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Abstract

We contribute the first provable guarantees of
global convergence to Nash equilibria (NE)
in two-player zero-sum convex Markov games
(cMGs) by using independent policy gradient
methods. Convex Markov games, recently de-
fined by Gemp et al. (2024), extend Markov deci-
sion processes to multi-agent settings with prefer-
ences that are convex over occupancy measures,
offering a broad framework for modeling generic
strategic interactions. However, even the funda-
mental min-max case of cMGs presents signifi-
cant challenges, including inherent nonconvexity,
the absence of Bellman consistency, and the com-
plexity of the infinite horizon. Our results follow
a two-step approach. First, leveraging proper-
ties of hidden-convex—hidden-concave functions,
we show that a simple nonconvex regularization
transforms the min-max optimization problem
into a nonconvex—proximal Polyak-Fojasiewicz
(NC-pPL) objective. Crucially, this regulariza-
tion can stabilize the iterates of independent pol-
icy gradient methods and ultimately lead them to
converge to equilibria. Second, building on this
reduction, we address the general constrained min-
max problems under NC-pPL and two-sided pPL
conditions, providing the first global convergence
guarantees for stochastic nested and alternating
gradient descent-ascent methods, which we be-
lieve may be of independent interest.

1. Introduction

The field of multi-agent reinforcement learning
(MARL)—often framed as Markov games (MGs) (Littman,
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1994)—studies how multiple agents interact within a shared,
dynamic environment to optimize their individual cumu-
lative rewards (Silver et al., 2017; Lanctot et al., 2019).
However, many real-world applications require a more ex-
pressive formulation of agent preferences that do not simply
decompose additively over time (Puterman, 2014; Zahavy
et al., 2021). To address this limitation, the emerging frame-
work of convex Markov games (cMGs) (Gemp et al., 2024)
has been proposed as a principled yet flexible model for
capturing complex multi-agent interactions in dynamic envi-
ronments. Unlike traditional MGs, cMGs allow for convex
utility functions over the state-action occupancy measure,
enabling a richer set of players’ preferences that better re-
flect practical applications. In this context, the occupancy
measure of each player reflects the frequency of visiting
any particular state of their corresponding Markov decision
processes (MDPs), over a potentially infinite time horizon.

In practice, cMGs are useful for modeling a variety of
challenging multi-agent settings, including:

(i) Fostering creativity in machine gameplay, such as dis-
covering novel strategies in chess (Zahavy et al., 2022; 2023;
Bakhtin et al., 2022), (ii) multi-step language model align-
ment (Wu et al., 2025), (iii) enhancing multi-agent explo-
ration in robotic systems (Burgard et al., 2000; Rogers et al.,
2013; Tan et al., 2022), (iv) ensuring safety in autonomous
driving (Shalev-Shwartz et al., 2016), (v) enabling imitation
learning from expert demonstrations, and (vi) promoting
robustness and fairness, in multi-agent decision-making
(Hughes et al., 2018). While the former (i-iii) are direct
instantiations of cMGs, the latter (iv-vi) will profit when
from a cMG formulation.

In general, the authoritative desirable outcome of a multi-
agent scenario is some sort of game theoretic equilibrium.
Given the plethora of cMG applications, a natural question
arises: are there algorithmic solutions for provable equi-
librium computation in these games already? Surprisingly,
this is not the case! Notwithstanding the model’s appeal, an
array of technical challenges arise that impede a straight-
forward algorithmic solution. Yet, empirical results suggest
that variants of policy gradient methods (Williams, 1992)
can actually lead to favorable outcomes.

Following this thread, we consider the simplest reason-
able setting, competition between two agents, and pose our
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central question:

Do policy gradient methods converge in zero-sum
convex Markov games? (%)

We answer this question in the affirmative. More explicitly,

we provide an algorithmic framework that is efficient, ad-
heres to the independent learning desideratum (Daskalakis
et al., 2020), and is simultaneously easy-to-implement. This
effectiveness is powered by novel technical insights to ad-
dress numerous technical challenges native to cMGs.

Getting into the weeds, we enumerate the technical chal-
lenges that cMGs pose. As cMGs are a strict generalization
of cMDPs, the Bellman consistency of the agents’ utility
functions fails to hold (Zhang et al., 2020)—in short, we
cannot define individual value and action-value functions.
Remarkably, this is a family of long-horizon strategic inter-
actions where agents cannot use dynamic programming as
opposed to conventional MGs. We note that, even though
most policy optimization methods rely on a gradient-based
approach, their majority implicitly performs an approximate
dynamic programming subroutine such as value-iteration
(Jin et al., 2021; Wei et al., 2021; Ding et al., 2022; Erez
et al., 2023).

Consequently, the absence of state-wise value-functions
translates into a failure of the elementary arguments that
were used to prove the existence of Nash equilibria (Fink,
1964), even in two-player zero-sum Markov games (Shapley,
1953). In light of the latter, Gemp et al. (2024) prove the
existence of Nash equilibria in cMGs by going beyond the
fundamental toolbox of the Brouwer and the Kakutani fixed
point theorems. What renders these conventional theorems
obsolete is the inherent nonconvexity of the individual best-
response mappings in terms of players’ policies—where,
each best-response mapping yields the set of the agent’s set
of utility maximizing strategy deviations.

The careful reader might already grasp that the failure
of Bellman consistency rules out the seamless application
of the majority of MARL algorithms; most of them rely on
computing value and action-value functions. We direct our
hopes to policy gradient methods which theory of cMDPs
and practice of MARL suggest can work. Directly optimiz-
ing a policy means facing an optimization landscape that is
nonconvex. However, since all local optima are also global
in cMGs should bring some hope. Nonetheless, why should
policy gradient methods work in cMGs when vanilla gra-
dient following methods cycle (Bailey & Piliouras, 2018)
and exhibit non-convergent chaotic trajectories even in zero-
sum two-player normal-form games? Observe that the latter
are nothing but cMGs on a single state with individually
linear utilities. Further, even if we stabilize gradient dynam-
ics towards Nash equilibria, attaining strong convergence
guarantees of an algorithm requires the deepening of our

understanding of the optimization landscape of cMDPs and
cMGs. For instance, in the min-max case, the computa-
tional complexity of the general problem of computing a
saddle-point of a nonconvex-nonconcave smooth function
remains far from being settled (Daskalakis et al., 2021),
while no algorithm is yet guaranteed to efficiently compute
them without additional structural assumptions.

Searching for structure, we observe that the utilities in
cMGs exhibit a property known as hidden convexity (Ben-
Tal & Teboulle, 1996; Li et al., 2005; Wu et al., 2007; Xia,
2020; Vlatakis-Gkaragkounis et al., 2021; Fatkhullin et al.,
2023). However, the existing results on hidden convexity
either focus on single-objective minimization or, in the con-
text of continuous games, make assumptions that do not
hold in cMGs (separability of the hidden mapping and un-
constrained variables). Having identified the key difficulties
of zero-sum cMG:s, in the following section we offer a de-
tailed account of how we tackle them. Briefly, we manage
to overcome the aforementioned challenges using some dis-
tinct combination of the following algorithmic techniques:
(i) a conceptually simple but nonconvex regularization of
the utility function; (ii) alternating gradient iterations (Tam-
melin et al., 2015; Chavdarova et al., 2021; 2019; Zhang &
Yu, 2019; Chambolle & Pock, 2011); (iii) a careful timescale
separation of the individual step-size, and lastly (iv) nested-
gradient iterations.

1.1. Technical Overview

The proof of the proposed theoretical guarantees comes
after a combination of several key observations—old and
new. We believe that exposing them in the following item-
ized manner will serve in conveying the technical level of
our work and an intuitive overview of why our techniques
work.

* Hidden convex functions are nonconvex functions that
can be expressed as a convex function of a reparametriza-
tion of their original arguments, termed the “hidden (la-
tent) mapping,” while the original arguments are called
“control variables”. Yet, in some settings, like reinforce-
ment learning (RL), this mapping is not at all hidden but
directly computable or observable.

* More specifically, in cMGs, players’ utilities are hid-
denly concave through the state-action occupancy mea-
sure, which is similarly computable (in planning) or ob-
servable (in RL).

Although analyzing these games via occupancy measures
yields a quasi-variational inequality problem (Kinder-
lehrer & Stampacchia, 2000)—unnecessarily increasing
the technical challenges (Bernasconi et al., 2024)—yet,
two crucial facts remain: (i) the utility is concave with re-
spect to the hidden mapping, and (ii) the hidden mapping
is accessible. These properties ensure that after regular-
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ization, the hidden function becomes strongly concave. In
turn, the resulting function satisfies the proximal Polyak-
Lojasiewicz (pPL) condition, with respect to the control
variables (i.e., the policies).

Consequently, each player’s utility remains pPL while
the feasibility sets for their control variables remain in-
dependent. This observation wraps up the discussion on
hidden concavity and naturally shifts our focus on the
constrained optimization of min-max nonconvex-pPL ob-
jectives. In other words, we reduce solving two-player
zero-sum convex Markov games to the problem of com-
puting saddle-points of functions that are nonconvex-pPL
over constrained domains.

 Leveraging this reduction, our final steps center on devel-
oping policy gradient methods that can provably converge
to saddle-points of nonconvex-pPL functions over con-
strained domains, a technical development in optimiza-
tion theory of independent interest as well.

The proofs are deferred to the Appendix for clarity.

1.2. Our Contributions

Before proceeding to enumerate all parts of our contri-
butions, we remark that we deliver a definitive answer to
question ():

Theorem. There exist decentralized policy gradient meth-
ods (Algorithms | and 2) that compute an e-approximate
Nash equilibrium for any € > 0 in any two-player zero-sum
convex Markov game using iterations and samples that are:

1 1
poly ( S| Al + 1B, ) 7
€ 1—7

with S denoting the cMG'’s state-space, A, B the two play-
ers’ action-spaces, and v > 0 the discount factor.

Our contributions span two key areas: constrained non-
convex min-max optimization and equilibrium computation
in convex Markov games.

* In Theorem 4.1 we demonstrate that the best-response
mapping for an objective f(x,y), x — y*(z) =
arg max, ¢y f(x,y), is Lipschitz continuous in x for reg-
ularized hidden-convex—and more generally, NC-pPL
games. The significance of this result lies in guaranteeing
the stability of the iterates of policy gradient methods
and serves as a suggestion to practitioners looking for
a regularization technique that is intuitive, simple, and
easily implementable.

¢ In Section 4, we provide the first provable guarantees of
convergence to a Nash equilibirum for two policy gradient
algorithms Nest-PG and A1t-PGDA (Theorem 4.3).

Key ingredients. To establish our results, we leverage
a set of incorporating the distinct combination of the fol-
lowing non-trivial components: (i) an intuitive stability-
inducing specialized regularization of the utility function
and (ii) alternating or (iii) nested-gradient iterations.

A noteworthy element of our approach is that it ensures
convergence even with inexact gradients on top of being
stochastic. The algorithm’s robustness to gradient inexact-
ness preserves each player’s autonomy, allowing them to op-
timize independently without exchanging private policy in-
formation. Le., unlike the single-agent setting, where exact
gradients can be stochastically estimated, our framework’s
regularizer depends on both players’ policies, making exact
estimation infeasible without policy sharing. Consequently,
each player must rely solely on an inexact estimation of
their own gradient.

Finally, a noteworthy product of our approach is the Lips-
chitz continuity of the best-response mapping (which returns
the optimal strategy given the opponent’s choices) in the
hidden-convex case—and more generally nonconvex-pPL—
despite the opponent’s utility being nonconvex—contrasting
with the typical %-Hélder continuity of maximizers in con-
strained optimization (Li & Li, 2014). Indeed, while (Kalo-
giannis et al., 2024) employ a similar technique of regu-
larizing the value function through the occupancy measure
perspective, their result only establishes a weaker notion
of continuity due to the coupledness of individual play-
ers’ state-action occupancy measure. This claim has been
independently supported by (Papadimitriou et al., 2023, Ro-
bust Berge Theorem), which considers general nonconvex-
strongly concave functions where the feasibility sets of two
different strategies depend on each other in a Hausdorff con-
tinuous manner. To significantly strengthen the continuity of
the best-response mapping, we leverage the pPL condition in
the individual policy spaces of agents that remain uncoupled.
This result was only known for the significantly simpler case
of unconstrained two-sided PL functions (Nouiched et al.,
2019).

2. Preliminaries

Notation. In general, z,y,z,u,v,w and X Ay,
will denote vectors. Scalars will be denoted using
a, B,7,6,¢,(,k, v and a,b, c,d. Matrices will be de-
noted with bold uppercase letters. The probability simplex
supported on a finite set M will be denote with A(AM). For
a compact convex set Z C R, we will denote its Euclidean
diameter as Dz, i.e., Dz := max, ycz ||z — y||,. Lastly,
the global optimum of a function f will be denoted as f*.
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2.1. Convex Markov Games

In this subsection, we define two-player zero-sum convex
Markov games (Gemp et al., 2024) and introduce necessary
notation. We then present the occupancy measure and re-
mark its continuity properties. Subsequently, we review the
policy gradient theorem for convex MDPs and describe a
stochastic policy gradient estimator. Finally, we define the
perturbed utility function U*, obtained by adding a regular-
ization term to the original utility function U.

Definition 1 (Two-player zero-sum cMG). An infinite-
horizon zero-sum convex Markov game is a tuple I' =
(S, A,B,P,F,v,0):

* a maximizing and a minimizing player,

« a finite state space S, and an initial state distribution
0 € A(S),

« finite action spaces A, B,

* astate transition function P : S x A x B — A(S),

* adiscount factor vy € [0, 1), and

* two continuous utilities £}, F» functions correspond-
ing to each player’s occupancy measure, i.e., there exist
concave I, Fy

Fi:AS x A) x A(S x B) = R;
Fy : A(Sx A) x A(S x B) = R,

with —Fy = F, =: F.

With all this in hand, we adopt the following standard
assumptions, which are widely used in prior work (Zhang
et al., 2020):

Assumption 1. For the initial state distribution, it holds that
o(s) > 0,Vs.

Additionally, we assume direct policy parametrization
and define the Markovian and stationary policy of the mini-
mizing and the maximizing player to be z € A(A)IS| =: X
and y € A(B)!S!| =: Y respectively. Throughout, we only
consider Markovian stationary policies. After the agents fix
their policies, x, y, the transition matrix P(x, y) € RISI¥ISI
dictates how they traverse the state space. The occupancy
measures are defined as:

AT = (1= 7)Bay [0 7" H{s™ = 5,0 = a} o] ;
A7 = (1= By [0 " 1{s™ = 5,6 =b}[g] .

Further notation. Further, we denote A to be the state-
joint-action occupancy measure, A € A(S x A x B). Over-
loading notation, \(x, y) stands for the unique occupancy
measure that corresponds to the policy pair x,y. Addi-
tionally, A\; € A(S x A), 2 € A(S x B) will signify
the marginal occupancy measures with respect to the min-
imizing and the maximizing player respectively. Again,

overloading notation, \; (x,y) and Ay (x, y) are the unique
occupancy measures for a policy pair z, y. Finally, we will
at times suppress the notation F; (A1(z,y);y) in place of
Fi(M(z,y), A\a(z,y)) and similarly for Fs.

Crucially, both the occupancy measure and its inverse
operators satisfy the following continuity properties:
Lemma 2.1 (Continuity of the occupancy measure). Let
A € A(S x A x B) be the occupancy measure in a (convex)
Markov game and let \7* : A(S x A) — X and \;" :
A(S x B) = Y be the occupancy-to-policy mapping such
that: A\7 (M1 (z,9)) = 2305 " (\2(2,y)) = y. Then,

e X\ is Ly-Lipschitz continuous and has an {-Lipschitz
continuous gradient with respect to the policy pair (x,y)
in X x Y. Specifically, for all (x,y) and (z',y’),

1A, y) =A@’ gl < L ll(2,9) = (" 9)]l5
VA, y) = VA@,Y)I < e l(2,y) = (@ 9]

1 1 3
_ ISIZ(JA+IB]) . 2v[S[2(JA|+[B)2
=S5 andly= - 1—)3

where L :

* For any fixed y (respectively, ), \~" is Ly—1-Lipschitz
continuous with respect to \1 (respectively, \2), i.e., for
all M (x,y), M\ (2, y)—respectively, Aa(x,y), Aa(x,y’),

lz — 2" < La=2 AT O, 9) = M@’ )|
ly = 4'll < L=+ [[]A2" () = Aoz,

. ___ 2
with Ly-1 1= min; o(s)(1—v)"

Next, our solution concept corresponds to the following
min-max Nash equilibrium of the following function U :
A(A)ISI x A(B)ISI — R be such that:

U(.’L‘,y) =F (Al(x,y),)\Q(-T,y)) :

Definition 2 (e-NE). A policy profile (z*,y*) € X x Vs
said to be an e-approximate Nash equilibrium (e-NE), if for
any x € X and any y € ), it holds that:
U(x*,y) —e<U(z*,y*) <U(z,y*) +e.  (e-NE)
Finally, we will denote U* to be: Ul(z,y) =

U (Mz,y)) — 5l[A2(2, y)||*>. The following Lemma is a
direct consequence of hidden-strong-convexity.

Lemma 2.2. When p > 0, U*(x, -) has a unique maximizer
y*(x), for all x.

2.2. Policy Gradient Estimators

As discussed, the inexistence of value or action-value
functions for general utility MDPs, leads us to focus on
policy gradient methods; the direct application of vanilla
Q-learning methods is out of the question. To compute
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the policy gradient of a utility that is nonlinear in \;, we
make use of the (Williams, 1992) along the chain rule of
differentiation to write:

=22 5y

SES aEA

V. U(z,y) VA (2, y).

By sampling trajectories, each agent can stochastically esti-
mate the policy gradient using the following estimator.

Definition 3 (Gradient Estimator). Given a trajectory £ =
(59,a®)  sW . sH=D q(H=1)) of length H sam-
pled under a policy profile x,y and initial distribution g,
the gradient estimator, §, (¢|x, z), is defined as:

9z (§lw, 2) :=
H-1 h
Z Vo (S(h)’a(h)) (Z v, log z (a(h )| st ))) 7
h=0 h'=0

with 2 = V), Fi(A1(z, )5 ).

Sufficient exploration In order to ensure that the agents
sufficiently explore the environment and ultimately control
the variance of the estimators, we assume that both agents
are following e-greedy direct policy parametrization, i.e.,
for a given parameter value z € AlS| (A), the agent plays
according to m, = (1 — )z + \ET}I’ where 1 is an all-ones
vector of appropriate dimension.

2.3. Optimization Theory

Next, we introduce several key concepts from nonconvex
and min—max optimization, focusing on hidden convex-
ity and gradient domination conditions. We demonstrate
how strong hidden convexity implies the proximal Polyak-
Lojasiewicz condition (pPL) and the quadratic growth con-
dition (QG). We then show that when a min—max objective
satisfies a two-sided gradient domination condition, it enjoys
a zero duality gap.

Definition 4 (Hidden Convex Function). Consider a func-
tion f : X — R where X’ is a compact convex set such
that f(z) := H (c(z)), Yo € X for some mapping ¢ and
function H. If the following conditions are satisfied:

» the mapping c is invertible and its inverse ¢!
Lipschitz continuous.

is 1/pc

o the setU := ¢(X) is convex and the function H : i/ — R
is pgr-strongly convex.

The function is said to be (p., g )-hidden strongly convex
(HSC), while for pug = 0, it is referred merely as hidden
convex (HC).

Notably, the convergence analysis of our proposed meth-
ods begins with the following claim, which connects cMG
utilities to hidden convexity.

Claim 2.3. The function U is hidden-convex (resp., hidden-
concave) for the min. player (resp., max. player), given a
fixed action of the opponent. Similarly, the perturbed utility
Sunction U* is (p, Ly—1)-hidden strongly concave for the
max player due to the structure of the regularizer.

Proof. Follows from Definitions | and 4 & Lemma 2.1. [

Proposition 2.4 (HC implies gradient domination;
(Fatkhullin et al., 2023)). Let f : X — R be an {-smooth
and (fic, ppr)-hidden convex function and Ix be the indica-
tor function of the set X. Further, let F'(-) :== f(-) + Ix ().
Also, assume that the map c(+) is continuously differentiable

on X.
(i) If the set X = c¢(X) is bounded with diameter Dy, then

. e *
f > F(zx)—-F
Lt sl = 5 (P) - 1)

Vo e X.

(ii) If f(-) is (e, o )-hidden strongly convex, then

inf ||s.||? > 2u2pg (F(x) — F*), Vre€X.

54 €0F (x)
Definition 5 (pPL). Let an /-smooth function f : X — R

defined over the convex and compact set X C R?. Let
Dx (-, £) be defined as:

Do) = ~20in { (V1 (a).y = ) + 5 o~ i?}.

Then, f is said to satisfy the proximal Polyak-Lojasiewicz
condtion with modulus p if for all x € X, it holds true that:

Sl ) 2 p(f(a) ~ ).

Our following lemma establishes a variant of the “gra-
dient dominance” for the case of convex Markov games.
Namely we show that an approximate constrained first-order
stationary point ensures approximately optimal policies in
our game.

Lemma 2.5 (Gradient Dominance). For a zero-sum convex
Markov game, it holds that:

mas (V.U (2,9), 2 — ') > o (U(e,) — U, )

{Jng;(V Uz, y),y —y) > py (U(z,y*) = Ul(z,y)),
_ (1—v) min, p(s)
for pia, py = Y

Proof. Fix an arbitrary y € ). By the hidden convexity of
U(-,y) and Proposition 2.4, we have:

(1 — ) min, o(s) (
22
< min
82 €0, U (x,y)+0z1x(x)

— ] *
Uz,y) - min U(z ,y))
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Where, v/2 is the diameter of the state-action occupancy
measure. Applying (Rockafellar & Wets, 2009, Proposition
8.32), we obtain:

saf = max VU(z,y),z — 2’
o e || | = X (VU(z,y) )
||£E T H<1
< 2.
max (VU(z,y), ¢ - ')
Thus, we set p, = %\}gsg(s), and by symmetry, the
same holds for p,,. 0

Finally, in the Appendix we show that both HSC and pPL
imply QG, which states that the optimality gap at any point
x is lower-bounded by a quadratic term in its distance from
the minimizer. This ensures that progress toward optimality
can bound the proximity to the solution.

Proposition 2.6 (QG from HSC and pPL). Let f : X — R
be (-smooth and satisfy either: (i) (fic, i )-hidden strong
convexity (HSC), or (ii) proximal Polyak-t.ojasiewicz (pPL)
with modulus 1. Then, f satisfies the quadratic growth (QG)
condition:

@)= @) 2 E o — a2, Vo e X,

where x¥ is the closest in X* =

arg min, ¢ y f(z), and

minimizer

poc = pipm  (HSC), pqc=p (pPL).
Piecing the Framework Together. At a high level, the
standard tool in proving convergence to Nash equilibria for
gradient-based methods is the construction of a potential—
or Lyapunov—function (See (Bof et al., 2018)). A Lyapunov
function needs to be lower-bounded and decreasing for con-
secutive iterates of the algorithm. However, proving the
latter beyond the convex-concave setting, requires a careful
examination of HSC and pPL. As such, in order to shed
light on the structured nonconvex landscape, we note:

* Starting from the taxonomy of structured nonconvex func-
tions, we show in the appendix that HSC and pPL are
equivalent given a proper transformation of their moduli.

* Hence, the stationarity surrogate D (z, £) also serves as
a surrogate for optimality f(x) — ming cx f(z'). More
importantly, by Claim 2.3, in the min-max setting, for
a fixed opponent strategy, a sufficiently small Dy (x, ¢)
indicates that the player has found an approximate best
response.

Furthermore, we highlight an additional crucial detail.
Since, the pPL condition already guarantees quadratic
growth (with an equal modulus), the contribution of HSC
in this regard may appear redundant. Nonetheless, HSC is

translated to the pPL condition going through an argument
which degrades the modulus of HSC p to a pPL modulus of
upr, = O(u?). Hence, directly guaranteeing QG from HSC
improves convergence rates of the next sections by at least
an order of O(e/2).

3. New Insights in Structured Nonconvex
Min-Max Optimization

As a preliminary step of independent interest, we present
our results on optimization schemes for constrained min-
max problems under nonconvex-pPL and pPL-pPL condi-
tions. To maintain completeness, we restate our solution
concept under constrained min-max optimization perspec-
tive:

Definition 6 (¢-SP). Assume a smooth function f : X X
Y — R where X', ) are two compact and convex sets. Then,
(z*,y*) € X x Y is an e-saddle-point (e-SP) of f if,

{ maXxgecxy <sz(1'*7 y*)v x* = l’> <e€ (¢-SP)
maXycy <vyf(x*’ y*)7 Y- y*> <e

We adopt a context-agnostic approach, assuming each
player receives a “black-box” representation of their gradi-
ent vector. These hypotheses remain intentionally abstract,
as we impose no specific modeling assumptions on how
players’ payoff signals are generated. In this sense, they
serve as an “inexact gradient oracle” (Devolder et al., 2014)
that captures a wide range of settings. Reflecting on our
MARL scenario, this framework allows each player to inde-
pendently select and apply their preferred gradient estimator,
as in (Zhang et al., 2020; 2021; Barakat et al., 2023).

Model (Stochastic Inexact First-Order Oracle). For any ¢,
the gradient estimators g, (x, y¢) and gy (¢, ;) satisfy:

]E[gév<xt7 yt)} = gz(mty yt)7

E[gy(mfw yt)] = gy($t7 yt)§
El|ga (1, yo) I* < 03, 2

E”Qy(%ﬂt) ‘2 >

Additionally, scalars d,,, 6, > 0 bound the inexactness error:

me(l‘tayt)u S 5:Ea
vyf(xtvyt)H < Oy

Hence, g, and g, provide unbiased estimates of g, and g,,
respectively, which in turn serve as inexact approximations
of Vo f(x¢,y:) and V, f (24, y¢). As aresult, we encounter
two types of errors: (i) systematic bias (non-zero mean),
bounded by 4, d,, and (ii) random noise (zero mean), with
variance bounded by o2, o2

||ga:(xtayt) -
gy (e, yt) —

3.1. Alternating Methods

A widely used stabilization technique in nonconvex min-
max optimization, including adversarial training and GANSs,
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is alternating updates between players (Lu et al., 2019;
Nouiehed et al., 2019; Gidel et al., 2019; Bailey et al., 2020;
Wibisono et al., 2022; Cevher et al., 2023; Lee et al.,
Building on this approach, we analyze nested and alternating
gradient iteration schemes.

3.1.1. NESTED GRADIENT ITERATIONS

As a warm-up, we focus on solving the minimax problem
(e-SP) under the assumption that we have access to an oracle
for approximate inner maximization, similar to (Jin et al.,
2020, Section 4). Specifically, for any given z, the oracle
provides a ¢ such that: f(z,y’) > max, f(z,y) — ¢

Yir1 < ARGMAX(f(zy,-),€,);
=V (2, Y11))

(GDmax)
Tyl HX (It

Theorem 3.1 (NC-pPL; Informal version of Theorem D.5).

Let f : X x Y be an L-Lipschitz and £-smooth function
and X,Y be compact convex sets with diameters D x, Dy
respectively. Also, assume that f(x,-) satisfies the pPL
condition with modulus p > 0. Then, the iteration scheme
(GDmax) run with a tuning of

* step-sizes: T;,;—@( )andTy—@( )

2 2
 batch-sizes M, = © (%) and M, = © (H:;y),
where Kk 1= ﬁ, outputs an (€ + 6, + 0,)-saddle-point of f
after a total number of outer-loop and inner-loop iterations,
T, that is at most

roo(SLRED L (1)),

Theorem 3.2 (pPL-pPL; Informal version of Theorem D.6).

Let f : X x Y be an L-Lipschitz and £-smooth function
and X, Y be compact convex sets with diameters D x, Dy,
respectively. Further, assume that f satisfies the two-sided
PPL condition with moduli (i, . Then, the iteration
scheme (GDmax) run with a tuning of

o step-sizes:T, = © ( ) and 7, = © (%)

* batch-sizes M, = O (”’”‘7 ) and M, = © (Myaz),

outputs an (e +lo /1 (0, + 6y)) -saddle-point of | after

a number of iterations, T, that is at most

2 (LD {Lk,D
T:O( log r Xlog My y),
Ha fy € €

where K, := ui and ky = -
>

3.1.2. ALTERNATING GRADIENT DESCENT ASCENT

Given the simplicity and practical superiority of single-
loop methods over two-loop alternatives, a natural ques-
tion arises: can we achieve comparable convergence rates

2024).

without resorting to multi-loop procedures? To this end,
A1t-GDA leverages the sequential computation of x;; and
Yi+1 , ensuring that each update benefits from fresher gradi-
ent information.

@y Iy (-1 — Tofo(Ti—1, Ye—1)) (ALt-GDA)

Y < Iy (yr—1 — Tygy(xta Yi—1))

Theorem 3.3 (NC-pPL; Informal version of Theorem D.7).
Let f : X x Y be an L-Lipschitz and £-smooth function
and X, Y be compact convex sets with diameters D x, Dy,
respectively. Also, assume that f(x,-) satisfies the pPL
condition with modulus p > 0 for all x € X. Then, the
iteration scheme (A1t-GDA) run with a tuning of

o step-sizes:T, = O (7z) and 7, = © (3)
* batch-sizes M, = © ([ Kol ) and M, = © (@),

outputs an (€ + 0)-saddle-point of [ after a number of
iterations, T, that is at most

roo(£LRs D)),

€2

Theorem 3.4 (pPL-pPL; Informal version of Theorem D.8).
Let f : X x Y be an L-Lipschitz and £-smooth function
and X, Y be compact convex sets with diameters D x, Dy,
respectively. Also, assume that f satisfies the pPL condition
in x and y with moduli ji,, 11, > 0 respectively. Then, the
iteration scheme (A1t-GDA) run with a tuning of

¢) and 7, = O ()

) and M, = © (uz:u )

outputs an e-saddle-point of f after a number of iterations,
T, that is at most

3
T:O( ¢ 2IOgL(Dx+Dy)>_

ﬂ’ﬂfﬂy €

o step-sizes:T, = © (

* batch-sizes M, = © (

4. Main Results — Convex Markov Games

In this section we present our main results regarding
the convex Markov games (cMGs). We demonstrate that
a utility function that is hidden concave in the occupancy
measure satisfies the proximal-PL condition with respect
to the player’s policy. Then, we show that the maximiz-
ers of U#(x, -) are Lipschitz continuous in the minimizing
player’s policy x. Finally, we describe two policy gradi-
ent algorithms that enjoy convergence to an approximate
Nash equilibrium using a finite number of samples and iter-
ations. Namely, (i) nested policy gradient (Nest-PG), and
(ii) alternating policy gradient descent-ascent (A1t-PGDA).
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Throughout, §,, is implicitly tuned through the coefficient
of the regularizer, p. Also, J, = 0 since the maximizing
player has access to unbiased stochastic estimates of the
gradients. To see why u controls d,,, we note that by the
L,¢g-Lipschitz continuity of the regularizer, the norm of its
gradient is bounded. As such, 6, = O(pLyeg) and since we
also pick p = O(e), the bound on §,, follows suit.

Theorem 4.1 (Continuity of maximizers). Consider the
mapping x +— y*(x) = argmax,y f(z,y). Then, for
any two points 1, xo it holds true that:

ly* (1) = g™ ()| < Lu[J21 — 2o,

4
VHRQG®

Corollary 4.2. Define the function ®* : X — R as ¢ :=
I?

where L, =

max, {U(x,y) — Sl A2z, y) } . Then, for any z,z’ €

X, the following inequality holds:
[V (@) = Vo (a)|| < Lo ||z — /||

with €<1>7# = E(]. + L*)

4.1. Nested Policy Gradient

Algorithm 1 Nest-PG: Nested Policy Gradient
input (x¢, yo), step-sizes 7, 7, regul. coeff. y > 0
fort =1to T, do
Yt,0 < Yt—1
for s = 1to T, do
yt,s — Hy (ysfl + TyﬁyUu (xtfla yt,sfl))
Yt < Yt T
end for R
zy < Iy (%-1 = 17V U (241, yt))
end for
Pick t* € {1,...,T} of the best iterate.
output (x¢«, yp41).

Theorem 4.3. Consider a two-player zero-sum cMG, T, and
let € be a desired accuracy € > 0. Then, Algorithm | run
with appropriately tuned step-sizes T,,7y > 0, €5,y > 0
batch-sizes My, M, > 0 outputs an e-approximate Nash
equilibrium after a number of iterations that is at most:

0 () poly (a7 15151, 1Al + 181)

Theorem 4.4. Consider a two-player zero-sum cMG, T,
with with utility functions that are hidden strongly concave
with moduli p, p, > 0 respectively. Additionally, let €
be a desired accuracy € > 0. Then, Algorithm | run with
approprite step-sizes 7., T, > 0, exploration parameters
€z,&y > 0, and batch-sizes My, M, > 0 outputs an e-
approximate Nash equilibrium after a number of iterations

that is at most:

0 (log 1) poly (1 71 oy 75 IS |+ 18])

4.2. Alternating Policy Gradient Descent Ascent

Algorithm 2 A1t-PGDA: Alternating Policy GDA
input (x¢, yo), step-sizes 7, 7,, T > 0, regul. coeff. 1 >
0
fort =1to 7 do .
2y < Hx (2421 — TszU“(l‘t—l,yt—ﬂ)

ye < 1Ly (yt—l + Tyva(xtvyt—l))
end for
Pick t* € {1,..., T} of the best iterate.
output (Tse, ypx ).

Theorem 4.5 (Informal Version of Theorem E.12). Con-
sider a two-player zero-sum cMG, T', and let € be a desired
accuracy € > 0. Then, Algorithm 2 run with appropriately
step-sizes T,, Ty > 0, exploration parameters €,,e, > 0
batch-sizes M,, M, > 0, and a regularization coefficient
w = O(e), outputs an e-approximate Nash equilibrium after
a number of iterations that is at most:

0 (%) poly (oo 15 11 1A + 1B1)

Theorem 4.6 (Informal Version of Theorem E.13). Con-
sider a two-player zero-sum cMG, T, with utility functions
that are hidden strongly concave with moduli ji, 11, > 0
respectively. Additionally, let € be a desired accuracy € > 0.
Then, Algorithm 2 run with step-sizes 7,., 7, > 0, and batch-
sizes M, M,, > 0 outputs an e-approximate Nash equilib-
rium after a number of iterations that is at most:

0 (1og 2) poly (£ 2, sy 7 15151, 141 + 1B

We deem noteworthy the fact that Theorem 4.6 guarantees
(expected) last-iterate convergence for a class of nonconvex
games that take place over a constrained domain.

5. Numerical Results

We demonstrate Algorithms | and 2 on an iterated version
of rock-paper-scissors-dummy where each player remem-
bers the actions selected in the previous round. Hence, the
previous joint action constitutes the state in the Markov
game. The dummy action is dominated by all other actions
such that the Nash equilibrium of the stage game is uniform
across rock, paper, and scissors with zero mass on dummy.
We set the step-sizes 7, = 7, = 0.1 and vary the regu-
larization coefficient i to demonstrate its effect in biasing
convergence.
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Alt-PGDA on Iterated RPSD
w/ Length-1 Joint Action Memory

Nest-PG (10) on Iterated RPSD
w/ Length-1 Joint Action Memory

Nest-PG (100) on Iterated RPSD
w/ Length-1 Joint Action Memory

u=10.0
u=175
u=5.0
u=2.0
u=1.0
u=0.5
u=02
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Figure 1. Exploitability decays towards a small, but positive value corresponding to the bias introduced by the regularization coefficient (.
Results are averaged over 100 trials, each running the algorithm with a different randomly initialized policy profile. The leftmost plot
reports results for Algorithm 2; the right two report results for Algorithm | with 73, = 10 and 100 respectively.

Our experiments suggest clearly that (i) there is a pro-
nounced trade-off between speed of convergence and the ex-
ploitability of the solution of the perturbed problem (ii) more
inner-loop iterations account for more stable exploitability
decrease across consecutive iterates.

6. Conclusion and Future Work

Convex Markov games (cMGs) unify the domains of
convex MDPs and Markov games. Even the rudimentary
form of a cMG, a two-player pure competition, fosters a rich
mosaic of applications spanning language model alignment,
self-driving cars, and creative chess playing, to name a few.

In this work, we present the first algorithmic solution for
computing Nash equilibria. To achieve this, we develop
the first guarantees of convergence of alternating descent-
ascent to a saddle-point for nonconvex functions that satisfy
a one-sided or two-sided proximal Polyak-Lojasiewicz con-
dition over constrained domains. We utilized these results
to design a number of independent policy gradient algo-
rithms for convex Markov games that provably converge to
an approximate Nash equilibrium. In a nutshell, we develop
simple-to-use learning dynamics that converge to the op-
timal game solutions even under realistic and challenging
conditions where batch learning only allows noisy gradient
estimation.

In terms of a message to practitioners, our work highlights
that the regularized (A1t-GDA) algorithm is exceptionally
effective and easy to deploy to tackle min-max problems.
Its efficacy is achieved by mere (i) regularization, (ii) al-
ternating updates, and (iii) step-size magnitude separation
. Moreover, the generality of Theorems 3.3 and 3.4, cou-
pled with the prevalence of the PL condition in modern
machine learning objectives, makes a strong case in favor
of (A1t-GDA) as the default algorithm for min-max opti-
mization. Furthermore, we believe that it can seamlessly
accommodate more elaborate update schemes on top of (i-
iii), like adaptive learning rates, preconditioning, and, if
necessary, higher-order information.

From a theoretical standpoint, we anticipate fascinating
explorations of multi-player cMG interactions and a deep
investigation of an array of game-theoretic solution con-
cepts. We hope to see the experience of the rich multi-agent
c¢MG applications inform theory and give rise to meaningful
and challenging problems like equilibrium learning, equi-
librium selection, and notions of equilibrium performance.
We reiterate the fact that cMGs render the value-iteration
subroutine useless. The latter lies at the heart of the corre-
sponding algorithmic solutions for equilibrium learning or
computation in conventional MGs; its inefficacy in cMGs,
more than just posing an additional challenge, can stimulate
the search for new algorithmic tools.
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Roadmap of the Appendix

Helping the reader navigate, we list a short summary of the topics that are covered in each section.

* In Appendix A, we attempt to present an overview of key research directions, theoretical landmarks, and
applications. Interested readers can find further details in the cited literature therein although an exhaustive

survey is infeasible.

* In Appendix B, we establish a series of lemmata concerning gradient descent for smooth functions: (i) Lem-
mata B.2 to B.4 are standard results regarding the iterates of projected gradient descent (with an exact or
inexact and stochastic first-order oracle). (ii) We introduce Dx as the primary proxy of stationarity and
derive a descent inequality for inexact gradient estimates based on this proxy (Lemmata B.7 to B.9). (iii) The
section concludes with an analysis of the Lipschitz continuity of this proxy in min-max optimization. We

also examine how one player’s deviation affects the proxy of the other player.
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* Appendix C, we study relationship of Hidden Strong Convexity (HSC) and the equivalent conditions of the
proximal Polyak-t.ojasiewicz (pPL) and the Kurdyka-F.ojasiewicz (KL).

* In Appendix D, we present key results, including: (i) The Lipschitz continuity of maximizers, (ii) Convergence
rates for nested and alternating schemes under the general framework of hidden-convex hidden-concave
min-max optimization.

* Finally, in Appendix E, we extend our analysis to convex multi-agent reinforcement learning, combining the
results from Appendix D with policy gradient estimators to compute parameter updates.

A. Further Related Work

A.1l. Hidden Convex Optimization

Hidden convexity has emerged as an important structural property in nonconvex optimization, enabling global convergence
results in settings where traditional convex analysis fails—a survey can be found here (Xia, 2020). Fatkhullin et al. (2023)
have decisively proven the convergence of first-order methods even for the nonsmooth and stochastic settings. Moreover,
hidden convexity has been extensively studied across diverse applications, including policy optimization in reinforcement
learning (RL) and optimal control (Hazan et al., 2019; Zhang et al., 2020; Ying et al., 2023), generative models (Kobyzev
et al., 2020), supply chain and revenue management (Feng & Shanthikumar, 2018; Chen et al., 2024), and neural network
training (Wang et al., 2021). Even earlier, instances of an implicit convex structure have appeared in a number of works
in the past (Ben-Tal & Teboulle, 1996; Li et al., 2005; Wu et al., 2007). In a certain sense, hidden convexity falls into the
general category of metric regularity conditions (Karimi et al., 2016; Li & Pong, 2018; Drusvyatskiy & Paquette, 2019;
Drusvyatskiy & Lewis, 2018; Liao et al., 2024; Rebjock & Boumal, 2024; Luo & Tseng, 1993; Oikonomidis et al., 2025)
that have been used to prove convergence of iterative gradient-based methods.

Particularly, hidden convexity ensures convergence in nonconvex-nonconcave games. Namely, Vlatakis-Gkaragkounis
et al. (2021) introduced the notion of hidden-convex hidden-concave games and proved global convergence to a NE. Further
extending these ideas, (Sakos et al., 2024) investigates the impact of hidden structure and show that such properties can be
leveraged to enhance the stability of first-order methods. The generalized notion of hidden monotonicity (Mladenovic et al.,
2021) guarantees global convergence for multi-player nonconvex games.

A.2. Min-Max Optimization

The literature of min-max optimization is long-standing and intimately connected to game theory (v. Neumann, 1928).
In recent years, the exploration of nonconvex-nonconcave min-max problems gained prominence in machine learning,
particularly due to developments like generative adversarial networks (GANs) (Goodfellow et al., 2014) and adversarial
learning (Madry et al., 2017). Research has focused on defining appropriate solution concepts and developing methods
to mitigate oscillatory behaviors in optimization algorithms. A min-max optimization problem is often formulated as
a variational inequality problem (VIP) (Facchinei & Pang, 2003) and the literature has managed to guarantee provable
convergence to solutions of the corresponding VIP only under certain assumptions. Namely, convergence to an approximate
solution of the VIP point is guaranteed under (i) monotonicity, (or, a convex-concave objective) (ii) a gradient domination,
and (iii) other regularity conditions.

In particular, under monotonicity, the proximal point methods (Martinet, 1970; Rockafellar, 1976) for VIP guarantee
convergence. When the objective function is Lipschitz and strictly convex-concave, simple forward-backward schemes are
known to converge. Moreover, when coupled with Polyak—Ruppert averaging (Ruppert, 1988; Polyak & Juditsky, 1992;
Nemirovski et al., 2009), these methods achieve an O(1/€?) complexity without requiring strict convex-concavity (Bauschke
& Combettes, 2011). If additionally the objective function has Lipschitz continuous gradients, the extragradient algorithm
(Korpelevich, 1976) ensures trajectory convergence without strict monotonicity assumptions, while the time-averaged iterates
converge at a rate of O(1/¢) (Nemirovski, 2004). Furthermore, in strongly convex-concave settings, forward-backward
methods compute an e-saddle point in O(1/€) steps. If the operator is also Lipschitz continuous, classical results in operator
theory establish that simple forward-backward methods are sufficient to achieve linear convergence (Facchinei & Pang,
2007; Bauschke & Combettes, 2011).

Under a single-sided gradient domination condition, convergence to a stationary point of the min-max objective has been
proven in (Lin et al., 2020; Nouiehed et al., 2019; Yang et al., 2022). Under a two-sided gradient domination condition,
(Daskalakis et al., 2020; Yang et al., 2020; Zheng et al., 2023) have proven the convergence to a solution of the corresponding
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VIP (and equivalently to a min-max point). Further, under the Minty condition, (Mertikopoulos et al., 2018; Liu et al., 2021;
Diakonikolas et al., 2021) show convergence to solution of the VIP even under nonconvexity. Evenmore, (Azizian et al.,
2024) shows convergence of gradient descent under various conditions of regularity and local optimization geometry.

A.3. Convex Markov Decision Processes

The study of convex reinforcement learning emerged as a natural extension of standard RL to handle more expressive,
non-linear utility functions. Hazan et al. (2019) introduced the problem of reward-free exploration of an MDP through
state-occupancy entropy maximization. To tackle policy optimization, they proposed a provably efficient algorithm based
on the Frank-Wolfe method. Further advances were made by Zhang et al. (2020; 2021), who studied convex RL under
the framework of RL with general utilities. Their key contribution was a policy gradient estimator for general utilities
and the identification of a hidden convexity property within the convex RL objective, enabling statistically efficient policy
optimization in the infinite-trials setting. More recently, in (Zahavy et al., 2021; Geist et al., 2022) convex RL is reinterpreted
through a game-theoretic perspective. The former work views convex RL as a min-max game between a policy player and a
cost player, while the latter positioned convex RL as a subclass of mean-field games.

A related strand of research focuses on the expressivity of scalar (Markovian) rewards. Abel et al. (2021) demonstrated
that scalar rewards cannot naturally encode all tasks, such as policy ordering or trajectory ranking. While convex RL extends
the expressivity of scalar RL in these aspects, it still has inherent limitations. Specifically, infinite-trial convex RL excels at
defining policy orderings but lacks full trajectory ordering capabilities, as it only considers the stationary state distribution.
In contrast, the finite-trials convex RL formulation presented in this paper naturally captures trajectory orderings at the cost
of reduced expressivity in policy ordering.

Another relevant direction concerns RL with trajectory feedback, where learning occurs through entire sequences rather
than scalar rewards. Most prior works in this area assume an underlying scalar reward model, which merely delays feedback
until the episode’s end (Efroni et al., 2021). A notable exception is the once-per-episode feedback model studied by Chatterji
et al. (2021). Lastly, related research in multi-objective RL has explored the use of vectorial rewards to encode convex
objectives. The works of Cheung (2019a;b) demonstrated that stationary policies are often suboptimal in such settings,
necessitating non-stationary strategies. They provided principled procedures to optimize policies with sub-linear regret,
complementing our analysis in infinite-horizon convex RL, where distinctions between finite and infinite trials diminish.

A.4. Markov Games and Multi-Agent Reinforcement Learning

Markov, or stochastic, games, were introduced by Lloyd S. Shapley (Shapley, 1953). Interestingly enough, their
introduction coincides with that of single-agent of Markov decision processes (Schneider & Wagner, 1957; Bellman, 1958).
In an MG, agents interact with both the environment and each other. Each agent must balance immediate rewards against
the potential future benefits of guiding the system to more advantageous states. Since their inception, MGs have served as
the canonical model of MARL (Littman, 1994) which in turn encompasses numerous applications like autonomous vehicles
(Shalev-Shwartz et al., 2016), multi-agent robotics (Singh et al., 2022; Gronauer & Diepold, 2022), and general recreational
game-playing (Mnih et al., 2013; Silver et al., 2017; Berner et al., 2019).

In recent years, theoretical MG research has focused on developing computationally and statistically efficient algorithms.
The literature has experienced a rapid development making an exhaustive review infeasible in the context of this small note.
We outline results regarding (i) the computational complexity of equilibrium computation in MGs, (ii) “no-regret” learning
approaches with convergence to the corresponding equilibrium notion, (iii) convergence to a NE when the game’s structure
permits it, and (iv) offline equilibrium learning from data.

A number of works (Deng et al., 2023; Jin et al., 2022; Daskalakis et al., 2023) concurrently proved that (coarse) correlated
equilibria are intractable in infinite-horizon MG when the policies are required to be stationary and Markovian; computing
them is PPAD-complete. This is a pronounced contrast to normal-form games where they are computable in strongly
polynomial time. In terms of “no-regret” approaches, the literature has been quite fruitful, as it considers finite-horizon
games and policies that are stationary and both Markovian and non-Markovian. The solutions (Jin et al., 2021; Yang & Ma,
2022; Zhang et al., 2022a; Erez et al., 2023; Cai et al., 2024) are diverse and build upon the follow-the-regularized-leader
and online-mirror-descent framework. Nash equilibrium convergence has mainly considered fully competitive two-player
zero-sum MGs of infinite horizon, the Markovian counterpart of potential games, or their unification (adversarial team
Markov games) and games with certain structural properties on the rewards and the dynamics. In two-player zero-sum
games there have been results with a mostly stochastic-optimization approach (Daskalakis et al., 2020; Wei et al., 2021;
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Sayin et al., 2021; Cen et al., 2022; Zeng et al., 2022). In addition, a notable work guarantees convergence to a NE in
infinite-horizon games using only bandit feedback (Cai et al., 2023). Then, for Markov potential games, global convergence
of policy gradient methods has been presented in (Zhang et al., 2022b; Leonardos et al., 2021; Ding et al., 2022). Moreover,
(Kalogiannis et al., 2022; 2024) consider an MG of a “team” versus an “adversary” similar to (Von Stengel & Koller, 1997)
and guarantee provable convergence to NE. Lastly, (Kalogiannis & Panageas, 2023; Park et al., 2023) generalize zero-sum
polymatrix game to their Markovian counterpart with extra assumptions on the dynamics, and prove the tractability of NEs.
In terms of learning equilibria from samples, (Bai & Jin, 2020; Cui & Du, 2022) guaranteed sample-efficient learning of NE
in zero-sum games and (Song et al., 2021) went further to consider general-sum games. Finally, (Wang et al., 2023; Cui
et al., 2023) consider the sample complexity of learning an equilibrium beyond the tabular setting.

B. Optimization Preliminaries

In this section we go over some rudimentary optimization lemmata as well as some novel exploration of the min-max
optimization landscape for pPL functions. Namely, Appendix B.2 compliments the study of (Nouiehed et al., 2019) for the
constrained domain. To our knowledge, we offer the first such investigation of the constrained pPL landscape.

B.1. Optimization Definitions & Lemmata

Lemma B.1 (Smoothness inequality). Assume that f : X — R is an £-smooth function. Then, for x,y € X it holds that:
J4 2 4 2
F@) +(Vi)y —2) = 5 lly—2l” < flz) < fly) + (Vi) y —2) + 5 lly -2l

Definition 7. A function f is said to be (-weakly convex if f(z) + £ ||| is convex.

B.1.1. CONCERNING THE GRADIENT MAPPING

Lemma B.2. Let X C R? be a non-empty, closed, and convex set. Denote by 1y : R® — X the Euclidean projection
operator onto X. The following inequalities hold,

e for projected gradient descent:

1
(.2 =Tl (= 0)) 2 o = Tl (& —mo)|*;

* for projected gradient ascent:

(v, I (& +mv) = 2) > — o = T (x + o).

1
n
Proof. After writing the Euclidean projection of gradient descent with feedback v as an optimization problem:
1
min o 2’ — (& = )|,

we get the first-order optimality conditions,
(m+ Ty (x —n) —z,2z —Ux (x —nu)) >0, VzeX.

Setting z = x and re-arranging,
1 2
(v,2 =y (z — 1)) = p My (z —nv) — ||
Similarly for gradient ascent with feedback v we write,

1., 2
min o [|z" — (z + 7o)
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The first-order optimality condition for the Euclidean projection, reads,
(@' —x—nu,z—12') >0, VzeX.
Plugging-in ' = Il (z + no),
Iy (x +nv) —z —nu,z — Iy (z+nv)) > 0.

Re-arranging we conclude,

1
(v, e (@ o) =) = O [ (@ +nv) = z.

O

Lemma B.3 ((Ghadimi et al., 2016, Lemma 2)). Lef v, vy be vectors in R% and X C R? be a compact convex set and a
scalarn > 0. Also, let points 1, x5 € X such that:

:L’i" =My (x —nv1);

xy =y (z — nug).

Then, it holds true that:

lzf — 23] < nllor — va.

Lemma B.4 (Stoch. vs. Det. Grad. Mapping). Assume a stochastic gradient oracle §,, for a differentiable function f. For
the stochastic gradient oracle, it holds that E[§, ()] = go(z), E[||g.|°] < 02, and ||g.(x) — Vf(2)| < 0, forall z € X.
Also, let x,x T, &% be points in X such that:

Then, the following inequalities hold:

le = &4|° < 2o — 2* | + 40} + P}

Hx — .13+H2 <2 Hx —E+H2 +4n?o? + 4n?62.

Proof. We will prove the first inequality; the second follows from the same arguments.

e — | < 28 o — o | 4 28 3+ — o

< 28 ||z — 2| + 27K ga(2) — Vo f @)
< 2E ||z — 2 ||* + 4n°E|lga () — §o (@)]|* + 40°E || ga(2) — Vo f ()]
< 2B [|o — a || + 4n’0? + 4?3

The first and second inequalities hold from the fact |a + b|*> < 2|a|? + 2|b|?. The last inequality comes from the properties
of the stochastic gradient oracle. O
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B.1.2. Dx: AN ALTERNATIVE PROXY OF STATIONARITY

In unconstrained optimization of differentiable functions, the conventional bounds of optimization algorithms directly
guarantee the minimization of ||V f(z)||, i.e., the norm of the gradient of f at point z. In constrained optimization of
differentiable functions, guarantees for algorithms like projected gradient descent ensure the minimization of the norm of the
gradient mapping, i.e., % lx — x (x — nV f(x))|| - It can be shown that the gradient mapping is indeed a good proxy of
stationarity. For our work, we will consider the quantity Dy to be defined shortly. This quantity is greater than the squared
norm of the gradient mapping and turns out to be particularly favorable when handling the constrained optimization of
proximal-PL functions. In what follows, we will define Dy and discuss some of its useful properties.

Definition 8. Let X C R? be a compact convex set and f : X — R be an £-smooth function. We define Dy (x, £) to be:

Dix(w, @) = ~2amin { (VS (@), y = ) + 5y — ol + Te(y) ~ Te(a)}

Where Iy is the indicator function of the set X’ with Ix(x) = 0if x € X and Ix(z) = +o0 otherwise.

Remarkably, this expression can take a closed-form. As we will show, the minimizer of the display inside the brackets is
exactly the point returned by one step of projected gradient descent on the argument x with a stepsize equal to é

Claim B.5 (Closed form of D). Let f be an {-smooth function defined on a compact convex set X C R%, a point v € X,
and a scalar o > (. Then the following equation holds for Dx(z,a):

2

Dy(r,a) = 2a <Vf(x),m — Ty <x - ;Vf(:v)>> —a?

et (o L)

Proof. By first-order optimality conditions, we see that the objective is equivalent to the objective of the Euclidean projection
of the point (x - év f (1:)) € R to X. Then, we just plug the minimizer into the display. O

Next, we see that D(-, ) is non-decreasing in the scalar «.

Lemma B.6 ((Karimi et al., 2016, Lemma 1)). Let a differentiable functions f : X — R and positive scalars 0 < a; < «u.
Then, the following inequality holds true:

Dx(ﬂf,()q) S Dx(x, 042).

The following Lemma demonstrates the relationship between Dy and the norm of the gradient mapping.

Lemma B.7 (Dy vs. Gradient Mapping Norm). Let X C R? be a non-empty, closed, and convex set. Consider a
differentiable function f : X — R that has an ¢-Lipschitz continuous gradient. Define the gradient mapping at point x € X
with step size 1/ as,

Pz —a™)

where,

ey (o Lorte).

Then, the following inequality holds:
Da(z,0) > Ellat - o2

Proof. By observing the definition of Dy, we observe that first-order optimality for its inner minimization problem read,
(Vf(x)+Ll(y—=),z—y) =20, Vzed.

On closer inspection, we recognize the first-order optimality of the Euclidean projection of one gradient descent step, i.e.,

l
T = argmin{(Vf(x),y —z)+ |y$|2}
yey 2
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Plugging-in z:

Dy(z,0) = —20(Vf(z), 2" —z) — |zt — 2|

=20(Vf(z),z —at) - |2 — z|?
2

)

> £ o —af

where the inequality follows from Lemma B.2. O

Lemma B.8 ((J Reddi et al., 2016, Lemma 6)). Let f : X — R be an {-smooth function and a point x € X C R%. Also,
define the vector v € R and y € X to be
y:=Ixy (x —nv).

Then, the following inequality is true:

fy) <)+ (V@) —vy—2)

E 1 2 E 1 2 1 2
#(5-50) el (5 5 ) I =al? = 5= =17,

B.1.3. A DESCENT LEMMA INVOLVING Dy

Lemma B.9. Let X C R? be a closed convex set, and let f : X — R be an (-smooth function for some { > 0. Suppose
n>0withn < é. For any x € X and any vector v € R?, define v+ = Iy (x — nv) . Then the following inequality holds:

fa) < f@) = {1 /n) + 5 |V (@) — ol

Proof. First, we define 7+ :=Tlx (z — LV f(2)).

¢ Invoking ¢-smoothness of f for x, T, and assuming o > 0 with a > /£,

P2 < 1)+ (VI@), By — )+ § e —
< f@) + (VF(@), 7o =) + 5 lor — o]
= f(2) = ((Vf@)x = 74) = 5 oy —all’)
= f(z) - 5Dl 0). )

* Invoking Lemma B.8 withz = z,y =Ty, z =z, v = V f(x)
_ I
$@) < f@)+ (5 - 5 ) I =l @

* Again, invoking Lemma B8 but withz =2,y = x4, 2 =71, v,

flay) < f@4) + (V@) —v, 24 —T4)

14 1 2 / 1 _ 2 1 — 2
# (5750 ) lor =l + (5 + 35 ) e —al = - oy~ ®
Adding 1/3x(1) and 2/3x(2) and letting 1 /o = < ¢
_ 1 12 2 _
1@ < 1(0) = g Patot/m + (5 - o ) oy —alf
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Adding (3),

o) < @) = 30x(e 1/ + (5= ) I ol

+(Vf(x) v,z —Ty)

V4 1 2 J4 1 _ 2 1 — 112
+ (5= 50 ) hee ol (5 4+ 50 ) 1w =l = o lor — ]

n 5 1 _
< 1) - 2oxte1fu)+ (5 - 5o ) I =l
P 1 _
+ 195 vl + o oy~
4 1 2 1 — 2
S P = = |loy — 4
+ (5750 ) o =l = 5o llor — ] @

= f(z) - gDX(x, 1/n) + (‘Zé - 6177) [E—

+ 21V @) = ol

¢ 1 )
+(5- 0 ) e =l

< f(@) = IDxla 1/m) + 1 |V (@) =] )

* (4) follows from the application of Young’s inequality;

. .o . . IR . . 1
* (5) follows by dropping the non-positive terms; non-positivity follows from the choice of the step-size, n < ;.

B.2. Min-Max Optimization Lemmata

The following claims are novel to our knowledge. They justify the intuition that the constrained min-max pPL land-
scape should resemble its unconstrained PL counterpart. For example, the trivial bound ||V, f(x,v) — V. f(z,3)||” <
22 |ly — /|| of the unconstrained setting takes the form Lemma B.12.

Claim B.10. Let X and Y be convex and compact sets. Suppose that the function f : X x Y — R is £-smooth. For given
points y1,Yys € Y, define x1 and xf as follows:

o x1 = argmin,cy f(z,y1), and
o 2f :=x (z1 — nVaf(21,12)).
Then, then it holds true that:

1
= lor =2 || < Cllys — w2l
n
Symmetrically, for given points x1, 2 € X, if y1 := argmax,cy f(z1,11), y7 =y (y1 + 0V, f(2,11)) ,

1
p Jyr =y || < €|y — 2] -

Proof. By optimality of 21, z] for their corresponding optimization problems:
<Vf($1ayl)7$f—$1> ZO (6)

1
<Vf($17y2),:z‘1 — 1’—1"_> Z E ||I’1 . Q’)THQ (7)
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Adding-and-subtracting V. f (z1, y2) to Equation (6),
0 § <Vf(zlayl)7x1~_ - 331>
= (Vf(x1,51) = Vf(@1,52) + Vf(21,92), 27 —21)
= <Vf((E1, yl) - Vf($1»y2)a551+ - .’L'1> + <Vf(3317y2)7 l’iF - $1> . (8)
Hence, combining Equation (8) with Equation (7),

<Vf($1,y1) - Vf($1,y2)7$1+ - $1> > <Vf($1,y2)7.'171 - $T>
I

v

s ot
By Cauchy-Schwarz,
IV ) = Vel o] = o] 2 -l =7
Finally by Lispchitz continuity of V f(z, ),
=l = 1 flor =t

This completes the proof for a step of projected gradient descent. The arguments for the projected gradient ascent claim are
identical. O

Lemma B.11. Assume f : X x Y an {-smooth function, and a scalar a > 0, two points y,y' € Y and x =
argmin,c y f(z,y). It is true that:

20y = '[I* > D (r, az /).
Proof. Let xt := arg maxgc » {(Vf(as,y'),x —-T)— 5| —f||2} =1y (x — éVf(x,y')) .
1 o 2
%,DX(xaylaa) = <Vf($,y/),$ - Z‘+> - 5 Hx - 'r+H
« 2
We have assumed that = arg ming, » (7, y), therefore,
(Vf(z,y),z—x) >0 VzeX.
As such, when z = =7,
<Vf(:c,y),x — x+> <0.
Hence, since _71 Iz — 2+, (Vf(z,y),2 — ) < 0 plugging in (9),
1
(V) = Vi (y)w— o) 2 5 Dalw,asy).
Using Cauchy-Schwarz and /-Lipschitz continuity of the gradient,
1
Uy =y'lllle =2 = 5-Dx(@, as9).

Finally, using Claim B.10 with n = é,

02 2 1
o ly—y'1I” > %DX(x,a;y’).
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Lemma B.12. Ler f : X x Y be an {-smooth function, a > 0, two points y,y’ € Y, and a point x € X. Then, the following
inequality holds:
(D (e, azy) = Dae(w,a:9/)] < 36 |ly —o/'|*

Proof. We define 7,7’ € X to be:

By the definition of Dy (z, «; y') we write:

1 N a2
1

A / o @ =2
2aDX(:r,a,y)—<Vf(x7y),x :,C> 2 ||£C :,CH .

Considering the difference Dx (x, o;y) — D (x, o; y') we see that:
1 - = o _ 2
5=1Dx(@,059) = Dav(w,059)| = [(Vaf(2.y) = Vaf @.y),7 = 7) = 5 (o =7 = o = 7))
«
< (Vaf(@,y) = Vol (0,9), @ =)+ 5 |(lo =7 = o - 7))

< (Vof(@,y) = Vol (@.y)),7 = 3)| + 5 |7 - 7|

! —/ —_ (07 — —
< IVaf(@,y) = Vof @) |F — =] + 3 Iz —7'||°
1 2 1 12
< —IVaf(@,y) = Vaf (@) + 5 Vel (@.9) = Vo (@.9)]
302 9
< —lly—9v1".
< 5g v =¥l

We note that:

¢ The first inequality follows from the triangle inequality.
* In the second, we apply the reverse triangle inequality.
* The third inequality uses the Cauchy-Schwarz inequality.

* The penultimate uses Lemma B.3 and the final ¢-Lipschitz continuity of the gradient.
O

Claim B.13. Assume a function f : X x ) satisfying the pPL condition with modulus p over f(x,-) for any x € X. Also,
assume that ®(z) := maxyey f(z,y). Additionally, define: D% (z, ) = —2a min,cx {(V@(m), z—x)+ 5 ||z — :E||2} .
Then, it holds true that,

DR (2, 1) — D (x, 02;y)| < 3> Dy (y, az; )

where ;= L.
m
Proof. We define T, @’ as,

T =TIy <x - 1V<I>(x)> :

aq

7' =1y <9: - 1Vf(:c,y)> .

851
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Then, we see that:

1
s [P (@.00) = Dr(r. o) < |((VO(@).x = %) = T e = 7I7) = ((Vf(ew)x =) = G o —7|7)|
<|(Ve) - Vi @y, 7 - + 5 |llo —7)* = o - 7

— ay g2
<|IVe(2) ~ V(@) '~ 2l + 5 |z - ='||

N

< % Vo) — T f(z, )]

IN

R J— * 2
e, ly —y*(z)|

R
2@1

IN

Dy(y7a2;m)'

Where, the first inequality is due to the definition. The second and the third, follow from the triangle inequality and
the reverse triangle inequality respectively. The fourth follows from the fact that the projection operator is contractive
(1-Lipschitz). The last one is due to the quadratic growth condition and the pPL inequality. O

C. Hidden Convexity, PL, KL, and EB

In this section, we offer a brief exposition to the notions of hidden convexity and other regularity conditions it is related
to. We refert the interested reader to (Karimi et al., 2016; Li & Pong, 2018; Drusvyatskiy & Paquette, 2019; Drusvyatskiy
& Lewis, 2018; Liao et al., 2024; Rebjock & Boumal, 2024) and references therein. We commence by defining hidden
convexity in the manner that (Fatkhullin et al., 2023) do it.

Definition 9 (Hidden Convex Problem). Consider the optimization problem

?gﬁ? f(x) := H(c(x)).

This problem is called hidden convex with moduli L.-1 > 0 and g > 0 (or the function f is hidden convex on X)) if the
following conditions are satisfied:

(HC.1) Convexity of H and Domain:

* The domain U = ¢(X) is convex.
e The function H : U — R satisfies forall u,v e Y and 0 < a < 1,

(1—-a)auy

H(1-ao)u+av) <(1—a)H(u)+aH@) — 5

lu — vl
* The problem admits a solution u* € U.

(HC.2) Invertibility and Lipschitz Continuity of ¢~ !:

* The mapping ¢ : X — U is invertible.
* There exists p. > 0 such that for all z,y € X,

[z =yl < pelle(@) —c(y)] -
Furthermore, if pgy > 0, the problem is referred to as (., (g )-hidden strongly convex.

Assumption 2 (Lipschitzness and smoothnes of ¢). Letc : X' x) — U be a mapping such that for all (z,y), (2’,y’) € X xY
and all u, v’ € U, the following conditions hold:

le(a, y) = e, )| < Lell(z, ) = (@, y)];
le™ (u) = ¢ (u)]| < Le=aflu— o[l

and also,

HVC(I,y) - Vc(xlay/)“ < ECH(‘ray) - ('r/7yl)||7
Ve (u) = Ve ()| < Le-tflu —o].
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Fact C.1. A hidden strongly-convex function has a unique maximizer.

C.1. Equivalence between the three conditions

Throught this subsection, we will denote X* to be X'* = argmin, ¢y f(), z;; W.r.t. to a point x € X' is defined as
some element of arg min,c y. ||« — 2’||. Moreover, we define F(x) := f(x) + Ix(x) with Ix(z) = 0, if z € X, and
Ix(x) = 400, else.

Definition 10 (pPL, KL, pEB). Let f : X — R be an L-Lipschitz continuous function with £-Lipschitz continuous gradient.
Then,

* Proximal Error-Bound (pEB): f is said to satisfy the proximal Error-Bound if 3¢ > 0 s.t.

x—1Ily <x2Vf(x)) , VzelX

lo —apfl < e

* Proximal Polyak-Lojasiewicz (pPL): f is said to satisfy the proximal Polyak-Lojasiewicz condition if 3 > 0 s.t.
1 *
5D, 0) 2 n(f(@) — "))

* Kurdyaka-Lojasiewicz (KL): f is said to satisfy if I s.t.

. 2 —
L°>2 — f(z¥)), VzeX.
oo 2l = ) = 1), v

Lemma C.1 ((Karimi et al., 2016, Appendix G)).

(pPL) = (pEB) = (KL).
Remark 1. As we will see, (KL) w1th a modulus fz implies (pEB) with a modulus 1 + . In turn, (pEB) with a modulus c,
implies (pPL) with a modulus - 402 .

Following, we repeat the calculations of (Karimi et al., 2016) by explicitly tracking the dependence between the constants.
We will denote X'* := arg min,  f(x) and N () to be the normal cone of X" at x.

KL—pEB First, let F' be F(z) := f(x) + Ix(z). By the {-smoothness of f and the convexity of Iy, we observe
that F' is weakly-convex. By (Bolte et al., 2010, Theorem 13), for any z € domF' there exists a subgradient curve
Xz : [0,00) — domF that satisfies the following:

>
8
—~
=
|
8

4 P0a(0) = a0l

where ¢ — F'(.(t)) is a non-increasing and Lipschitz continuous function for ¢ € [, oo] for any 1 > 0. Further, we define
the function r(t) = v/ F(x.(t)) — F*. By differentiating r(¢), we observe that:

dr(t) F(x:(1)

At 2 /Fxa(l) - F
®)°

”Xz
)~
)

F(x(t)
S*Vﬁ|MAtW

* In the second line, we plug in the definition of the subgradient curve.

* In the third line, we use the KL inequality and the fact that x,(t) € —0F (xx(t)).
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Taking the integral, we write:

T T
r(T)—r(O):/O dr(®)

dt
T
< VA2 [ (o) (10)
< _\/T/QdiSt(Xx(T)aXr(o)% (1D

where:

* (10) uses the bound on ()

* (11) uses the fact that any curve connecting two points has a length greater than their Euclidean distance.

Now, we will show that limr_,, 7(7T") = 0. By (11), we get

r(T) - 7(0) = /0 dz(tt)dt

[ e,
0 2/F(a() -~ F*

<2 / oo
S _gTT(T)a

where the first inequality follows from the KL condition, and second inequality uses the fact that '(x(t)) is non-increasing
in t. Hence, we get a bound on r(7T),

2r(0)

<r(T) <
0 <n( )—2+ﬁT’

By taking the limit of 7' — oo, we get limp_, 7(T") — 0. Now we can focus on the term 7(0)
Proceeding, by (1 1) we write,

VF(z) = F* > /i/2dist(z, X*), (12)

From (12) and the KL condition, we see that:
dist(0, 0F (z)) > mdist(x, X™). (13)

No;lv, let define 2z = proxs, (z — $V f(x)). By the optimality of 2™, we have —V f(z7) — {(z — z) € Nx(zT). As
such,

Vi) = Vf(z) — (et —z) € OIx(z™).
Letting the particular subgradient of Iy (x™) that achieves this be &, we write,

dist(0,0F (z*)) = ||0 — &||
=[IVf(a*) = V(@) — ta* —a)|
<lzt =zl + |Vf(zt) = V()|
< 2lzt — x|, (14)
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where we used the triangle inequality and the /-Lispchitz continuity of V f. Finally, we can derive the proximal-EB condition
by

dist(z, X*) < ||z — 2T || + dist(z ™, &*)

<o —at| + é dist(0,0F (z1))
1]

20
<z -2+ =lz* -z
I
20
/14

* the first inequality follows by the triangle inequality;

‘We note that:

* the second inequality uses the (13);
* the third inequality uses (14).

Re-iterating:

20

. 2 _ % . . n
min szll” > 2 z)— f(z¥)), VerelX — dist(x, X)) < [1+ — ) {|lz —x™||.
omin sl 2 27 (/@) - @) @)= (142) o= o]

pEB—pPL Before proceeding, we define the forward-backward envelope, F% , of " (Stella et al., 2017, Definition 2.1),
as:

Fy = min {70) 4 (V10 =)+ Gy = ol + Lelo) = (o)}

3

Additionally, we observe that: Dy (z, ) = 2¢ (F(m) —F: (:c)) . Moving forward we note that by assumption, it holds that:

dist(z, X*) < c|jlz — Iy (ac - 2Vf(a:)> H

From the latter we write,
(z) + F% (x) — F*

< F(z) — Fi(z) 4+ 20 ||l2* — 2
2
(z) + 26c*

)=

et (o L)

< (1+4c%) (F(x) ~F (:c))

1
(14 4c%) ﬁDx(x,é).

Where the second inequality follows from the pEB condition and the two last steps follow from (Stella et al., 2017,
Proposition 2.2(1)): & |z =Ty (z — $Vf(2)) H2 < F(z) = Fi(z) and F(z) — Fi1(z) = %D (z,0). In short,

1

[ (F(x) —F") < %’DX(I"Z)'

Concluding, we see that KL with modulus 7 translates to pEB with constant ¢ = (1 + %e) In turn, pEB with constant ¢
translates to pPL with modulus H%CQ. This means that KL with 7z is equivalent to pPL with modulus g,
14 o
T ﬁ 3202
1+4(1+%)

=
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C.2. pPL from HSC

Proposition C.2. Let [ : X — R be an {-smooth function that is (i, i )-hidden strongly convex with g > 0. Then, f

satisfies the proximal Polyak-Lojasiewciz condition with a modulus p,

0
=

- 2
1+4(1+2H§iH)

Proof. By (Fatkhullin et al., 2023, Proposition 2(ii)), (., 4t )-hidden strong convexity implies,

. 2 2 *
min sz||” > 2p; x)— f(x™)).
eomin sl > 2t (f() — £)

While, (Karimi et al., 2016, Appendix G) and our precise quantification of the constants,

¢
=

- .
1+4(1+2H§iH)

C.3. QG directly from HSC, KL, pPL

Proposition C.3 (QG from HSC). Let f : X — R be an {-smooth function that is (lic, ppr )-hidden strongly convex. Then,

forallx € X,
f@) = fa) = Bl — o,

with pqa = p2um where x* is the unique minimizer of f over X.

Proof. We start by leveraging the strong convexity property of the function H. By the definition of strong convexity with

modulus gz, for any u, v € U:

H(u) = H(u*) = (Vo H ), u— ") = 22—,

When v* is a minimizer of H, the gradient at u* satisfies:
(VuH(u),u—u*) >0
Leveraging the latter, (15) simplifies into:
H(u) = H(u*) > Bl flu—u*|.
Because ¢! is Lipschitz continuous with modulus 1/, we obtain:

1
le = 2*[| = [ () — e (w)]| < 2o =l

Substituting this bound into equation (16), we obtain:

123; 4 2
H(u) = H(u*) = 5 | — |
2
_ HeHH w2
= = e =

Recognizing that H(u) = f(z) and H (u*) = f(«*), we can rewrite the above inequality as:

2
* Iu’CNH *
f@) = fat) > By — .
This concludes the proof.
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Proposition C.4 (QG from KL). Let an {-smooth function f : X — R satisfy the Kurdyka-Lojasiewicz (KL) condition with
modulus > 0, i.e.:

—_

— )< - inf 212 X.
w(f(x) f)_QSmelgF(w)lls I*, Vaxe

Then, it satisfies the quadratic growth (QG) condition with a modulus ‘5‘ ie.,

1 2

1 Hx — x;H < flx)—f*, VeeX,
where x € argmin . ¢y« |7 — 2*||? and in turn X* = arg min, ¢y f(2).

Proof. Before proceeding, we note that the PL condition in (Liao et al., 2024) is what we call the KL condition in this
manuscript. Let us define F'(-) := f(-) + Ix(-) where Iy is the indicator function of the compact convex set X'. We note
that, Iy is convex and f is {-smooth and as such ¢-weakly convex. Hence, F'(-) = f(-) + Ix(-) is also {-weakly convex. By
(Liao et al., 2024, Proof of Theorem 3.1 (PL—EB))

1
le—apll < nf lsell

where x; € argmin,. ¢y« ||z — 2*||* and in turn X* := arg min, ¢y f(«). Then, by (Liao et al., 2024, Proof of Theorem
3.1 (EB—QQG)), we know that,

o=l <@ -

O

Proposition C.5 (QG from pPL; (Mulvaney-Kemp et al., 2022, Theorem 2)). Let an ¢-smooth function f : X — R satisfy
the proximal Polyak-Lojasiewicz (PL) condition with modulus p > 0. Then, it satisfies the quadratic growth (QG) condition
with the same modulus p,

i 2
ZHx—x;H < flz)—f*, VxelX,
where x7 € argmin,. c v [z — 2*||? and in turn X* = arg ming c y f(2).

C.4. Warm-up: Stochastic Projected Gradient Descent on a proximal-PL Function

Now consider stochastic projected gradient on a nonconvex pPL ¢-smooth function f. The analysis closely follows
(J Reddi et al., 2016).

Assume B, () = g (2), [|§2(2) — go(2)|| < 6 and B ||§.()||* < o2. Further, define points @41, Ty, to be:

Tpp1 = Iy (20 — 1ga(24)) 5
Trp1 = U (20 — Ve f(21)) -

Theorem C.6. Assume an {-smooth function f : X — R with an inexact stochastic gradient oracle §, such that
N . .2
Eg. () = g2(2), |2 (%) — 92| < 5§ and E ||g.||” < o2, Then,

* running stochastic gradient descent with a d,-inexact gradient for T' > 0 iterations, yields the following inequality:

3 (Ef(zo) = f(z*))
T

DX($t+17€) S +3(5§ +30’i.

11
2

Nl -
M7T

t

Il
=

e Further, if f is pPL with modulus p, the followinng inequality holds true:

3062 3lo?
_ + _

Ef(eri) = f(o*) < oxp (= 5T) (Flao) = £ + = =+ =52

3¢
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Proof.

* Welet T,y := Iy (z; — nV f(x:)). Invoking ¢-smoothness of f for 24, T;;1 and requiring that < %,
_ 1,
(@) < f@e) + (VF(20), Tegr — 2) + 2 Ze1 — a0

= f(x) — <<Vf(iﬂt),xt —Tyq1) — % | Teq1 — $t||2>

= f(w) = 5 D(ae,1/n)

* Invoking Lemma B.8 with © = x;, y = Ty41, 2 = @, v = V f(24)

14

F@ein) < £+ (5 1) I =l

* Again, invoking Lemma B.8 but with © = x4, y = Z441, 2 = Te11, v = §(1),

f(@i1) < f(@e1) AV F(@1) = §u(4), D1 — Tagr)
Y4 1 4

(- D o — w4 (Lt 1) 1 — el — = e — T |2
2 27 2 2n 2n

Adding 1/3x(17) and 2/3x(18)

@) < f(o) = BPx(a1 /i) + (5 - 5 ) 7w = ol

Adding (19),
n 14 2 _ 2
Flre) < F(@0) — PDlw1n) + ( - ) A

3 37

+ (V@) = 9o (1), Te41 — Tey1)

(L1 w1 (£t 2 12— ol = = o — T
[ L1 oL B
2 277 t+1 t 2 277 t+1 t 277 t+1 t+1

S f(l’f) - gDX(.Tt, 1/7’}) + (56 - > ||ft+1 — It”Q

€
6 6m
+ 51V F () = galen)

+ (5= 5 ) e — l?
2 27’ t+1 t

< flae) = gDalee 1/n)+ 5 [V (we) = ()

< J(@) = EDx(an 1 n) + 019 (e) = ga @)l + nllgsw0) = gl

We note that we have picked < 2.
« (20) follows from the application of Young’s inequality (a,b) < 2 ||a/|* + ﬁ 1] with p = 7;

* (21) follows by dropping the non-positive terms; non-positivity follows from the inequalities:

1. OZSZ—%
2. £§5€§%then€—%§0
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* (22) follows from [la + b||* < 2[ja|* + 2||b]|*.

Taking expectations:
Ef(vi41) < Ef(ae) = 2D (t, 1/n) + 0% + o’ 23)

where the last inequality follows from the choice of the step-size. Rearranging (23) and summing over 7', we get:

1 =1 1 3 T—1
T ; §DX(xt7 1/n) < nT 2 (Ef(z¢) — Ef(z441) + 362 + 302)
3(Ef(zo) — f(27))

IN

+ 302 + 302.

When the pPL condition holds and n = 2

57> We get from (23),

Ef(zin) = £ < (1= 2) (Bf (@) = %) + 62 + 02,

3¢
and as such,
T 2 3
Bfwr) =1 < (1= 4) Ul =)+ @2+ Y (1-4)
t=1
, 1— o T+1
=(1-4) (f(wo)—f*)+(5§+0’3)1_((1%
3¢
un\T 3052 3lo?
<(1-gp) Ul — = s =
i 3062 302
< oxp (g T) (Floo) = )+ =2+ =5

D. Constrained Min-Max Optimization Under the pPL Condition
D.1. Key Lemmata

Theorem D.1 (NC-pPL and cont. of maximizers). Let function f : X x Y — R with f(z,-) satisfying the proximal-PL
condition with parameter u for all x € X. Then, consider points x1,x2 € X and y*(x1),y*(x2) € Y with y*(x1) :=
argmax, cy f(v1,y) and y*(r2) := argmax,cy, f(z2,y), it holds true that:

ly*(w1) — y*(@2)|| < Ly |71 — 22|,

where L, = f.

Remark 2. One might compare the last statement to the Robust Berge Maximum Theorem (Papadimitriou et al., 2023,
Th. 3.20) which concerns (non)convex—strongly-concave functions with coupled feasibility sets. Essentially, the former
statement illustrates that hidden-strong-concavity is in some aspect a stronger assumption than strong-concavity; in hidden-
strong-concavity the feasibility sets are only “hiddenly” coupled. This allows us to decouple the constraint sets and view the
problem as a constrained nonconvex-pPL problem. Then, it is quite intuitive that Lispchitz continuity of the maximizers holds
in light of the analogous result (Nouiehed et al., 2019, Lemma A.3) which concerns unconstrained min-max optimization
over nonconvex-PL functions. Ultimately, this decoupling principle is also the reason why Kalogiannis et al. (2024) can
compute the gradient of the maximum function by only invoking Danskin’s Theorem and not the more elaborate Envelope
Theorem (Afriat, 1971).

Proof. Since we have defined the pPL and QG growth conditions for a minimization problem, let us assume g(x,y) =
—f(x,y). Consequentially, arg min, ., g(z,y) = argmax, ¢y, f(z,y) > y*(x). Finally, we define:

) a
Dy(y,a;x) = —20433}1 {(Vyg(x,y),z —y)+ 5 |z — yH2} }
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By the proximal-PL condition, it holds that,
1 * * *
5Dy (¥ (21), 1/m3.22) 2 p(g (w2, y™(21)) = g (22,57 (22)))

By the QG condition:
* * HQG * * 2
g (z2,y" (1)) — g (22,9 (22)) > % l|y* (1) — yp(x2)||
Where, yr(22) := argmin, ¢y, [|y*(z1) — /|| and Y*(2) := argmin, ¢y, g(w, y). Finally, by Lemma B.11,

Dy (y* (1), 1/n;22) < 2 |lay — 2o

Putting these pieces together,

2

(
B8 1y (1) — g (a2)|” < o [

2

Further, we know that pPL with modulus z implies QG with the same modulus (Proposition C.5). This concludes the
proof.

O

Corollary D.2. Let function f : X x Y — R with f(x,-) satisfying the proximal-PL condition with modulus p for all
x € X. Then, let ®(x) := maxycy f(z,y). For any two points x1,x2 € X it holds true that:

[Ve®(21) — Vo ®(22)|| < Lo |71 — 22,

where by := (1 + L) =+ 4%

Proof. We write,

[V ®(21) = Va®(22)|| = (Vo f (21,4 (21)) = Vi f(z2,y"(22))]]
< C|(z1,y"(21)) — (z2,5" (22))]
< oy — o + LLy [|lzy — 22|

The first equation holds due to Danskin’s lemma, and the first inequality is due to /-Lipschitz continuity of the gradient. The
second inequality is due to the triangle inequality and the L,-Lipschitz continuity of the maximizers. O

Lemma D.3. Let f : X x Y — R be an L-Lipschitz continuous and (-smooth function that satisfies the two-sided pPL
condition for both f(-,y) and f(x,"), then:

minmax f(z,y) = maxmin f(z,y) =: ®*.
min yef}‘f( 2 Y) yegwe){f( )

Proof. We can invoke (Yang et al., 2020, Lemma 2.1) which holds for two-sided pPL functions with minor modifications.
O

Lemma D.4. Let the function f : X x Y — R satisfy the pPL condition with moduli 11, s > 0 respectively for
f(,y),Yy € Yand f(x,-),Yr € X. Then, the function ® : X — R with ®(z) = maxycy f(z,y’) satisfies the pPL
condition with modulus |11 .

Proof. For the purposes of this proof, we will enhance the notation of Dy as follows:
f ) — : @ 2.
Dy (z, o y) = 72(1{%1}(1 {(Vf(:n,y), z—x)+ 3 |z — || } ;

D} (2, 0) = —2amin {(vq>(x), 2 —x)+ % Iz — x||2} .
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D% (x,ls) = DY (x, ey (2))

> 21 (f(m,y*(x)) -

z'eX

2 ).
Further,
f@',y* () < max f(2',y),
yey
and minimizing on both sides yields,

< mi "y) = ®*.
min, f(z’,y*(z)) < min max f(z',y)

Hence,

DY (x,ly) > 2u1 (B(z) — D).

D.2. Stationarity Proxies and the Gradient Oracle
Definition 11. We define Dy, and D% to be the following quantities:
. «
Dy(y, i) = —2amin { (~Vf(r,9).2 1) + 5 I~ v’}

and correspondigly,
D} (2,0) = —2amin {(V(D(x), 2 )+ % Iz — xHQ} .
ze

Definition 12. We define the deterministic and stochastic gradient mapping at point x; and y, to be:

¢ gz,‘rI (1’) = % (,’E -l (l’ — Tz )) and g; T gm;rz (‘rt);

* G;ﬂ_z (xt) = % (I - HX (I‘ - ngx(xtvyt))) and gA;,TE = g;c,'rm (xt)7

and respectively:
* Gy, (¥) ::%(Hy(y—i—ry v) —y)andG; =Gl (y);

* Gy, (v) = = (My (y +7,0) —y) and G}, . =G} (y).
Assumption 3 (Unbiased Inexact Gradient Estimators and Bounded Second Moments). For all iterations ¢, the gradient
estimators g, (¢, y¢) and gy (x4, y¢) satisfy
E gzt )] = g(ze, 1),
E{gy(@e, y0)] = g(@t, ye),
and
|9m xtvyt } <o 2

dl
E [y (e ) IP] < o2

Inturn, ||lgo (24, y¢) = Vaf (@6, ye) | < 62 19y (@6, 32) = Vi f (@, ye) | < 6.
Remark 3 (Bound on Second Moment instead of Variance). At first, it might appear a slightly stronger assumption to
place a bound on the second moment of the gradient estimator. Yet, in most relevant works the variance of the relevant
estimators is bounded only after bounding the second moment (Daskalakis et al., 2020; Zhang et al., 2020; 2021). As such,
this assumption is reasonable and rather standard to satisfy for the aforementioned applications.
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D.3. Convergence of Nested Gradient Iterations

We can formulate the nested gradient iterations algorithm using the following template,

(24)

yt+1 <— ARGMAX(f(.’Et, ')7 Ey),
Tep1 — Iy (20 — nV (24, Ye41))

where, ARGMAX (h, €) returns an e-approximate maximize of function h. As a function, it can be implemented efficiently by
projected gradient ascent.

Finally, the outer loop of the process implements projected gradient descent with a stochastic and inexact gradient
feedback on ®(-).
Theorem D.5 (NC-pPL). Let f : X x Y — R be an {-smooth function satisfying the pPL condition with a modulus p for
f(x,-). Then, after T iterations of (24) it holds true that:

1 _ 6LDx

Tz

QAS,’:/T + 652 + 60

t=0

Proof. By Theorem C.0 and a tuning of step-size 7, < z;—, we get that,

— 1 Ed — O(x*
— Z —DX(x141,1/7) < 3C(E®(wo) (z")) + 302 4 302
P 2 T

'ﬂ

In this context, the inexactness of the gradient oracle d,, is:

0n = max B[IVO(x:) = V(x| = max (Elly —y"(z)l,

while by the quadratic growth condition of f(z, -) we know that,
By = y* (@0)l] < E®(21) — Ef (21, 2)
< gy

where ¢, is the accuracy of the inner loop which we will defer tuning. We, invoke Lemma B.7 to see that the sum of

5d,t 2
Gorr,

D% (x4, 1/7,) upper bounds the sum of ‘

> _ 6 (ED(xy) ~ 2(a%)

50t
Gojra|| = T
xT

+ 662 + 602.

Now, we see that ®(xg) — ®(z*) is bounded by LD » due to the L-Lipschitz continuity of ® and the bounded diameter of
X. Finally, we can tune 7, and ¢,.

1
50

.T:%

* T, =

2

¢ Mw 186
L] 6 — €

Y V18"

O

Theorem D.6 (pPL-pPL). Let f : X x YV — R be an L-Lipschitz, {-smooth function and X ;Y be two compact convex
sets with Euclidean diameters D ., Dy respectively. Further, assume that f(-,y) satisfies the pPL condition with modulus
U for all y € Y while f(x,-) satisfies the pPL condition with a modulus ., for any x € X. Additionally, let §, be an
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inexact stochastic gradient oracle such that Eg,(x) = g.(z), E ||gz(z) — g (2)|| < 02, and ||g.(z)|| < 6. Then, after T
iterations of (24) with a tuning of step-sizes 7, = 50s"
3lp0%  3lpo?
E®(z7,1) — ®(z*) < exp <_”T> LDy 4 2220 | 2000y
3lg Mz 2

Proof. By Theorem C.6 with 7, = ﬁ,

30562 3lgpo?
+ﬂ+ﬂ_

E®(zr41) — () < exp <MT> (®(z0) — %) . L

s

First, we repeat the fact that LDy > ®(x9) — ®* due to Lipschitz continuity. Then, we note that §, has to be tuned as
2 P
1/ ;‘Tﬁ and the batch-size needs to be M, = Piiﬂ—‘ where € > 0 is the desired accuracy. Finally, T' = F’lf log (@)—‘ .

O

D.4. Convergence of Stochastic Alternating Gradient Descent-Ascent

In what follows, we will analyze the convergence of projected alternating gradient descent-ascent for nonconvex-pPL
and two-sided pPL functions. The convergence proofs closely follow those of (Yang et al., 2022) and (Yang et al., 2020)
respectively after carefully modifying the arguments to make them work for the constrained setting. Convergence is proven
by showing that an appropriate Lyapunov function diminshes along the trajectories of the algorithm’s iterates (Bof et al.,
2018).

In both scenarios we face, proving that the corresponding Lyapunov function diminishes is proven by first:
* lower bounding the descent on the maximum function ®(-) for every update on x;
* lower bounding the ascent on f(z, -) for every update on y;
* upper bounding the descent on f(-,y) for every update on z.

As a reminder, the iteration scheme of alternating gradient descent-ascent is the following,

i1 = Ha (v — T2 G (w4, yt)) ;
Yerr = My (e + 7y Gy (2141, Y1) -

D.4.1. NC-pPL

Theorem D.7. Let f : X x YV — R be an L-Lipschitz, {-smooth function and X,) be two compact convex sets with
Euclidean diameters Dy, Dy respectively. Further, assume that f(x,-) satisfies the pPL condition with modulus p.
Additionally, let (§., §y) be an inexact stochastic gradient oracle satisfying assumption 3. Then, after T iterations of
(A1t-GDA) with a tuning of step-sizes T, = W and Ty, = é, it holds true that

T-1 2.2

1 2 k*¢L(Dy +Dy)  co0? csk?o

T E (E ||g;7n || + 2EDy (ys, ¢; xt)> < T + M, + 062 + M, v o4 03/<;25§,
t=1 ‘

where, c1,ca,c3 € O(1).
Proof.
Descent bound on P.

1
Gry, = e (¢ — Ty (2 — 7. Vo ®(24)))

x

Due to /-smoothness and the fact that % > blg we can use Equation (23) to get:
Tx 0
E®(ve11) < BO(ar) = TED(ve,1/72) + B Vo ®@(@) = Vo (wi,un) | + 7B Vo f (@1, 1) = ey
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2 N
+ T E Ve ®@(zt) — Vo f (24, yt)||2 + T E (Vo f(xe, ye) — g:r(xtvyt)H?

+ T B ||V ®(2:) — Vo f (4, yt)||2 + 273003 + 27'3065

<E®(a,) - TE||G7Y,

<E®(x;) — E Gt

Ascent bound on f(z;,-) Fora choice of 7, < &; <

r\\)—l

-
Ef(viq1,ye41) = Ef (2441, 9¢) + %EDAJ(%? /Ty 2e41) — Ty(sz - Tyaj

Upper Bound on the descent: f(x:,y:) — f(z141, Y1)

y4
F@egr,ue) = fl@e,ye) + (Vo f (@6, Ye), Tegr — @) — B i1 — a?

= F@eu) = 7o {ge (0 00). G r, ) = 7o (VS (wrsm) = 92w, w0), G, )
072 | 4

9 gz \Tx

= f(xt,yt) — T2 <gw(xt, i), Gt n> — T <gm($t7 Yt) = 9o (Tt, Y1), Q£7m>

—Tx <me(xt, v) = oo, G TI>

ET
= et

= f(xtvyt) — Tz <gz(xt; yt)v gA;,Tm>
— Tz <gI('Tta yt) - g$(xt7 yt)a gi,rz> — Tx <g$(xta yt) - ga:(xta yt)7 gx T g; -,—m>
— Tz <V:L’f($ta yt) gx(wh yt) gx 'rx>

2

2

ET 2
2 g;ﬁ Ta
Tx |~ 2 Tz || 5t 2
> f(@e,ye) — e} 192 (e, ye)|I” — o Garr, (25)
— T (Ge (Tt yt) = 0o (e, 90), Gho ) — T <gx($t7 Yt) — Gu(Te,9e), G 1, — Qfm>
Tx Tx 5
Y IVaf (e, ye) — gz($t7yt)||2 Y g;,m
N 2
[
s A 2 Ty
> fGerw) — (7 + ) 08| = B VaCormol?
— T (Yo (Tt yt) = 0o (e, 90), Gho ) — T <gw(xt, ) — Gu (e, 90), G . — G T,>
Tmég
- (26)
(72 4 2 Ty,
> f(oe,ye) — (Tz + 2) Gor | — > 192 (e, ye) |1
N 2 Twag
— 7o (o (@, 1) — 9o (@ 00), Gl ) — 7o 92 (20, 01) — G (@ ye)|* — 5 (27)

* the initial equations are mere additions-subtractions of terms and plugging-in of definitions;
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* (25) follows from Young’s inequality;

* (26) follows from gathering terms and using the bound on the gradient inexactness error;

* (27) follows from the Cauchy-Schwarz inequality and the non-expansiveness of the projection
Taking expectations again:
7,02

2

Ef(zir1,yt) > Ef (2, 1) — (Tx + ) ]E}

5t
gz Ta

T202
- TmE <ga:(xt7yt) gw(xta yt) g;l; Tz> - Txo_;% - ==

2
2 37'9:‘7;% Twéi
:Ef(xt»yt)_(%'i')E)gatnn T 9 T o
3T | 5 2 31,02 1,62
> Ef () - LE|G | -T2 -
3Ty 2 97,02 77,02
ZEf(xt?yt) Eng Tx - 2 0’3 - 2

Where, we used that 7, < 2 57, Which means that 1 (T;,; + £72 ) < 3%-

Bounding AGDA iterate difference Ef(z11, y:+1) — Ef (2, ye)-

37s 97,02 1Ty
Ef(zes1,ye41) — Ef (o, 5¢) 2 ——"E Gz || = 2 752

+ KJEDJ)(%’ /Ty 2e41) — Ty‘si - Ty"z%

The Lyapunov function. We will define the Lyapunov function,

V(oo yn) = @) + @) = flanp)) = (1+a) D) - af@e ),

with & > 0 to be tuned at the end. Also, we will denote V; := V (xy, y:)

EV; —EVig1 = (1 + a) (E®(xy) — E®(z441)) + o (Ef (2e41, yev1) — f(2e,4t))

Ta 2
EV; —EVi > (1+a) (ZE||G71

ro(-Teg

2 97,07 77-I62>

2 2
Ty
+a (EJ]EDy(yt, /7y @eq1) — Ty(s; — Tydi)
1+ o)1, ot 9
> TE 1Get || — (1 + )TE Vo ®(z:) — Vo f (24, p) |
37@0(

5 E|9:r,

QT

“ TyEDy(yu 1/7y; @e41)
97

+ (—2@(1 +a) — Za) o2+ (—ary) 05
7Tx 2 2

+ 214+ a)— 5 6y + (—ary) d,
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1 x
> WX g go0 | (14 @) |V, 8() — Vo f G o)

2
37'96 aTy 3aryl

?EDy(yt, 1/mys2e) —

+ <27’m(1 +a) — £)27—ma) o+ (—ary) 05

E|z: — zes1 ]

“E|G. " +

+ (—27'1-(1 +a)— 7;—3604) 8, + (—am,) oy 29
. M%Eugfé — (1 + )E [V ®(2r) — Vo f (20 50)|
37'gcozIE ng . 24 %El)y(yt,ﬁ;xt)
o Ty Ll g\t | - 20727, 202 — 20727, 025

97
+ (—2%(1 +a) — ;a) o2+ (—ary) 05

( 2796(1+oz)—77 )52 (—ary) b2 (30)

(1+a T
6

* (‘ST§ Tyfz) E |G .. |I* + “TLEDy (s, £ 22)

E|G2L |° = (1 + ) nB [|Va®(ze) — Vo f (w0, 30)|*

6

97
+ (—2%(1 +a) — %a - 2aT§Ty€2> o2+ (—ary) 02

+ (—2%(1 +a) — %a — 2C¥T§Ty€2> 62 + (—aty) (52

> (14 )E | Va®(x1) — Vo f (22, 30|

1 z
> <(+a)7’ — 3r,a — 20T, Ty£2> E ng il
ATy 2 2 2.2 .

+ 3rpar® — 201, Ty 07k ) EDy (ys, 0 a¢)
+ <27’ (1+a)-— —nga —2a72T £2> o2 + (—ar )02
x 2 x'Y T ) Yy
(—27’ (1+a)-— Eoz — 2a1?T, €2> 62 + (—ary) 62
T 2 x 'y T Yy’ ¥y

2 (1+ a)Tmf$2Dy(yt,€; xt)

_|_
1 z
o L
+ (aTy 3r.ak? — 20727, (%K 2) EDy (yt, €; x¢)
—2r,(1+a)— gﬁa — 2a72T, €2> o2+ (—amy) o,
: . 2Ty z y) Ty

2 31

+ (—2%(1 +a) — %a — 2&T§7‘y€2> 62 + (—aty) 62
1 «

— <( tar 3Txa2aT§Ty£2) ]EHQE”%HQ

+ - 3r.ak? — 20727, 02K — (1 + a)TchQ) EDy (yt, {; )

Y

+
T N

97y
—27,(1+a) — %a - 2aT§Ty€2> o2+ (—ar,) o’
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T
+ (—2@(1 +a) — %a — 2047'§Ty€2> (53 + (—ary) 53

* (29) uses Lemma B.12 and the fact that |a — b| < cimplies a > b — c, i.e.,
2
Dy(yes1, 0 20) = Dy(ys, o) — 36 || — w147,
* (30) uses the definition of QI -Gt . and Lemma B 4 to replace the term: ||z; — x4 12, i.e

e — e ]” < 2|2 — Tt+1H2 + 2|21 — Tea |
< 2T2 Hgm Tz + 2T2 ng(xtvyt) - VIf(xtvyt)||2
<272 ng,m H + 47202 + 47262,

* By the fact that ||c — d||* = ||¢||> + ||d||?> — 2 (c,d) and Young’s inequality, we can write ||a|* = ||(a — b) + b||* <
(1+ /p)llal> + (1 + p)b]]%. Then we plug ina - Gt,_, b+ G2

T, Ty

2

Iz,

Psanlossl+ (143)

1
W+ p)||o% | + (1 n p) IV () — V()|

% (M (2 — 7V f (20, 01)) — e (2 — 7, V(1))

< (1+0) 927,

2 1 .
; (1 ; p) 2y (22) — well?

<(1+p) 927,

2 1 0?2
N <1 N p) o (@) — f (o)

R o2 o (R N

Where the third to last inequality follows from Danskin’s lemma, the penultimate is due to the quadratic growth property,

. . . A
and the last is due to the proximal-PL property. We have set x := N

e (31) follows from the pPL property.

2

<2 ng P +2 HVf(xt,yt) — V()|
<2628 |I” + 26 [lye — v (o)

<2 Hgf;; H + 2062 Dy (yy, b; 1)
Re-iterating,
(1
EV;, —EVi4q > <+a — 31 — 20, Ty€2) E ng . ||

ATy 2,2 2

+ (? — 3r,ak? — 20727, %K% — (14 a)Tpk ) EDy (yt, £; x¢)

297 (1 975 2\ 2 2 2
+ [ —27.(1 4+ a) — Ta —2aryl” ) oy + (—OéTITy) o,

1Ty
+ <—27'$(1 +a) — %a — 2aT§Ty€2> 52 + (—am,) b

What is left to do is to ensure that the coefficients of ||GE:! ||, Dy (ys, £; x¢) in the last display are positive. We will show
that this is indeed the case for a correct tuning of 7, 7, and cv.
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. 2 .. .
* Coefficient of Hg;{ 72 H . We assume a priori that, 7,,, 7, < % Hence we can write:

1+ a)7

. 14+ a—18a — 12« >1—29(1 s Tz

— 37m,a — 2a7iT, 0% > 5 Ty > 6 =2 a0

Where we require that o < 1/30 < 1/29.

* Coefficient of Dy. We require that 7, < 07;’2 for some ¢ > 1.

-1 —12a/c® — 6(1
% — 3rpak? — 20727, 0% K — (14 a)Tek® > o — 18a/c 046/0 60 + a)/cry
(¢? —24c — 12)a — 6¢
- 62 Ty
Ty
— 10
Where in the inequality we assume ¢ = 100, « = 1/30.
* Coefficients of o2 oy,é Oye
- For 02,62
Ty 9 9 97, 9 9
27, (14 ) + - + 2ar T 0 <21, (1 4+ ) + - @ + 2ar; Tl
__60+2+135 n 20073 K202 ( Ty )
- 30 30 “ 7 100K2
~60+2+135 20072/ 1
- 30 30 - 500 * 500K2¢
60 +2+ 135 2007,
- < 87, 2 <1/l = (< 1/1,).
=50 30-500 (e <1/ /72)
- Foro}, 47
)2
aty < Te < AK T,
2
1GE A 17 < 2| G2 |° + 262Dy (3, 65 32)
Summarizing:
|G 1P 9K EDy (e, G0) < s |G P (1L - 25°T2 N 5D (e, £ )
360 7@ ’ — 36077 10 360 Y

<EV, —EVi + 8Tzai + 8715925 + 4%27'9605 + 4%27'975;.

Summing over ¢ and dividing by 7"

ﬂ

1 —1
72 (6t P + EDy (g1, t:20)) <
t=1

720L(Dx + Dy)

T + 2880(02 + 62) + 14407 (o) + 07).
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D.4.2. TWO-SIDED PPL MIN-MAX OPTIMIZATION

Theorem D.8. Let f : X x YV — R be an L-Lipschitz, {-smooth function and X,) be two compact convex sets with
Euclidean diameters D x, Dy respectively. Further, assume that f(-,y) satisfies the pPL condition with modulus (i, for
all y € Y while f(x,-) satisfies the pPL condition with a modulus ., for any © € X. Additionally, let (g, g,) be an
inexact sgochastic gradient oracle satisfying assumption 3. Then, after T iterations of (A1t-GDA) with a tuning of step-sizes

I _ 1 - .
Tz = Tgo and Ty = 53, it holds true that:

| Hatty
160¢3

2 2 62 2 62(52
E®(z7) — &* +1/10 (E®(27) — Ef (2, yr)) < exp ( T> L(Dx +Dy) + A%z 4 0% @200y | @00,

Ha Ha Ha /{12/ Ha H@Q/ 7

where, c1,co € O(1).

Proof. Our goal is to ultimately demonstrate that there exists a Lyapunov function, V; whose value decreases along
any trajectory of the algorithm’s iterates. Not only so, but its value contracts, i.e., there exists 0 < w < 1 such that
Vit1 < wV;, Vt. To demonstrate this, we first need to lower bound the descent on ®(-), lower bound the ascent on f (x4, -),
and finally upper bound the descent on f (-, y).

Descent Bound on ®(-). By Lemma B.9 and Lemma D.4 we write,

E®(wr+1) < E®(x;) — EDY (21, 1/m) + R E||Va@(x1) - Vo f (e )
+ 27,02 + 27,62
< E®(r,) — 5 (B(wr) = ) + 7B | Vo ®(w1) — Vo f (e, y0)]”
+ 27’3;03: + 27’#536

Hence,

E®(we1) — @ < (1 255 ) ((ar) — 0) + 7l [y — i
+ 27'1;0320 + 27’m5z
< (1= 22) (@) — 07 + fuqa/2 (D) — f (0, )
+ 27,02 + 27,62, (32)

or, we can also write,

E®(r141) — E®(a) < 55 (@(a1) — ) + oL piqa /2 (B(ae) — ()
+ 27,02 + 27,62 (33)

Ascent Bound on f(z;,-). A simple application of Lemma B.9 yields,

-
Ef(zir1,ye41) > Ef (2e41,9e) + %Epy(ym 1/Ty;9€t+1) - Ty5§ - Tyoj

From which, we can also write,

E®(zi1) — Ef (241, ye+1)
-
<E®(x441) — Ef(@441,90) — EyEDLV(yt» 1/7y; @) + Ty‘sg + Tygg
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T
< (1= 220) B(ws1) — Ef (@i, m)) + 702 + 70

6
= (1 H22) (Bo(:) — Ef(@e,y0) + Ef (e, 41) = Ef (ver1,41) + EQ(@s1) — EO ()
+ Ty(;Z + Tydi (34

Upper bound on the descent on f(-,y;) From (28) we write,

Ef(zer1,ye) > Ef(xe, ye) — %E 1G:..~. = 9%092” B %6”2”
> Ef(x, yt) — %Dx(xn U/ Te;yt) — %ai - %55 (35)
The second inequality follows Lemma B.7. Now, (34) by plugging-in (33) and (35) reads,
EQ(zt41) — Ef(Te41, Y1) < (1 - %) (ED(ze) — Ef (21, 50))
n (1 _ %) (Ef(ze,y:) — Bf(@eg1,u0))
+ (1 _ %) (E@(z41) — E®(y))
+ Tyéi + Tya§
< (1 — %) (E®(xy) — Ef(ze, 1))
+ (1 - ﬂy67y> <32TmDX(xt7 L/ Teiye) + 9%037 + 72%55)
b (1= ) (CTEBDY 1 /7,) + 7 Va001) = Vo aro)|* + 27,02 + 27,
+ TyO'Z + Ty(sg
< (1 - %) (E@(z¢) — Ef(ze, 1))
+ (1 - %) B%DX(CUM 1/7w3 yt)
(1200 (T RDY (1, 1) 4+ 7B Ve B() — VS ()|
+7(1= B ) mot 47 (1= B ) ml 4 o) + ) (36)

The Lyapunov Function. We will consider the following Lyapunov function where o > 0 is to be defined later along the
proof:

V(e ye) = (®(wr) — %) + a (®(2r) — f24,91)) -
For convenience, with U;, W; we will denote the quantities:

Ut = (I)(.’L't) — q)*
Wi = ®(x¢) — f(2r, Y1),

and we can then write V; = U; 4+ aWW;. Piecing together (32), and (36)

Tx
U1 + oWy <UL — FEID;(%’ 1/72) + E ||V ®(z) — V:L’f(xt>yt)||2
+ 27@0320 + 27@(5320
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+a(1 — “yGTy> W,

+ a(l - “yGTy) %Dx(xn 1703yt

+a(l=P0) (“ZEDE (5, 1/7) + B[ V20(20) — Ve (a1 )]

+a (7 (1 - %) 202 + 7 (1 — %) oo + Ty00 + Ty(sj)
<t (< - 5 (1- B2) va (1-5) B ottt

+ (7 +am (1= B2 ) E (V.0 — Vo f (2]

+a (1 - %) Wy

+a(1=B22) 2 Dy, 1 /7 ) — Dl 1/7)|

—|—(2—|—7a (1—%))% 2 (2+7a< M))rw +arol+ar,2 (3
<0 (5 () v () 5 bin e

(et o (1= 222)) 22 8000 — B o0

+a(1-E)w

+a(1-222) 222 o) — B o)

+ (2 + Ta (1 — %)) To02 + (2 + Ta (1 — %)) 202 + atyon + aty6; (38)

(- (2 B o) )

) 2y

—|—(7'gc+on’gC (1— f

6 HQG
+ « <1 — %) Wt
ra1- ) 0Ly
6 / pac
+ (2 + T <1 — MyGTy)) T200 + (2 + T (1 — %)) 200 + aryai + OéTy(Sz 39

s In (37) we use the fact a < |a — b| + b with a = Dy (x4,1/72;y:),b = D2 (24,1/7,) in order to remove the term
Dy (24,1/72;y:) and introduce the terms | D (x4, 1/74;y¢) — D% (24, 1/72)| and DY (2, 1/72);

* In (38), we use the following facts:
D (24, 1/703y¢) — D3 (4, 1/7,)| < 302 ||y — y* (z4)]|*, Lemma B.12;

IVa® (@) = Ve f (2o, yo)lI” < 2 lye =y (20)]%;
3. B9y, — y*(z0)||> < ®(x¢) — f(a4,y:), quadratic growth condition of pPL functions Proposition C.5.

* In (39) we use the fact that D% (x,1/7,) > p,U; (Lemma D.4) and the negativity of the coefficient of ED%, (x4, 1/7,),

i.e., the display (—% — 2= (1 — 227v) 4 o (1 — £27v) 3%2) To ensure negativity, we require that v < 1 and utilize

the fact that p,, < ¢ and hence 7,11, < 1 by the choice of step-size.
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Summarizing:

Ut-l—l 4 aWt+1 S (1 _ Mz Tx + Ay Ty (1 _ MyTy)) Ut

3 3 6
ta (1 N 11037, B 1y P, T,  HyTy N 2027, ) W
HQac 6uqa 6 apQa
ws
+ (2 + T (1 - %)) TeO2 + (2 + T <1 — %)) 7202 + CKTyOE + OéTy(Si

3

Tuning the parameters: We need to ensure that 0 < w1, s < 1 and then, we can show that the value of the Lyapunov

function is contracting, i.e. U1 + oW1 < max{w;, w2} (U; + aW;) + £. We wiil now upper-bound w1, zos. For wo
we see that:

1— HxTx + Oy Ty (1 . ,uy'ry> <1— Txla 4 Oflg Ty

1 2900 Ty <1
3 3 6

= 3 3 T3y = HeTe

For ws,

1_ Ty + 27':r£2 +Tz (1 :“yTy) 20? i (1 NUTU) 97,0
6 6 / pqa HQG

- T, <#y7';, B 21ty B (1 B ,uyTy) 11)
ty \ Tl 6
2
I g —
2
<1t —31
Ly TTEZ

where we have used the fact that ;1 is equal to p, by Proposition C.5 and we require that ”y + = 32. As such, we

T = % and 7, = @. Further, We observe that 1 — 1,7, = max {1 - %, 1-— /,LITI} since E > [z, fby. Combining
the pieces:

EVii1 < (1 — po7e) EV; + 37,02 + 37,02 + Tyaz + Ty(SZ
Applying the inequality recursively and using the formula for the sum of the geometric sequence, we get,

302 362 320%07 32075
- Tt 2 2
M Ha M [y Hoa by

302 362  320%02 320352

<exp(—pamT) Vot — + —5 + —F >
Mz M Hoa by M [y

EVr < (1 — pig7a)”

Further, we note that since f, ® are L-Lipschitz continuous and their domains have bounded diameters, we can bound V}, as

2
Vo < L(Dx + Dy) . Finally, we see that by the choice of step-sizes (1,7, = fg&%

O
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E. Convex Markov Games

Lemma E.1 (Continuity of the occupancy measure). Let A € A(S x A x B) be the occupancy measure in a Markov game.
Then X\ is Ly-Lipschitz continuous and £y-smooth with respect to the policy pair (z,y) € X x ). Specifically, for all (x,y)
and (z',y'),
Az, y) = A", )l < La (2, y) = (2,95
HV)\(I’,y) - V/\(I/7y/)H < €>\ H(xa y) - (xlay,)” )

1 1 3
where Ly i= SUALIBD g g, — 28 (AL18DT,

—7)? (1-7)3
Moreover; consider the functions \7* : A(S x A) — X and \;" : A(S x B) = Y, such that:

Mz y) = @
At (a(z,y) = y.

For any fixed y (respectively, x), X! is Ly-1-Lipschitz continuous with respect to \ (respectively, \2), i.e., for all
)‘1 (QZ‘, y)7 )\l(m/a ZJ)—”BSP“ﬁV@ly, )\2 (iC, y)7 )\2 (l.a y/)’

|z — 2’| < Ly-1 [[AT" (M (z,y) — M (2, y))
ly — /Il < Ly [[A7T (Aa(@, ) = Ao (7))

E
K

. -—_ 2
with Ly-1 := min, o(s)(1—7)"

Proof. (Kalogiannis et al., 2024, Lemmata C.2 & C.3). O

Throughout, we will assume e-greedy parametrization of the policies, i.e., the players play according to policies:

el

el
T =(l—¢e)x+ — B

Al and 7w, =(1—¢)y+

where 1 is the all-ones vector of appropriate dimension.
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E.1. Properties of the cMG Ultility Fucntions
We reinstate that the utility function Ly;-Lipschitz continuous and ¢;;-smooth with,

_ LrlS|2 (AL + 1B). = 20py|S|% (1Al +18))*

Lo T2 (1)

E.1.1. PROPERTIES OF CMGS WITH CONVEX UTILITIES

For the two-player zero-sum cMG with merely concave utilites, we consider the regularized utility function U*(z,y) :=
Uz,y) + 5 [ A2(z,y) |*. We note that that an upper bound to the Lipschitz smoothness moduli of U, VU is given by
1,

L e
3 3 2 3 4
g g2 LEISIEQAI+1BD® . 40ey?SIE (1Al + 1B))
v = ¢luly = N i .
(1=7)° (1—9)®
Let us now compute the moduli of the quadratic growth and pPL condition,
_ (min, 9(s))*(1 = )% _ (miny o(s))*(1 — ) "2p?
HQGe = HPL =

4 ’ 40py2|S|3 (JA] + |B)*

Since the quantity pqcppr, will frequently appear in our calculations, we write:

(min, o(5))°(1 — )"y

HQGHPL =
4lr?|S|% (1] + |B])*
. . e . )
The condition number & is defined as « := 7\”@ and is equal to:

_ 1602+%(S|% (JA| + |B|)é
(min, o(s))3(1 — )52

Finally, we define function ®* := max,cy U*(z,y) and observe for its Lipschitz modulus, L%, and its gradient’s Lipschitz
modulus, ¢4 :

23
2

_ 5120347S|5 (JA] +1B])

LelS|? AL+ 1BD®  u _ o,
b - . 3
v (1 —7)?3(min o(s))3u?

-

L =L =

E.1.2. PROPERTIES OF CMGS WITH STRONGLY CONCAVE UTILITIES

We carry over the same calculations for the cMG with strongly concave utilities. Since we do not perturb the utilities, the
relevant Lipschitz moduli remain the same. This is not the case for uqg, upr,. We write:

_ (miny o(s))*(1 = )% _ (min, o(s))*(1 —9)"?
HQG = 1 ;o HPL = 1 3
Alpy|S|z (JAl + 1B])>
Further, x := \/% which is equal to:

3
2

- _ a0t (A 4 1B)
(ming o(s))?(1 = 7)2 2

Finally, the Lipschitz modulus of ® and its gradient will be:

p Lol QAL IBD, , _ 16v3tin st (1 18)F
(=2 (ming o(s))3(1 =) %
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E.2. Stochastic Estimators

Using a trajectory & := (s(o), a®, s ¢ ) and ¢ := (s(o), b0 s p1) ) respectively, we define the estimates
of A1, Ao,

He
Ag =391 = 5.0 = a);
h=1

He
5\;72 = Z'yh]l{s(h) =s,b0M = b}.
h=1

Additionally, for a pseudo-reward vector z € RISl and ¢ := (50, a(® s oM . )—or 2 € RISIXIBI correspond-
ingly and & := (s(@, 5@, s (1) )—we define gradient estimates @;75, ?Z{:

H-1 h
G (§lme, ye, 2) = Z [th (s(h),a(h)) : (Z V. logz (a(h')|s(h’)>>]
h= h'=0
h
,Yhz S(h)7b(h) < Vv, logy b(h')|5(h’) )]
5 (4000 - (32 %yt (19150

At every iteration ¢, each agent constructs 7, ; < Vy, F(j\u) describe how to construct 7, 7, batch versions of the
latter estimators will be,

— O

H—
gy(ﬂi?ta Y, Z) = Z
h=0

M, M,
V=Y el ye ), and V= > Gy (Elen v, Py0): (40
i=1 i=1

Now, for each one of the two cases we let z <— V, F' (5\17,5; yt) and z + V, F (5\11,5; yt) correspondingly.

Remark 4. This stochastic gradient estimator assumes access to a gradient oracle for V, F'. Access to an oracle for F' or
VF'is an assumption made in virtually all the references that we have encountered concerning policy gradient methods for
MDPs with general utilities (Zhang et al., 2020; 2021; Barakat et al., 2023). Designing a gradient estimator that entirely
relies on samples lies well-beyond the scope of our paper. Nevertheless, this assumption is not a strong one as even with a
complete knowledge of F', agents cannot control the function’s arguments except for affecting them implicitly.

The occupancy measure estimator Let a trajectory sample £ of length H, we define the occupancy estimator for player
1 to be,

He
59(€) = S04 (s = 5,aM = )
h=1

He
A0E) =D s = 5,00 = b}
h=1

Assume policies x, y; and corresponding sampled trajectories {£; ; } 275 and {«f;f}f\ifl for player 1 and 2 correspondingly.
The occupancy batch estimators 5\17t, 5\2,t

H
N (@,y) = Euy | 304" 1{s®) = 5,0 = a} P (3(h+1)|a(h), (), 3(h>> ’5(0) N Q]
h=1
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H
Ash (@) = Eoy [Z P = 5,60 = B (4D, b, 50 ) 50 g]
h=1

Lemma E.2. Let an empirical estimate M of the truncated-horizon occupancy measure A1 p. Then, the variance of the
estimate can be bounded as:

. 2 1
E H/\ Y H < -

The policy gradient estimator Assuming e-greedy parametrization to control the variance of our estimators, we can go
forward and state our main lemmata regarding the gradient policy gradient estimator’s variances.

Lemma E.3. Let @i be defined as in (40). The estimators variance can be bounded as:

E H Vi — F()\ ( ) )H2 < 72

V. Vs T ; .

T x 1,H\Tt, Yt ); Yt =] .rx(l 7)6 2
Pl’OOf. We essentially carry over the same computation as Step 2 in the proof of (Zhang et al., 2021)[Lemma F.2] using

our notation and assumptions. To simplify the excessively busy notation and improve readability, let us introduce some
shortcuts,

>|

1:=Am(®, Y,

.
P

1

i

Ade
Va F (M m (e, 5e)i9e) = Va F (A ).

e J:= VzAl,H(xhyt) = szls

LI

« 7= V) F (Xl;yt),
© 9= VoF A m (@, 90);ye) = Vo F (M5 ye),s
o g’t = gx(gi“rhyt?’f.)’

* iy = Ju(&Gl2e, ye, 7).

We can finally write:

| M 1 M 2
E[va—ﬂfﬂ :E[ i Zgi,*+ﬁzgi7*—g+g—JTrA ]
M, 2 2

<3E +3E||lg =T T#| | +3E

T

!

ML 21: (Qi - gz*)

1 &
|MZ§1,*—9

For the first term we write,

gi - gz}*

2 1 M
J <522

1

< oy B[l -]

< s -2
ALZ

T M, (1—7)%?
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Where (41) follows from the following fact:

H— t
i) il =[S o =) (32 %ot )|
=0 /=0
Ho1
S =7t + Dl = 7r2lle
— €
\—MH
T (1=9)%
The second and third terms can be similarly bounded as:
2_
LQ
E t_JTp < __"“F .
g Tt = Mm(]. _7)47
and
1 & ’ AL2
El|— Ji « — s
50| | <3

O

Lemma EA4. Forany H > m and a greedy exploration parameter ¢, the following inequality holds true for the bias
of the policy gradient estimator defined in Equation (40):

muFuH@wxwVAWMwwmeS(f“jgz sp(~(1—)(H - 1)).

Proof. By (Zhang et al., 2021, Lemma E.3), we have that,

IV F it (2, 9): ) — VaF () )| < (quf)GEQ r16%E (Yf_*vl; T _17)4» 22

Further, we can bound the RHS as:

8L% Ly ((H41)? 1 on _ 256Lp(H +1)% Ly
(u—vwﬁ =2 (O—WV_%O—7V>> ST e

Now, in order to simplify the display, compute an H > 0 such that:

H+1)?
(i <!

equivalently,
2log; /), (H+1) < H+1

changing the base of the logarithm, we get,

1
E@Wﬂmm+”§H+L

but the latter is true for any H + 1 > 1/In(1/,/7). Hence, since v < 1 and noting that v = 1 — (1 — ),

256Lp(H +1)? o 256Lr g4 256 L
o S g S e )
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E.3. Additional Supporting Claims

In this subsection we bound the errors incurred due to the e-greedy parametrization, and the regularization.

Error due to e-greedy parametrization.

Claim E.5. Assume an L-Lipschitz continuous function f : X — R. Further, let X be a concatenation of n m-dimensional
probability simplices. Further let w be the mapping w(x) := (1 — &)z 4+ ¢/m for some 0 < e < 1.

vnlLe

m

[f(2) = (fow)(z)| <

Further, if for some € > 0 and x € X,
f(ZL') - f* S €,
then

(Foua) - £ < et YOI

The second follows directly.

Proof. The claim follows from the Lipschitz continuity of f. It is the case that (f o w)(z) = f((1 — €)x + &/m),

[f(z) = f(1 =€)z +&/m)| < Lz — (1 - &)z +&/m)|
< \/ﬁLs.
O

Claim E.6. Let an L-Lipschitz continuous function f : X x Y — R. Let X, be concatenations of n, and n, m- and
my-dimensional probability simplices respectively. Further let w be the mapping w(z;e,m) := (1 — €)x + ¢/m for some
0 < e < 1. Further, for some e5,¢, > 0 define fu,(x,y) := f (w(z; 60, mg), w(y; €y, My)), Pow(x) := maxyecy fu(z,y),
and @}, := minge x Py, (x). Then, the following inequalities hold true,

o @y (z) - D()] < Vizkee 4 STu

R |(I)* — * ‘ < VnzLey + \/@Lfy.
Proof. The proof of the first item directly follows from an application of Claim E.5 and the L-Lipschitz continuity of ¢

given that f is L-Lipschitz continuous.

For the second item, we use the inequality we just attained and write,

/myLe, — \/MyLe
O, (z) < B(x) + Yoo | VWY

- My My

Minimizing over z for the two sides yields,

B (27) < B(z*) 4 Yelr | VIV

My my

Where, 2*, 7, are such that 2* € argmin ., ®(x) and z}, € argmin_ . ®,, (). Applying the same trick to the other
side of the other direction of the inequality:

)+ Nz Ley n ,/nyLey.

O(z*) < Dy (2
(@) < Bufas) + 25 4

w

As such,

JnyLe,  /nyLe
|D(2%) — Dy (a)| < Yoom | VWY,

My My
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Claim E.7. Assume an L-Lipschitz continuous and {-smooth function f : X — R that is p-pPL. Further, let X be a
concatenation of n m-dimensional probability simplices. Further let w be the mapping w(x) := (1 — )z + £/m for some
0 < & < 1. Define fo(ﬂc, a), Df(ow(x, ) for some o > 0 to be:

Dh(z,0) == ~2amin {(Vf(2),y - ) + J llo — |’}

yeXx

DY (maa) :

. o 2
—2airé1)r(1{<Vfow(x),y—x> + 3 lz —yll }

Then, it is the case that:

1

ngfow(x, a) > p(f(x) — f) — 8y/nlLaD ye.

Proof. We essentially need to prove that in fact:
‘Df;o“’(x, a) — Dh(z, oz)’ < 16y/nfLaD xe.
We write Df\: (z, ) equivalently as:

DY (w.0) = max {20 (V/(2).x —y) — o~y }.

We define G(+; y) after we isolate the display inside the max-operator and in place of the gradient put any vector v of the
same dimension:

Gv;y) i=2a(v,z —y) — o |z —y||*.

We see that V,G(v;y) = 2a(xz —y) and ||z — y|| < Dx. Assuch, G is 2aD y-Lipschitz continuous in v. This consequently
means that ¥(v) := maxycy G(v;y) is also 2aD y-Lipschitz in v. Now, all that is left to do is to bound the distance
between V. (f o w)(z) and V,, f (z). By the chain rule:

Va(fow)(z) = (1-2)Vaf(2)

z=w(x)
Further, set z. := w(x) and observe that
IVaf(2) = Vaf(z)l| < Lz — |l
=Lz — (1 —¢e)z—e/m|
=/l|ex —e/m|

< /le(v/n+1/m).

Where in the last inequality we use the fact that for a probability vector y, ||y|| < 1 and the triangle inequality. Assuming
that n, m > 1, we can further simplify into:

Hvxf('r) - fo(%)” < 2\/555 42)

Now, by the fact that U(V,.f(z)) = Df(x, ), U(V.(f o w)(z)) = DI°¥(x, ), and the Lipschitz continuity of ¥, we
write:

D (z,a) = DY (z,0)| < 2aDx |Va(f o w)(x) = V. f ()|

<2aDx Vo f(z) = Vi f(xe)|| + 2aDx [[eVe f(ze) ||
< 4v/nlaDye + 2aD yel
< 16y/nlLaD xe.

The claim follows. O
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Claim E.8. Assume an L-Lipschitz continuous and ¢-smooth function f : X — R such that:

max  (V,f(a),x—a') > u(f(2) - 7).

@ eX jlz—a'||<1

Further, let X be a concatenation of n m-dimensional probability simplices. Further let w be the mapping w(z) :=
(1 —e)x +e/mfor some 0 < £ < 1. It is the true that:

(Vo(fow)(z),x —a') = p(f(x) - f*) — 8/nlLDxe.

max
2/ €X Je—a'|<1

Proof. Similar to the previous case, we need to show that G(v;2’) := (v, — 2’) is Lipschitz continuous in v. Indeed,
V,G(v;z') := x — 2’ and as such ||V, G(v; 2')|| < Dx. Consequently, ¥(v) := max, cx G(v;z’) is also D x-Lipschitz
continuous. Further, as previously shown in (42),

IVaf(x) = Vaf(ze) || < 2v/nle.
We can finally write,

(Vo(fow),z —a') > max (Vof,z —2') — 8y/nlLDye.

max >
o eX jla—a'|<1 o eX,|z—a'||<1

Error due to the regularizer.

Claim E.9. Let a two-player zero-sum cMG with utility U : X x Y — R. Assume that the maximizing player employs
regularization to their utility of the form:

Hreg.
Uureg'(xvy) = U(‘Tvy) - Qg H)\2<-'L',y)||2 )
where [ireg. > 0. Then, the following inequality is true:

IVaUl(2,y) = VeU (2, )| < pireg. | L] -

Proof.

||VTU(‘T7 y) - VxU“(x,y)H = Hreg. ||VT>\2(I7y)H
< Hreg. ||A2H ||va:)\2('ray)||
< Mreg.L)v

E.4. Nested Policy Gradient
E.4.1. CMG WITH CONCAVE UTILITIES

Theorem E.10. Assume a two-player zero-sum cMG and a desried accuracy € > 0. Running Algorithm | a tuning of
Algorithm 1 with, fiyeg. = © (%ﬁsg(s))f) and,

18

. 501_ N8 3 Y
o step-sizes, T, = © (Hg,jm'; 9(3)5) (1=7)> < )and1, =0 (-7 ;
£2~2|S|2 (JA|+|B]) 4py?|S|2 (JA|+|B[)*

9 21
. 6, 3(7_N\1T : 9,21
* exploration parameters €, = ( €(mins o(s)) - U=y~ > ande, = © (E(m“;f %(8)1) ue (1 7)92 >
512L | S|45.45 (| A|+]B]) 2 |S|302~7 (JA|+|B)) 3
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L3RS (Al+1BD

)’.

; _ Lul% |81 (1A +18]) _
* batch-sizes M, = © (64(mins o513 (1= and M, = © (mins o(s)) T8 (=) F2e¥
2 29 29
L2438 1T B)2 . ) .
rlpy 1511 (lA‘HﬁD ; ) and inner loop iterations that are at least
2 €2

(1_7)% (min; o(s))

* an outer-loop number of iterations at least T,, = © (
(epLFWIS\(IAHIBD) .
b

to L3 6ey?IS|5 (LA1+IBD* 1
(min, o(s))(1=7)e

,=6 ( (mins o(s))5 (1) T1e?

will output an iterate T+, y«, such that:
E |:U(xt*7yt*+1) — min U(x’,yt*_‘_l)} < €]
z'eX

E [meag);{ Uz, y') — EU(xt*,yt*)} <e

w

Proof. In order to simplify our arguments, we formalize e-greedy parametrization as a composition of the utility function
U(x,y) with mappings w(x; e, m) where w(z) := (1 — €)x + €1/m. In particular, our convergence guarantees are w.r.t.
Ul(z, ).

(z,y) == U (w(w; e, |A]), w(ys ey, |B])) and @ (z) := max,ey

the function U%
We will tune T, 7., H,, €, M, by, Theorem D.5.
2 blgLgDy 1 412
< 2e% 662 & — . F__
SR T VR (e =

58, ¢
Gu'r.

=
T2
t=0
First, we see that in order to achieve an e-approximate best-response w.r.t. to z, then, 2 needs to be an (1 — v)min; o(s)e-

approximate stationary point. In general, then, we need to ensure that,
52 = O((1 — 7)(min o(s))?).
S

x

Hence, by Claim E.9, we can pick the regulizer’s coefficient to be:
1 — ~)(min; o(s))e
)
F

(rLpy|S] (|A] + |B>)) .

1
1
. ( €(1 — v)ming o(s) e

Lemma E.4 dictates the tuning of H,, H,,
H, H,=0

<1v><mmsg<s>>e>_ < min, o(s) (1~ )" )
2Ll |37 (1A + [B) ¥

Further,
Ex =0
“ ( \SMFLFAL‘){

( (1—7)° )
40p2|S|2 (JA] + |B|)4

1 1
> =9 (EF@LJ ;

o _ Lpl3ISI (1A +18)"

Tz = €2(ming o(s))2(1 — 7)3°

C(LAe)S)T (A +1B)Y
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As for the inner-loop, we need to set

. _ pqa (1 — )% (ming o(s))?e? B ming 9(3)5(1 —ytted
=0 2 )‘9< E%VZISI(AIHB)?’)

and hence,

poc(l— 7)?(ming o(s))?€? ming Q(S)5(1 — )93
€y =0 1 =0 = T
(i Ly|S] S|z Lplpyt (| Al + [B)7

Now, we are ready to tune the number of inner-loop iterations, 77,

tuL3try?IS|2 (1Al + 1B))" In <€FLF7|S| (IA[ + IBl))
(ming o(s))°(1 — 7)He? (ming o(s))(1 —7)e

and the batch-size, M,, to be:

M. o—6 O L3A8(S|Y (JA] + |B)*
Y (ming o(s))16(1 —v)52e8 | °

Finally,

29

2
x 55 7
2

_ LetliA*IS|5 (Al +18)
(1 —~)% (min, o(s)) = e

E.4.2. CMG WITH STRONGLY-CONCAVE UTILITIES

Theorem E.11. Assume a two-player zero-sum cMG with a utilities that are strongly concave with modulie ji1, pio > 0. Let
€ > 0 be given. Then, a tuning of Algorithm | with,

. 3 1 3
. step-sizes, T, = © ((Ir;ll’ls 0(s))°(1—v) 2 uf) and 7, = © ( (1-—7)? >’.

5 1 3
0231513 (JA|+B) T 20p|S|2 (| A|+|B]) 2

21

9

. 6, 301 __\17 i 9.,2(1—~)3
R explorationparameters £y = ( e(min; o(s))°p”(1—v) 17) and £y = o (C(mlfés %(5)1) pa (1 "/)92 )).
512Lp |S|*E~5 (JAI+|B]) 2 |S|2La~2 (JAI+[B]) 2

27

. L3S D302 4% (Al4B) T AL2|S| % 6543 (| AI+1B]) F
* batch-sizes M, = © E s z and M, = © E E ;

9 2 i 22,9 ,2(1—~)37
€2(ming 0(s))1%p2 (1—7) 2 €?(min; o(s)) Nzuy(l 20)

e
161/2|S| 702~ (|A|+|B]) T
7

* an outer-loop number of iterations at least T,, = © ( ) and inner loop iterations that are at

2 .2 3
least T,y = © ((%izgl(f)‘gmlltgpﬁ) ;

) T 20
ming o(s)"ud (1—v) 2

will output an iterate xy«, Y.+, such that:
E |:U($t*,yt*+1) — min U(.’I?/,yt*+1>:| S €;
r'eX
E [max Uz, y') — EU(wt*,yt*)} <e
yey

Proof. An optimality gap E(i)(a:TH) — &* < ¢ for the utility function that is composed with the greedy exploration mapping,
translates to an optimality error of the original utility function:

|8|%Lq>5$ + ‘S|%Lq>€y

8|S|242D ye,.
A B 88 aDae

Ed(vry1) — " < e+
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First, we can set the number of iterations to be at least,

o <gFe¢v|s% (1Al + |B|>3>

29

(min, o(s))*(1 —7)7p:2 min, o(s) il (1 — )3

<16\/5IS|Z€%75(|A + |B|>i1>

As such, we tune the exploration parameter €, to be:

. |Ale €
€, = min — .
‘S|§LU 8|S|§£?I>DX

. Substituting yields:

e
1
|S|2 Ly 2Dy

- e (e(mms 0(s))°* (1 - v)l7> o ( c(min, o(s))°s* (1 =)' )
Lr|S|36545 (A+|B)* 512Lp[S405.5 (JA| + |B]) *

So we can set, ¢, =

33 27 o7 89
Vo—6 (L%S|4D§c€ﬁ ¥ (A4 18] )
€2(min, o(s))0ps (1-7)%

|Ble €
IS|2La 8|S|2 2Dy
bias of the gradient estimator and the expected distance of y; from y* () at each iterate . We see that we need to set,

5y < ciqug’we
Vie

for some constant ¢ > 0 sufficiently small. As such, we will control the horizon of the stochastic gradient estimator, H,, to
be,

Further, we require that ¢, < min { } In order to tune d,, we see that it is a sum of two terms, the

H, -0 ( L (éFLm|S| (|4 + |B|>>)

1—7 €(1 — v)ming o(s) s

For the inner loop, we need to ensure that E ||y, — y* ()] < ¥ \”/‘ZL; °. Hence, by the quadratic growth condition w.r.t. 1,
the optimality gap of the inner loop, ¢, needs to be bounded as:

%:@(eupl,mg,y) _ o [ clming o(s))°(1 =) pdpy |
(o l?, 0e2|S|3 (JA]+(B])*

To achieve such an optimality gap at the inner-loop on every outer-loop iteration ¢, by Claim E.5, we need to set ¢, =
€Mplfﬂqg,y .
|S|2 £a 62,

ey =0 (6(min8 9(83)9u§ (1- 7)23) 7

|SI5 2y (1A + |B])*

the latter leads to the bound on 012/,

Y

5 9
oo [ _LAISIEGy (A +1B)*?

€2 (min, o(s))'ug (1 — )"
while, the previous bound calls for a batch-size,

7 15
M ALLISI3 6" (LA +1B)” )
! €2(miny o(s))2pup2 (1 — )"
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Finally, the horizon of the inner-loop gradient estimator will be set to be:

i, :@< 1 ln< lrLry|S| (Al +|B)) ))
L=~ \€e(l —v)ming o(s)ppLiy

while the step-size needs to be:

1 (1—~)®
Ty—@ =0 1 E
<4U) <2€m|52 (|A|+|B|)2>

and the total number of iterations needs to be at least,
Y4 Lplr|S Bl)
Ty2@< U1n<7 rlF| |(|«4|+||>)
Fply min; o(s)(1 —7)
)3

_o 2039%|S| (JA] + |B|
(mins o(s))*(1 — )"

E.5. Alternating Policy Gradient Descent-Ascent

E.5.1. CMG WITH CONCAVE UTILITIES

4 r4 8 6 19
Theorem E.12. Let € > 0 be a desired accuracy. After at most T = © (if fi ;19|(ﬂirglél(l_)lﬁ‘l)es ) iterations of Algorithm 2,

* with step-sizes, T, = © ( min, 9(s))°(1— V)2i73> and 7, = © ( (13—"Y)8 )’.
57|SI3 (| AI+|B]) 2 4rv2|S|2 (JAl+]B))*

. _ 12 2'3
e exploration parameters ¢, = © min: 0(s) =7) ¢ ) gpg gy =0 min, o(s)(1=7) :
2Lplr |S|2(|Al+|B]) 2 16LF [S|2 £244(|Al+|B])1!

* batch-sizes, M, = © ( L el ST(AIHB] ), and M, = © <Z7F714|3|321(A|+|B)34) :

(mins o(s))*(1—7)32¢* (mins o(s))0(1—7)%%€>

* sampling horizons H,, H, = © ((1 3 In (v(zlil;l;(lﬂ(n‘ﬂal)l)glw) ’

there exists an iterate t*, such that

EU(xt*ayt*) o é (S
]E‘I)(xt*) EU(It*,?Jt*) <€

Proof. We invoke Theorem D.7 and tune the parameters appropriately using Lemma E.4 and claims E.5 and E.6. We tune
the coefficient of the regularizer first. Needing to achieve an (1 — +)(ming o(s))e-first order stationary point, we tune the

regularizer as:
1 — v)(ming o(s))e
. = (U2 ()Y
F

We compute the pPL modulus given the regularizer tuning,

(min, o(s))°(1 — 7)1 42
e A .
e (eFL 221S|% (| A+ 1B))* )

Further, by claims E.6 to E.8, we see that €, €, need to be tuned as,

((1 — ) (ming g(s))e) ( eming o(s) (1 — )12 )
e, =0 1 =0 = i
|S|€p LrerLy 2Lplr |S|2v(JAl +|B|)=
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and

.o min, o(s)(1 —7)*e
Y 16Lr |S| 7 (374(| Al + |B|)1!

The resulting bounds on the variance are:

o LEIS|T(JAl+|8)"

7= 2 (min, o(s))2(1 — )%’

and

a

S 16L% |S|" 0y® (JA| + |B])*
ming o(s)(1 — 7)52¢2 '

< N

The latter dictates the batch-sizes,

M. —6 LL03|S| (|A] + 18D
¥ €4 (ming o(s))4(1 — )32 |~

and

M, = 6 (s202) — o [ FPISUALL B 0 o (G 1% (A £ 18)™
’ ») =9\ i, o) (1 — )P (onin, o(3))"0(1 — 756"

The step-size is tuned straightforwardly as,

Ty =0 ((mins Q(s))g(l _ 7)20 3) |
| GRS (Al + |B])

m

S

By Lemma E.4 we see easily that H,;, H,, need to be,

L (2teLelS] (Al + 1B)
T ( (1 — ) (min, o(3))e )>

After we have tuned the regularizer, we can compute the upper bound on the number of iterations:

o (IS (A + 18]
(1) (i, o5) 6% )

Hw,Hy:@<

Now, tuning 7, is also straightforward,

1 1 (1—7)° )
E («”&) <£F£§LA) (4£F’72|S|2(|A +18|)*

E.5.2. cMG WITH STRONGLY-CONCAVE UTILITIES

Theorem E.13. Assume ¢ > 0 and a two-player zero-sum cMG with utilities that are strongly concave with moduli i1, pts.
Then if the two players are following Algorithm 2 with

(min, o(s))'(1-7)"® min{ui,u§}>

* exploration parameters ¢, , = © ( 4L IS 22 (JAIB])*
F Y

4 H 8 30 3
e ctonosizes. 7 — @ (#h(ming o) (1=7) _ (1-9)
step-sizes, 7. = © (“GEEAALETRY ) - o <2ems|%<|A+|B|>3> and
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13 19
. 1 4 = p5 A6 12 1 4 5 p5 4,10 20
e batch-sizes, M, = © ( _ 6L S| 2 £y (IAI+]8]) ) M, =0 ( - 6L%|S| 2 ehy' (Al +(B]) )

€2 (min; 0(5))2°(1—7)** min{ng S} €2 (min; 0(5))28 (1-7)° min{p10,u10}

then, it is the case that:

EU (zr,yr) — ®* < ¢
]E@(J?T) — EU(JZT,yT)(I)* S €.

9
o o 40r~°1S| 2 (JA[+]B)* Lptry|S|(lAI+]B])
after at most T iterations, with T = © <mins o(5)Z(1 =)0 4728 log iy o)1 ) )

Assume the function U (z, y) := U (w(z; €4, |A]), w(y; £y, |B|)) where w(z;e,m) := (1 —¢)z + L claims E.6 and E.7
make sure that we can bound the optimality gap on the initial function U by running Algorithm 2 on U. Hence, combining
the aforementioned claims with Theorem D.8 and Lemma E.3, we see that we need to set:

e cming o(s)* (1 =) minfuZ, i}
oy ALp|S|2242 (Al + |B])" (Dx + Dy)

The resulting variances will be:

PRCIIR (16L%|8|444Fv4 (1] +18)° (Dx + Dy>2> .

Oy = B 30 .
=% = O " min, 0(3)) (1~ 7)™ mingyed, )

We will control the resulting variances using batches of the following size, which will also counter the y;

Y :@< 16L%[S]7 6390 (14 + 1B))" )
T\ min, o(s)?° (1 — )" min{p, pf
M, =6 ( 16L41S1% 0910 (1AL + |8)™ ) |
€?(min; 0(s))?® (1 — )" min{p3°, u°

We can easily see that the sampling horizons need to be:

1 lpL
HmHy:@( m( rLe|S| (1Al + 1B) >)
L=~ \e(l —y)ming o(s)papty
The step-sizes are tuned to be:
_ ﬂ%,H(mins o(s))*(1 — 7)30. (1—7)3

T = Ty = 1 3
320392|S| (JA] + [B]) L 20 |S|E (A +B)

Finally, the iteration complexity is at least:

o 40p~5|S|3 (|4 + |8])* o ( Lrtry|S| (Al + [B]) ) ,
min, p(s)* (1= 7)30ugy gy, \ (i 2() (1 = Vpn, po.n
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