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ABSTRACT

Graph Neural Networks (GNNs) have shown remarkable performance in various
applications. Recently, graph prompt learning has emerged as a powerful GNN
training paradigm, inspired by advances in language and vision models. Here,
a GNN is pre-trained on public data and then adapted to sensitive tasks using
lightweight graph prompts. However, using prompts from sensitive data poses
privacy risks. In this work, we are the first to investigate these risks in graph
prompts by instantiating a membership inference attack that reveals significant
privacy leakage. We also find that the standard privacy method, DP-SGD, fails to
provide practical privacy-utility trade-offs in graph prompt learning, likely due to
the small number of sensitive data points used to learn the prompts. As a solution,
we propose two algorithms, DP-GPL and DP-GPL+W, for differentially private
graph prompt learning based on the PATE framework, that generate a graph prompt
with differential privacy guarantees. Our evaluation across various graph prompt
learning methods, GNN architectures, and pre-training strategies demonstrates that
our algorithms achieve high utility at strong privacy, effectively mitigating privacy
concerns while preserving the powerful capabilities of prompted GNNs.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as a powerful tool for learning representations of
graph-structured data and have shown significant advancements across various applications, such
as drug design (Al-Rabeah & Lakizadeh, 2022; Qian et al., 2023), anomaly detection (Sun et al.,
2022b; Tang et al., 2022), and social network analysis (Chen et al., 2020). Recently, graph prompt
learning (Sun et al., 2023d; Zi et al., 2024; Sun et al., 2023b; Fang et al., 2024; Sun et al., 2022a;
2023a) has emerged as a promising GNN training paradigm. Graph prompt learning first pre-trains a
GNN model on general public graph data and then tunes a graph prompt (Sun et al., 2023b; Huang
et al., 2024; Ge et al., 2023) or tokens (Fang et al., 2024; Sun et al., 2022a; Liu et al., 2023b) on
some sensitive downstream data. By reformulating the downstream task into the pretext task used in
pre-training, it then enables predictions for the downstream task.

The fact that graph prompts are tuned on sensitive downstream data can raise significant privacy
concerns. In fact, in the language and vision domains, it has been shown that private information
from downstream data can leak through predictions of prompted models (Duan et al., 2023b; Wu
et al., 2023). To the best of our knowledge, no such insights exist for the graph domain, and no prior
work has explored the privacy risks of graph prompt learning.

In this work, we set out to close this gap. We first assess the privacy risks of graph prompts by
adapting a state-of-the-art membership inference attack (Shokri et al., 2017; Carlini et al., 2022) to
graph prompt learning and measuring the empirical leakage. Our evaluation demonstrates significant
privacy risks for the downstream data when used to tune graph prompts. For example, we show that
the membership inference attack can achieve an AUC score as high as 0.91 on the PubMed dataset.
We also investigate the relationship between the number of data points used to tune the prompt and the
attack success and find that with less data, the privacy risk grows, posing a significant risk to standard
graph prompt learning that usually relies on a small number of data points (Sun et al., 2023a).

As a naive solution to mitigate this privacy risk, we first turn to the Differential Privacy-Stochastic
Gradient Descent (DP-SGD) algorithm (Abadi et al., 2016)—a gold standard in privacy-preserving
machine learning. However, we find that this approach significantly degrades the downstream
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Figure 1: Framework of DP-GPL+W. 1 We partition the labeled private data into disjoint groups
according to the centrality score of each node. 2 An ensemble of teacher prompts is trained on
the disjoint private data groups. 3 Given an unlabeled public data sample, by querying the pre-
trained GNN model, each teacher prompt votes with the most confident class label. 4 According
to the average centrality score of each private data group, the teacher prompts’ votes are weighted
aggregated, i.e.,, the higher the centrality score, the more weight the teacher prompt’s vote has. A
noisy argmax over weighted vote counts is returned as the final noisy label for the public data sample.
5 A student prompt is trained with the labeled public data and can be publicly released.

performance due to the limited amount of data used to tune graph prompts. For instance, with a
privacy budget as high as ε = 64, the accuracy on the Cora dataset downstream drops from 48.70%
to 18.47%, i.e., close to random guessing.

As a solution for practical privacy-preserving graph prompt learning, we propose two new algorithms,
DP-GPL and its variant DP-GPL+W. DP-GPL follows the general framework of the private aggrega-
tion of teacher ensembles (PATE) (Papernot et al., 2017; 2018), but instead of training a student model
with differential privacy guarantees, it trains a student prompt (Duan et al., 2023a). DP-GPL+W
additionally leverages the inherent structure of the graph data and the insight that different nodes in a
graph may have different influence levels. Based on these, it integrates a novel data partitioning algo-
rithm for the teacher prompts to improve privacy-utility trade-offs further. Concretely, DP-GPL+W
groups nodes with respect to their centrality score, assigns nodes with similar levels of centrality to
the same teacher, and during the voting process, weights the teachers’ votes according to their nodes’
centrality (i.e., influence). We thoroughly evaluate our algorithms in terms of privacy guarantees
and privacy-utility trade-offs. Over various graph prompt learning methods, GNN architectures,
and pre-training strategies, we find that our algorithms achieve high utility at strong privacy privacy
guarantees—thereby, implementing the first practical approach to private graph prompt learning.

In summary, we make the following contributions:

• We are the first to show that private information can leak from graph prompts, in particular when
the prompts are tuned over a small number of data points.

• We show that naively integrating the DP-SGD algorithms into graph prompt learning yields
impractical privacy-utility trade-offs.

• As a solution, we propose DP-GPL and DP-GPL+W, two algorithms based on the PATE framework
to implement differential privacy guarantees into graph prompt learning.

• We perform a thorough evaluation on multiple state-of-the-art graph prompt learning methods,
graph datasets, GNN models, and pre-training strategies and highlight that our new methods achieve
both high utility and strong privacy protections over various setups.

2 BACKGROUND AND RELATED WORK

2.1 PROMPT LEARNING

Prompt learning is a new machine learning paradigm that has been recently proposed to improve the
performance of large models while addressing the limitations of fine-tuning (Li & Liang, 2021; Lester
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et al., 2021; Liu et al., 2023a). The idea is to learn a task-specific prompt that can be added to the
input data while freezing the pre-trained model’s parameters. In addition to many effective prompt
methods in the language domain, such as hand-crafted textual prompts (Brown, 2020), automated
discrete prompts (Gao et al., 2020; Shin et al., 2020), and trainable prompts in the continuous space
(Li & Liang, 2021; Liu et al., 2021), also in the vision domain (Jia et al., 2022; Sohn et al., 2023) and
for multi-modal models (Zhou et al., 2022), prompt tuning has become a prevalent paradigm.

2.2 GNNS AND GRAPH PROMPT LEARNING

GNNs achieve strong performance on numerous applications (Sun et al., 2023c; Tang et al., 2022;
Chen et al., 2020). Therefore, they rely on various effective architectures, such as Graph Convolutional
Network (GCN) (Kipf & Welling, 2022), Graph Attention Network (GAT) (Veličković et al., 2018a),
and Graph Transformer (Shi et al., 2020)—usually trained in a supervised manner. To make graph
learning more adaptive, many graph pre-training approaches have been proposed (Veličković et al.,
2018b; Hou et al., 2022; Sun et al., 2022a; Xia et al., 2022) that first learn some general knowledge
for the graph model with easily accessible data, and then fine-tune the model on new tasks. This is
often referred to as ”pre-train & fine-tune” paradigm. However, the large diversity between graph
tasks with node level, edge level, and graph level may cause a ”negative transfer” results where the
knowledge learned during the pre-training phase hurts performance when fine-tuning on a specific
downstream task, rather than improving it (Sun et al., 2023b). As a solution, graph prompt learning
was proposed. The goal of graph prompt learning is to learn transformation operations for graphs to
reformulate the downstream task to the pre-training task. It can be formulated as follows:

Φ(P(X,A,X∗, Ainner, Ainsert)) = Φ(T (X,A)) (1)

where Φ is the frozen pre-trained graph model, X ∈ RN×d and A ∈ {0, 1}N×N are node feature
matrix and adjacency matrix of the original graph G respectively. P is a graph prompt learning
module that learns the representations of K prompt tokens, i.e., X∗ ∈ RK×d, token structures, i.e.,
Ainner and inserting patterns, i.e., Ainsert, which indicates the connection between the prompt tokens
and the nodes in the original graph. T indicates any graph-level transformation, showing that we
can learn a graph prompt learning module P applied to the original graph to imitate any graph-level
transformation. While Equation (1) shows graph-level transformation, our adaption of graph prompt
is in node-level, i.e., the graph prompt is learned only based on the selected nodes’ features without
the adjacency matrix A of the original graph G. In addition, the learned graph prompt is adapted to
individual nodes, i.e., P(x) where x is an individual node.

For instance, Graph Pre-training and Prompt Tuning (GPPT) (Sun et al., 2022a) applies prompt-
based tuning methods to models pre-trained by edge prediction. It introduces virtual class-prototype
nodes/graphs with learnable links into the original graph, making the adaptation process more akin to
edge prediction. Fang et al. (2024) proposed a universal prompt-based tuning method, called Graph
Prompt Feature (GPF), which can be applied under any pre-training strategy. GPF adds a shared
learnable vector to all node features in the graph while its variant GPF-plus incorporates different
prompted features for different nodes in the graph. Sun et al. (2023b) proposed All-in-one, a graph
prompt that unifies the prompt format in the language area and graph area with the prompt token,
token structure, and inserting pattern. They reformulate the downstream problems to the graph-level
task to further narrow the gap between various graph tasks and pre-training strategies. Graph prompt
learning has superior performance compared to traditional fine-tuning methods and is especially
effective in few-shot settings, i.e., when only a small number of data points are sampled to tune the
prompt. While graph prompt learning benefits various graph applications, in this work, we focus on
node classification tasks and three state-of-the-art graph prompt learning methods, namely GPPT,
All-in-one, and GPF-plus.

2.3 PRIVACY RISKS IN GNNS AND GRAPH PROMPT LEARNING

GNNs have been shown to be vulnerable to various privacy risks, such as membership inference
attacks (MIAs) (Olatunji et al., 2021; He et al., 2021; Conti et al., 2022), model inversion attacks
(Zhang et al., 2022a), and property inference attacks (Wang & Wang, 2022; Zhang et al., 2022b).
Specifically, MIAs against GNNs aim to infer whether a given node or graph was used to train the
GNN model, model inversion attacks aim to recover the model’s training data from the model’s
output, and property inference attacks aim to infer the sensitive properties of the training data through
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the access to the target GNN model. Regarding graph prompt learning, some prior work explores
backdoor attacks in graph prompt learning, which utilize prompts to insert backdoor triggers into the
GNN model (Lyu et al., 2024) to impact output integrity. To the best of our knowledge, there is no
prior work on assessing and mitigating the privacy risks in graph prompt learning.

2.4 DIFFERENTIAL PRIVACY

Differential privacy (DP) (Dwork, 2006) is a mathematical framework that provides privacy
guarantees for randomized mechanismsM : I → S. Therefore, it upper-bounds the probability
thatM, when executed on two neighboring datasets D, D′, i.e., dataset that differ in only one data
point, output a different result by formalizing that Pr[M(D) ∈ S] ≤ eϵ · Pr[M(D′) ∈ S] + δ. The
privacy parameter ε specifies by how much the output is allowed to differ, and δ is the probability
of failure to meet that guarantee. There are two main algorithms to implement DP guarantees for
traditional machine learning. The differentially private stochastic gradient descent algorithm
(DP-SGD) (Abadi et al., 2016) extends standard stochastic gradient descent with two additional
operations, first, gradient clipping that limits the impact of each individual training data point (often
called ”sensitivity”) on the model update, and then the addition of calibrated amounts of stochastic
noise to provide formal privacy guarantees. The second private aggregation of teacher ensembles
algorithm (PATE) (Papernot et al., 2017; 2018) trains an ensemble of teacher models on disjoint
subsets of the private data. Then, through a noisy labeling process, the ensemble privately transfers
its knowledge to an unlabeled public dataset. Finally, a separate student model is trained on this
labeled public dataset for release.

DP for Graphs. As the classical DP guarantee makes no assumptions about potential correlations
between data points, there are existing works that extend DP on graph data (Mueller et al., 2024;
Sajadmanesh et al., 2023; Kasiviswanathan et al., 2013; Olatunji et al., 2023; Sajadmanesh & Gatica-
Perez, 2024; Xiang et al., 2024). There are three variants of DP on graph data: node-level DP,
edge-level DP, and graph-level DP, depending on what the data owner requires to protect. Specifically,
node-level DP aims to protect the privacy of individual nodes in the graph data, including its attributes
and associated edges (Sajadmanesh et al., 2023; Kasiviswanathan et al., 2013; Daigavane et al., 2021;
Olatunji et al., 2023). Edge-level DP aims to protect the relationships between nodes, which can be
applied to social network graphs (Hay et al., 2009) or location graphs (Xie et al., 2016), where the
edges contain sensitive information, but the data represented in the nodes of the graph are assumed
to be non-sensitive. Graph-level DP aims to protect the entire graph data, including the structure of
the graph, node attributes, and edge relationships (Mueller et al., 2022). However, graph-level DP
has not been thoroughly investigated in the literature (Mueller et al., 2024). In this work, we focus
on node-level DP as we aim to protect the privacy of individual nodes in the graph data. Different
from the existing node-level DP guarantees (Sajadmanesh et al., 2023; Kasiviswanathan et al., 2013;
Olatunji et al., 2023; Sajadmanesh & Gatica-Perez, 2024; Xiang et al., 2024), which often results in
large ϵ values, limiting their practical utility, we aim to achieve meaningful privacy guarantees for
graph prompt learning with small and manageable ϵ values (ϵ <= 2).

2.5 PRIVATE PROMPT LEARNING IN THE VISION AND LANGUAGE DOMAIN

In the vision domain, Li et al. (2023) leverage the PATE algorithm for private prompt tuning to vision
encoders. Therefore, they have to tune a prompt and train an additional label mapping for each
teacher. In contrast, our method instantiates different teachers only through graph input prompts.
In the language domain, multiple approaches have been proposed to privatize prompts. Chen et al.
(2023) rely on named entity recognition to identify and hide private information in text prompts.
This approach is not easily transferable to the graph domain and additionally does not yield formal
privacy guarantees. The DP-OPT (Hong et al., 2024) framework relies on a local large language
model (LLM) to derive a discrete, i.e., text, prompt with DP, and then transfers this prompt to a
central LLM. The framework is tightly coupled to the language domain and derives plain language
prompt templates that are not applicable to GNNs. Panda et al. (2023) rely on a PATE-style teacher
ensemble implemented through different prompts, and generate noisy output predictions for the LLM.
Yet, due to the absence of a student model in their framework, each query to the ensemble consumes
additional privacy budget, making the approach impractical. Duan et al. (2023a) solve this limitation
by generating a student prompt from the teacher ensemble, similar to our work. Yet, they treat all
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teachers in the ensemble equally, which can yield sub-optimal privacy-utility trade-offs. In contrast,
we leverage the inherent structure of the graph data to identify more important data points and weight
their teachers’ votes higher, improving privacy-utility trade-offs.

3 PRIVACY RISKS IN GRAPH PROMPT LEARNING

In this work, we explore the privacy risk for the sensitive downstream data in graph
prompt learning by instantiating a MIA(Carlini et al., 2022; Shokri et al., 2017).
While prior work on instantiating MIAs against natural language prompts relies on
a simple threshold-based attack (Duan et al., 2023b), we adapt and implement the
more powerful state-of-the-art Likelihood Ratio Attack (LiRA) (Carlini et al., 2022).

Algorithm 1 Likelihood Ratio Attack on Graph Prompt
Learning. Instead of conducting MIA against the target
model in the standard LiRA algorithm, we conduct MIA
against the target prompt in graph prompt learning. We
highlight these differences in blue.

Require: Target prompt Ptarget, Pre-trained GNN model Φ,
A given data sample (xp, yp), data distribution D, Logit
scaling f(p) = log( p

1−p )

1: confsin = {}, confsout = {}
2: for i← 1 to K times do
3: /* Sample a shadow dataset */
4: Dattack ←$ D
5: /* Train IN graph prompt */
6: Pin ← T (Dattack ∪ (xp, yp))
7: confsin← confsin ∪

{
f(Φ(Pin(xp))yp

)
}

8: /* Train OUT graph prompt */
9: Pout ← T (Dattack \ (xp, yp))

10: confsout← confsout ∪
{
f(Φ(Pout(xp))yp

)
}

11: end for
12: µin ← mean (confsin), µout ← mean (confsout)
13: σ2

in ← var(confsin), σ2
out ← var(confsout)

14: /* Query with target graph prompt */
15: confobs = f(Φ(Ptarget(xp))yp)

Ensure: Λ =
p(confobs|N (µin,σ

2
in))

p(confobs|N (µout,σ2
out))

We use this attack to assess whether
a given data point was used to train a
given target prompt. Formally, in our
MIA, we consider that the goal of the
adversary is to infer whether a given
private data sample v = (xp, yp) is
in the training dataset of the target
prompt Ptarget. We assume that the
adversary holds n candidate nodes
(x1, x2, . . . , xn) including their corre-
sponding labels (y1, y2, . . . , yn) and
queries the candidates nodes with
prepended target prompt to the pre-
trained GNN model.

The pre-trained GNN model then
outputs the probability vectors
(p1, p2, . . . , pn). Following Carlini
et al. (2022), we analyze the model’s
output probability at the correct target
class label of every candidate node xi,
i.e., pi,yi . The intuition of this MIA
is that the output probability at the
correct class yi will be significantly
higher for members that were used in
training Ptarget than non-members.
The detail of our adaptation of the
LiRA attack to the graph prompt
learning setup is presented in Algorithm 1.
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Figure 2: AUC-ROC curve of our MIA
on Cora dataset with different number
of shots, i.e., 1-5 shots. With fewer shots,
MIA success rises significantly.

MIA Experimental Setup. We conduct MIA against
graph prompt learning on three downstream datasets,
i.e., Cora, CiteSeer, and PubMed with GNN models
pre-trained on the ogbn-arxiv dataset.1 To evaluate our
MIAs under different numbers of data points used to
tune the graph prompt, we analyze MIA in 1-5 shot
settings. Following the experimental setup from MIAs
against natural language prompts (Duan et al., 2023b),
for each experiment, we consider the k (i.e., k=1-5) data
points used in training the target prompt as members
and 50 ∗ k other randomly selected data points from the
testing dataset as non-members. We repeat the MIA 100
times and report the average attack success.

MIA Results. In Figure 2, we present the AUC-ROC
curve of our MIA on the Cora dataset and the GAT
model. The results for other datasets and models are

1Details of these datasets are presented in Section 5.1.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

presented in Appendix A.4.2 and show a similar trend.
Our results highlight that the privacy risk increases with fewer shots used to train the prompt, e.g.,
with 5 shots we have an AUC score of 0.703, while with 1 shot, the AUC score increases to 0.877.
We hypothesize that this is due to the fact that with fewer shots, the target prompt is more likely to
overfit the prompt data, leading to a higher membership inference risk. Yet, even with more shots,
we observe significantly higher MIA success than the random guessing (0.5), e.g., see Figure 3 with
5-shots over various setups where the average AUC score is consistently between 0.7-0.9. Hence, our
results demonstrate that the private data used in training a graph prompt can be subject to substantial
privacy risk. This motivates the urgent need for privacy-preserving graph prompt learning methods.
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Figure 3: AUC-ROC curve of our MIA (with 5 shots). Generally, there is a high MIA risk in terms
of AUC score of between 0.7-0.9.

4 TOWARDS PRIVACY PRESERVING GRAPH PROMPTS

The standard approach for privacy-preserving machine learning is based on the DP-SGD algo-
rithm (Abadi et al., 2016). The DP-SGD algorithm can be applied in gradient-based learning
approaches to limit the impact of individual training data points on the final model and add calibrated
noise to implement the privacy guarantees. We explore this naive way of implementing privacy
guarantees into graph prompt learning and show that it fails to yield reasonable utility even at low
privacy regimes, i.e., with very high ε’s. Motivated by this insight, we propose two non-gradient
based algorithms for private graph prompt learning based on the PATE framework.

4.1 NAIVE IMPLEMENTATIONS OF PRIVACY IN GRAPH PROMPT LEARNING FAIL

As a naive solution to yield private graph prompt learning, we rely on the DP-SGD algorithm.
Therefore, we keep the GNN frozen, calculate the gradients only with respect to the graph prompts,
clip and noise them according to the desired privacy protection, and update the prompt iteratively
to minimize the loss on the downstream task. Our evaluation of this naive approach in Table 6 in
Appendix A.4.3 highlights that DP-SGD yields inadequate privacy-utility trade-offs for private graph
prompt learning. While our results show the general trend that with increasing privacy budgets, the
performance of the downstream task increases, DP-SGD still significantly degrades the downstream
task performance even at high privacy budgets. For instance, with a privacy budget as high as ε = 64
in the 5-shot setting, the accuracy of the downstream task on the Cora dataset still drops from 48.70%
to 18.47%, which is close to random guessing.

4.2 TWO DIFFERENTIALLY PRIVATE GRAPH PROMPT LEARNING FRAMEWORKS

Motivated by the failure of the naive DP-SGD approach, we propose two non-gradient based DP graph
prompt learning frameworks, DP-GPL and its variant DP-GPL+W. We detail the general workflow
of DP-GPL+W in Figure 1. Note that DP-GPL follows a similar structure but differs in the private
data partitioning and aggregation blocks as detailed below.

Following PATE (Papernot et al., 2017; 2018), our algorithms contain the broader stages of training
the teacher models, performing a private knowledge transfer, and obtaining the student. In contrast to
standard PATE, we do not train teachers from scratch, but using the same frozen pre-trained GNN,
we tune teacher prompts. Additionally, our student is again not a trained model like in PATE, but a
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prompt tuned on the public data labeled during the knowledge transfer. As an additional difference,
DP-GPL+W does not perform the data partitioning at random, as done in PATE. Instead, it groups
nodes according to their centrality score and assigns them to teachers accordingly. We detail the
building blocks of our DP-GPL and DP-GPL+W below:

Algorithm 2 Teacher Weight Calculation for
DP-GPL+W. Done once during data partitioning.

Require: Average centrality scores
S = [s1, s2, . . . , sN ], where si ∈ [0, 1],
wmin, wmax

Ensure: W = [w1, w2, . . . , wN ], where wi ∈
[wmin, wmax] for all i, and

∑N
i=1 wi = N

1: for i = 1 to N do
2: /* Scale the centrality scores to the range

[wmin, wmax] */
3: wi ← wmin + (wmax − wmin)× si
4: end for
5: /* Normalize the weights to ensure their sum

equals N */
6: S ←

∑N
i=1 wi

7: for i = 1 to N do
8: wi ← wi × N

S
9: end for

10: returnW

Private Data Partition. In DP-GPL, we parti-
tion and assign the private data to the teachers
at random, the same as PATE. In contrast, in
DP-GPL+W, we calculate the centrality score
of each node in the private dataset, i.e., ci =
deg(vi)/(n − 1), where deg(vi) is the degree
(number of edges) of node vi and n is the num-
ber of nodes in the private graph. Then, we
partition the full set of private data points into
disjoint groups according to these centrality
scores, i.e., G = {g1, g2, . . . , gN}, where N
is the number of groups, set according to the
desired number of teachers. Then, we assign
the groups to the different teachers and calculate
the weight for each teacher based on the aver-
age centrality score of the nodes in its group,
i.e., S = {s1, s2, . . . , sN}. Note that the weight
calculation is a one-time operation performed
before the training. We make sure that weights
stay in a pre-defined range of [wmin, wmax] with
wmin and wmax being two hyperparameters that
specify the tolerated variation in privacy spending between the teachers. Additionally, we normalize
the weights to sum up to N , such that we do not need to adjust the noise scale added to privatize the
teacher votes from DP-GPL. We detail the approach in Algorithm 2.

Teacher Prompt Tuning. In this stage, which is alike for DP-GPL and DP-GPL+W, we tune the
teacher prompts according to the data points that were assigned to them. The teacher prompt tuning
differs from PATE which trains teacher models from scratch.

Public Querying. To label the public data based on the teacher ensemble, we infer it through the
prompted GNN. Therefore, for each teacher, we need to first insert the teacher prompt into the
public data. How this insertion is done differs among different graph prompt learning methods. For
example, in the GPF-plus method, we insert the teacher prompt into the node features of the public
data samples, while in the All-in-one method, the teacher prompt is inserted into the public data as an
extra subgraph. Then, we query the pre-trained GNN model once per teacher. For each teacher, we
take as a vote the class label with the highest confidence.

Noisy Teacher Vote Aggregation. In DP-GPL, we assume that each teacher has the same weight,
and we aggregate the teachers’ votes with a simple majority voting mechanism akin to PATE. In
contrast, our DP-GPL+W uses the weighted aggregation mechanism illustrated in Figure 4. In the
weighted aggregation, we scale every teacher’s vote in the histogram according to the teacher’s weight
from Algorithm 2. Specifically, for a query Q from the downstream task and classes 1 to C, let
yi(Q) ∈ [1, C] denote the pre-trained GNN model’s prediction for i-th teacher prompt, and cm(Q)
denote the vote count for class m, i.e., cm(Q) =

∑N
i (yi(Q) = m). With vote weight for i-th teacher

prompt wi, we can get the weighted vote count for class m as follows: ĉm(Q) =
∑N

i wi · (yi(Q) =
m). Finally, we add independent Gaussian noise to the weighted count for each class, following the
Confident GNMax algorithm (Papernot et al., 2018), and return the label with the highest noisy count
for the query.

Student Prompt Training. Instead of training a student model, like in the original PATE, we use the
labeled public data from the aggregation stage to train a student graph prompt. This prompt can be
released to the public while protecting the private data used to train the teacher prompts.
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Figure 4: Weighted Aggregation. An overview of the weighted aggregation stage in DP-GPL+W.
We first turn the standard vote histogram into a weighted histogram based on the teacher weights.
Then, we add Gaussian noise to the weighted votes and return the vote with the highest noisy count
as the returned label for the public data sample.

4.3 PRIVACY ANALYSIS

As the training nodes for different teacher prompts are independent and do not have connecting edges,
the privacy analysis of our methods follows that in the original PATE algorithm (Papernot et al.,
2018). We analyze the privacy analysis of DP-GPL and DP-GPL+W below.

DP-GPL. The privacy analysis of DP-GPL follows the standard privacy analysis of the GNMax
algorithm, see Papernot et al. (2018), Section 4.1. Let f(x) denote the histogram obtained by the
teacher votes. We use the Gaussian mechanism (Dwork et al., 2014) to obtain a noisy histogram f ′(x)
as f ′(x) = f(x) +N (0, σ2). We denote by ∆f the sensitivity of f .2 The Gaussian mechanism then
yields the following data independent bound for PATE (Mironov, 2017):

(α,∆2
f · α/2σ2)-Rényi-DP. (2)

Using standard conversion (Mironov, 2017), we can convert this bound back to (ε, δ)-DP bounds.

DP-GPL+W. The analysis of our DP-GPL+W is significantly more complex due to the different
teacher-weighting. In fact, the different weighting of teachers causes them to experience different
privacy losses. Hence, instead of yielding homogeneous DP guarantees over all training data points,
the algorithm yields heterogeneous DP guarantees (Alaggan et al., 2016), i.e., (ε1, . . . , εN , δ)-DP,
with each teacher i ∈ N and its corresponding prompt data points having (εi, δ)-DP guarantees.

Intuitively, each teacher’s privacy loss depends on its weight. A teacher with higher weight can
change the voting more, and hence, has a higher sensitivity. In fact, given that the weight is multiplied
with the teacher’s vote (i.e., 1), the teacher’s weight is equivalent to its sensitivity.

Proposition 1 A teacher’s weight is equal to its sensitivity, i.e., ∆f,i = wi.

This proposition leads to the following theorem:

Theorem 1 Each teacher i in our DP-GPL+W has a data independent privacy bound of (α,∆2
f,i ·

α/2σ2) = (α,w2
f,i · α/2σ2)-Rényi-DP.

Proof: The proof follows immediately from replacing ∆f in Equation (2) with the correct per-teacher
sensitivity ∆f,i. □

After concersion back to (ε, δ)-DP, DP-GPL+W yields (ε1, . . . , εN , δ)-DP privacy guarantees over all
teachers. Each data point from the downstream dataset, hence, obtains the privacy guarantee obtained
by the teacher that it is assigned to. Note that while our privacy analysis uses tools and notation from
heterogeneous DP (Alaggan et al., 2016), we do not operate in an individualized privacy setup where
individual nodes have different privacy requirements. In our setup, all nodes have the same privacy
requirement εmax, and every εi < εmax for εi ∈ {ε1, . . . , εN}.

2Given that each teacher can contribute 1 vote, ∆f = 1 in DP-GPL. We still state the sensitivity explicitly
for completeness and as a foundation of the privacy analysis of DP-GPL+W.
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5 EMPIRICAL EVALUATION

5.1 GENERAL EXPERIMENTAL SETUP

Datasets. We use ogbn-arxiv (Hu et al., 2020), which is a large-scale graph dataset, as the pre-training
dataset. For the downstream tasks, we use Cora (Yang et al., 2016), CiteSeer (Yang et al., 2016), and
PubMed (Yang et al., 2016). Since the pre-trained dataset (i.e., ogbn-arxiv) and downstream dataset
(i.e., Cora, CiteSeer, and PubMed) have various input feature dimensions, we here use SVD (Singular
Value Decomposition) to unify input features from all dimensions as 100 dimensions, following the
process in Sun et al. (2023b). We provide more details about these datasets in Appendix A.1. For
each dataset, We randomly select 50% of the nodes as the private data and the remaining 50% as
the public data. Within the public data, we randomly select 50 nodes as the query nodes and the
remaining nodes as the testing data.

Models. We use three widely-used GNN models, i.e., GCN (Kipf & Welling, 2022), GAT (Veličković
et al., 2018a), and Graph Transformer (GT) (Shi et al., 2020) as the backbone for both ”pre-train &
fine-tune” and graph prompt learning paradigms. The default hyperparameters used for pre-training
GNN models are presented in Table 3. For pre-training strategies, we select four mostly used methods
covering node-level, edge-level, and graph-level strategies, i.e., DGI (Veličković et al., 2018b),
GraphMAE (Hou et al., 2022), EdgePreGPPT (Sun et al., 2022a), and SimGRACE (Xia et al., 2022).

Graph Prompt Learning Methods. Current popular graph prompt learning methods can be classified
into two types, ’Prompt as graph’ and ’Prompt as token’ (Zi et al., 2024). For ’Prompt as graph’ type,
we select All-in-one (Sun et al., 2023b), and for ’Prompt as token’ type, we use GPPT (Sun et al.,
2022a), and GPF-plus (Fang et al., 2024). These graph prompt methods are all state-of-the-art. Also,
we focus on the 5-shot graph prompt learning setting as it has high performance on downstream tasks
(as shown in Table 5 in Appendix A.4.1) and also high MIA risk (as shown in Figure 3).

Privacy Parameters and Accounting. We set the privacy parameters for DP-GPL according to
Table 4 in Appendix A.2. Note that, since we scale the weights in DP-GPL+W to match the number of
teachers (i.e., the original sum of votes, see lines 6-8 in Algorithm 2), we can use the same parameters
over both methods. To empirically account for the per-teacher privacy loss during our experiments,
we build on the code-based from Boenisch et al. (2023).

DP-GPL and DP-GPL+W. We use an ensemble of 200 teacher prompts, and each teacher prompt is
trained with disjoint 5 shots of data from the private downstream task. For query dataset, we select
50 public samples from the downstream distribution. Both methods are implemented to immediately
stop querying once a teacher has reached their privacy limit, which we set to ε = 2. We repeat each
experiment three times and report the average and standard deviation of the public student prompt’s
accuracy on the testing dataset.

Baselines. We compare against three baselines. (1) Lower Bound (LB): (ε = 0). Given a pre-
trained GNN model, we directly evaluate its performance on the downstream test data. (2) Ensemble
Accuracy (Ens. Acc.):(ε = ∞). We use the histogram of the private teacher ensemble votes and
return the clean argmax. (3) Upper Bound (UB): (ε =∞). i.e., we select the teacher prompt which
has the best testing accuracy.

5.2 RESULTS

We present the results of our DP-GPL and DP-GPL+W, and of the three baselines on different
GNN models and downstream datasets in Table 1. The results for other graph prompt learning
methods in Appendix A.4.4 show the same trends. We first observe that both our proposed algorithms
significantly improve over the lower bound (ε = 0) baseline, highlighting their effectiveness in tuning
graph prompts to solve the respective downstream tasks. While there is a slight performance gap,
the test accuracies achieved by DP-GPL+W are generally close to the upper bound, e.g., 64.64% vs
67.12% on Cora, GAT model. We furthermore observe that, in most cases, DP-GPL+W outperforms
DP-GPL. Over the given setups, DP-GPL+W achieves, on average, a 3.5% higher downstream utility
than DP-GPL, while still consuming less than the specified privacy budget of ε = 2 over each teacher.
This highlights that our data-aware partitioning algorithm and the weighting of the respective teachers
according to the nodes’ influence are effective in improving privacy-utility trade-offs.
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Table 1: Performance comparison between our DP-GPL & DP-GPL+W, and three baselines on
three downstream datasets. (DGI, All-in-one, δ = 1.5× 10−4). LB – Lower Bound, UB – Upper
Bound. DP-GPL and DP-GPL+W perform significantly better than the lower bound in all setups,
and DP-GPL+W has similar utility to the non-private baselines. For DP-GPL+W, we report the range
of privacy consumptions experienced over all teachers. Generally, there is an improvement around
3.5% from DP-GPL to DP-GPL+W, indicating the effectiveness of weighted aggregation.

LB Ens. Acc. UB Our DP-GPL Our DP-GPL+W

Private ε = 0 ε = ∞ ε = ∞ ε Test Acc εmax Test Acc

GAT
Cora 43.92 67.09 67.12 0.2226 57.96 ±2.12 1.6247 64.64 ±0.80
CiteSeer 37.51 73.44 74.75 0.2047 73.49 ±2.04 1.6078 71.45 ±2.06
PubMed 32.86 71.48 71.72 0.2383 66.07 ±1.78 1.6555 68.17 ±6.15

GCN
Cora 49.10 62.35 64.04 0.2025 56.22 ±2.00 1.6859 61.30 ±1.38
CiteSeer 40.51 62.95 64.63 0.2001 59.41 ±1.97 1.6244 61.76 ±2.06
PubMed 29.95 69.09 70.13 0.2386 62.70 ±2.10 1.6276 67.94 ±3.02

GT
Cora 21.80 55.36 56.77 0.2276 54.53 ±1.97 1.7053 53.91 ±0.47
CiteSeer 27.56 51.75 53.51 0.3627 43.88 ±2.13 1.7392 50.04 ±2.70
PubMed 39.23 70.63 72.95 0.2084 63.93 ±2.15 1.5999 70.26 ±3.00

Regarding our methods’ privacy consumption, we observe that neither exhausts the given privacy
budget of ε = 2. In particular, DP-GPL is not able to spend above ε = 0.3627 during the labeling.
This small privacy consumption is due to the limited number of public samples used for the knowledge
transfer: over the given 50 queries, the methods cannot spend more privacy. While it would be
possible to increase the number of public queries, we find that this does not increase the downstream
performance notably. Hence, by limiting the public data to 50 samples, the best privacy-utility
trade-offs can be achieved. As for DP-GPL+W, we see that it is able to consume the given privacy
budget more effectively over the 50 queries, by spending up to ε = 1.7392 in the teachers with the
highest weight—yielding a significant improvement in downstream performance. This shows that, by
enabling DP-GPL+W to spend privacy non-uniformly over the teachers, it can benefit from the given
privacy budget where DP-GPL is not able to spend it—causing lower utility.

6 CONCLUSIONS

In this work, we are the first to highlight the privacy risks that arise from graph prompt learning.
By running a membership inference attack, we showed that private information from the private
dataset used to tune the graph prompts can leak to external parties who query the prompted GNN.
To mitigate the resulting risk for the downstream data, we set out to design a private graph prompt
learning algorithm. Motivated by our finding that the naive application of the DP-SGD algorithm,
the standard to implement DP guarantees in machine learning, fails to yield good privacy-utility
trade-offs, we designed DP-GPL and DP-GPL+W, which build on the PATE algorithm and perform a
noisy knowledge transfer from teachers to a student prompt. Leveraging the natural structure of graph
data, in contrast to standard PATE, in DP-GPL+W, we do not weight every teacher’s vote equally
during the knowledge transfer. Instead, we weight teachers who hold nodes with higher centrality
(more influential nodes) higher. We thoroughly analyzed the resulting utility and privacy implications
and highlighted that our DP-GPL and DP-GPL+W are able to yield strong utility at high privacy
guarantees. Thereby, our work contributes towards leveraging the computational and utility benefits
from graph prompt learning but without additional privacy risks for the downstream data.
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Kihyuk Sohn, Huiwen Chang, José Lezama, Luisa Polania, Han Zhang, Yuan Hao, Irfan Essa, and
Lu Jiang. Visual prompt tuning for generative transfer learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 19840–19851, 2023.

Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. Gppt: Graph pre-training and
prompt tuning to generalize graph neural networks. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 1717–1727, 2022a.

X Sun, J Zhang, X Wu, H Cheng, Y Xiong, and J Li. Graph prompt learning: A comprehensive
survey and beyond. arxiv 2023. arXiv preprint arXiv:2311.16534, 2023a.

Xiangguo Sun, Hongzhi Yin, Bo Liu, Qing Meng, Jiuxin Cao, Alexander Zhou, and Hongxu
Chen. Structure learning via meta-hyperedge for dynamic rumor detection. IEEE transactions on
knowledge and data engineering, 35(9):9128–9139, 2022b.

Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in one: Multi-task prompting
for graph neural networks. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 2120–2131, 2023b.

Xiangguo Sun, Hong Cheng, Bo Liu, Jia Li, Hongyang Chen, Guandong Xu, and Hongzhi Yin.
Self-supervised hypergraph representation learning for sociological analysis. IEEE Transactions
on Knowledge and Data Engineering, 35(11):11860–11871, 2023c.

Xiangguo Sun, Jiawen Zhang, Xixi Wu, Hong Cheng, Yun Xiong, and Jia Li. Graph prompt learning:
A comprehensive survey and beyond. arXiv preprint arXiv:2311.16534, 2023d.

Jianheng Tang, Jiajin Li, Ziqi Gao, and Jia Li. Rethinking graph neural networks for anomaly
detection. In International Conference on Machine Learning, pp. 21076–21089. PMLR, 2022.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025
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A APPENDIX

A.1 EXPERIMENTAL SETUP: DATASETS

Table 2: Statistics of datasets. |V|, |E|,m, |C| denote the number of nodes, num of edges, dimension
of a node feature vector, and number of classes, respectively.

Dataset |V| |E| m |C|
ogbn-arxiv 169, 343 1, 166, 243 128 40

Cora 2, 708 10, 556 1, 433 7
CiteSeer 3, 327 9, 104 3, 703 6
PubMed 19, 717 88, 648 500 3

In this paper, we focus on graph prompt learning for node-level tasks. Also, we consider the scenario
where a GNN model is pretrained on a large graph by the model provider, and users apply it to a
specific downstream task (a smaller graph) through graph prompt learning (Sun et al., 2023b). To
simulate this scenario, we use ogbn-arxiv, which is a large-scale graph dataset, as the pre-training
dataset. For the downstream tasks, we use Cora, CiteSeer, and PubMed (Yang et al., 2016). The
statistics of datasets are presented in Table 2.
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A.2 EXPERIMENTAL SETUP: HYPERPARAMETERS

The default hyperparameters used in the GNN pre-training phase are presented in Table 3. And
Table 4 shows the parameters for Confident-GNMax used in DP-GPL and DP-GPL+W.

Table 3: Default hyperparameter setting for
GNN pre-training.

Type Hyperparameter Setting

GAT
Architecture 3 layers
Hidden unit size 128

GCN Architecture 3 layers
Hidden unit size 128

Graph Transformer
Architecture 3 layers
Hidden unit size 128

Training

Learning rate 0.001
Optimizer Adam
Epochs 300
Batch size 128

Table 4: Parameters for Confident-GNMax. (T - threshold, σ1, σ2 - noise parameters)

GNN model Downsteream dataset T σ1 σ2

GAT Cora 170 5 100
GAT CiteSeer 170 5 50
GAT PubMed 170 1 20
GCN Cora 150 1 20
GCN CiteSeer 180 1 20
GCN PubMed 170 1 20
GT Cora 150 10 100
GT CiteSeer 150 5 50
GT PubMed 170 5 100

A.3 PSEUDOCODE FOR OUR DP-GPL

We here provide the pseudocode for our DP-GPL and DP-GPL+W algorithm in Algorithm 3. This
algorithm includes the main five steps in our methods, i.e., private data partition, teacher prompts
training, prompting pre-trained GNN model, aggregation, and student prompt training. In this
algorithm, we highlight the difference between our methods and the standard PATE in blue.

A.4 ADDITIONAL EXPERIMENTS

A.4.1 PERFORMANCE OF GRAPH PROMPT LEARNING

One advantage of graph prompt learning is that in the few-shot setting, the downstream performance
of graph prompt learning is comparable to or even better than the ”pre-train & fine-tune” paradigm.
We implement preliminary experiments to compare the downstream performance of graph prompt
learning and the fine-tuning paradigm in a 5-shot setting, as shown in Table 5. As we can see, in most
cases, the testing accuracy of graph prompt methods is close to or higher than that of the fine-tuning
paradigm, making it reasonable to explore the privacy risk of graph prompt learning in the few-shot
setting.

A.4.2 MIA RESULTS

Figure 5 and Figure 6 show our MIA on CiteSeer and PubMed datasets, respectively, with 1-5 shots
of private data used in training prompts. As we can observe, our MIA has higher attack success with
few shots.
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Algorithm 3 DP-GPL & DP-GPL+W. In contrast to the standard PATE algorithm where the teacher
models are trained on disjoint subsets of private data, our DP-GPL and DP-GPL+W trains teacher
prompts on disjoint subsets of the private graph data. Also, it’s notable that in our DP-GPL+W, we
partition private data based on centrality scores and utilize weighted aggregation mechanism. We
highlight these differences in blue.

Require: Private graph data Vprivate = {(x1, y1), (x2, y2), . . . , (xn, yn)}
Require: Number of teachers N , threshold T , noise parameters σ1 and σ2, maximum weight wmax

and minimum weight wmin
Require: Pre-trained GNN model Φ, unlabeled public query data Vpublic

1: Step 1: Private data partition
2: /* DP-GPL */
3: Partition Vprivate into N IID disjoint groups {g1, g2, . . . , gN}
4: /* DP-GPL+W */
5: Calculate centrality score of each node in Vprivate

6: Partition Vprivate into N disjoint groups {g1, g2, . . . , gN} according to the centrality scores
7: Get average centrality score of each subset: S = {s1, s2, . . . , sN}
8: for each teacher i = 1 to N do
9: Step 2: Teacher Prompts Training

10: Train teacher prompt Pi on the group gi
11: end for
12: Step 3: Prompting pre-trained GNN model
13: Actual public data Dpublic = ∅
14: for each query xj ∈ Vpublic (e.g., a node) do
15: Insert teacher prompt Pi into the query data point, i.e., Pi(xj)

16: Query the pre-trained GNN model and get a label yji = Φ(Pi(xj))
17: Step 4: Aggregation
18: /* DP-GPL */
19: Get count for each class with uniform votes: cm(xj) =

∑N
i (yji = m)

20: /* DP-GPL+W */
21: Get count for each class with weighted votes: cm(xj) =

∑N
i wi · (yji = m)

22: if maxm {cm(xj)}+N (0, σ2
1) ≥ T then ▷ m is the class label

23: yj = argmaxm
{
cm(xj) +N (0, σ2

2)
}

24: Dpublic = Dpublic ∪ (xj , yj)
25: end if
26: end for
27: Step 5: Student Prompt Training
28: Train student prompt Ps using the noisy labeled public data Dpublic

29: Differential Privacy Guarantee
30: Compute actual privacy loss (ε, δ) based on noise parameters σ1, σ2 and the number of queries
|Dpublic|

31: return Student prompt Ps with differentially private guarantee
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Table 5: Performance of Pre-train & Fine-tune (PFT) and graph prompt learning (Cora, 5-shot).

GNN architectures Pre-train methods PFT All-in-one GPF-plus GPPT

GAT

DGI 46.03 ±0.79 48.70 ±1.45 53.48 ±1.99 56.53 ±1.51

EdgePreGPPT 56.33 ±1.29 48.71 ±1.11 40.89 ±1.53 54.77 ±1.54

GraphMAE 43.51 ±0.74 50.66 ±1.03 51.61 ±1.09 49.32 ±1.49

SimGRACE 14.71 ±1.67 13.05 ±1.62 21.35 ±1.24 35.03 ±2.07

GCN

DGI 52.12 ±1.36 58.25 ±1.10 66.50 ±2.50 56.21 ±1.68

EdgePreGPPT 43.77 ±1.16 68.94 ±1.09 76.30 ±0.98 60.28 ±1.86

GraphMAE 39.55 ±1.24 62.90 ±0.91 75.84 ±1.10 51.63 ±1.25

SimGRACE 18.15 ±0.52 18.19 ±1.64 19.97 ±0.65 33.72 ±1.98

GraphTransformer

DGI 53.33 ±1.09 45.12 ±2.05 29.54 ±2.24 56.21 ±1.51

EdgePreGPPT 60.02 ±1.07 53.45 ±1.06 35.74 ±0.59 56.95 ±1.04

GraphMAE 52.95 ±1.44 41.84 ±0.97 36.58 ±0.67 48.54 ±1.17

SimGRACE 39.79 ±0.25 15.03 ±1.12 15.60 ±0.88 41.14 ±0.57
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Figure 5: AUC-ROC curve of our MIA on CiteSeer dataset with different number of shots, i.e.,
1-5 shots.
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Figure 6: AUC-ROC curve of our MIA attack on PubMed dataset with different number of
shots, i.e., 1-5 shots.

A.4.3 RESULTS OF DP-SGD ON GRAPH PROMPT LEARNING

Table 6 shows the performance of DP-SGD on graph prompt learning with different privacy budgets
and numbers of shots. It is evident that the DP-SGD algorithm significantly degrades the downstream
task’s performance even at high privacy budgets. Only when the number of shots increases to 100,
the DP-SGD algorithm can achieve a high utility. However, in the few-shot setting (i.e., less than 50
shots), the DP-SGD algorithm fails to have a great privacy-utility trade-off.

Table 6: Performance of DP-SGD on graph prompt learning on Cora dataset (DGI, GPF-plus,
GAT).

# Shots ε = ∞ ε = 1 ε = 8 ε = 16 ε = 32 ε = 64
5 48.70 ±1.45 15.10 ±1.09 15.46 ±1.13 16.58 ±0.17 17.04 ±1.01 18.47 ±0.91

10 65.70 ±5.15 17.04 ±0.43 16.75 ±3.29 17.33 ±2.91 18.09 ±0.21 18.67 ±0.96

50 75.20 ±2.09 19.58 ±0.17 19.91 ±3.15 22.55 ±1.63 22.44 ±2.04 22.04 ±1.20

100 78.42 ±0.98 68.15 ±0.94 77.27 ±0.33 77.94 ±1.85 78.16 ±1.94 78.40 ±1.53
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A.4.4 DP-GPL & DP-GPL+W RESULTS

We also present the performance of our DP-GPL and DP-GPL+W on other setups, see Table 7 to
Table 11. In addition, we present the full privacy cost range of DP-GPL+W in Table 12, as an addition
to Table 1. In consistent with the observations in Section 5.2, our DP-GPL and DP-GPL+W can
achieve high utility under strong privacy guarantees. And DP-GPL+W can achieve better utility than
DP-GPL in most cases, indicating the effectiveness of our weighted aggregation mechanism.

Table 7: Performance comparison between our DP-GPL & DP-GPL+W and three baselines on
three downstream datasets. (DGI, GPF-plus, δ = 1.5× 10−4). LB – Lower Bound, UB – Upper
Bound.

LB Ens. Acc. UB our DP-GPL our DP-GPL+W

Private ε = 0 ε = ∞ ε = ∞ ε Test Acc εmax Test Acc

GAT
Cora 43.92 59.14 60.13 0.9186 58.10 ±1.63 1.6884 59.00 ±0.88
CiteSeer 37.51 69.24 70.38 0.4917 68.11 ±1.39 1.6124 69.83 ±0.69
PubMed 32.86 79.07 79.22 0.3150 78.85 ±1.40 1.5789 78.41 ±0.91

GCN
Cora 49.10 71.33 77.87 0.4268 64.64 ±0.73 1.7456 77.14 ±3.34
CiteSeer 40.51 82.70 85.98 0.2039 79.44 ±5.74 1.7968 84.55 ±1.72
PubMed 29.95 80.76 81.73 0.2486 79.81 ±5.17 1.6712 80.94 ±0.99

GT
Cora 21.80 37.81 38.08 0.9990 37.38 ±1.69 1.6852 36.83 ±0.25
CiteSeer 27.56 37.78 37.88 0.9933 37.61 ±3.04 1.6414 35.87 ±3.87
PubMed 39.23 71.17 73.45 0.9973 68.94 ±0.94 1.6971 71.82 ±1.24

Table 8: Performance comparison between our DP-GPL & DP-GPL+W, and three baselines on
three downstream datasets. (DGI, GPPT, δ = 1.5 × 10−4). LB – Lower Bound, UB – Upper
Bound.

LB Ens. Acc. UB our DP-GPL our DP-GPL+W

Private ε = 0 ε = ∞ ε = ∞ ε Test Acc εmax Test Acc

GAT
Cora 43.92 51.73 56.39 0.7777 46.90 ±1.24 1.5933 52.68 ±0.86
CiteSeer 37.51 48.55 54.29 0.4790 42.65 ±1.26 1.6450 51.83 ±8.87
PubMed 32.86 63.97 68.25 0.2874 59.55 ±0.88 1.6472 65.56 ±3.28

GCN
Cora 49.10 59.23 64.16 0.4980 54.15 ±2.02 1.5631 61.54 ±3.51
CiteSeer 40.51 56.41 60.60 0.3728 52.09 ±1.19 1.6829 57.43 ±4.31
PubMed 29.95 68.41 73.41 0.2601 63.28 ±4.75 1.6774 69.63 ±0.54

GT
Cora 21.80 56.84 58.74 0.6964 54.78 ±3.15 1.7367 57.22 ±0.17
CiteSeer 27.56 48.28 49.76 0.5904 46.63 ±2.86 1.7246 46.08 ±0.56
PubMed 39.23 66.52 69.46 0.3846 63.38 ±2.11 1.5895 66.14 ±1.83

Table 9: Performance comparison between our DP-GPL & DP-GPL+W and three baselines on
three downstream datasets. (GraphMAE, All-in-one, δ = 1.5× 10−4). LB – Lower Bound, UB –
Upper Bound.

LB Ens. Acc. UB our DP-GPL our DP-GPL+W

Private ε = 0 ε = ∞ ε = ∞ ε Test Acc εmax Test Acc

GAT
Cora 39.65 49.40 52.94 0.5728 41.02 ±1.38 1.6222 47.76 ±2.09
CiteSeer 38.50 39.09 40.87 0.2412 29.27 ±2.10 1.7290 36.71 ±1.58
PubMed 30.86 64.64 67.85 0.2232 58.81 ±0.59 1.6265 62.66 ±2.52

GCN
Cora 30.76 62.97 65.37 0.0782 59.50 ±0.63 1.6897 60.75 ±1.13
CiteSeer 31.85 67.89 71.85 0.0588 61.68 ±0.41 1.8023 65.22 ±0.49
PubMed 32.87 70.22 71.46 0.4989 64.59 ±0.11 1.8862 67.95 ±1.83

GT
Cora 35.68 47.35 48.65 0.4197 37.47 ±1.05 1.5340 44.68 ±0.63
CiteSeer 34.67 52.58 56.48 0.0390 46.97 ±2.18 1.8430 50.15 ±0.25
PubMed 22.38 34.34 35.47 0.3359 32.82 ±1.42 1.7741 31.60 ±4.30

A.4.5 INFLUENCE OF THE NUMBER OF QUERIES

We analyze the impact of the number of public queries on the performance of our DP-GPL and
DP-GPL+W in Figure 7, taking Cora, DGI, All-in-one, and GAT as an example. As we can see, the
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Table 10: Performance comparison between our DP-GPL & DP-GPL+W and three baselines on
three downstream datasets. (GraphMAE, GPF-plus, δ = 1.5× 10−4). LB – Lower Bound, UB –
Upper Bound.

LB Ens. Acc. UB our DP-GPL our DP-GPL+W

Private ε = 0 ε = ∞ ε = ∞ ε Test Acc εmax Test Acc

GAT
Cora 39.65 51.69 54.38 0.6778 45.44 ±7.09 1.9746 49.79 ±0.95
CiteSeer 38.50 58.02 61.94 0.2194 54.50 ±3.41 1.9904 56.80 ±2.63
PubMed 30.86 76.21 78.56 0.4846 66.21 ±3.05 1.8690 75.16 ±1.77

GCN
Cora 30.76 74.16 76.85 0.6135 66.88 ±1.91 1.9611 74.09 ±1.76
CiteSeer 31.85 78.13 80.87 0.6262 69.45 ±2.58 1.9383 77.27 ±3.42
PubMed 32.87 77.84 80.85 0.0595 68.67 ±5.32 1.7512 77.02 ±0.10

GT
Cora 35.68 39.10 42.49 0.0273 30.78 ±3.33 1.6369 38.15 ±0.81
CiteSeer 34.67 41.61 43.75 0.1189 34.72 ±0.54 1.8614 40.92 ±1.09
PubMed 22.38 28.29 31.39 0.6147 21.86 ±1.69 1.8231 27.31 ±3.09

Table 11: Performance comparison between our DP-GPL & DP-GPL+W and three baselines on
three downstream datasets. (GraphMAE, GPPT, δ = 1.5 × 10−4). LB – Lower Bound, UB –
Upper Bound.

LB Ens. Acc. UB our DP-GPL our DP-GPL+W

Private ε = 0 ε = ∞ ε = ∞ ε Test Acc εmax Test Acc

GAT
Cora 39.65 49.99 51.57 0.5979 47.08 ±2.13 1.8589 47.65 ±3.54
CiteSeer 38.50 45.44 46.48 0.6392 43.02 ±0.41 1.5596 43.43 ±0.69
PubMed 30.86 55.48 56.64 0.5325 53.92 ±0.05 1.7982 53.87 ±1.34

GCN
Cora 30.76 54.57 54.85 0.3617 51.61 ±3.98 1.5649 52.09 ±0.64
CiteSeer 31.85 44.12 45.78 0.1175 41.53 ±1.17 1.5388 41.77 ±0.12
PubMed 32.87 59.25 60.57 0.2091 56.35 ±1.64 1.9156 57.77 ±2.09

GT
Cora 35.68 52.63 54.09 0.1988 50.24 ±4.11 1.7322 50.81 ±2.02
CiteSeer 34.67 65.16 65.78 0.2290 63.49 ±5.21 1.5810 63.73 ±0.88
PubMed 22.38 46.41 47.97 0.3221 44.03 ±3.00 1.7740 45.07 ±2.26

performance of our DP-GPL and DP-GPL+W increases as the number of public queries increases
from 10 to 50. With more than 50 public queries, the performance of our DP-GPL and DP-GPL+W
tends to be stable, indicating that our methods can achieve the best privacy-utility trade-offs with 50
public queries.
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Figure 7: Influence of the number of public queries on the performance of our DP-GPL and
DP-GPL+W (Cora, DGI, All-in-one, GAT).

A.4.6 INFLUENCE OF THE MAXIMUM WEIGHT

We analyze the impact of the maximum weight - wmax in our weighted aggregation mechanism
on the performance of our DP-GPL+W. The results of DP-GPL+W with wmax = 1.5, 2.5, 3.0 with
DGI, All-in-one are shown in Table 13, Table 14 and Table 15 respectively. The comparison of the
performance of our DP-GPL+W with different wmax is shown in Figure 8. We can observe that with
wmax = 2.0, DP-GPL+W can achieve the best privacy-utility trade-offs.
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Table 12: Performance comparison between our DP-GPL & DP-GPL+W, and three baselines on
three downstream datasets, with ε range for DP-GPL+W. (DGI, All-in-one, δ = 1.5× 10−4). LB
– Lower Bound, UB – Upper Bound.

LB Ens. Acc. UB Our DP-GPL Our DP-GPL+W

Private ε = 0 ε = ∞ ε = ∞ ε Test Acc εi Test Acc

GAT
Cora 43.92 67.09 67.12 0.2226 57.96 ±2.12 [0.1015, 1.6247] 64.64 ±0.80
CiteSeer 37.51 73.44 74.75 0.2047 73.49 ±2.04 [0.1005, 1.6078] 71.45 ±2.06
PubMed 32.86 71.48 71.72 0.2383 66.07 ±1.78 [0.1035, 1.6555] 68.17 ±6.15

GCN
Cora 49.10 62.35 64.04 0.2025 56.22 ±2.00 [0.1054, 1.6859] 61.30 ±1.38
CiteSeer 40.51 62.95 64.63 0.2001 59.41 ±1.97 [0.1015, 1.6244] 61.76 ±2.06
PubMed 29.95 69.09 70.13 0.2386 62.70 ±2.10 [0.1017, 1.6276] 67.94 ±3.02

GT
Cora 21.80 55.36 56.77 0.2276 54.53 ±1.97 [0.1066, 1.7053] 53.91 ±0.47
CiteSeer 27.56 51.75 53.51 0.3627 43.88 ±2.13 [0.1087, 1.7392] 50.04 ±2.70
PubMed 39.23 70.63 72.95 0.2084 63.93 ±2.15 [0.1000, 1.5999] 70.26 ±3.00

Table 13: Performance comparison between DP-GPL and three baselines on three downstream
datasets. (DGI, All-in-one, wmax = 1.5). LB – Lower Bound, UB – Upper Bound.

LB Ens. Acc. UB our DP-GPL our DP-GPL+W

Private ε = 0 ε = ∞ ε = ∞ ε Test Acc εi Test Acc

GAT
Cora 43.92 67.09 67.12 0.2226 57.96 ±2.12 [0.1600, 1.4400] 58.84 ±0.99
CiteSeer 37.51 73.44 74.75 0.2047 73.49 ±2.04 [0.1544, 1.3899] 72.83 ±3.58
PubMed 55.82 71.48 71.72 0.2383 66.07 ±1.78 [0.1547, 1.3927] 70.93 ±0.61

GCN
Cora 49.10 62.35 64.04 0.2025 56.22 ±2.00 [0.1542, 1.3880] 55.72 ±1.08
CiteSeer 40.51 62.95 64.63 0.2001 59.41 ±1.97 [0.1555, 1.3991] 59.63 ±1.81
PubMed 57.84 69.09 70.13 0.2386 62.70 ±2.10 [0.1524, 1.3716] 65.86 ±4.99

GT
Cora 21.80 55.36 56.77 0.2276 54.53 ±1.97 [0.1528, 1.3748] 52.71 ±2.10
CiteSeer 27.56 51.75 53.51 0.3627 43.88 ±2.13 [0.1661, 1.4946] 42.70 ±3.45
PubMed 39.23 70.63 72.95 0.2084 63.93 ±2.15 [0.1660, 1.4940] 64.31 ±5.57
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Figure 8: Influence of the maximum weight on the performance of our DP-GPL+W (DGI, All-in-
one).

A.4.7 DISTRIBUTION OF ε OVER TEACHER ENSEMBLES

We provide the distribution of ε over teacher ensembles in Figure 9, taking DGI, All-in-one, and
GAT as an example. As we can see, the distribution of ε is mostly concentrated around a small value,
with a small number of teachers having a large ε. It indicates that DP-GPL+W can consume the given
privacy budget effectively and achieve high utility.

A.4.8 MIA RESULTS AGAINST DP-GPL AND DP-GPL+W

We also evaluate the effectiveness of our DP-GPL and DP-GPL+W against MIA, as shown in
Figure 10 and Figure 11. The member data is the private data used in training all teacher prompts, and
the non-members are randomly selected samples from the testing dataset. As we can see, all curves
are very close to the dash line (random guess), which shows that our DP-GPL and DP-GPL+W are
effective against MIA, for all downstream tasks and GNN architectures.
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Table 14: Performance comparison between DP-GPL and three baselines on three downstream
datasets. (DGI, All-in-one, wmax = 2.5). LB – Lower Bound, UB – Upper Bound.

LB Ens. Acc. UB our DP-GPL our DP-GPL+W

Private ε = 0 ε = ∞ ε = ∞ ε Test Acc εi Test Acc

GAT
Cora 43.92 67.09 67.12 0.2226 57.96 ±2.12 [0.0974, 2.4341] 62.64 ±3.07
CiteSeer 37.51 73.44 74.75 0.2047 73.49 ±2.04 [0.0971, 2.4273] 70.44 ±6.09
PubMed 55.82 71.48 71.72 0.2383 66.07 ±1.78 [0.0954, 2.3852] 70.53 ±0.40

GCN
Cora 49.10 62.35 64.04 0.2025 56.22 ±2.00 [0.0912, 2.2812] 58.35 ±5.18
CiteSeer 40.51 62.95 64.63 0.2001 59.41 ±1.97 [0.0996, 2.4894] 61.73 ±5.55
PubMed 57.84 69.09 70.13 0.2386 62.70 ±2.10 [0.0940, 2.3508] 66.49 ±3.01

GT
Cora 21.80 55.36 56.77 0.2276 54.53 ±1.97 [0.0922, 2.3042] 51.77 ±2.97
CiteSeer 27.56 51.75 53.51 0.3627 43.88 ±2.13 [0.0972, 2.4293] 47.14 ±0.69
PubMed 39.23 70.63 72.95 0.2084 63.93 ±2.15 [0.0999, 2.4986] 66.94 ±2.63

Table 15: Performance comparison between DP-GPL and three baselines on three downstream
datasets. (DGI, All-in-one, wmax = 3.0). LB – Lower Bound, UB – Upper Bound.

LB Ens. Acc. UB our DP-GPL our DP-GPL+W

Private ε = 0 ε = ∞ ε = ∞ ε Test Acc εi Test Acc

GAT
Cora 43.92 67.09 67.12 0.2226 57.96 ±2.12 [0.0752, 2.7075] 59.11 ±6.08
CiteSeer 37.51 73.44 74.75 0.2047 73.49 ±2.04 [0.0800, 2.8802] 70.88 ±2.49
PubMed 55.82 71.48 71.72 0.2383 66.07 ±1.78 [0.0829, 2.9850] 67.95 ±1.43

GCN
Cora 49.10 62.35 64.04 0.2025 56.22 ±2.00 [0.0769, 2.7691] 58.67 ±3.65
CiteSeer 40.51 62.95 64.63 0.2001 59.41 ±1.97 [0.0796, 2.8645] 62.37 ±0.49
PubMed 57.84 69.09 70.13 0.2386 62.70 ±2.10 [0.0826, 2.9727] 64.78 ±1.00

GT
Cora 21.80 55.36 56.77 0.2276 54.53 ±1.97 [0.0761, 2.7400] 53.36 ±0.04
CiteSeer 27.56 51.75 53.51 0.3627 43.88 ±2.13 [0.0794, 2.8570] 45.02 ±0.06
PubMed 39.23 70.63 72.95 0.2084 63.93 ±2.15 [0.0813, 2.9251] 65.47 ±2.25
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Figure 9: Distribution of ε over teacher ensembles in our DP-GPL+W (DGI, All-in-one, GAT).
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Figure 10: AUC-ROC curve of our MIA against DP-GPL (Cora, 5 shots). Generally, all curves
are very close to the dash line (random guess), which shows that DP-GPL is effective against MIA.
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Figure 11: AUC-ROC curve of our MIA against DP-GPL+W (Cora, 5 shots). Generally, all curves
are very close to the dash line (random guess), which shows that DP-GPL+W is also effective against
MIA.
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