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Abstract

Genomic deep learning has rapidly advanced the prediction of transcription factor
(TF) binding and other genomic profiles directly from DNA sequence, yet the
biological mechanisms captured by these models remain largely unexplored. In this
work, we investigate how state-of-the-art genomic models encode the regulatory
logic underlying TF binding. We first systematically analyze the model-derived
patterns for each TF, revealing that models frequently rely on broad contextual co-
associations of motifs to predict a TF to bind. To quantify the dispersity of this as-
sociation, we introduce the Jaccard Overlap Score (JOS), which distinguishes con-
centrated recognition of canonical motifs from more distributed binding signatures.
Next, we investigate TF-TF cooperativity through in silico knockout experiments,
revealing pronounced self-dependence of key regulators and cell-type—specific
cooperative grammars. Together, our results provide a mechanistic interpretation of
genomic deep learning models, demonstrating both their ability to capture biologi-
cally meaningful combinatorial regulation and their reliance on contextual sequence
features. Our code is publicly available at https://github.com/AlbertBay/EpiBinder.

1 Introduction

In recent years, deep learning has emerged as a powerful paradigm for modeling regulatory genomics,
leading to remarkable progress in predicting transcription factor (TF) binding, gene expression,
and chromatin profiling directly from DNA sequence [1} 2,13} 4} [5]. Models such as DeepBind [1],
DeepSEA [2], and more recent transformers [4]] or state-space models [S] have achieved strong
predictive performance across diverse genomic assays. These approaches have established the field
of genomic deep learning as a new tool for large-scale functional genomics.

Despite this progress, most studies have primarily emphasized benchmark performance metrics,
often without deeper investigation into what these models actually learn about the underlying
biology. In particular, the ability of models to uncover biologically meaningful representations—such
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Figure 1: Overview of the study design. The schematic on the left illustrates the genomic deep learning
framework EpiBinder, which integrates DNA sequence with regulatory context to predict transcription factor
(TF) binding. On the right, we highlight the two downstream analyses explored in this work: (i) model-based
interpretation of learned patterns, and (ii) in silico perturbation experiments to quantify TF-TF interactions.

as interactions between TFs, positional dependencies, or context-specific binding rules—remains
broadly underexplored. As a result, while predictive accuracy continues to improve, the question of
whether these models truly capture the logic of regulation regions is still largely unanswered.

In this work, we address this gap using EpiBinder [6l], a multimodal genomic model that integrates
DNA sequence with epigenetic context to achieve state-of-the-art results in TF binding prediction
(Fig.[I). This model is used as a testbed to perform a mechanistic interpretation of patterns learned. By
leveraging controlled perturbations and model-based interpretation, we aim to reveal how modern deep
learning architectures encode cooperative TF interactions and evaluate their capacity to generalize
beyond sequence-level pattern matching. Our results highlight both the strengths and limitations
of current genomic deep learning models, providing a deeper understanding of how they encode
transcriptional regulation.

2 Interpreting Genomic Models through Pattern Discovery

A central question motivating our study is whether genomic models truly recognize TFs binding
motifs, or whether their predictions rely on other sequence-level signals to identify their presence. To
address this, we designed an experiment aimed at systematically characterizing the patterns that such
models search for when predicting a TF binding.

Experimental setting. In this experiment, we collect all patterns that the model recognizes along
enhancer regulatory regions for each individual TF to bind. In order to do so, we interpret the
model predictions to identify seglets, or locally important subsequences, and subsequently cluster
to consolidate motifs (see Methods). For each TF under study, we thus created an in-silico library
that contains all identified patterns the model exhibits when detecting a particular TF. To assess the
biological relevance of the discovered patterns, we performed motif similarity analysis. We computed
pairwise E-score similarities within the discovered patterns against the Jaspar [7] database. This
comparison allowed us to annotate the model-derived patterns with known TF binding motifs.

Results. In Fig.[2a we depict the resulting annotation map of model-derived patterns against the
JASPAR database. In general, we observe that the models exhibit broad associations for most TFs,
consistent with the view that genomic deep learning models capture a rich landscape of regulatory
determinants. For most of the TFs in the study, the model consistently identifies the coexistence of
several context-dependent motifs relevant for the prediction, while for others it highlights more narrow
signatures. A notable example is CTCF, which the model appears to recognize almost exclusively
through its well-defined binding motif.

In order to better quantify this effect, we introduced the Jaccard Overlap Score (JOS). This score
summarizes whether the patterns identified for a TF converge on a few motifs—ideally a single
one—or instead represent a more diverse set of binding signatures. For each TF, we compared the
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Figure 2: Model-derived patterns reveal widespread contextual associations. (a) Motif similarity between
model-derived patterns and the JASPAR database reported as the Tomtom similarity score (— log, of the
E-value). Bright colors correspond to stronger similarity (lower E-values), while darker colors indicate low
similarity. Red boxes highlight significant matches (E-value < 0.05) where the query TF aligns particularly
with its expected JASPAR motif, whereas white boxes mark cases where no strong correspondence was found.
(b) Jaccard Overlap Score (JOS) summarizing diversity in the association for each TF. The score ranges from
0 (patterns exhibit wide associations with diverse motifs) to 1 (patterns converge on a single canonical motif).
(c) Percentage of analyzed sequences containing the main (most frequent) pattern identified for each TF. (d)
Similarity of the dominant pattern for each TF to canonical JASPAR motifs (in parentheses the similarity score).

sets of JASPAR matches for every pair of discovered patterns and computed their Jaccard index. The
JOS ranges from 0 (patterns exhibit wide association with diverse motifs) to 1 (patterns converge
on key individual motifs). As observed in Fig. Zb, CTCF emerges with one of the highest JOS
values, indicating that the model consistently and almost uniquely associates CTCF with its canonical
binding motif. Interestingly, RAD21 also displays a similarly high JOS, reflecting the fact that the
model recognizes this cohesin component primarily through patterns that overlap with CTCF binding
motifs. Together, these two cases illustrate how the JOS can capture concentrated recognition of
master regulators, in contrast to other TFs where the patterns are more diverse and context-dependent.

Finally, we refined our analysis to focus on the main pattern (i.e., the most frequent motif) identified
for each TF. Strikingly, for many TFs, the dominant pattern identified does not correspond to their
canonical JASPAR motif. In Fig. 2k, we report the percentage of sequences in which the main pattern
is present, revealing that several TFs are primarily recognized through non-canonical motifs. Instead,
for many TFs the dominant patterns often show higher similarity to motifs of other factors such
as CTCF, NFYA, or JUND (Fig. 2d). This finding reflects the prominent role of these factors as
architectural and regulatory hubs. The enrichment of these shared motifs in place of canonical ones
indicates that the models are not limited to capturing the intrinsic determinants of individual TF
binding but also leverage broader co-association signals and contextual features of regulatory regions.
Such cases highlight the capacity of genomic deep learning models to incorporate partners beyond
canonical motif recognition.
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Figure 3: In silico knockout experiments reveal cell-type—specific TF-TF cooperativity. Heatmap of
TF-TF cooperativity scores for (a) GM 12878, (b) HepG2, and (c¢) K562 cell-lines. Each cell shows the signed
—log;(p) value from a two-sided one-sample ¢-test of the knockout effect relative to baseline. Off-diagonal
entries (¢, j) correspond to the effect of knocking out target motif j in the presence of source motif 7, while
diagonal entries (¢, ¢) represent the self-effect of knocking out motif 7 alone. Positive values (red) indicate that
knockout increases the model prediction, whereas negative values (blue) indicate a decrease; with color intensity
reflecting statistical significance.(d) Average knockout effect as a function of the distance. (e) Absolute knockout
effect for the most sensitive TFs per each cell-line.

3 Context-dependent TF-TF Interactions

In our second experiment, we address how these patterns can interact in a combinatorial or cooperative
manner. To probe whether our model captures such context-dependent interactions, we next designed
a series of in silico perturbation experiments aimed at quantifying the influence that TFs exert on one
another.

Experimental setting. To investigate TF-TF cooperativity, we designed in silico knockout exper-
iments. For each locus, we first evaluated the predicted binding probability of the TF of interest
under the unperturbed sequence. We then simulated knockouts by masking motif contributions
corresponding either to the TF itself or to an adjacent TF (“neighbor”), and re-computed binding
probabilities. This procedure allows us to quantify the direct self-dependence of a TF as well as its
cooperative or competitive interactions with nearby factors.

Results. We summarized the significance of the perturbations in Fig. Bp. Each heatmap entry
shows the signed — log;,(p) value from a one-sample ¢-test, measuring whether knockout-induced
changes in predicted binding differ from the baseline. Diagonal entries capture the self-dependence
of each TF, while off-diagonal entries reflect how perturbing one TF influences the binding of
another. Strong negative values along the diagonal indicate that removing a TF motif substantially
reduces its own predicted binding, whereas significant off-diagonal values reveal cooperative or
competitive dependencies. Overall, most TFs displayed a clear reduction in binding when their motif
was randomized, although a few showed little or no recognition by the model. The broadest knockout
effects were observed in HepG2, where several hepatocyte master regulators exerted strong influence
on neighboring TFs, consistent with the cooperative enhancer grammar characteristic of hepatocytes.

When considering absolute knockout effects across cell types, the most influential TFs consistently
had architectural or pioneer-like functions (see Fig. Bp3k). In GM12878, CTCF and AP-1
components (FOSL2::JUND, JUND) dominated as loss of CTCF broadly weakened neighboring
motifs, reflecting its role in chromatin insulation and loop anchoring. In K562, the most impactful
TFs were GATA1, GATA2, MAX, and MAX::MYC. GATA proteins act as lineage-defining erythroid



regulators with pioneering activity that facilitates co-binding. In HepG2, consistently with [S8]],
FOX-family members (FOXA2, FOXA3, FOXK1, FOXK2, FOXO1) showed the strongest effects,
consistent with their role as pioneer factors (FOXA) and as components of enhancer or repressor
complexes (FOXO, FOXK) that shape cooperative occupancy. Together, these results indicate that
the model detects cooperativity effects for TFs that establish the regulatory context.

Conclusions. In this work, we show that deep genomic models capture a rich landscape of regulatory
determinants when predicting the regulatory landscape that usually extends beyond canonical motifs.
Moreover, these models are also able to capture cooperative interactions, particularly those that shape
the regulatory landscape, either by providing architectural anchoring (e.g., CTCF) or by acting as
pioneer factors (e.g., FOX, GATA), upon which the binding of other factors depends.
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Supplementary Material

A Jaccard Overlap Score (JOS)

For each transcription factor (TF) ¢, let P; denote the set of model-derived patterns and 7 (p) the set
of significant JASPAR matches ( g-value < 0.05) for pattern p € P;. To assess whether the model
learns a diverse repertoire of motifs or collapses onto a few canonical motifs, we define the Jaccard
Overlap Score (JOS) as

1 [T (pi) N T (ps)]

JOS; = 1— ———— E e

' (B[R] = 1) = [T (i) VT ()l
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Here, the inner term is the Jaccard index of the JASPAR match sets for patterns p; and p;. The JOS
ranges from O to 1: values close to 0 indicate that patterns map to distinct and non-overlapping motifs
(wide and diverse associations), while values close to 1 indicate that the patterns converge on the
same motif or a very restricted set of motifs (concentrated recognition).

B Statistical testing for motif cooperativity effects

For each pair of motifs (4, j) we considered the change in model prediction after in silico transcription
factor knockout. Specifically, we defined

knockoutiarger — baseline, 1 # j,
Aij =
knockout spyrce — baseline, i =7,

where baseline is the unperturbed model prediction, knockoutqrget the prediction after knockout
of the target motif j, and knockoutsoyrce the prediction after knockout of the source motif :.

For each motif pair (7, j) we obtained a collection of values {Ag.“)};g:l across genomic loci. To
assess whether the average effect was significantly different from zero, we applied a two-sided
one-sample ¢-test:

H()Z,uij:() HAZLLij#O,
with test statistic _
sij/v/n’
where A; 5 1s the sample mean, s;; the sample standard deviation, and n the number of loci contributing
to that cell. The p-value was computed from a Student ¢ distribution with n — 1 degrees of freedom.

ﬁij =

Edge cases were handled conservatively: if n < 2, if the variance sfj = 0, or if numerical evaluation
failed, the test returned p = 1.0 (no evidence against Hy).

To encode both effect direction and significance in the visualization, we reported the signed — log,
p-value:

score;; = sign(Aij) ( —logyg pij)'

Finally, to account for multiple hypothesis testing across all motif pairs, we applied the Benjamini—
Hochberg procedure to control the false discovery rate (FDR). Cells with FDR-adjusted g-values
greater than 0.05 were masked in the heatmap.

C Methods

C.1 Pattern Collection and Motif Similarity Analysis

For each cell line, we randomly selected a 1000 set of genomic regulatory regions to probe the
internal representations of the models. On these sequences, we computed base-resolution importance
scores using DeepSHAP [9], which provide per-nucleotide attributions quantifying the contribution
of each base to the model’s prediction for a given transcription factor (TF). These attribution maps
highlight locally important subsequences that the model relies on when predicting TF binding.



To extract interpretable patterns from the noisy attribution profiles, we applied TF-MoDISco [10]].
This algorithm first identifies short subsequences of consistently high importance (“seqlets”) and then
clusters them into non-redundant motif-like patterns. For each TF in each cell line, this procedure
yielded a collection of recurrent sequence patterns that represent the key signals used by the model.

Finally, to annotate and assess the biological relevance of the discovered patterns, we used Tom-
tom [11]] to compare them against the JASPAR database of known TF binding motifs [7]. Tomtom
computes similarity scores between model-derived patterns and reference motifs, allowing us to
link the patterns to canonical TF binding sites or, in some cases, to context motifs that may reflect
cooperative or architectural factors.

C.2 Construction of the TF-TF Cooperativity Dataset

To study context-dependent TF interactions, we constructed a dataset integrating sequence and
regulatory context. We began with cell-type—specific enhancer annotations from EnhancerAtlas [12],
restricting to regions relevant to each of the three studied cell lines. From these enhancers, we used
ChIP-seq peak calls provided in [2] to identify candidate binding regions. Because ChIP-seq peaks
are broad and do not provide precise motif positions, we refined them using FIMO scans. For "all"
enhancers, we searched for motif instances consistent with the ChIP-seq—labeled TF. In cases where
FIMO reported motif complexes, we retained the match if at least one component corresponded to
the annotated TF.

Using this set of localized motifs, we enumerated all possible TF pairs within a genomic distance
of < 500 bp. We defined directionality by assigning the first TF as source and the second as
target netghbour. Centering each source motif, we constructed a genomic profile for the size of
the model context window, which for EpiBinder is 1000 bp to query prediction on the model.

To quantify cooperative contributions, we generated two knockout variants for every TF-TF pair:

1. baseline, the prediction for the unmodified sequence.
2. knockoutsoyrce, created by replacing source motif nucleotides with random bases.
3. knockout,cighbour created by replacing neighbouting motif nucleotides with random bases.

Randomization was implemented by sampling nucleotides uniformly from {4, C, G, T}, thereby
eliminating motif-specific signals.

D Tools

- TF-MoDISco [10]: applied to cluster high-importance subsequences (“seqlets”) identified from
attributions scores into motif-like patterns. We use the default false discovery rate (FDR < 0.05).

- MEME Suite / Tomtom [11]]: employed to measure similarity between model-derived motifs and
known binding motifs from the JASPAR database [7]. Tomtom computes statistical similarity scores
and provides motif annotations. We use it setting a minimum overlap of 5 bp, and a significance
threshold ¢ < 0.01.

- FIMO (part of MEME Suite) [13]]: used to refine broad ChIP-seq peaks by scanning for precise
motif instances, ensuring alighment between experimentally observed binding and sequence-level
motif coordinates. We applied a significance threshold of p < 1 x 1074,
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