it was lower in almost
all individual data augmentation experiments.

D.3 ALTERNATIVE TRAINING INPUTS: DENSE K-PROBABILITY

Instead of having the DLM guess a correction for some label sequence, we can give it more infor-
mation from the ASR model about which labels are considered probable alternatives.
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Table D.17: Putting it all together: Training data (hypotheses) WER for different data augmentation
configurations from Table D.16.

Data Augmentation DLM Training Data WER [%]
Configuration dev-clean | dev-other [ Glow-TTS
baseline 1.75 4.13 2.17
very low 9.90 13.85 13.73
stdPerturb 18.89 24.93 19.55
low 16.45 20.02 20.15
very low (ASR ep. 40) 13.35 21.00 20.63
low™ 17.06 22.24 21.87
low medium 18.38 26.06 31.98
high (no ASR augment) 26.91 27.73 36.65
medium 27.05 37.97 41.63
high 52.69 60.55 69.86

A conservative approximation to store the full probability distribution of the needed storage space
to save the probability distributions for the entire LibriSpeech LM corpus reveals that this is not
feasible:

Dataset Size ~ num _frames x vocab_size x float_size 22)
> num_words X vocab_size x float_size (23)
~ 800 Million x 10000 x 4 24)
~ 32TB (25)

We propose a more efficient approach:

1. Only store the top k probabilities and their corresponding token indices

2. Instead of storing the probability distribution at every audio frame, do label synchronous
search and store the label probabilities at every step

With this approach, we can reduce the storage requirements for a full generation of the LibriSpeech
LM corpus to about 38GB with £ = 5. Instead of storing the data as text lines like we do in our
other experiments, we store this data using the HDF5 format'?. Token substitution is adjusted to
work with this data format to allow for any of the top-k tokens from the beam to be substituted.

The input to the DLM encoder is then computed as a weighted sum of the top-k token embeddings
at every label position:

k
e; = Zpi’j . emb(tm-) (26)
j=1
with p; ; the probability of the j-th most probable token at position ¢ 27

and ¢; ; the corresponding token index

E RESULTS AND ANALYSIS DETAILS

We train DLMs using the training data augmentation techniques described in Section 3 and evaluate
their performance on the LibriSpeech validation and test sets. Unless stated otherwise, all DLMs
in this Chapter are trained for 5 epochs and contain 10x LibriSpeech ASR data. Sometimes we
run experiments with the stdPerturb configuration, which is a combination of multiple data
augmentation techniques that produces well-performing DLMs. Its exact parameters are described
in Section 4.2. This configuration is not necessarily optimal, but we found it quite early in our
research and therefore used it for many experiments. Sometimes we mention that an experiment
is run without additional data augmentation, or do not explicitly state any data augmentation. In

Ohttps://www.hdfgroup.org/solutions/hd£5/
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Table E.1: Traditional LM vs DLM performance comparison. The DLM uses data augmentation
configuration 1ow. DLM rescore for the DLMs is rescore using only ASR hypotheses and thus
compares to LM rescoring. The ASR model was trained on TTS data.

Num. Num. . WER [%]
M Param. | Epochs Decoding dev-clean [ dev-other [ test-clean [ test-other
| None [ 0 [ 0 [ greedy | 175 ] 413 ] 203 [ 444 ]

rescoring 1.63 3.59 1.83 3.90
n8-dl024LM | 113M s one-pass 1.62 353 .81 3382
rescoring 1.59 3.57 1.80 3.84
i one-pass 1.56 341 1.73 3.70
nI2-d10ALM | 422M - escoring 161 354 T8 383
one-pass 1.60 3.45 1.74 3.72
rescoring 1.58 3.57 1.80 3.83
n32-dI280LM | 663M 3 one-pass 158 3.46 1.77 373
areedy 2.10 412 225 456
5 DLM rescore 1.58 3.72 1.84 3.95
DSR 1.53 3.50 1.76 3.81
DLM-sum 1.51 3.40 1.74 3.66
DIM 466M Zreedy | 4.06 332 357
10 DLM rescore 1.59 3.68 1.85 3.88
DSR 1.49 3.43 1.79 3.70
DLM-sum 1.49 3.29 1.72 3.53

Table E.2: Traditional LM vs DLM performance comparison. The DLM uses data augmentation
configuration 1ow. DLM rescore for the DLMs is rescore using only ASR hypotheses and thus
compares to LM rescoring. The ASR model was trained without TTS data, only on LibriSpeech
960h. This is the only difference to Table E.1.

Num. Num. . WER [%]
LM Param. | Epochs Decoding dev-clean | dev-other [ test-clean | test-other
| None [ 0 [ 0 T greedy | 229 [ 502 | 242 [ 533 ]

5 rescoring 1.93 4.18 2.09 4.50
) one-pass 1.85 3.93 2.00 4.27
n32-d10241M | 422M 10 rescoring 1.95 4.22 2.09 4.56
one-pass 1.90 3.94 2.00 4.27
greedy 2.49 4.63 241 5.19
DLM rescore 1.98 4.32 2.11 4.70
DLM 466M 10 DSR 1.76 3.95 1.91 4.37
DLM-sum 1.68 3.70 1.83 4.15

that case we still typically use TTS noise and length scales with noise scale ~ 2{(0.3,0.9) and
length scale ~ ¢/(0.7,1.1), as these are the default parameters of our training data generation pro-
cess.

E.1 DLM vSs. STANDARD LM

We compare the DLMs (presented in Section 3.2) with these standard LMs (presented in Sec-
tion 3.2): n32-d1024 has exactly the same layers as the encoder+decoder of our DLMs with
the same model dimension, and n8-d1024 is exactly the same as the DLM decoder. Both models
still have less parameters than our DLM because of the lack of cross attention and embedding in
the encoder, thus we also include an even bigger LM with model dimension 1280. DSR decoding
includes both the ASR and DLM beams for rescoring, while LM rescoring only includes the ASR
beam. Thus, we also include DLM rescoring, which only rescores the ASR hypotheses. LMs and
DLM performance is compared in Tables E.1 and E.2. DLMs and LMs trained with 5 epochs have
matching performance, while with 10 epochs of training, DLMs surpass LMs. So the longer training
is crucial to see the benefits of DLMs.
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Table E.3: Putting it all together.

Data Augmentation Decodin DLM Performance: WER [%]
Configuration & [Tdev-clean | dev-other [ test-clean | test-other
greedy 1.82 3.98 2.05 4.49
baseline DSR 1.56 3.78 1.89 4.08
DLM-sum 1.55 3.67 1.84 4.00
greedy 1.87 4.09 2.12 4.47
very low DSR 1.51 3.54 1.76 3.81
DLM-sum 1.52 3.43 1.74 371
greedy 1.95 4.05 2.25 4.60
stdPerturb DSR 1.54 3.54 1.77 3.84
DLM-sum 1.45 3.45 1.76 3.69
greedy 2.10 4.12 2.25 4.56
low DSR 1.53 3.50 1.76 3.81
DLM-sum 1.51 3.40 1.74 3.66
greedy 2.10 4.15 243 4.81
very low (ASR ep. 40) DSR 1.56 3.50 1.79 3.82
DLM-sum 1.50 3.41 1.72 3.64
greedy 2.12 4.06 2.32 4.42
low™ DSR .51 347 1.79 3.82
DLM-sum 1.49 3.40 1.75 3.60
greedy 2.45 4.25 2.60 5.05
low medium DSR 1.52 3.50 1.79 3.84
DLM-sum 1.51 3.44 1.73 3.76
greedy 2.03 4.14 2.45 4.76
high (no ASR augment) | DSR 1.57 3.58 1.79 3.92
DLM-sum 1.50 3.49 1.74 3.79
greedy 2.37 4.37 2.66 5.14
medium DSR 1.60 3.52 1.80 3.84
DLM-sum 1.56 3.42 1.75 3.72
greedy 4.71 5.66 4.50 6.58
high DSR 1.61 3.60 1.82 3.95
DLM-sum 1.67 3.56 1.81 3.89

E.2 IMPACT OF TRAINING DATA GENERATION STRATEGIES

E.2.1 COMBINING DATA AUGMENTATION TECHNIQUES

We investigate how combining multiple data augmentation techniques (see Appendix D.2.8) affects
DLM performance. The different configurations are described in Appendix D.2.8. Results of DLM
training are shown in Table E.3. Notably, thehigh (no ASR augment) configuration performs
worse than the similar in WER configurations 1ow medium and medium, indicating that artificial
augmentations for the ASR model are essential to getting good DLM performance.

E.2.2 TRAINING LONGER

For this ablation, we extend the learning rate schedule by stretching it out over more epochs, i.e. if
we double the number of epochs, the learning rate increases and decreases twice as slowly but
we keep the same minimum and maximum learning rate. Learning rate is halved for the 5 epoch
configuration, but for the higher epoch configurations we keep the same peak learning rate. All other
hyperparameters are kept the same, and we use the stdPerturb data augmentation configuration
for all models. The results are shown in Table E.4. Going from 5 to 10 epochs helps, but we see
diminishing returns after that. We hypothesize this may be caused by the learning rate schedule not
being optimal for longer training, or the DLM reaching its plateau. To test the first hypothesis, we
run an additional experiment with a step decay learning rate schedule, inspired by the one used in
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Table E.4: DLMs trained for different numbers of epochs. All models use data augmentation con-
figuration stdPerturb. The first model is trained for 5 epochs with a lower base learning rate of
0.5 instead of 1.0.

DLM Training Decodin DLM Performance: WER [%]
Epochs & [dev-clean | dev-other [ test-clean | test-other
greedy 1.95 4.05 2.25 4.60
5 DSR 1.54 3.54 1.77 3.84
DLM-sum 1.45 3.45 1.76 3.69
greedy 2.26 3.96 247 4.70
10 DSR 1.51 3.46 1.78 3.73
DLM-sum 1.50 3.32 1.80 3.57
greedy 2.60 4.00 2.60 5.11
15 DSR 1.51 343 1.72 3.73
DLM-sum 1.49 3.34 1.71 3.61
greedy 2.40 4.03 2.35 4.70
20 DSR 1.47 3.44 1.77 3.68
DLM-sum 1.47 3.34 1.74 3.53

Table E.5: A single DLM trained with step decay learning rate schedule and evaluated at different
epochs. Model uses data augmentation configuration stdPerturb.

Step decay results Decodin DLM Performance: WER [%]
per Epoch & [“dev-clean | dev-other [ test-clean | test-other
greedy 2.24 4.17 2.69 4.75
4 DSR 1.56 3.62 1.84 3.92
DLM-sum 1.53 3.51 1.76 3.79
greedy 2.61 4.02 2.59 5.11
8 DSR 1.54 3.55 1.81 3.84
DLM-sum 1.54 3.46 1.77 3.73
greedy 3.15 4.46 3.27 5.40
16 DSR 1.47 3.50 1.78 3.80
DLM-sum 1.51 3.36 1.78 3.73
greedy 2.89 4.48 3.16 5.57
25 DSR 1.51 3.44 1.71 377
DLM-sum 1.50 3.34 1.70 3.62
greedy 2.99 4.45 3.45 5.51
32 DSR 1.55 342 1.74 3.70
DLM-sum 1.55 3.33 1.79 3.65

Gu et al. (2024): warmup for 2.17 epochs to 0.0005, then constant for another 10.2 epochs, then
decay by a factor of 0.5 every 6.8 epochs and stop training after a total of 32 epochs'!. Results for
different checkpoints of this training run are shown in Table E.5. It appears that we reach a similar
performance ceiling with the step decay learning rate schedule.

We also train a DLM with the 1ow data augmentation configuration for 10 epochs with our usual
learning rate schedule, which results in our best DLM, see Table E.6.

E.2.3 TTS NOISE & TTS LENGTH

We sample the noise level T" uniformly for every sequence, and fix a minimum noise level of 7, =
0.3 and vary 7. € {0.6,0.9,1.2,1.5}. Results are shown in Table E.7. Performance seems to
increase with rising noise scale, and we see consistent gains even up to Tyax = 1.5.

"Gu et al. (2024) use peak Ir 0.001. Through preliminary experiments we found that this was unstable, so
we reduced Ir by factor 0.5. We believe this is necessary because our batch size is 8x smaller.
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Table E.6: DLMs trained with data augmentation configuration 1ow.

DLM Training DLM Performance: WER [%]

Epochs Decoding dev-clean [ dev-other | test-clean [ test-other
greedy 2.10 4.12 2.25 4.56

5 epochs DSR 1.53 3.50 1.76 3.81
DLM-sum 1.51 3.40 1.74 3.66
greedy 2.31 4.06 2.32 4.57

10 epochs DSR 1.49 3.43 1.79 3.70
DLM-sum 1.49 3.29 1.72 3.53

Table E.7: TTS Noise Scale Ablation Experiment. For each sequence, a noise scale is uniformly
sampled from U (Timin, Tmax)-

(Tomins Tman) | Decodin DLM Performance: WER [%]

min; fmax € [dev-clean | dev-other | test-clean | test-other
greedy 1.69 4.00 2.03 4.39

(0.3,0.6) DSR 1.59 3.81 1.89 412
DLM-sum 1.55 3.73 1.84 4.00
greedy 1.83 4.15 2.04 4.50

(0.3,0.9) DSR 1.57 3.78 1.89 4.12
DLM-sum 1.54 3.68 1.80 3.97
greedy 1.86 4.01 2.12 4.59

(0.3,1.2) DSR 1.60 3.70 1.86 4.04
DLM-sum 1.55 3.62 1.82 3.92
greedy 1.96 4.23 2.24 4.79

(0.3,1.5) DSR 1.54 3.67 1.82 3.97
DLM-sum 1.51 3.61 1.76 3.83

Table E.8: TTS Length Scale Ablation Experiment. For each sequence, a length scale is uniformly
sampled from U (dmin, dimax)-

. . DLM Performance: WER [%]
(dmin, dmax) | Decoding dev-clean | dev-other [ test-clean | test-other
greedy 1.83 4.15 2.04 4.50
(1.0, 1.0) DSR 1.57 3.78 1.89 412
DLM-sum 1.54 3.68 1.80 3.97
greedy 1.66 4.00 2.03 4.37
0.6, 2.0) DSR 1.62 3.77 2.10 4.10
DLM-sum 1.54 3.71 1.82 3.97
greedy 1.73 3.99 2.01 4.42
(0.5,2.5) DSR 1.55 3.75 1.87 4.06
DLM-sum 1.51 3.68 1.81 3.92
greedy 1.69 3.99 2.04 4.34
(0.4, 3.0) DSR 1.58 3.69 1.85 4.02
DLM-sum 1.56 3.68 1.83 3.95

We choose multiple minimum and maximum length scales such that the WER at the minimum and
maximum length scales is roughly equal. Then, we sample the length scale uniformly between the
minimum and maximum for every sequence. Training data WER for these configurations is shown
in Table D.4. Results are shown in Table E.8. There does not seem to be any noticeable difference
between the different length scales we test. With increasing length scale, the audio data increases
in length and thus training data generation becomes slower, so we stick to more moderate length
scales ~ 1/(0.7,1.1) for all other experiments.
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Table E.9: Different TTS systems and their combinations used for generating hypotheses. First three
use no data augmentation, last three use data augmentation configuration stdPerturb. Trained
for 5 epochs.

. DLM Performance: WER [%]
TTS System Decoding dev-clean | dev-other | test-clean | test-other
greedy 1.82 3.98 2.05 4.49
Glow-TTS DSR 1.56 3.78 1.89 4.08
DLM-sum 1.55 3.67 1.84 4.00
greedy 2.31 4.53 2.46 4.93
YourTTS DSR 1.60 3.74 1.83 3.96
DLM-sum 1.58 3.70 1.81 3.88
greedy 1.84 4.16 2.11 4.38
50% Glow-TTS, 50% YourTTS | DSR 1.58 3.70 1.83 3.96
DLM-sum 1.57 3.64 1.82 391
greedy 1.95 4.05 2.25 4.60
Glow-TTS (stdPerturb) DSR 1.54 3.54 1.77 3.84
DLM-sum 1.45 345 1.76 3.69
greedy 2.58 4.69 2.88 5.51
YourTTS (stdPerturb) DSR 1.58 3.58 1.79 3.84
DLM-sum 1.55 3.51 1.74 3.76
50% Glow-TTS. 50% YourTTS greedy 2.19 4.02 2.26 4.66
(both stdPerturb) DSR 1.55 3.53 1.80 3.82
DLM-sum 1.49 348 1.73 3.79

It may be necessary to choose a different random distribution that favors extreme values (~~ Beta
distribution with & = () because most values in the middle do not seem to affect the ASR system
performance much, but we leave this to future work.

E.2.4 COMBINING TTS SYSTEMS

We combine the two TTS systems to generate more diverse synthetic audio data. First we train
baseline DLMs using each TTS system individually, then we combine the two systems by passing
half the text data through one system and the other half through the second system. We run the same
experiments again using the stdPerturb data augmentation configuration. Results are shown in
Table E.O.

It is difficult to determine which TTS system or combination performs best, and it seems that the
data augmentation configuration has a far greater impact on DLM performance than the choice of
TTS system. If there is a positive effect of combining multiple TTS systems as reported by Gu et al.
(2024), it is too small for us to measure or our system of choice (YourTTS) does not differ enough
from the Glow-TTS system. It is also possible that all data has to be generated by both TTS systems
to get more variations of the same text, but the results from our ablation "More training data’ in
Appendix E.2.14 do not indicate that significant gains should be expected from this approach.

E.2.5 EARLY ASR CHECKPOINTS

We choose epochs 10, 40 and 100 (final) of our spm10k (TTS) ASR model to generate DLM training
data. Results are shown in Table E.10. While greedy performance decreases with earlier ASR
checkpoints, DSR and DLM-sum performance improves. Going from epoch 100 to 40 yields gains,
but going from 40 to 10 brings little improvement. even though the difference in WER of the training
data is quite significant. This suggest that this early ASR checkpoint may already be too different
from the final ASR model and the additional WER in the training data does not seem to help the
DLM.
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Table E.10: DLM ablation results with training data from early ASR checkpoints. Trained for 5
epochs. See Table D.9 about the training data (hypotheses) WERs.

ASR checkpoint Decodin DLM Performance: WER [%]

(of 100) & [dev-clean | dev-other | test-clean | test-other
greedy 2.06 4.17 2.23 4.78

Epoch 10 DSR 1.39 3.66 1.80 3.87
DLM-sum 1.56 3.55 1.77 3.87
greedy 1.86 4.07 2.16 4.70

Epoch 40 DSR 1.58 3.70 1.82 3.94
DLM-sum 1.52 3.57 1.76 3.88
greedy 1.82 3.98 2.05 4.49

Epoch 100 DSR 1.56 3.78 1.89 4.08
DLM-sum 1.55 3.67 1.84 4.00

Table E.11: SpecAugment ablation experiment for DLM training. Trained for 5 epochs. See Sec-
tion 3.3 for the DLM training data WERSs for each case.

DLM Performance: WER [%]

SpecAugment Decoding dev-clean | dev-other [ test-clean | test-other
greedy 1.82 3.98 2.05 4.49
Off DSR 1.56 3.78 1.89 4.08
DLM-sum 1.55 3.67 1.84 4.00
greedy 1.94 3.99 2.02 4.42
On (only frequency masking) | DSR 1.57 3.717 1.89 4.01
DLM-sum 1.58 3.67 1.81 3.92
greedy 1.87 4.05 2.10 4.49
On (only time masking) DSR 1.54 3.62 1.80 391
DLM-sum 1.52 3.53 1.78 3.83
greedy 1.89 4.03 2.17 4.50
On (time + frequency) DSR 1.54 3.62 1.79 3.87
DLM-sum 1.49 3.47 1.76 3.76

E.2.6 SPECAUGMENT

We test all configurations described in Section 3.3. For this ablation we resplit subwords (cf. Ap-
pendix E.2.11) and only use 1x LibriSpeech ASR data due to an oversight in parameter selection.
Results are shown in Table E.11. We see improving performance with increasing WER of the train-
ing data, and the best performance for SpecAugment with time and frequency masking. Even with
the small difference with only frequency masking from the baseline configuration, we already see
an improvement for {dev, test}-other of 0.1%. Performance of the highest configuration roughly
matches those of the dropout ablation with similar training data WER.

E.2.7 DROPOUT

For each sentence, the dropout in the ASR model is sampled p ~ U (Pmin, Pmax ). We test multiple
configurations where we keep pmin = 0 but vary pmx € {0.0,0.1,0.2,0.5,0.9}. We also test
whether grounding py;, in zero is necessary and vary ppi, € {0.1,0.2} while we fix py. = 0.5. For
this ablation we resplit subwords (cf. Appendix E.2.11) and only use 1x LibriSpeech ASR data due
to an oversight in parameter selection. Results are shown in Table E.12.

It seems that p ~ 1£(0.0,0.5) is the sweet spot for py;, = 0, and performance decreases in either
direction. Surprisingly, we get even better results if we also increase ppin, and we get our best
results with p ~ 2/(0.1,0.5) using DLM-sum decoding on test-other. This is unexpected, as this
configuration moves it away from the test-time data distribution, as the training data will always
have at least 10% dropout applied. One may hypothesize that there could be some optimal WER (or
similar metric) which best trains the DLM, and with the more varied dropouts we move our train-
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Table E.12: Dropout Ablation Experiment. Trained for 5 epochs.

(pmi ) | Decodin DLM Performance: WER [%]
Pmin, Pmax & [dev-clean | dev-other [ test-clean | test-other
greedy 1.82 3.98 2.05 4.49
(0.0,0.0) DSR 1.56 3.78 1.89 4.08
DLM-sum 1.55 3.67 1.84 4.00
greedy 1.70 3.99 2.00 4.46
(0.0,0.1) DSR 1.61 3.80 1.89 4.09
DLM-sum 1.57 3.69 1.81 391
greedy 1.94 4.00 2.15 4.40
(0.0,0.2) DSR 1.61 3.75 1.84 4.07
DLM-sum 1.54 3.64 1.83 3.91
greedy 1.90 3.94 1.99 4.54
(0.0,0.5) DSR 1.54 3.63 1.82 3.92
DLM-sum 1.49 3.52 1.81 3.85
greedy 2.07 4.17 2.09 5.03
(0.0,0.9) DSR 1.62 3.66 1.82 4.05
DLM-sum 1.59 3.55 1.83 3.95
greedy 1.89 3.97 2.06 4.52
(0.1,0.5) DSR 1.55 3.64 1.82 3.92
DLM-sum 1.49 3.54 1.74 3.84
greedy 1.98 3.96 2.09 4.45
(0.2,0.5) DSR 1.54 3.57 1.78 3.83
DLM-sum 1.52 3.52 1.76 3.78

ing data distribution approximately in the right direction but with high variance, while the dropout
configuration with higher py;, also approaches this optimal WER but with less variance.

It is also interesting to see that the 1/(0.0,0.9) configuration still performs reasonably well, even
though a large portion of the hypotheses provide very little useful information.

E.2.8 TOKEN SUBSTITUTION

We test constant token substitution for p € {0.0,0.05,0.1,0.2,0.3} and varying token substitution
with ppin = 0.0 and ppax € {0.4,0.9}. Results are shown in Table E.13.

It appears that, as long as there is any level of token substitution, we get consistent gains of about
0.2% for {dev, test }-other. Only with p,x = 0.9 do we start to see a significant degradation, as the
input data becomes very unreliable for the DLM.

E.2.9 Mixup

We sample the mixing factor A from a uniform random distribution U/(0, Apax) With Apax €
{0.0,0.2,0.4,0.6,0.8}. When A > 0.5, the noise audio from other sequences starts to dominate,
and the audio becomes almost unrecognizable for the ASR system, as shown in Figure D.4. Results
for different A\, are shown in Table E.14.

We see gains until A\pax = 0.6, after which the greedy performance degrades significantly.

E.2.10 SAMPLING FROM ASR MODEL

We use the sampling procedure as described in Section 3.3 with & € {1,16}. Results are shown in
Table E.15.

We see less gains as expected for the increase in WER, and conclude that Top-k Sampling does not
meaningfully help DLM performance.
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Table E.13: Token Substitution Ablation Experiment. Trained for 5 epochs.

o . DLM Performance: WER [%]
Token substitution | Decoding dev-clean | dev-other | test-clean | test-other
greedy 1.82 3.98 2.05 4.49
0% to 0% DSR 1.56 3.78 1.89 4.08
DLM-sum 1.55 3.67 1.84 4.00
greedy 1.71 3.98 2.07 4.47
5% to 5% DSR 1.53 3.62 1.80 3.94
DLM-sum 1.50 3.53 1.77 3.83
greedy 1.82 4.00 2.16 4.40
10% to 10% DSR 1.57 3.62 1.81 3.93
DLM-sum 1.52 3.53 1.76 3.79
greedy 1.90 4.11 2.35 4.49
20% to 20% DSR 1.56 3.58 1.83 3.92
DLM-sum 1.50 3.47 1.80 3.79
greedy 2.15 4.21 2.44 4.72
30% to 30% DSR 1.57 3.62 1.83 4.00
DLM-sum 1.54 3.50 1.80 3.82
greedy 1.79 3.98 2.18 4.41
0% to 40% DSR 1.55 3.58 1.83 3.92
DLM-sum 1.50 3.49 1.75 3.78
greedy 2.06 4.01 2.27 4.65
0% to 90% DSR 1.57 3.67 1.85 3.99
DLM-sum 1.55 3.58 1.78 3.94

Table E.14: Mixup Ablation Experiment. A ~ U/ (0, Ayax ). Trained for 5 epochs.

Mixup A Decodin DLM Performance: WER [%]
P Amax € [dev-clean | dev-other [ test-clean | test-other

greedy 1.82 3.98 2.05 4.49

0.0 DSR 1.56 3.78 1.89 4.08
DLM-sum 1.55 3.67 1.84 4.00
greedy 1.91 4.01 2.07 4.69

0.2 DSR 1.60 3.75 1.89 4.04
DLM-sum 1.54 3.65 1.84 3.96
greedy 1.80 3.99 2.03 4.43

0.4 DSR 1.56 3.67 1.85 3.98
DLM-sum 1.51 3.58 1.77 3.87
greedy 3.03 4.05 2.70 4.93

0.6 DSR 1.59 3.65 1.85 4.00
DLM-sum 1.55 3.55 1.79 3.87
greedy 4.39 5.25 4.38 6.53

0.8 DSR 1.58 3.67 1.79 4.00
DLM-sum 1.99 3.55 1.82 4.00

One could try to use a different sampling procedure, for example with label-synchronous search as
we do in Section 3.4 or increasing diversity with softmax temperature, but we leave these ideas for
future work.

E.2.11 RESPLIT SUBWORDS

In this work, both the ASR model and the DLM model use the same vocabulary, which for spm1 0k
and spm128 is based on subword units. For vocabularies like this, it is possible to have the same
word represented by multiple different subword sequences, such as “example” being represented as
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Table E.15: Top-k Sampling Ablation Experiment. Trained for 5 epochs.

k Decodin DLM Performance: WER [%]
€ ["dev-clean | dev-other | test-clean | test-other

greedy 1.82 3.98 2.05 4.49

1 (baseline) | DSR 1.56 3.78 1.89 4.08
DLM-sum 1.55 3.67 1.84 4.00
greedy 1.71 3.98 2.05 4.56

16 DSR 1.53 3.73 1.87 4.00
DLM-sum 1.55 3.67 1.83 3.95

Table E.16: We test whether ASR hypotheses should be normalized by resplitting the subwords
before being passed to the DLM. This experiment uses 1x LibriSpeech ASR data, and DLMs are
trained for 5 epochs.

. . DLM Performance: WER [%]

Resplit subwords Decoding dev-clean | dev-other | test-clean | test-other
greedy 1.74 3.97 2.02 4.44

keep ASR subwords | DSR 1.62 3.74 1.90 4.11
DLM-sum 1.53 3.67 1.83 3.98
greedy 1.78 4.03 2.08 4.36

resplit subwords DSR 1.59 3.79 1.89 4.12
DLM-sum 1.63 3.81 1.95 4.13

“exam” + ’ple” or "ex” + “ample”. The tokenizer implements a deterministic mapping of words to
subword tokens, but it is not guaranteed that the models will always output sequences that match
the tokenizers’ mapping. This is especially relevant for DLMs, because the ASR hypotheses are
fed directly into the DLM as token sequences. This brings up the question if there is a benefit to
merging the subwords back to words and then deterministically re-splitting them into subwords, and
thus guaranteeing a consistent word-to-token mapping before feeding them into the DLM. We test
both configurations, and show results in Table E.16.

We observe that re-splitting the subwords into words and back does not lead to a significant change
for greedy or DSR decoding, and even leads to a slight degradation in DLM-sum decoding.

E.2.12 ADDITIONAL PHONEME REPRESENTATIONS

During our research, we noticed a bug in the training data generation process, where the TTS system
was given phoneme representations which it was not trained on (but which are otherwise valid). This
leads to a noticeable degradation in the WER of the ASR hypotheses, from which we conclude that
the TTS system is not able to generate accurate audio for these phoneme sequences. Regardless,
one may interpret this as a form of data augmentation for the TTS system, and we compare the
performance of this “bad” training data with the “good” training data, which uses the phoneme
representations that the TTS system is trained on. Results are shown in Table E.17.

The results show that the “bad” phoneme representations are not a good form of data augmentation
and even lead to a slight performance drop. Unless otherwise stated, we use the “good” phoneme
representations for all other experiments in this work.

E.2.13 ASR TRAINED WITH AND WITHOUT TTS DATA

As mentioned in Section 3.2, we have two different ASR models available with the SentencePiece
10k subword vocabulary: one trained just on LibriSpeech ASR data, and one additionally trained
with TTS data generated from the LibriSpeech LM corpus. The latter model significantly outper-
forms the former in terms of WER, but the question remains which one is better suited for generating
hypotheses for DLM training. For both models we generate a full DLM training dataset with the
LibriSpeech LM corpus without any data augmentation (only TTS noise and length sampling) and
train DLMs for 10 epochs. Results are shown in Table E.18.
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Table E.17: A bug in our implementation used additional phoneme representations that the TTS was
not trained on. We test whether these additional phoneme representations are a good form of data
augmentation. The first two models are trained without additional data augmentation, the last two
with data augmentation configuration stdPerturb. All trained for 10 epochs.

DLM Performance: WER [%]

Phoneme Representation Decoding dev-clean [ dev-other [ test-clean | test-other
greedy 2.14 4.42 2.38 4.76
Additional phoneme representations | DSR 1.57 3.72 1.87 3.95
DLM-sum 1.59 3.68 1.84 3.99
greedy 1.96 4.04 2.19 4.66
Compatible to TTS DSR 1.58 3.71 1.87 4.02
DLM-sum 1.53 3.61 1.81 3.89
o . greedy 2.71 4.21 2.74 5.25
?f(id.;tlﬁn?ll) $h0neme representations DSR 56 350 12 375
siarertd DLM-sum | 149 3.39 1.78 3.68
greedy 2.26 3.96 247 4.70
Compatible to TTS (stdPerturb) DSR 1.51 3.46 1.78 3.73
DLM-sum 1.50 3.32 1.80 3.57

Table E.18: Comparison of DLMs trained from hypotheses of an ASR model trained with and
without TTS data. All models trained for 10 epochs and without additional data augmentation.

. DLM Performance: WER [%]

ASR TTS vs non-TTS Decoding dev-clean | dev-other | test-clean | test-other
greedy 1.96 4.04 2.19 4.66
spm10k (TTS) DSR 1.58 3.71 1.87 4.02
DLM-sum 1.53 3.61 1.81 3.89
greedy 2.63 5.09 2.67 5.88
spm10k DSR 1.69 4.03 1.89 4.41
DLM-sum 1.68 3.88 1.89 4.29
greedy 2.53 4.54 2.61 5.24
Zpglﬂoﬁils 10k (TTS) DK .53 357 1.80 3.87
val with sp DLM-sum 151 3.44 1.75 379

Initially, it seems that the DLM trained with the non-TTS ASR model is worse, but when evaluated
with the TTS ASR model it actually outperforms the TTS ASR DLM. This is quite a surprising
result, as one would expect that the best DLMs for a particular ASR model would be the ones trained
with hypotheses from that same ASR model. We run another experiment where we generate data
with data augmentation parameters that are known to produce a good DLM (stdPerturb from
Section 4.2) and train another two DLMs. Results are shown in Table E.19. While the performance
of both DLMs has improved, the gains for the non-TTS ASR DLM are smaller and the TTS ASR
DLM is now slightly better. It appears that either the DLMs have hit some ceiling on performance
gains, the stdPerturb configuration favors the TTS-trained ASR model, or that the gap between
the worse hypotheses from the non-TTS trained ASR model was closed by the error-inducing data
augmentation configuration. In Section 4.3 we pursue this theory, and test which underlying factors
of the training data lead to better gains in DLM performance.

E.2.14 MORE TRAINING DATA

Our training data generation process with data augmentation is not inherently deterministic. Aug-
mentations such as dropout, mixup and SpecAugment depend on random sampling, and we explic-
itly add noise to the latent vector as part of the TTS audio generation process. We enforce some
level of determinism by setting a fixed random seed at the beginning every training data generation
run, but this does not guarantee that the same training data will be generated when some augmenta-
tions are flipped on or off. But one may argue that this source of randomness is beneficial to DLM
training, as it ensures that the DLM is trained on a more diverse set of hypotheses. Therefore we
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Table E.19: Comparison of DLMs trained from hypotheses of an ASR model trained with and
without TTS data. All models trained for 10 epochs with data augmentation configuration
stdPerturb.

. DLM Performance: WER [%]

ASR TTS vs non-TTS (stdPerturb) | Decoding dev-clean | dev-other | test-clean | test-other
greedy 2.26 3.96 2.47 4.70
spm10k (TTS) DSR 1.51 3.46 1.78 3.73
DLM-sum 1.50 3.32 1.80 3.57
greedy 3.39 5.19 3.04 6.11
spm10k DSR 1.78 3.87 1.87 4.29
DLM-sum 1.71 3.76 1.90 4.27
greedy 3.46 4.55 3.01 5.46
Zl\jfglllvt/)ilil’ls PN, DSR 163 3.46 175 377
p DLM-sum 156 335 1.77 3.68

Table E.20: DLM ablation to test whether using additional data from the same text helps. Addi-
tional data is made using a different random seed. Trained for 10 epochs, with data augmentation
configuration stdPerturb.

. DLM Performance: WER [%]

Num hypotheses | Decoding dev-clean [ dev-other | test-clean [ test-other
greedy 2.71 4.21 2.74 5.25

1 DSR 1.56 3.50 1.82 3.75
DLM-sum 1.49 3.39 1.78 3.68
greedy 2.71 4.18 2.78 5.01

5 DSR 1.56 3.44 1.79 3.74
DLM-sum 1.51 3.35 1.75 3.66

experiment with generating a unique training dataset for more DLM epochs instead of reusing the
same generated data every DLM epoch. We expect additional regularisation effects due to the DLM
seeing different variations of the same text during training, which may improve generalisation. Re-
sults are shown in Table E.20. We observe very minor improvements in WER, which we deem not
statistically significant. We present some plausible explanations for this:

* Token substitution is implemented as part of DLM training, thus it already reduces overfit-
ting by making the inputs more diverse in each epoch.

* The training dataset is so large that there is little need for additional regularization.

* The differences between the training data of different random seeds is too small to have a
significant impact.

* We hit some performance ceiling, either in model capacity or the quality of the training
data.

We can not conclusively determine the reason for the lack of improvement, but we can confidently
say that the additional effort of generating a new training dataset for every epoch is not worth it'2,

This experiment used phoneme representations of the input text which were different from those
used in TTS training, thus the training data produced a slightly worse DLM (cf. Appendix E.2.12).

E.2.15 LIBRISPEECH ASR TRAINING DATA

We use both the synthetic TTS data and the real audio from the LibriSpeech ASR training dataset to
generate hypotheses for DLM training. In their work, Gu et al. (2024) determine that a ratio of 1:1
between TTS and real audio training data is optimal for ASR model training, but it remains an open
question what the optimal ratio between real and synthetic audio is for DLM training.

2Generating a single epoch of training data for the DLM is roughly the same computational effort as training
a DLM for 5.8 epochs.
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Table E.21: We vary the amount of LibriSpeech ASR training data used. Ox means no LibriSpeech
ASR data is used, 40x means 40 times the standard amount (38400 hours). TTS audio of LibriSpeech
LM corpus is about 75000 hours. Trained for 5 epochs.

o . DLM Performance: WER [%]
LibriSpeech ASR data | Decoding dev-clean | dev-other | test-clean [ test-other
greedy 1.86 4.10 2.24 4.56
0x DSR 1.63 3.80 1.95 4.16
DLM-sum 1.64 3.72 1.98 4.17
greedy 1.74 3.97 2.02 4.44
1x DSR 1.62 3.74 1.90 4.11
DLM-sum 1.533 3.67 1.83 3.98
greedy 1.82 3.98 2.05 4.49
10x DSR 1.56 3.78 1.89 4.08
DLM-sum 1.55 3.67 1.84 4.00
greedy 1.77 4.01 1.99 441
20x DSR 1.59 3.77 191 4.08
DLM-sum 1.533 3.70 1.85 3.98
greedy 1.82 4.02 2.07 4.52
40x DSR 1.59 3.76 1.87 4.05
DLM-sum 1.56 3.71 1.85 3.95

We generate DLM training data with increasing amounts of LibriSpeech ASR training data, and
leave the amount of synthetic TTS data constant. Therefore in this setup the total amount of data
seen during training (and total training time) increases with the amount of ASR data. LibriSpeech
ASR training data has approximately SOM characters, while the LM corpus has approximately 4.3B
characters. Therefore with a 40x multiplier on the LibriSpeech ASR data, we have a 1:2 proportion
of real to synthetic data. Our results are shown in Table E.21.

There may be a slight improvement going from zero to one instance of LibriSpeech ASR training
data, but the statistical significance is questionable. Surprisingly, further increases in the proportion
of LibriSpeech ASR training data do not seem to meaningfully change the performance of the DLM,
and the results are almost indistinguishable from the random seed baseline in Table E.38. We con-
clude that the DLM may benefit from more variation through the use of additional training data, but
seeing a higher ratio of data from real audio is not important for DLM training.

E.2.16 ONLY LIBRISPEECH ASR TRAINING DATA

A significant portion of this work is dedicated to generating training data for the DLM from the text-
only LibriSpeech LM corpus by using TTS and various data augmentation techniques. Naturally
one may wonder whether the additional data is needed, given that our non-TTS ASR model already
performs quite well even though the training dataset is much smaller. We therefore generate a DLM
training dataset using only the LibriSpeech ASR training data and no TTS data at all. For every
epoch we duplicate LibriSpeech ASR data 85x to match the amount of data seen during typical
DLM training. We also run this experiment with stdPerturb data augmentation configuration,
and each of the 85 duplicates is generated with a different random seed to increase diversity. The
results are shown in Table E.22.

Both DLMs overfit to the training data, which is not surprising given the small effective size of the
training dataset. The training loss plot can be seen in Figure E.1. What is suprising though, is that
the overfitting effect is much more pronounced in the DLM trained with the stdPerturb config-
uration, which has more data augmentation. In the DLM with stdPerturb data augmentation we
see that the tuned scales for DSR and DLM-sum decoding have a very low value for Apyy;, mostly
ignoring the DLM output.

We conclude that the LibriSpeech ASR 960h training dataset alone is not sufficient for DLM train-
ing, even with data augmentation.
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Table E.22: DLMs trained with only LibriSpeech ASR data (no TTS data) and without additional
data augmentation. The first model is a baseline with only TTS audio (no real audio). The sec-
ond model is trained with only real audio. The third model has data augmentation configuration
stdPerturb applied to real audio. All models trained for 5 epochs.

o . DLM Performance: WER [%]

Only LibriSpeech ASR data | Decoding dev-clean | dev-other | test-clean | test-other
greedy 1.86 4.10 2.24 4.56

only TTS audio DSR 1.63 3.80 1.95 4.16
DLM-sum 1.64 3.72 1.98 4.17
greedy 4.19 4.84 3.11 5.22

only real audio DSR 1.77 4.12 2.09 4.46
DLM-sum 2.56 4.36 2.53 5.11
greedy 94.02 97.80 93.69 97.53

only real audio (stdPerturb) | DSR 1.72 3.96 1.95 4.30
DLM-sum 1.78 3.98 1.99 4.37

— dev_loss_ce
=== train_loss_ce
----- train_loss_grad_norm:p2
BN output/2024-denoising-Im/error_correction_model/base-onlylshdata(lsh=85,cfg=stdPerturb)-nEp100-Ir0.5/train_scores
output/2024-denoising-Im/error_correction_model/base-onlylshdata(lsh=85,cfg=baseline)-nEp100-Ir0.5/train_scores
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Figure E.1: Only LibriSpeech ASR training plots. A DLM epoch corresponds to 20 sub-epochs on
the x-axis.

E.2.17 RELEVANCE OF TTS-ASR DATA

We can make use of the Librispeech text-only corpus but still avoid the TTS model by generating
training data via heuristic error generation methods. Previous work (Hrinchuk et al., 2020; Dutta
et al., 2022; Ma et al., 2023a) used BERT, BART (Lewis et al., 2020) or T5 (Raffel et al., 2020)
pretraining objectives, where text is corrupted by masking or random token substitution. Gu et al.
(2024) also experimented with such heuristics, although no numbers were reported. Some prelimi-
nary results for this approach are shown in Table E.23. For the heuristics, here we use random token
substitution with a rate that it uniformly sampled between 10% and 50% per sequence. The DLM
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Table E.23: DLM performance when trained on data generated via TTS-ASR versus heuristic error
generation. The DLM trained on errors via such heuristics is a standard error correction model
baseline.

Model DLM Training Data WER [%]
ode Generation Method | dev-clean [ dev-other | test-clean [ test-other
ASR only ) 2.29 5.02 2.42 5.33
ASR + LM 1.85 3.93 2.00 4.27
TTS-ASR 1.68 3.70 1.83 4.15
ASR + DLM Heuristics 211 4.60 228 5.06

trained on these data is significantly worse, and also worse than the standard LM. This is consistent
to findings from Gu et al. (2024). However, we note that the error patterns can be improved a lot,
and this can be finetuned or mixed with real ASR hypotheses, as done in previous work (Dutta et al.,
2022; Ma et al., 2023a).

E.3 ANALYSIS OF INFERENCE AND MODEL BEHAVIOR

E.3.1 DECODING METHODS

A comparison of our different decoding methods (DLM greedy, DSR decoding, DLM-sum) is shown
in Tables 1, E.1 and E.2. We note that the DLM greedy WER is sometimes even worse than the ASR
baseline (without LM). This is different to Gu et al. (2024), where the DLM greedy decoding clearly
outperforms the ASR baseline. We assume that the different vocabulary (subwords vs. characters)
is an important contributing factor to this difference (Appendix G.2). The DSR decoding method
typically already outperforms a standard LM in both rescoring and first-pass decoding, and the
DLM-sum decoding consistently achieves the best performance, surpassing all other methods.

A grid search over different Appm, Aprior Scales for DSR and DLM-sum rescoring is shown in Fig-
ures E.2 and E.3. ASR and DLM n-best lists are generated with scores once, and grid search is
performed offline. We see that the optimal prior scale is quite low, and with no prior, we get only
small degradations in WER. We provide a scale tuning plot for the n32-d1 024 LM from Table D.2
in Figure E.4 for comparison.

We evaluate different beam sizes for their impact on the WER for all three decoding methods.
The DLM is trained with the stdPerturb data augmentation configuration for 10 epochs. The
method “beam search” refers to DLM greedy, but with beam size k¥ > 1. DSR w/o concat is
rescoring only DLM hypotheses, DSR with concat uses bea"’% DLM beam size, % ASR
beam size and combines both beams for rescoring. DLM rescore is only rescoring ASR hypotheses.
Results for these methods are shown in Figure E.5. We see that "beam search” slowly approaches
ASR baseline performance from above, and is thus not very useful. DSR without concat and DLM
rescore converge to a similar WER, while DLM rescore is slightly better for smaller beam sizes.
DSR with concat is the best method for all beam sizes.

We plot the performance of DLM-sum decoding in Figure E.6 for different beam sizes and number
of ASR hypotheses. Both increasing the beam size and number of ASR hypotheses helps. With
one ASR hypothesis we roughly match DSR decoding performance with concatenation, and surpass
that with a higher number of ASR hypotheses. For beam size 1, scale tuning is impossible, so we
re-use scales from DSR decoding with concatenation, beam size 64 and recover usable results. DSR
decoding defaults to only ASR scoring for beam size 1.

E.3.2 SEARCH AND MODEL ERRORS

Due to the autoregressive nature of our decoding methods, the most probable output sequence is
not always found. This happens when a correct label is discarded at an early step in the decoding
process due to beam size pruning, but this label would lead to a better overall sequence if it were
included. We only count search errors where the ground truth sequence is not selected but had a
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Figure E.2: Plot of different scales for DLM and prior for DSR decoding on dev-other. The DLM is
trained on stdPerturb data augmentation for 10 epochs. The prior scale is relative to the DLM
scale, i.e. when the DLM scale is 0.1 and the prior scale is 2.0, the actual prior scale is 0.2. ASR
score scale is kept at a constant 1.0.

higher predicted probability than the output sequence found during decoding'?. In contrast to that,
model errors are the percentage of sentences where the ground truth sequence is not the most prob-
able sequence according to the model. We also calculate the Oracle WER by picking the hypothesis
with the lowest WER from the beam. Results are shown in Table E.26. Counted search errors are
< 1% across the board, while model error rates are significantly higher. This suggests that our
search methods are quite effective at finding the most probable output sequence according to the
model, and that the main limitation of our decoding methods is the model itself. For comparison we
also give results for LM rescoring, where the DLM rescores only the ASR n-best list. Through the
Oracle WER we see that the DLM is limited by the quality of the ASR hypotheses in LM rescoring,
and that integration of DLM hypotheses into the decoding process as in DSR decoding is essential
for further improvements over the ASR model.

B This does not count all search errors. We cannot count all search errors, as we never know what would be
the highest possible probability for some given input.
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Figure E.3: Plot of different scales for DLM and prior for DLM-sum decoding on dev-other. The
DLM is trained on stdPerturb data augmentation for 10 epochs. The prior scale is relative to
the DLM scale, i.e. when the DLM scale is 0.1 and the prior scale is 2.0, the actual prior scale is 0.2.
ASR score scale is kept at a constant 1.0.

E.3.3 EVALUATION OVER THE COURSE OF TRAINING

We evaluate the DLM performance over the course of training. During DLM training, we keep
checkpoints at epochs 1, 2, 4, 8 and 10. At every checkpoint, we run scale tuning as described in Sec-
tion 2.1 and evaluate the WER on test-other. Here we look at a DLM trained with the stdPerturb
data augmentation configuration for a total of 10 epochs. The results are shown in Figure E.8.

Greedy decoding improvement looks somewhat unstable, while DSR and DLM-sum decoding
steadily approach their final WER. The unstable trend of greedy decoding could be explained by
our findings in Section 4.3.

E.3.4 WER DISTRIBUTION

Different data augmentation techniques lead to different WER of the training data, but the WER of
the dataset alone does not reveal any information about the variance or distribution of error rates on
the sentence-level. Here we look at the WER of individual sentences in the training data, and their
length.
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Figure E.4: Plot of different scales for LM and prior for LM rescoring on dev-other. The LM
is n32-d1024 trained for 5 epochs from Table D.2. The prior scale is relative to the LM scale,
i.e. when the LM scale is 0.1 and the prior scale is 2.0, the actual prior scale is 0.2. ASR score scale
is kept at a constant 1.0.

Figure E.9 shows the distribution of WER among sentences in the training data for no data aug-
mentation, and with stdPerturb data augmentation. Note that the y-axis is logarithmic to better
visualize the distribution, and each sentence is weighted by its reference length similar to how WER
is calculated over a dataset. We see that the shape of the distribution changes significantly, from
a monotonic decay in the baseline case to a more hill-like shape with a peak around 10% WER
with stdPerturb. All three datasets seem to behave similarly, though the dev-other set is biased
toward slightly higher WER, which is expected as it is a more difficult validation set.

Figure E.10 shows the distribution of sentence lengths in the training data. The two data augmenta-
tion configurations seem to have a very similar length distribution, with an average of around 17-20
words per sentence.

We show WER and length distributions for all combined data augmentation techniques in Fig-
ures E.11 to E.19.
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Figure E.5: Performance of DLM greedy and DSR decoding over different beam sizes on test-other.
DSR with concat uses w for DLM and ASR beams and combines both beams for rescoring.
DLM is trained on stdPerturb data augmentation for 10 epochs. Raw data can be found in

Table E.24.

DLM Sum - Beam Size vs WER
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Figure E.6: Performance of DLM-sum decoding over different beam sizes and different number of
hypotheses from ASR model. DLM is trained on stdPerturb data augmentation for 10 epochs.
Same y and x axis as Figure E.5. Raw data can be found in Table E.25.
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Figure E.7: Performance of DLM-sum decoding over different beam sizes and different number of
hypotheses from ASR model. DLM is trained on 1ow data augmentation for 10 epochs. Same y and
x axis as Figure E.5 and Figure E.6. Performance breaks down for beam size 2 due to poor scale
tuning.
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Figure E.8: Performance changes over the course of Standard DLM training. Shown are different
checkpoints of the same DLM training run. The DLM is trained with the stdPerturb data aug-
mentation configuration for 10 epochs.
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Table E.24: Decoding Test: Beam Size.

DLM Performance: WER [%]

Decoding Test: Beam Size Decoding dev-clean [ dev-other [ test-clean [ test-other
1 greedy 2.26 3.96 2.47 4.70
DSR 2.26 3.96 D47 4,70
5 greedy 222 3.90 228 452
DSR 2.04 374 2.13 436
4 greedy 2.14 3.89 2.28 4.57
DSR 1.87 3.67 2.08 421
3 greedy 2.09 3.87 2.21 4.49
DSR .75 3.59 193 711
16 greedy 2.09 3.87 221 4.48
DSR .73 354 1.1 7.04
3 greedy 2.09 3.87 221 4.46
DSR .71 350 .88 3.08
o1 greedy 2.0 387 221 4.46
DSR 1.69 350 .85 3.05
18 greedy 2.0 3.86 221 4.44
DSR 1.65 347 1.86 3.90
1 with concat 1 ASR hyps) (B et 39—
. greedy 221 3.90 223 4.44
2 (with concat 2 ASR hyps) I -Fgp 151 359 1.88 3.89
. greedy 2.13 3.88 222 447
4 (with concat 4 ASR hyps) DSR 1.49 3355 1.77 382
. greedy 2.09 3.87 221 4.49
8 (with concat 8 ASR hyps)  —Jjop 1.48 3.50 176 377
. greedy 2.09 3.86 221 4.47
16 (with concat 16 ASR hyps) e .49 349 176 375
. greedy 2.09 3.86 221 4.46
32 (with concat 32 ASR hyps) I -5er 151 3.46 1,79 374
. greedy 2.09 3.86 221 4.46
64 (with concat 64 ASR hyps) DSR 151 346 173 373
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Table E.25: Decoding test: DLM-sum beam size.

. DLM Performance: WER [%]
DLM-sum beam size | ASR num_hyps dev-clean | dev-other [ test-clean | test-other
1 1.53 3.48 1.86 3.88
2 1.60 3.46 1.85 3.83
2 4 1.67 3.46 1.89 3.86
8 1.70 3.45 1.94 3.88
16 1.65 3.39 1.86 3.81
32 1.68 3.40 1.88 3.81
1 1.50 3.49 1.84 3.76
2 1.52 3.44 1.83 3.72
4 4 1.53 3.40 1.80 3.75
8 1.50 3.36 1.81 3.72
16 1.49 3.34 1.80 3.68
32 1.51 333 1.79 3.64
1 1.50 3.50 1.84 3.74
2 1.53 3.40 1.84 3.66
6 4 1.51 3.38 1.82 3.64
8 1.51 3.36 1.82 3.64
16 1.51 3.34 1.80 3.64
32 1.51 3.35 1.77 3.60
1 1.51 3.48 1.84 3.73
2 1.52 3.40 1.84 3.65
] 4 1.52 3.38 1.82 3.63
8 1.50 3.38 1.80 3.59
16 1.52 3.35 1.80 3.65
32 1.47 3.33 1.78 3.54
1 1.51 3.47 1.84 3.72
2 1.53 3.41 1.83 3.64
12 4 1.51 3.38 1.81 3.65
8 1.50 3.35 1.79 3.58
16 1.48 3.34 1.79 3.62
32 1.51 3.31 1.80 3.54
1 1.51 3.47 1.84 3.72
2 1.54 3.39 1.83 3.65
16 4 1.51 3.38 1.80 3.64
8 1.51 3.35 1.79 3.58
16 1.51 3.32 1.80 3.59
32 1.49 3.31 1.79 3.55
1 1.52 3.47 1.83 3.72
2 1.52 3.39 1.83 3.66
3 4 1.51 3.38 1.80 3.64
8 1.50 3.35 1.79 3.58
16 1.50 3.31 1.80 3.58
32 1.51 3.31 1.80 3.53

Table E.26: Search/Model errors and Oracle WER for different decoding methods. DLM trained on
stdPerturb data augmentation configuration for 10 epochs. DLM rescore uses the ASR n-best
list, DSR uses ASR and DLM beams. Respective beam sizes are shown in parentheses.

Decoding Decoding Decoding Oracle WER %

carc] T %
dev-clean | dev-other | testclean

Testother dev-l dev-clean | dev-other | test-clean | test-other
DLM greedy (1) 0.89 0.88 DLM greedy (1) 2420 3 DLM greedy (1) 226 3.96 247 270
DLM beam search (64) | 0.07 0.07 DLM beam search (64) | 24.60 36.45 2649 40.12 DIM h(64) | 0.66 .73 071 195
DLM rescore (64) 037 088 DLM rescore (64) 2087 3429 2252 3654 DLM 073 217 089 207
DSR (32+32) 0.92 0.68 DSR (32+32) 1935 3307 2244 35.79 DSR (32+32) 04T 57 054 58
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Figure E.9: WER distribution of training data. Both generated with spm10k (TTS) ASR model.
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Figure E.10: Length distribution of training data. Both generated with spm10k (TTS) ASR model.
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Figure E.11: Baseline data augmentation for DLM training. Top: length distribution and DLM-
sum output WER distribution of training data, Bottom: WER distribution of DLM-sum output in
recognition.
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Figure E.12: Verylow-earlyAsr2 data augmentation for DLM training. Top: length distribution

and DLM-sum output WER distribution of training data, Bottom: WER distribution of DLM-sum
output in recognition.
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Figure E.13: Verylow data augmentation for DLM training. Top: length distribution and DLM-
sum output WER distribution of training data, Bottom: WER distribution of DLM-sum output in
recognition.
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Figure E.14: stdPerturb data augmentation for DLM training. Top: length distribution and DLM-

sum output WER distribution of training data, Bottom: WER distribution of DLM-sum output in
recognition.
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Figure E.15: Low data augmentation for DLM training. Top: length distribution and DLM-sum out-

put WER distribution of training data, Bottom: WER distribution of DLM-sum output in recogni-
tion.
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Figure E.16: Lowmedium data augmentation for DLM training. Top: length distribution and DLM-
sum output WER distribution of training data, Bottom: WER distribution of DLM-sum output in
recognition.
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Figure E.17: Medium data augmentation for DLM training. Top: length distribution and DLM-

sum output WER distribution of training data, Bottom: WER distribution of DLM-sum output in
recognition.
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Figure E.18: High-noAsrPerturb data augmentation for DLM training. Top: length distribution
and DLM-sum output WER distribution of training data, Bottom: WER distribution of DLM-sum

output in recognition.
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Figure E.19: High data augmentation for DLM training. Top: length distribution and DLM-sum

output WER distribution of training data, Bottom: WER distribution of DLM-sum output in recog-
nition.
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E.3.5 CORRELATIONS

Our experiments show that some data augmentation techniques lead to great improvements in DLM
performance, while others have little effect. We want to understand why this is the case, and if there
are any metrics that can predict the effectiveness of a data augmentation technique before a DLM
is trained. To do this, we plot various metrics against each other to check for correlations, which
may give us further insights into the effects of data augmentation. The data points consist of all
the data augmentation techniques we have evaluated in this work, including the experiments where
we combine multiple techniques. Due to space constraints, we only show the data augmentation
category each point corresponds to, but not its exact parameters. To make these experiments feasible,
we only compute and aggregate these metrics over a subset of about 52k sentences from the TTS-
generated training data, instead of the full dataset of about 40M sentences.

Before we start with the training data correlations, we want to see how well the different decoding
methods correlate with each other. We plot the different decoding methods against each other in
Figure E.20.

It is apparent that there is hardly any correlation between greedy and DSR decoding, but DSR
and DLM-sum decoding are highly correlated. There are even some outliers in plot (a) for DSR
WER around 4.0% where the greedy WER varies between 4.48% and 6.53%. This is an indication
that greedy decoding performance is not a good predictor for performance in model combination
methods, as in DSR or DLM-sum decoding. Given that our best results are achieved with DSR
and DLM-sum decoding, we will therefore not focus as much on greedy decoding but we still
report it for completeness. We do not know the reason for the bad correlation between greedy and
DSR, and we cannot rule out that this is not caused by a bug in our implementation'*. A possible
explanation is that with more data augmentation the DLM learns to become less peaky or confident in
its predictions, which may improve model combination performance but hurt DLM greedy decoding.
We explore this possibility in Section 4.3 by artificially adjusting the peakiness of the DLM output
distribution through softmax temperature scaling. Another explanation can be given by the presence
of unpredictable DLM hallucinations, which we show in Section 4.3.

We plot the WER of the TTS-generated hypotheses from the training data against DLM greedy and
DSR decoding in Figure E.21.

While it appears that increasing the training data WER generally leads to better performance, it is
not a strong guarantee. Consider plot (b) where the training data WER is around 13.7% but the DLM
DSR WER varies between 3.81% (our best result) and 3.97%.

Another metric to measure the quality of text is by scoring it with a language model. Those texts
that are good representations of the text distribution in the LibriSpeech LM dataset are scored high,
and we expect that the sentences with more errors are scored lower. We use the language model

!4The mismatch between greedy and DSR performance does not seem to occur in the results published by
Gu et al. (2024), though the sample size is not very large

200 . . o TS length

DSR Decoding WER

as 50 60 65 36 37 38 a0 a1 a2

55 39
dim-greedyltest-other dsrftest-other

(a) Greedy vs DSR decoding (b) DSR vs DLM-sum decoding
Figure E.20: We compare different decoding methods against each other. Every point corresponds to

a different data augmentation technique. The purple data points correspond to our data augmentation
combination experiments in Section 4.2.
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Figure E.21: WER of training data hypotheses plotted against DLM performance on test-other.
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Figure E.22: Median LM log-probability of training data hypotheses plotted against DLM perfor-
mance on test-other. Scores were performed with the n8-d1024 LM from Section 3.2 and length-
normalized by dividing by the number of tokens in the hypothesis.

n8 d1024 from Section 3.2 to assign every hypothesis a probability pry(a7), and then length
normalize it by dividing the log-probability with the number of tokens in the hypothesis (including
end-of-sentence token). This reduces outliers where very short hypotheses are assigned a very high
probability'>. Then we take the median of the log-probabilities over all hypotheses to get a single
score for the whole dataset. The median length-normalized LM log-probability is plotted against
DLM performance in Figure E.22.

The greedy decoding plot (a) again looks somewhat random, but there seems to be a nice correlation
in the DSR decoding plot (b). The best performing DLMs seem to have training data with a median
length-normalized LM log-probability between -4.5 and -5.5. But again this does not guarantee
good performance, as can be seen by the data points in that range that go up to 4.03% WER.

Motivated by the observation that greedy and DSR decoding seem to be somewhat negatively corre-
lated, meaning that as greedy WER goes up, DSR WER goes down, we hypothesize that the DLM
learns some characteristic that makes it less confident in its own predictions but better tolerates
model combination. We therefore compute the entropy of the DLM output distribution for every
output token and average it over all tokens and all hypotheses to get a single score for the whole

SHypothesis shrinking only existed for high dropout values. Other data points moved only by a small
amount after applying length normalization.
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Figure E.23: Mean label-wise entropy of DLM output distribution plotted against DLM performance
on test-other.

dataset. The entropy for a single output token is computed as follows:

V]
H(j,poim) = — Y _ pilog p; (28)
=1

s
where p; := pprm(a; = vilal ', a7
and j is the position of the output token
and v; € V is the i-th token in the vocabulary

Results are shown in Figure E.23.

This partially confirms our hypothesis, Greedy WER appears to increase with higher entropy, while
DSR WER decreases. But again, the correlation is not perfect, and significant outliers exist.

Another related metric is the Expected Calibration Error (ECE) (Lee & Chang, 2021), which mea-
sures how well the predicted probabilities of a model reflect the true accuracy. Intuitively, it is a
measure of whether the model is over/underconfident or well-calibrated. When we plot ECE against
DLM performance, we arrive at an almost exact replica of Figure E.23, and it turns out that ECE
and entropy are highly correlated in our case. We therefore do not show the ECE plots here, but
rather the correlation between ECE and entropy in Figure E.24. Further investigation is needed to
understand why ECE and entropy are so closely related in our case.

A reliability diagram as per Lee & Chang (2021) is shown in Figure E.25.
For completeness, we also show the correlation between training data WER and entropy in Fig-
ure E.26b and between training data WER and LM score in Figure E.26a.

E.3.6 SOFTMAX TEMPERATURE

As motivated by the previous section, we want to see if we can improve DLM performance by
adjusting the peakiness of the DLM output distribution. Softmax Temperature scaling is defined as
follows:

exp(zi/T)
Pi= v o
S exp(z/T)
where z; are the logits of the DLM output distribution

(29)

where T is the temperature. A temperature of 7' = 1.0 corresponds to the original distribution,
T < 1.0 makes the distribution peakier, and 7' > 1.0 makes it softer (~ higher entropy). We take
a baseline DLM trained without data augmentation, and apply temperature scaling to the output
distribution during decoding. We do not use a better DLM with data augmentation because those
already have a higher mean entropy, and we want to see if we can recover similar improvements by
artificially increasing the entropy. The baseline DLM has a mean entropy of 1.34. If there is a causal
relationship between entropy and DLM performance, we expect to see a performance improvement
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Figure E.24: Expected Calibration Error plotted against Mean Entropy, both on dev-other.”.
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Figure E.25: DLM reliability diagram, as per Lee & Chang (2021). Both Models match their pre-
dicted confidence and true accuracy quite well. Confidence is the maximum probability of the
model output distribution. Accuracy is the % of how often the argmax of the probability distribution
matches the ground truth. Values are binned according to confidence.
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Table E.27: Softmax Temperature.

. . . DLM Performance: WER [%]
Softmax Temperature | Decoding dev-clean [ dev-other [ test-clean | test-other
05 DSR 1.58 3.73 1.87 4.17

) DLM-sum 1.38 3.65 1.85 397
0.6 DSR 1.62 3.73 1.89 4.15
: DLM-sum 1.60 3.69 1.85 3.96
07 DSR 1.59 3.73 1.90 4.11
: DLM-sum 1.56 3.63 1.85 393
0.8 DSR 1.59 3.73 1.89 4.10
) DLM-sum 1.58 3.65 1.82 391
0.9 DSR 1.59 3.72 1.87 4.01
: DLM-sum 1.55 3.64 1.83 3.95
0.95 DSR 1.59 3.73 1.86 4.00
: DLM-sum 1.53 3.63 1.82 391
0.96 DSR 1.59 3.72 1.87 4.02
: DLM-sum 1.53 3.62 1.81 3.91
0.97 DSR 1.59 3.71 1.86 4.00
: DLM-sum 1.53 3.64 1.82 3.91
0.98 DSR 1.59 371 1.86 4.01
: DLM-sum 1.53 3.62 1.82 3.91
0.99 DSR 1.59 3.71 1.86 4.01
) DLM-sum 1.53 3.62 1.81 3.91
1.0 DSR 1.58 3.71 1.87 4.02
) DLM-sum 1.53 3.61 1.81 3.89
101 DSR 1.58 3.71 1.86 4.02
: DLM-sum 1.53 3.61 1.81 391
102 DSR 1.58 3.71 1.86 4.02
: DLM-sum 1.53 3.61 1.81 3.90
1.03 DSR 1.58 3.71 1.86 4.02
) DLM-sum 1.53 3.61 1.81 391
1.04 DSR 1.58 3.71 1.86 4.01
: DLM-sum 1.53 3.62 1.81 3.92
105 DSR 1.58 371 1.86 4.03
: DLM-sum 1.54 3.62 1.83 3.90
11 DSR 1.60 3.71 1.89 4.04
) DLM-sum 1.57 3.64 1.83 391
115 DSR 1.59 3.71 1.87 4.00
: DLM-sum 1.57 3.63 1.85 3.94
12 DSR 1.59 371 1.88 3.99
: DLM-sum 1.54 3.64 1.83 3.87
13 DSR 1.55 372 1.87 3.99
: DLM-sum 1.64 3.74 1.86 4.01
14 DSR 1.56 3.73 1.87 3.99
) DLM-sum 1.59 3.70 1.85 3.93
15 DSR 1.61 3.73 1.89 4.01
: DLM-sum 1.67 3.78 1.89 3.99
17 DSR 1.58 3.75 1.89 4.01
: DLM-sum 1.72 3.83 1.92 4.11
-0 DSR 1.62 378 1.90 7.03
: DLM-sum 1.73 3.90 1.90 4.09
)3 DSR 1.67 3.83 1.86 4.06
: DLM-sum 1.72 3.92 1.92 4.14
266 DSR 1.67 3.87 1.91 4.10
: DLM-sum 1.72 3.93 1.96 422
20 DSR 1.63 3.89 1.90 4.08
: DLM-sum 1.69 3.96 1.92 4.20
35 DSR 1.65 3.92 1.91 4.14
: DLM-sum 1.67 3.93 1.93 4.24
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Figure E.27: DLM Softmax Temperature plotted against DLM performance on test-other. DLM
is a baseline model trained without data augmentation for 10 epochs. Raw data can be found in
Table E.27.

with higher temperature. Results for different temperatures are shown in Figure E.27. Greedy results
are not shown as they are invariant under softmax temperature scaling.

There does not seem to be a performance improvement for adjusting temperature in either direction,
so we conclude that entropy of the output distribution is not causally related to DLM performance,
but rather a consequence of another underlying factor.

E.3.7 ERROR ANALYSIS BY CATEGORIZATION

Because DLMs are trained to correct errors, it is interesting to see which types of errors are corrected
best. For this we bin all words into categories, and then we look at the WER per category. Only
substitution errors are considered here, as those account for 80% of all word errors on test-other for
the ASR spm10k (TTS) model'®. When we look at the categories of substitution errors, we consider
the word in the reference text, not the word it was substituted with in the hypothesis. For all the
following analyses, we use the DLM trained with stdPerturb data augmentation for 10 epochs.

E.3.8 WORD FREQUENCY

We concatenate the LibriSpeech LM corpus and the LibriSpeech ASR text data to get a large corpus
of text. Then the occurence of every word in the combined corpus is counted and the words are
sorted by their frequency. Three bins are created: “common” words are the words that with their
counts combined make up 50% of all word occurences. “medium” words make up the next 49% of
word occurences, and “rare” words are the remaining 1%. Table E.28 shows a selection of words
contained in the bins.

We begin by looking at the WER of the ASR hypotheses in each bin, shown in Table E.29.

Immediately we see that the ASR model struggles with rare words, 58.8% of which are misrecog-
nized. But it seems that the DLM is very effective at correcting errors in all three bins equally, with
similar procentual reductions in absolute errors across all bins.

150n test-other, the ASR model spm10k (TTS) has 3.5% substitution, 0.4% deletion and 0.5% insertion word
errors. After correction using DLM-sum with stdPerturb DLM trained for 10 epochs, this reduces to 2.8%
substitution, 0.3% deletion and 0.4% insertion word errors.

68



Under review as a conference paper at ICLR 2026

Table E.28: Example words in each frequency bin. The bins were created such that “common”
words make up 50% of all word occurences, “medium” words make up the next 49% and “rare”
words make up the remaining 1%.

Common | Medium Rare
Size of bin 83 59244 913464
the before masin
and other peschiera
of know balt
Selection of words | ... .. ..
see gyroscope | marspeaker
its brett’s schulberg’s
down cordie kerstall

Table E.29: Number of substitution errors categorized by word frequency. ’abs” shows the absolute
number of substitutions in each frequency bin, “rel” shows the percentage of substitutions in that bin
relative to the number of words in that bin. ~abs perc” shows the percentage of absolute substitutions
relative to the baseline (ASR) model.

test-other
Substitutions by Frequency common medium rare
abs [ absperc [ rel abs [ absperc | rel abs [ absperc | el
ASR 358 - 1.35% | 1124 - 4.48% | 370 - 58.82%
DLM greedy 339 | -531% | 1.27% | 1123 | -0.09% | 4.47% | 327 | -11.62% | 51.99%
DLM DSR 305 | -14.80% | 1.15% | 924 | -17.79% | 3.68% | 315 | -14.86% | 50.08%
DLM-sum 287 | -19.83% | 1.08% | 871 | -22.51% | 3.47% | 314 | -15.14% | 49.92%

Table E.30: Example words for each Part-of-Speech (POS) tag. The POS tags were assigned using
the SpaCy library. The assignment of word to POS Tag is not perfect, but good enough for our
purposes.

| POS Tag | Count | Example Words |
PROPN 578003 | shippenburgh, strasburgh, dutchman, ...
NOUN 291990 | town, street, mile, ...
VERB 62502 contains, built, saw, ...
ADJ 12818 dirty, pleasant, handsome, ...
ADV 7356 only, thickly, very, ...
ADP 1561 in, of, from, ...
PRON 772 we, the, a, some, ...
other tags | 17789 that, if, was, and, three, ...

E.3.9 PART OF SPEECH

Sentences in the english language consist of different types of words, such as nouns, verbs, ad-
jectives, etc. We are interested in seeing if the DLM is better at correcting certain types of words
than others. For example, one could hypothesize that ASR models have trouble with recognizing
names of people and places (= proper nouns'’) which are rare in the training data, and with the
additional help of the LibriSpeech LM corpus the DLM may be able to correct these errors. We use
the SpaCy'® library to automatically assign every word in the corpus a part of speech (POS) tag,
specifically we use the en_core_web_1g:3.8.0 model. A subset of some common POS tags
is shown in Table E.30.

The WER categorized by POS tag is shown in Table E.31.

17 A list of POS tags and their meanings can be found at https://universaldependencies.org/
u/pos/.
Bhttps://spacy.io
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Table E.31: Number of substitution errors categorized by Part-of-Speech tag. “abs” shows the
absolute number of substitutions in each frequency bin, “rel” shows the percentage of substitutions
in that bin relative to the number of words in that bin. ’abs perc” shows the percentage of absolute
substitutions relative to the baseline (ASR) model.

test-other
Substitutions by POS PROPN I NOUN VERB I ADIJ I other
abs [ absperc | rel | abs [ absperc [ rel | abs [ absperc | rel [ abs | absperc [ rel | abs [ absperc [ rel
ASR 661 - 11.94% | 426 - 5.92% | 240 - 2.93% | 80 - 3.12% | 445 - 1.54%
DLM greedy 618 | -651% | 11.16% | 410 | -3.76% | 5.70% | 228 | -5.00% | 2.78% | 80 | -0.00% | 3.12% | 453 | —-1.80% | 1.57%
DLM DSR 567 | -14.22% | 10.24% | 325 | -23.71% | 4.52% | 189 | -21.25% | 2.30% | 69 | -13.75% | 2.69% | 394 | -11.46% | 1.37%
DLM-sum 536 | -1891% | 9.68% | 327 | -23.24% | 4.54% | 185 | -22.92% | 2.25% | 57 | -28.75% | 2.23% | 367 | -17.53% | 1.27%

Table E.32: Number of substitution errors categorized by Part-of-Speech tag. “abs” shows the
absolute number of substitutions in each frequency bin, “rel” shows the percentage of substitutions
in that bin relative to the number of words in that bin. ’abs perc” shows the percentage of absolute
substitutions relative to the baseline (ASR) model.

Table E.33: Correction statistics of a baseline DLM trained without data augmentation and trained
for 10 epochs. “Before” statistics are from the ASR model, ”After” statistics are from the DLM-
corrected hypotheses. Each number represents a word in LibriSpeech test-other.

(a) Greedy (b) DSR (c) DLM-sum
After After After
Correct [ Incorrect | Total Correct [ Incorrect | Total Correct [ Incorrect | Total
Before Correct 49939 339 50278 Before Correct 50210 68 50278 ‘ Before Correct 50164 114 50278
Incorrect 273 1792 2065 Incorrect 275 1790 2065 Incorrect 392 1673 2065
Total 50212 2131 52343 Total 50485 1858 52343 Total 50556 1787 52343

Table E.34: Correction statistics of DLM with stdPerturb data augmentation, and trained for 10
epochs. “Before” statistics are from the ASR model, ”After” statistics are from the DLM-corrected
hypotheses. Each number represents a word in LibriSpeech test-other.

(a) Greedy (b) DSR (c) DLM-sum
After After After
Correct [ Incorrect | Total Correct [ Incorrect | Total Correct [ Incorrect | Total
Before Correct 49827 451 50278 ‘ Before Correct 50181 97 50278 ‘ Before Correct 50147 131 50278
Incorrect 416 1649 2065 Incorrect 442 1623 2065 Incorrect 554 1511 2065
Total 50243 2100 52343 Total 50623 1720 52343 Total 50701 1642 52343

The ASR struggles most with proper nouns (PROPN) and nouns (NOUN). Again, the DLM corrects
errors of all POS tags about equally well, with some small variations which may not be statistically
significant. A complete table is shown in Table E.32.

E.3.10 CORRECTION VS. DEGRADATION ANALYSIS

Binary classifiers are often evaluated with so-called confusion matrices, which show how often a
classifier predicts a positive or a negative class, and how often that prediction is correct. We adapt
this idea to our DLM to show how often the ASR model correctly predicts a word, and what happens
after a DLM is applied for error correction. On the vertical axis we show the previous state of the
word in the ASR hypotheses, whether they are correct or incorrect. On the horizontal axis we show
the new state of the word after DLM correction. Here, we only consider the words in the reference
text, so these numbers only capture substitution and deletion errors. See Table E.33 and Table E.34
for results on a baseline DLM without data augmentation and a DLM trained with stdPerturb
data augmentation, respectively.

E.3.11 ERROR EXAMPLES

Finally, we look at some specific examples of errors that the ASR model makes, and how the DLM
corrects them (or fails). We will show examples from the LibriSpeech test-other set, from a DLM
trained with stdPerturb data augmentation for 10 epochs.
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Table E.35: Example 1. The ASR model makes several mistakes, some of which are corrected by
the DLM. See text for details.

\ Reference \ [...] his note book which [...] father mestienne’s turn father mestienne died \
[ ASR [ [..1his #** NOTEBO which [...] father MEIEEN’S turn father MAIEIENNEEN  died |
DLM greedy | [...] his **** NOTEBOOK which [...] father MAHOMMED’S turn father MAHOMMED died
DLM DSR [...] his note book which [...] father MAHIEN’S turn father MAHIEN died
DLM-sum [...] his note book which [...] father MAIEN’S turn father MAIEN died

Table E.36: Example 2. The ASR makes mistakes which even the DLM can not correct.

| Reference [ say awk ward in ##*  future not awk ard |
[ ASR | say *** AWKWARD in THE future not AWKWARD |
DLM greedy | say *** AWKWARD inTHE future not AWKWARD

DLM DSR say ***  AWKWARD in THE future not AWKWARD
DLM-sum say ***  AWKWARD in THE future not AWKWARD

Table E.37: Example 3. The DLM exhibits broken behaviour and hallucinations with greedy decod-
ing.

[ Reference [ [...] the hashish the [...] toward porto vecchio |
[ ASR [ [...] the hashish the [...] toward porto vecchio |
DLM-greedy | [...] the HASCHICH the [...] toward porto THE YACHT SEEN <17 words omitted>ALL THE YACHT SEEN OF THE
DLM DSR [...] the hashish the [...] toward porto vecchio
DLM-sum [...] the hashish the [...] toward porto vecchio

The first example is shown in Table E.35. The ASR model makes several mistakes, it misrecog-
nizes “notebook” as "NOTEBO”, “mestienne’s” as "MEIEEN’S”, and “maieienneen” as "MAIEI-
ENNEEN”. The DLM with greedy decoding completes "NOTEBO” to "NOTEBOOK?”, and fig-
ures out that the two names should be identical, changing both to "MAHOMMED”. With DSR and
DLM-sum decoding, further audio information is available, and note book™ is recognized correctly,
but the names are still wrong, but now more consistent to each other than in the ASR hypothesis.

Our second example is shown in Table E.36. The ASR model misrecognizes several words in the
sentence, and the DLM is not able to correct any of them. This is an example where the ASR output
is already quite different from the reference, and there is not enough context for the DLM to figure
out what the correct words should be. Anecdotally, from looking at many corrections and mis-
corrections in the test sets, we find that the DLM generally is better at correcting errors on longer
sentences than on shorter ones (~» more context helps).

We observe very strange behaviour with greedy decoding in some cases, where the DLM output is
completely broken and contains hallucinated words. An example is shown in Table E.37. The ASR
model makes no mistakes in this sentence, but the DLM with greedy decoding introduces 27 word
errors, hallucinating 26 extra words at the end of the sentence.

We find three more examples in the test-other set where the DLM with greedy decoding produces
broken output, with word errors of 35, 40, and 82. All of these sentences are quite long, so we
assume that the DLM does not perform well on very long sentences. Together these four sentences
are responsible for an increase of 0.35% in WER on test-other. We believe these types of broken
behaviour and hallucinations are the reason why our greedy results seem so random, and could
explain why they are worse than the results reported by Gu et al. (2024). With DSR and DLM-sum
decoding, this behaviour vanishes. Figuring out the root cause and a solution to this problem is
left for future work, and could potentially lead to significant improvements in the other decoding
methods as well.
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Table E.38: Random seed experiment. Trained for 5 epochs, data augmentation configuration
stdPerturb.

Random seed | Decodin DLM Performance: WER [%]
€ [dev-clean | dev-other | test-clean | test-other
greedy 1.95 4.05 2.25 4.60
1 DSR 1.54 3.54 1.77 3.84
DLM-sum 1.45 3.45 1.76 3.69
greedy 2.09 3.99 2.25 4.53
2 DSR 1.55 3.49 1.80 3.86
DLM-sum 1.53 342 1.77 3.69
greedy 1.94 3.98 2.23 4.48
3 DSR 1.54 3.51 1.77 3.85
DLM-sum 1.53 3.41 1.76 3.71

Table E.39: DLM with stdPerturb data augmentation trained for 10 epochs is applied for mul-
tiple iterations, where the output of the DLM is fed back as input to the DLM.

Tteration DLM Training Data WER [%]
dev-clean | dev-other | test-clean | test-other
ASR 1.75 4.13 2.03 4.44
ASR — DLM' 2.11 3.80 2.21 443
ASR — DLM? 2.22 3.91 2.39 4.56
ASR — DLM? 2.24 3.92 2.40 4.57
ASR — DLM? 2.23 3.92 2.40 4.56

E.4 ABLATIONS ON MODEL AND TRAINING VARIATIONS
E.4.1 RANDOMNESS

We evaluate the run-to-run variance of our DLM training. For this test, we generate a single full
training dataset from the LibriSpeech LM corpus and 10x the LibriSpeech ASR training data. Then
we randomly initialize three DLMs with unique random seeds and train them on the same training
data. We use the stdPerturb data augmentation configuration. The results are shown in Ta-
ble E.38. The greedy results seem a bit less stable than DSR and DLM-sum decoding, but overall
the variance stays within -0.06% WER.

E.4.2 LOOPING THE ERROR CORRECTION MODEL

We briefly experiment with feeding the output of the DLM back into itself and see if it improves
the WER further. Here we use the top greedy hyp from the ASR model, and then do beam search
with the DLM using beam size 64. The resulting WER of repeatedly applying the DLM is shown in
Table E.39.

It appears that applying the DLM twice decreases the WER, and further iterations have limited effect.
We create a new training dataset with hypotheses not from the ASR model, but from applying the
DLM once with beam size 1, and add these new hypotheses to the original DLM training data. We
then train a new DLM from scratch on this new dataset. Because the new dataset has twice the size
of the original DLM training data, we reduce the number of epochs to 5 instead of 10. The results
are shown in Table E.40.

We observe that the DLM may be more robust to multiple iterations of error correction on test-
other, but additional iterations still do not improve over the first one. For dev-other, the WER even
increases sharper than before due to one hypothesis that has moved so far from the training distri-
bution that the DLM exhibits broken out-of-domain behavior and generates an incomprehensible
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Table E.40: DLM trained for 5 epochs on hypotheses with stdPerturb data augmentation and
on outputs from another DLM. The DLM is looped for multiple iterations, where the output of the
DLM is fed back as input to the DLM.

Tteration DLM Training Data WER [%]
dev-clean | dev-other | test-clean | test-other
ASR 1.75 4.13 2.03 4.44
ASR — DLM! 1.88 3.85 2.11 4.29
ASR — DLM? 1.89 3.91 2.13 4.30
ASR — DLM? 1.89 3.97 2.13 4.31
ASR — DLM? 1.89 4.09 2.13 431

Table E.41: DLMs trained for different vocabularies without additional data augmentation, for 5
epochs. ASR baselines are all trained with TTS audio data.

. DLM Performance: WER [%]

Vocabulary | Model | Decoding dev-clean | dev-other | test-clean [ test-other
ASR - 1.75 413 2.03 4.44
som10k greedy 1.82 3.98 2.05 4.49
P DLM | DSR 156 378 .89 7.08
DLM-sum 1.55 3.67 1.84 4.00
ASR - 1.79 4.41 1.94 4.55
spm128 greedy 1.72 4.17 1.90 4.29
P DLM DSR 1.58 3.88 1.77 4.09
DLM-sum 1.49 3.85 1.74 3.98
ASR - 1.83 4.56 1.98 4.78
char greedy 1.80 424 1.92 4.55
DLM | DSR 1.61 3.94 1.95 4.20
DLM-sum 1.53 3.95 1.74 4.08

sequence of words that doubles in size with every iteration'®. An arguably critical flaw of this ex-
periment is that the DLM does not know which iteration it is in, and thus can not adapt its behavior
to make effective use of additional iterations. We leave a more thorough investigation of this idea to
future work.

E.4.3 DIFFERENT VOCABULARIES

All DLM experiments so far have been conducted with a Sentence Piece 10k subword vocabulary.
The prior work by Gu et al. (2024), which this work builds upon, exclusively uses a character vo-
cabulary with remarkable results. Unlike with Sentence Piece subwords, a character vocabulary
provides a single unique token representation for every sentence, a 1:1 bijective mapping. Unfor-
tunately these character token representations become quite long compared to the Sentence Piece
10k, and we observe that a character DLM takes about 205h to train for 5 full epochs, whereas an
spm10k DLM with the same hyperparamters takes only about 68h to complete the same training,
a ~3x increase. Similarly, training the ASR model with a character vocabulary further increases
the computation time for training data generation. Sentence Piece 10k training data generation of
LibriSpeech LM takes about 75 x 62 minutes, while character data generation takes about 75 x 98

minutes’.

We train DLMs for each vocabulary with training data from the TTS-trained ASR model with that
vocabulary, without additional data augmentation. Results are shown in Table E.41.

The performance of the models roughly follows the order of the vocabulary size, with the character
model being the worst and the spm10k being the best. The differences, especially on the test sets,

This doubling occurs because our search limits the output length to twice the input length. Otherwise the
WER may have degraded even further.
275 inference jobs, each taking 62 or 92 minutes to run.
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Table E.42: We attempt to replicate the results from Gu et al. (2024). There are significant differ-
ences between the two experiments, for details see text.

DLM Performance: WER [%]

Replication attempts Decoding dev-clean | dev-other [ test-clean | test-other
[ ASR Baseline B | 183 | 45 | 198 | 478 |

Gu et al. (2024) greedy 5.40 5.99 5.86 7.36
DLM architecture, DSR 3.08 5.01 3.99 5.54
with YourTTS DLM-sum 1.99 3.95 2.02 4.33
. reed 4.98 491 4.37 6.14
8}15 %ll\r%rgh“ecmre’ SR 2.49 3.76 231 379
DLM-sum 1.50 3.61 1.70 3.82

are not that far off, and we may close the gap with additional tuning. It is also likely that the DLMs
for spm128 and character vocabularies are held back by their worse ASR model. But given the
significant increase in training and data generation time, we do not pursue the character and spm128
vocabularies any further in this work.

We run a few more experiments with the character vocabulary for comparison with Gu et al. (2024).
To follow their configuration, we increase model dimension to 1280, and set encoder layers to 4
and decoder layers to 16, dropout and layer drop to 0.1 and gradient clipping to 0.1. We make
training data with both Glow-TTS and YourTTS, using SpecAugment with only frequency masking,
and token substitution with p = 0.1. We add 10x LibriSpeech ASR data to the training data, and
train for 10 epochs?!. We use learning rate schedule of le-7 to le-3 linear warmup over 1 epoch,
then constant for 7 epochs, then linear decay to le-5 over the last 2 epochs. We use batch size 40k
through gradient accumulation.

We start another training, using training data with the data augmentation as specified above, but our
usual DLM architecture, learning rate, and without YourTTS data, which results in our best character
vocabulary performance.

Results for these two experiments are shown in Table E.42.

Also see Appendix G.2 for some further discussion on character vs. subword vocabularies and the
comparison to Gu et al. (2024).

E.4.4 JoINT AED AND CTC MODEL

It has been shown that learning auxiliary tasks can improve the performance of the main task in
end-to-end ASR models (Toshniwal et al., 2017). One such approach for encoder-decoder attention
models involves using a CTC loss on the encoder output in conjunction with the existing cross-
entropy loss on the decoder output (Watanabe et al., 2017). This arrangement can be understood
as two models, a CTC model (the encoder) and an autoregressive transformer model (encoder +
decoder) where the encoder is shared between both models. This configuration achieves superior
results compared to only using the cross entropy loss of the transformer.

We propose a similar approach for DLMs in addition to the decoder cross-entropy loss. Besides
the existing encoder architecture, we add another Linear layer with input dimension as the model
dimension, and output dimension twice that of the vocabulary size + blank token. The output of the
linear layer is split into two equally sized parts (i.e. each input token to the encoder is mapped to two
auxiliary output tokens), and apply softmax. These additional output tokens are necessary to ensure
that repeating tokens can be emitted by these auxiliary outputs without them being collapsed by
the CTC alignment. Finally, we concatenate the tokens of all encoder frames together and compute
the CTC loss to the target sequence. We postfix the target sequence with an end-of-sentence token,
just like the input to the encoder. We hypothesize that this makes the task easier to learn as most
tokens can flow through the residual stream of the encoder unchanged. Given our ASR models’
splendid performance, we expect that most errors in its hypotheses can be fixed with substitutions

2'Here we consider 1 epoch to consist of 1x LM corpus YourTTS audio, 1x LM corpus Glow-TTS audio and
10x LibriSpeech ASR.
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Table E.43: Experiments with Auxiliary Loss in the DLM encoder. All models trained for 10 epochs
on stdPerturb data augmentation configuration.

.. . DLM Performance: WER [%]

Auxiliary Encoder Loss | Decoding dev-clean | dev-other [ test-clean | test-other

greedy 2.26 3.96 247 4.70

no aux loss, baseline DSR 1.51 3.46 1.78 3.73

DLM-sum 1.50 3.32 1.80 3.57

greedy 2.79 4.10 2.70 5.44

DSR 1.57 3.44 1.82 3.86

with aux loss, weight 1.0 DLM-sum 1.53 3.36 1.76 3.66

o ’ aux CTC only 1.96 4.06 2.25 4.37

joint CTC + AED greedy 1.93 4.00 2.23 4.41

joint DSR 1.56 3.49 1.79 3.84

greedy 2.83 4.17 2.65 5.59

DSR 1.48 3.48 1.74 3.72

with aux loss, weight 0.1 DLM-sum 1.59 3.37 1.85 3.76

’ ’ aux CTC only 1.98 4.12 2.26 4.42

joint CTC + AED greedy 2.33 4.02 2.64 4.76

joint DSR 1.48 3.50 1.75 3.80

and deletions, which are particularly easy to learn in this setup. Multiple insertions however are
more challenging, as input tokens would need to be shifted around to accommodate the new output
tokens given the limited space in the output sequence. We add the auxiliary loss to layers 6, 12 and
24 of the encoder. The parameters of the auxiliary linear layer are shared between all three selected
layers. We ran one experiment with a loss scale of 1.0, and one with a loss scale of 0.1 for all
auxiliary losses. Our results are shown in Table E.43.

We see slight degradation in performance on the regular AED-only decoding methods. With joint
decoding of the auxiliary CTC scores and the decoder scores, we almost reach baseline Greedy per-
formance again. Using the joint DLM scores in DSR decoding is slightly worse than DSR decoding
in the baseline DLM. We did not implement joint decoding for DLM-sum. Overall, the results with
auxiliary loss are slightly worse than without. The auxiliary loss increases training time by about
20%, from 133h to 160h for 10 epochs.

E.4.5 DENSE K-PROBABILITY INPUT TO DLM

We generate training data with the st dPerturb data augmentation configuration. Because prelim-
inary experiments showed slight overfitting, we enable dropout in the DLM with 5% for the Dense
k-Probability training.?? Results are shown in Table 5. The performance with DSR decoding of a
DLM with dense k-probability input is now matching the performance with DLM-sum decoding of
the standard DLM.

One concern with our current approach of using dense k-probabilities to compute the weighted sum
of input embeddings is that critical information may be smoothed out, leaving an effectively less
informative input representation for the DLM than before. Therefore we also try an alternative
approach where we attend over the token embeddings similar to Cross-Attention, attending over
the k-axis instead of the encoder spatial dimension. To supply probability information, we scale an
additional learned embedding by the token probability before adding it to the token embedding. We
also bias the attention weights with the token probabilities. This atttention mechanism is applied
twice, with feed-forward layers in between. While this approach has faster initial convergence, final
performance is equal to the much simpler weighted sum approach.

See Appendix G.2 for further discussion on the relation to Gu et al. (2024) and the character vocab-
ulary.
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Table E.44: Trained ASR model, (D)LM on LibriSpeech, WERs [%] on Out-of-domain evaluation
sets.

CommonVoice VoxPopuli Yodas
dev | test dev | test dev | test

ASR only 22.68 | 27.39 | 17.33 | 16.78 | 22.41 | 23.01
ASR + LM 20.05 | 24.17 | 15775 | 15.20 | 20.69 | 21.15
ASR +DLM | 20.56 | 25.33 | 1590 | 15.62 | 21.18 | 21.99

Method

Table E.45: Trained DLM on Librispeech ASR outputs from different ASR models.

Method dev-clean | dev—othV\;]SR\ [t?s]t-clean | test-other
Conformer ASR + LM 1.83 3.94 1.99 4.26
EBranchformer ASR + LM 1.90 3.96 2.02 4.12
Conformer ASR + DLM 1.68 3.70 1.83 4.15
EBranchformer ASR + DLM 1.73 3.84 1.89 4.10

Table E.46: Results of our best LibriSpeech DLM model. ASR model is Conformer CTC, trained
with LibriSpeech and TTS audio. For comparison to prior work, see Table 2.

Method dev-clean | dev-ot}X:IrER\ [tzos]t-clean | test-other

| ASR only | 175 | 413 | 203 | 444 |
ASR + DLM (greedy) 2.09 4.08 2.33 4.75
ASR + DLM (DSR) 1.50 3.40 1.74 3.66
ASR + DLM (DLM-sum) 1.48 3.26 1.70 3.4

E.4.6 OUT-OF-DOMAIN GENERALIZATION.

We test how well the DLM generalizes to out-of-domain (OOD) evaluation sets. Specifically, we
use the ASR model and LM or DLM trained on LibriSpeech data, and test it on CommonVoice,
VoxPopuli, and Yodas evaluation datasets (here taken from the Loquacious corpus). Results are
shown in Table E.44.

E.4.7 GENERALIZATION TO OTHER ASR MODELS

We further test the generalization of our DLM approach to ASR outputs from another ASR model.
We use an EBranchformer (Kim et al., 2023) CTC ASR model here, where the Conformer ASR
model is the one used for DLM training data generation and the baseline. Results are shown in
Table E.45. We see that the DLM improves over the ASR baseline and standard LM for both ASR
models.

E.5 OUR BEST MODELS

Our best LibriSpeech DLM (as shown in Table 2) follows our usual architecture (See Section 3.2,
Appendix D.1.5) with the following changes: 1280 model dimension, 5120 feed-forward dimension,
10 training epochs; resulting in a 729M parameter model. We did not use this model in Table 1 as we
do not have a directly comparable LM of similar size. DLM training data is generated from the TTS
ASR spm10k model with 1ow data augmentation. Results over all decoding methods are shown in
Table E.46.

22Enabling 5% dropout in normal DLM training did not lead to performance gains.
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Figure E.28: Scaling plot for Loquacious ASR with LM and DLM.

E.6 EXPERIMENTS ON ANOTHER CORPUS: LOQUACIOUS

Loquacious (Parcollet et al., 2025) is a large-scale English speech corpus consisting of 25,000 hours
of transcribed speech data from diverse sources such as audiobooks, podcasts, YouTube videos, and
more.

In contrast to LibriSpeech, there is no separate LM corpus provided with Loquacious. This simplifies
the LM vs. DLM comparison: The LM is simply trained on the transcriptions of the ASR training
data, while the DLM is trained on hypotheses generated from the ASR model on the speech data of
Loquacious. No TTS model is used in this case.

We train a baseline CTC ASR model on Loquacious with the same architecture and hyperparameters
as our LibriSpeech ASR models, using a SentencePiece 10k vocabulary.

The main results are shown in Section 4.1, Table 3. Scaling plots are shown in Figure E.28. We
see similar trends as with LibriSpeech: The DLM outperforms the LM. For lower training compute
budgets, the standard LM performs better, but with increasing training compute the DLM overtakes
the LM. Also, the LM starts to overfit with more training compute.

Note that these results are currently the best published WERs on Loquacious, but apart from the
original Loquacious paper (Parcollet et al., 2025), there are no other published results on Loquacious
for comparison yet.

A recognition speed comparison of ASR + LM vs. ASR + DLM on Loquacious with one-pass search
is shown in Figure E.29. This is consistent to the recognition speed comparison on LibriSpeech in
Figure 3a.
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Figure E.29: Recognition speed comparison of ASR + LM vs. ASR + DLM on Loquacious with
one-pass search in terms of real-time-factor (RTF).

F IMPLEMENTATION DETAILS

F.1 Buas

During our research, we encountered some implementation bugs which we noticed and fixed, and
we briefly mention them here for completeness.

To use SpecAugment and dropout during training data generation, we enable the training mode
flag during ASR model inference. This inadvertently also triggers BatchNorm layers to use the
batch-local statistics rather than global running mean and variance, which degrades the ASR model
performance noticeably. We fix this by implementing a more granular interface for training mode
flags on individual functions.

Our word-to-phoneme lexicon has multiple entries for the same word with different phoneme rep-
resentations. The TTS training code however only uses the first entry it finds, which leads to out-
of-domain behaviour when we pick a random entry during training data generation inference of the
TTS model. See Appendix E.2.12 for more details.

At the beginning of our research, the inference of TTS and ASR models was separate, which caused
huge load on our filesystems when 75 parallel jobs read TTS audios simultaneously. We fix this by
combining the two inference steps into one job, so that only text data has to be loaded and saved.

G EXTENDED CONCLUSIONS & DISCUSSION

We implemented a data generation pipeline that transforms text data into ASR hypotheses with
configurable data augmentation techniques and TTS systems. We present several data augmentation
techniques adapted from the field of ASR that can be used to generate more diverse hypotheses for
DLM training.
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During evaluation of the data augmentation techniques, we found improvements in DLM perfor-
mance for: TTS noise, SpecAugment, dropout, token substitution, mixup, and by using early ASR
checkpoints to generate hypotheses. We found negligible improvements for: TTS audio length
scaling, combining TTS systems, top-k sampling and generating multiple epochs of training data.
Finally, techniques with a negative impact on DLM performance were normalizing subword splits
by retokenizing them before feeding to the DLM in training, using additional phoneme presenta-
tions for the TTS which it was not trained on, and only using hypothesis of real audio from the
LibriSpeech ASR dataset.

We find that DLM performance generally improves with a higher training data WER, but only up
to a certain point. Data augmentation techniques that produce training data with similar WER train
DLMs of similar performance, but combining multiple data augmentation techniques leads to better
DLM performance than ablations on individual techniques would suggest.

There exists a correlation with the LM score of training data, where DLM performance increases as
the LM-score of training data decreases, until a certain point after which DLM performance degrades
again. We find that better DLMs have a higher entropy in their output probability distributions
(~ less peaky), but artificially increasing the entropy of lower performing DLMs with softmax
temperature to match that of better ones does not lead to improvements. There appears to be a trend
between entropy of the output probability distribution and Expected Calibration Error, a metric
describing the mismatch between predicted probability and actual accuracy.

DLM performance tends to go up with the number of epochs, but we hit a performance ceiling after
10 epochs of training. LM performance seems to saturate already at 5 epochs. I.e. when constrained
to a 5 epochs training budget, a traditional LM matches a DLM. But when given more epochs, the
DLM surpasses the LM.

Search errors for DLMs are < 1% for all test sets, but model error goes up to 39.6% on test-other.

Real audio does not appear to be important for DLM training, as we can train DLMs with only
TTS data and achieve good performance (see Appendix E.2.15). Only LibriSpeech ASR 960h
training data, however, is not enough to train a DLM that improves over the ASR baseline (see
Appendix E.2.16).

We classify DLM corrections by word frequency and part of speech tag, but do not find strong
evidence that DLMs are better at correcting certain categories of words than others. We find that
with greedy decoding, the DLM corrects about as many words as it miscorrects previously correct
words in the ASR hypothesis. With DSR and DLM-sum decoding, the number of miscorrections
decreases drastically, causing a big jump in performance compared to greedy decoding. Looking
closer, we find that the DLM exhibits broken behaviour with greedy decoding for a small amount
of very long sentences in the test-other set, four of which are responsible for an absolute increase of
0.35% WER on this test set.

We plot the distribution of the WER of individual sentences in the training datasets and their length,
and find that their distribution shifts significantly towards higher WER with data augmentation, but
their length stays roughly the same.

We trained DLMs with the vocabularies spm10k, spm128 and character, and found that spm10k
performs best, but this may be caused by our ASR models for the other vocabularies being worse.

Initial experiments with looping the DLM, i.e. feeding its output back in as input and iterating it
multiple times, did not lead to improvements (see Appendix E.4.2), but an architecture closer to
diffusion models could potentially yield better results.

G.1 COMPARISON TO DIFFUSION LANGUAGE MODELS

In Figure 2: There is a tipping point, both in training time and model size, after which denoising
LMs start to outperform standard LMs, while for smaller compute budgets standard LMs are better.
This is similar to recent observations for diffusion language models under a fixed data-constrained
setting (Prabhudesai et al., 2025; Ni et al., 2025).

Diffusion language models share other similarities with DLMs as well. Both operate with an en-
coder on a corrupted input sequence, and are trained to reconstruct the original sequence. During
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training, it is crucial that the model sees a wide variety of corruptions, which is achieved with a noise
schedule in diffusion LMs, and with data augmentation techniques in DLMs. We assume this ne-
cessity of diverse corruptions is the reason why both diffusion LMs and DLMs need more compute
to outperform standard LMs. On the other hand, we believe that operating on the whole sequence
with an encoder allows both diffusion LMs and DLMs to better model global context, which leads
to better scaling behavior with more compute.

There are also differences between diffusion LMs and DLMs. Diffusion LMs denoise the input
with noise in multiple steps, while DLMs use a single step. Also, our DLMs uses an autoregressive
decoder, while diffusion LMs typically are non-autoregressive encoder-only.

G.2 CHARACTER VS. SUBWORD VOCABULARY

Gu et al. (2024) still has better absolute WER results. We hypothesize that this is due to their use
of a character vocabulary, while we use subword vocabularies. We realized that a character-based
hypothesis gives richer information to the DLM, as only some characters in a word may be wrong,
still allowing the DLM to recognize the word, while a subword-based hypothesis may have the
whole word wrong.

This was one motivation behind the dense k-probabilities (Section 4.4) as input to the DLM, to
give the DLM more information about which subwords are likely to be correct. And indeed, our
preliminary experiments with dense k-probabilities showed promising results.

The DLM-sum decoding method is another way to combine the information from multiple ASR
hypotheses, which we found to consistently outperform greedy and DSR decoding.

Our character-based ASR model is worse than our subword-based ASR models, which may also
contribute to the worse performance of the character-based DLM. More investigation is needed on
our character-based ASR model and DLM. We note that the character-based DLM is quite a bit
slower than the subword-based DLMs, as the sequence length is much longer.

H USAGE OF LARGE LANGUAGE MODELS

We used large language models such as ChatGPT or Gemini to help with writing and proofreading
parts of this paper.
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