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Abstract—Collaborative robots sensing and understanding the
movements and intentions of their human partners are crucial for
realizing human-robot collaboration. Human skeleton sequences
are widely recognized as a kind of data with great application
potential in human action recognition. In this letter, a multi-scale
skeleton-based human action recognition network is proposed,
which leverages a spatio-temporal attention mechanism. The net-
work achieves high-accuracy human action prediction by aggre-
gating multi-level key point features of the skeleton and applying
the spatio-temporal attention mechanism to extract key temporal
information features. In addition, a human action skeleton dataset
containing eight different categories is collected for a human-robot
collaboration task, where the human activity recognition network
predicts skeleton sequences from a camera and the collaborating
robot makes collaborative actions based on the predicted actions.
In this study, the performance of the proposed method is compared
with state-of-the-art human action recognition methods and abla-
tion experiments are performed. The results show that the multi-
scale spatio-temporal graph convolutional neural network has an
action recognition accuracy of 94.16%. The effectiveness of the
method is also verified by performing human-robot collaboration
experiments on a real robot platform in a laboratory environment.

Index Terms—Human-robot collaboration, intention recog-
nition, skeleton, graph convolutional neural network.

I. INTRODUCTION

ROBOTICS advancements have made it possible for ma-
chines to function with ease in challenging environments,

Manuscript received 20 October 2023; accepted 29 December 2023. Date
of publication 18 January 2024; date of current version 29 January 2024. This
letter was recommended for publication by Associate Editor S. Schneider and
Editor A. Peer upon evaluation of the reviewers’ comments. This work was
supported in part by the School and Locality Integration Development Project
of Yantai City (2022), in part by the National Nature Science Foundation of
China under Grant 62303187, in part by the Fundamental Research Funds for
the Central Universities, in part by the Guangdong Provincial Key Laboratory of
Human Digital Twin under Grant 2022B1212010004, and in part by the Project
of Chunhui Planning of the Ministry of Education under Grant HZKY20220103.
(Corresponding authors: Wen Qi; Hang Su.)

Zhaowei Liu, Xilang Lu, and Wenzhe Liu are with the School of Computer
and Control Engineering, Yantai University, Yantai 264005, China (e-mail:
lzw@ytu.edu.cn; luxilang@s.ytu.edu.cn; 202200358006@s.ytu.edu.cn).

Wen Qi is with the School of Future Technology, South China University of
Technology, Guangzhou 510641, China (e-mail: wenqi@scut.edu.cn).

Hang Su is with Paris-Saclay University, 91190 Paris, France (e-mail:
hang.su@ieee.org).

This letter has supplementary downloadable material available at
https://doi.org/10.1109/LRA.2024.3355752, provided by the authors.

Digital Object Identifier 10.1109/LRA.2024.3355752

effectively addressing the issue of a labor shortage. However,
robots still rely heavily on pre-programming to perform specific
tasks, which can limit their flexibility and ability to perform
complex actions that humans can easily perform. As the demand
for robots to perform delicate and flexible tasks in complex
environments continues to grow, collaborative robots are needed
to bridge the gap in human-robot interaction. Collaborative
robots can help overcome the limitations of pre-programming by
working alongside humans and using their cognitive abilities to
adapt to changing situations and perform tasks that are difficult
for robots to perform on their own.

It is essential for collaborative robots to understand human
activity intentions quickly and effectively. During the past few
years, many researchers have conducted extensive research on
the problem of human intent recognition for human-robot col-
laboration, and these studies fall into four main categories:
biosignal-based human intent recognition method; image-based
human intent recognition method; point cloud-based human
intent recognition method; and natural language processing
(NLP)-based human intent recognition method. Rapetti et al. [1]
proposed a collaborative human-robot control method based on
human detection with full-body wearable sensors and interaction
modeling with coupled rigid-body dynamics, which enables a
human and a robot to collaborate in lifting a payload. However,
this type of approach requires additional sensors and has lim-
itations in real industrial scenarios. With the advancement of
computer vision, scientists have begun to investigate techniques
for person recognition based on images. For the purpose of rec-
ognizing human activities, Poulose et al. [2] developed a method
based on human image thresholding and R-CNN [3], but such
approaches are prone to inaccuracy because of the impact of the
picture background. Point cloud data can represent the position
information of an object in 3D space, thus avoiding misjudgment
of pictures due to environmental colors. Yang et al. [4] extracted
point cloud data of five movements of human hands and trained
the model by point cloud network so as to classify the poses
of human hands and realize the task of item transfer between
human and robot. However, when human hand recognition is
extended to human body recognition, the increase in the amount
of point cloud data will occupy a large amount of computer
resources and affect the computational efficiency and real-time
performance. Language, as a means of human communication, is
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Fig. 1. Object transfer task in human-robot collaboration. (a) When a human holds a box towards the robot, the robot extracts the human skeleton from the
images captured by the camera; (b) the human activity recognition model based on the skeleton predicts the human intention and the robot reacts interactively; (c)
the robot selects a suitable pose to receive the object according to the pose of the human passing the box.

also used in interactions with robots, especially with the advent
of the Transformer [5], which has brought new dynamism to
NLP technology. Zinchenko et al. [6] developed a voice control
method for an endoscope holder that navigates the endoscope
through the operator’s voice commands. However, this method
has the obvious limitation that it cannot be used in a noisy
environment like a factory. Human skeletal data has slowly
risen to the forefront of human activity recognition in recent
years. By processing and analyzing human skeleton data, motion
information such as human motion trajectory, pose, velocity and
acceleration can be extracted, thus helping robots to understand
human behavioral intentions more accurately. Compared with
image data, skeleton data refers to data consisting of key points
of the human body (such as joints), which is little affected by
the background. Moreover, compared with the data used by
other methods, using skeleton data directly as input requires less
computation and faster processing. When using neural networks
to process skeleton data, key points of the human body can be
directly used as input, which will greatly reduce the amount
of data that needs to be computed. It can improve the real-time
performance and accuracy of the robot. As a result, skeleton data
will be more widely used in human-robot collaboration because
it will enable robots to better understand human activity and
perform collaborative tasks with humans more effectively.

In this letter, a human activity recognition method for human-
robot collaboration is proposed. Specifically, in this letter, a
skeleton dataset of human-computer interactions in the working
environment is collected for training a human action recognition
network. Many human actions in human-computer collaboration
require cooperative movements between multiple joints, while
ordinary deep graph convolutional neural networks only aggre-
gate information in the local range, ignoring the connections
between distant nodes. In this letter, we propose a, multi-scale
graph convolutional neural network with spatio-temporal atten-
tion for the human-robot collaboration, which achieves local
feature extraction by aggregating the multi-order neighborhood
information of the skeleton keypoints in the spatial dimension
and extracts the features of the skeleton in the spatial dimen-
sion by using the spatial attention mechanism to achieve high-
precision recognition of human activities. The robot reacts to the
predictions of the model to achieve human-robot interaction,

and Fig. 1 shows an example of a human and robot passing
items. The proposed method is compared to other cutting-edge
techniques of identical nature on the collected dataset. The
experiments illustrate that the proposed method is more accurate.
Finally, this letter conducts collaboration experiments with a
robot in a laboratory setting to showcase the efficacy of the
proposed method.

This letter’s primary contributions are:
1) A multi-scale graph convolutional neural network based

on temporal attention mechanism is proposed for human-
robot collaboration tasks.

2) Collected a human skeleton dataset for network training,
containing eight action classes in real scenarios.

3) Experiments confirmed the effectiveness of the proposed
human-robot collaboration method on a real robot plat-
form.

II. RELATED WORKS

A. Human Acitivity Recognition

Deep learning-based human activity recognition (HAR) com-
monly utilizes various data modalities, including images, skele-
tons, depth maps, and point cloud [7]. Skeleton data offers valu-
able structural and pose information about the body and is more
robust to clothing texture, environmental changes, viewpoint
alterations, and other sources of noise. Consequently, skeleton-
based HAR shows vigorous ability. Early skeleton-based HAR
mainly obtains the motion states of joints through hand-crafted
features [8], [9]. Skeleton-based HAR benefits from the powerful
feature learning ability of deep learning, which has seen rapid
development in recent years. These methods primarily rely
on Recurrent Neural Network (RNN), Convolutional Neural
Network (CNN), Graph Neural Network (GNN), Graph Con-
volutional Neural Network (GCN), and Transformer models.
Skeleton data can be naturally transformed into graph structure
data. Compared with the methods based on the graph structure,
the vector sequence generated by RNN and the image mapping
information generated by CNN do not capture well the inter-
connections between the different joints of the body and the
temporal correlation of the same joint. Conversely, the graph
structure naturally portrays the relationship between joints.
Therefore, GCN has gained more attention in skeleton-based

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 06,2024 at 09:12:00 UTC from IEEE Xplore.  Restrictions apply. 



2250 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 3, MARCH 2024

Fig. 2. Multi-scale spatio-temporal graph convolutional neural network. By performing multi-scale feature extraction for each skeleton in the spatial hierarchy,
each key point k-order (k = 3 in the figure) neighbor is extracted separately for aggregation, and the aggregated features are fed into SGCN separately for feature
extraction, then the features are connected, and the category scores are then output by a standard Softmax classifier.

HAR. Human activity recognition based on GCN usually builds
spatio-temporal models to aggregate joint node relationships
in time and space [10], [11], [12]. Transformer-based methods
often do not depend on the structure of the human body, and
instead use spatio-temporal modeling to extract contextual se-
mantic information from spatio-temporal joints [13], [14].

B. Human-Robot Collaboration With Machine Learning

Fundamental components of human-robot collaboration
(HRC) model development involve the perception of human
motion trajectory, the recognition of human activity, and the pro-
vision of robot feedback [15]. Machine learning enables robots
to make decisions autonomously through learning because of its
powerful feature extraction and function approximation capabil-
ities. HRC driven by different algorithms plays an important role
in industrial, medical, and other fields [16], [17], [18].

Laplaza et al. [19] used contextual information and human
intentions to predict human actions based on a multi-head at-
tention structure for interactions between humans and social
robots. Using deep learning to model the corresponding scene
problem is a good choice. Deep learning models capturing
intrinsic rules and hierarchical information between samples
have achieved significant results in enhancing robot adaptive
motion accuracy [15], [20], [21], [22] and enabling collaborative
human-robot handling [23] and robotic surgery [24]. Human-
machine collaboration based on deep learning is widely used in
industrial, medical, and other industries.

III. METHODOLOGY

Understanding human behavioral intent is crucial for effec-
tive human-robot collaboration. This study aims to develop a

human-robot interaction framework that uses skeletal human
recognition, as shown in Fig. 2. This framework first utilizes
OpenPose [25] to extract human bone data from camera data,
trains the model to recognize human activities from the bone
data, and enables robots to interact based on the recognized
human activities to complete collaborative tasks. This section
first describes the details of the collection of the dataset and then
describes in detail the implementation of the neural network.

A. Data Collection

The goal of this work is to realize robots assisting their human
partners in various object handling tasks, thus reducing the
human labor burden, which requires that the recognized actions
need to be specific and collaborable. Although human action
recognition datasets such as Kinetics [26] exist, the actions in
these datasets do not meet the needs of this letter. For this reason,
this letter categorizes the actions of handling tasks, and finally
selects eight types of actions that have the value of human-robot
collaboration, and creates an action dataset, including the actions
of humans picking up objects, transferring objects in different
postures, and pushing and pulling the handling tool, which
are very common in daily work, and can be accomplished by
robots collaboratively. Moreover, in order to avoid the robot from
appearing when it is no longer needed, human activities that do
nothing are included in the dataset. Fig. 3 shows the categories
and visualizations of the collected human-robot collaboration
skeleton dataset.

The raw data for creating the 2D skeleton is video from various
angles, which can be done with just a cell phone, with no order
of extra sensors and other equipment. The video collection was
performed by five volunteers (four men and one woman) ranging
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Fig. 3. Example of human-robot collaboration skeleton dataset. Figures (1) to
(8) show the eight action categories of the dataset, respectively. Each row is a
skeleton extracted from video frames drawn in chronological order from a single
video.

in age from 20 to 27 years old, three of whom had experience
with robots, all of whom participated voluntarily and were fully
informed about the research aspects of this work. The video
collection site is an open space in the laboratory. During the
collection process, volunteers follow instructions to perform a
certain action (such as holding a box with both hands from the
ground). Volunteers repeat the process by changing the angles
they face (a total of 5 angles: facing the left, facing the camera,
facing the right, and rotating 45 degrees from facing the camera
to the left and right). The resolution of the acquired videos was
reduced to 340×256, and the frame rate was 30 fps. Among
these 8 action categories, the first 4 action categories mainly
emphasize less differences in arm and body movements, so the
volunteers only need to maintain their posture during filming,
there can be appropriate moving or turning movements, and all
of them have appropriate camera shake and filming position
movement during filming. The data was also expanded using
mirroring and other methods, resulting in a total of 2400 videos.

The human skeleton data for each video was extracted using
the Extract Skeleton API provided by OpenPose and labeled
with the category of each skeleton, where each human skeleton
contains 18 keypoints. 80% of the dataset was used for training
and 20% for testing.

B. Spatio-Temporal Graph Convolution

In this subsection, four aspects of spatial graph convolution,
multi-scale aggregation, temporal self-attention mechanism and
model implementation are presented. Where the type of graph
convolution in this letter is spatial graph convolution [27].

1) Spatial Graph Convolution: The skeletal data extracted
by openpose is a vector sequence composed of 2D coordinates
of each frame of human joint points. Naturally, G = (V,E)
is the definition of the skeleton graph, where node set V =
{v1, . . ., vn} represents the set of all N joint nodes, and bones
between joints are represented by undirected edges, forming the
edge set E. The adjacency matrix of the undirected graph is
A ∈ Rn×n, where Ai,j = 1 if there is an edge between vi and
vj and 0 otherwise. Human movement is usually accomplished
by multiple joint groups, which consist of several independent
joints. The skeleton inputs are defined as matrix X ∈ RT×N×C ,
where total input video frame number is represented by T , N is
the number of joints, and C is the dimension of feature vectors.
Then, in order to aggregate the information of neighbor nodes,
the layer-wise spatial GCN at time t can be defined as:

X
(l+1)
t = σ

(
D̃− 1

2 ÃD̃− 1
2X

(l)
t W (l)

)
, (1)

where Ã = A+ I is an adjacency matrix with added self-loops
for keeping nodes’ own features, and the diagonal matrix D̃ is
obtained by computing the degree of the node, D̃− 1

2 ÃD̃− 1
2 is a

way to normalized A, and W ∈ RCl×Cl+1 is a learnable weight
matrix. Feature aggregation of node neighbors is achieved by
term D̃− 1

2 ÃD̃− 1
2X

(l)
t , the output is then obtained through the

activation function σ.
2) Multi-Scale Aggregation: For the above GCN, only the

local information around the node is aggregated, and it is difficult
to capture the features that are far away from the node. For ex-
ample, in the action of lifting a box, the body center node should
converge more information of the hand nodes, which requires
the establishment of further links to obtain this relationship. To
create links further afield, nodes’ higher-order neighbors are
incorporated into the network. Obtaining higher-order neighbor
information is implemented by Ãk, where Ãk = Ak + I . How-
ever, multi-scale aggregation using higher-order polynomials
leads to excessive local neighbor weights of nodes due to the
large value of low-order neighbors in the higher-order adjacency
matrix. To solve this weight bias problem, for higher order
adjacency matrices, Ai,j greater than 1 is replaced with 1, such
that the adjacency matrix is substituted with Âk = 1(Ãk ≥ 1).
Therefore, Applying the multi-scale strategy to the (1) trans-
forms as:

X
(l+1)
t = σ

(
K∑

k=0

D̂
− 1

2

(k) ÂD̂
− 1

2

(k)X
(l)
t W

(l)
(k)

)
, (2)
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where the scale size is determined by k, and D̂
− 1

2

(k) Â(k)D̂
− 1

2

(k) is
normalized k-adjacency, the problem of overweighting of near
neighbor nodes is eliminated by (2).

3) Temporal Self-Attention Mechanism: Human activity is
sensitive to the adjacent position of the same joint, especially the
movement of some joints with large amplitude. Traditional tem-
poral graph convolution uses a 2D CNN with kernel size (τ, 1)
to act on the sequence of input and performs feature aggregation
on the last τ frames of each node. For this convolution operation,
the temporal relative position information feature cannot be ef-
fectively extracted.The self-attention mechanism can be applied
to such temporal input sequences. Through this mechanism, the
model can autonomously discover the temporal changes of joints
to establish the long-range relationship and importance between
different frames. Therefore, a temporal self-attention model is
proposed to study the temporal motion relationship of each
joint. For any joint node v ∈ V , there is a temporal sequence of
vectors si ∈ S = {s1, . . ., sT }, a query q ∈ Rdq , a key k ∈ Rdk ,
and a value vector v ∈ Rdv . All the above sequences can be
adjusted by a learnable linear transformation. For node vm, the
importance of the link between frame i and frame j can be
evaluated by the dot product λm

ij = qmi · kmj ∀i, j = 1, . . ., T .
To obtain the final attention embedding of a node, the value
vector vj of all other nodes is first multiplied by the correspond-
ing evaluation score λij , which is subsequently scaled by the
softmax function and the weighted sum is calculated to obtain
the attention embedding zmi ∈ RC ′

of each node, whereC ′ is the
number of out channels. This attention embedding is denoted as:

zmi =
∑
j

softmaxj

(
λm
ij√
dk

)
vmj , (3)

where dk is the dimension of the key sequence, dividing the
evaluation score by

√
dk is to increase the gradient stability. To

achieve better performance, a multi-head attention mechanism
is often used, which applies multiple attention and different sets
of training parameters to obtain multiple attention embeddings
and combines them to obtain the final result.

4) Model Implementation: Finally, as shown in Fig. 2, a
network for human activity recognition is constructed, which
consists of 9 multi-scale spatio-temporal convolution blocks
(MSSTs), each containing a multi-scale spatial graph convo-
lutional network SGCN and an attention-convolution network
ATCN. For the SGCN, it is achieved by the above spatial
method. For the ATCN, the input data firstly is transformed
from X̃ ∈ RB×C×T×V to X̃ ∈ RBV ×T×C , where B is the batch
size of the input, moreover batch size B and the number of
joints V are fused into one dimension. And then, it enters the
Self-Attention block to obtain the attention embedding. Then,
use a 2D convolutional network to perform feature aggregation
on each identical node at time τ . In addition, nodes on the body
usually perform movements in groups; however, a joint may
appear in more than one part while performing an action, and
these nodes should receive more attention. Therefore, on the
MSST, a learnable spatio-temporal attention mask M is added
for making a critical evaluation of each joint, which acts on the
multi-scale adjacency matrix Â through the Hadamard product,

Fig. 4. Developed dual-arm robot for human-robot collaboration.

then the adjacency matrix is transformed into Â⊗M , where ⊗
is Hadamard product. Through this temporal graph convolution,
more temporal location information can be captured. For the
first three MSSTs blocks, each block has 64 output channels,
the next three layers have 128 output channels, and the last
three layers have 256 output channels and temporal frame τ = 9.
For each SGCN and ATCN module, we first process the input
data with batch normalization and ReLU activation function
and add residual links after each MSST module to reduce the
problem of gradient vanishing caused by too deep layers. We
also add dropout layers with a dropout rate of 0.5 after each
MSST module to prevent overfitting. Finally, we use global
average pooling and fully connected layers to obtain a tensor
with dimensions corresponding to the number of categories to
obtain classification results.

IV. EXPERIMENTAL VALIDATION

All experiments in this letter were performed on an ubuntu
20.04 computer equipped with an Intel I9-12900 k processor
(4.9 GHz), 128 GB RAM and two NVIDIA GeForce 3090 (24 G
RAM). The neural network is based on Pytorch deep learning
framework [29] using SGD optimizer with cross-entropy as loss
function. The model was trained for 50 epochs using a batch size
of 32, an initial learning rate of 0.003, and divided by 10 at rounds
20, 30, and 40. A bi-manual robot is established to demonstrate
the feasibility of the proposed approach. Each robotic arm are
equipped with a 5-degrees of freedom arm and a robotic hand
with 6 degrees of freedom. The detailed structural design and the
detailed kinematic parameters of the anthropomorphic dual-arm
robot, as shown in Fig. 4. Furthermore, the anthropomorphic
robot arm is equipped with a dexterous hand in order to perform
functions such as object transfer and humanoid hand move-
ments. Hence, the anthropomorphic dual-arm robots are capable
of collaborative operation to demonstrate the function of the
proposed approach.

A. Comparison With the State-of-The-Art

The proposed multi-scale spatio-temporal graph convolu-
tional network is evaluated against existing state-of-the-art mod-
els for human recognition, using the human skeleton dataset col-
lected in this research letter. The goal is to assess the performance
of the system in human-robot collaboration tasks.
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TABLE I
COMPARISON OF ACTION RECOGNITION ACCURACY FOR ALL HUMAN ACTION CATEGORIES

Firstly, the recognition of various actions by different net-
works is analyzed. Table I shows the recognition accuracies for
the 8 actions and the whole action dataset. The first model is
ST-GCN, which has a good accuracy of 87.18% although it is the
earliest skeleton-based human recognition network to appear.
The main problem is that the network cannot distinguish between
pushing and pulling boxes, which is due to the fact that ST-GCN
uses only a 2D convolution for feature extraction in the time
dimension, which is not enough to extract useful information
in the time dimension. 2SAGCN introduces an encoder-decoder
structure and extends the existing skeleton graph to improve the
network accuracy. NAN-GCN solves the problem of capturing
higher order graph node relationships with the help of automatic
network search (NAS) methods, but the accuracy rates of both
were not high enough, 81.25% and 83.85% respectively, which
may be due to the fact that the network uses the idea of dual
streams, capturing both joints and bones as inputs to extract more
information, but the dataset in this letter is only about node infor-
mation not contain the bone information. The MS-G3D model
uses the multi-order adjacency key point graph of the structure
and performs multi-scale aggregation to obtain more order of
features and finally obtains higher accuracy, 93.96%, but its
network is too large to be suitable for real-time human-machine
collaboration tasks. The ST-TR targets the motion of joint parts
and uses a space-time transformation network to improve the
network accuracy. A spatio-temporal transformation network is
used, based on the Transformer-based model, and an attention
mechanism in time and space is proposed to extract features
for efficient feature extraction. However, the network has the
lowest accuracy of 69.53%, mainly because ST-TR addresses the
problem of efficiently encoding the underlying information un-
der the 3D skeleton, especially extracting effective information
from the joint motion patterns and their correlations. However,
the dataset in this letter is a 2D skeleton and all motions do not
contain evasive joint motions, leading to its poor performance.
The last one is the MS-ST proposed in this letter, and it can
be seen from the experimental results that the proposed model
achieves 100% accuracy in all the movements except the three
types of predictions of pulling the box, picking up the box and
carrying the box, and has an overall accuracy of 94.16%, which
is better than the other models in terms of performance. Fig. 5
demonstrates the confusion matrix of the prediction results of
the proposed method, and it can be seen that the prediction errors
still mainly occur between pull and push. In order to minimize
the error, the above method was trained and tested multiple times
in the experiment.

Fig. 5. Confusion matrix of test results for the proposed method.

B. Ablation Study

This section validates the effectiveness of the proposed multi-
scale temporal convolution and temporal self-attention mech-
anisms. To verify the improvement of the two modules on
the accuracy of human activity recognition separately, ablation
experiments are set up to compare the network performance of
the baseline network, the baseline network with the temporal at-
tention mechanism module and the multiscale graph convolution
module of different scales, respectively. The baseline network is
obtained by st-gcn modification, which does not have multi-scale
convolution operation, i.e., scale k = 1.

Multi-scale aggregation: First, the effectiveness of the multi-
scale spatio-temporal convolution module is verified. The con-
tribution of multi-scale key point aggregation to accuracy is
verified by varying the number of scales k at multiple scales.
Plot 1 to plot 4 in Fig. 6 show the accuracy curves for different
scales k. Compared with that at k = 1, the accuracy of the model
significantly improves to about 89.64% at k= 2 and continues to
improve with increasing scale, with accuracy up to about 94.16%
at scale k=8. The gain of increasing the scale on the loss can also
be seen in the loss curve in the 5th plot in Fig. 6, and the gain is not
obvious when k> 5. Table II shows the model accuracy of multi-
scale modules of different scales, with 94.16% accuracy when
both have the time-attention mechanism module and scale k= 8.

Temporal Self-Attention Mechanism: For the temporal self-
attention mechanism module used for validation, with the ad-
dition of the multiscale spatio-temporal convolution module, it
mainly extends the information aggregation of key points of the
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Fig. 6. Accuracy curves and loss curves for different multi-scale skeleton aggregation scales. The first four plots show the accuracy curves and standard deviations
for scales 1, 2, 5 and 8, respectively, where orange is the training curve and green is the test curve, and each curve is averaged over six training sessions. The fifth
plot shows the loss curves for the network training at different scales.

TABLE II
ABLATION EXPERIMENTS

skeleton in space and improves in accuracy, but the accuracy
does not improve for actions that are similar and different
only in the temporal direction (e.g., pushing a box and pulling
a box, which are not different in space but opposite in time
(actions)). By comparing these actions, it can be seen that the
temporal self-attention mechanism module extracts the temporal
relationships on the skeleton sequence well and improves the
accuracy significantly. In the dataset provided in this letter,
each category accounted for 12.5% of the total, whereas in
the network without the addition of this module, the actions of
pushing and pulling box were not well recognized and resulted
in a lower overall accuracy. Table II shows the effect of the
temporal attention mechanism on the model, and it can be seen
that without the addition of TAM, the accuracy of the model
is only 67.71%, while when TAM is added, the accuracy of
the model is: 70.11%, where the contribution of the temporal
attention mechanism module to the accuracy is mainly due to
distinguishing out the two actions of push and pull. Thus, the
temporal attention mechanism has significant applications in this
model, especially for actions that exhibit spatial similarity and
temporal opposition.

C. Human-Robot Cooperation Based on Human Activity
Recognition

To verify the effectiveness and correctness of multi-scale
spatio-temporal graph neural networks in human activity recog-
nition, we applied the algorithm to a robotic system and
conducted human-robot collaboration experiments. The experi-
ments simulate a scenario in which a robot and a human collab-
orate to carry an object in an environment such as a warehouse,
in order to verify whether the collaborative robot can accurately
perceive the movements of its human partner and make correct
collaborative responses. We used an RGB camera for real-time
image acquisition, and then transmitted the images to OpenPose

Fig. 7. Human-robot interaction experiment in which the operator passes the
box to the robot in different ways and the robot recognizes the operator’s action
and makes decisions on how to receive the box.

to extract human skeleton sequences. Then, our human action
recognition model predicts human actions based on this skeleton
data. The task of the experiment is object transfer between the
operator and the robot. In the task, the operator passes the box
in different poses, and the robot, after recognizing the human’s
actions, uses our special interpolation-based trajectory planning
algorithm to achieve the collaborative behavior. We define a
grasping target position for each action. Once the camera detects
a human action, the system uses an interpolation-based approach
to dynamically plan the robot’s trajectory. The human-robot
collaboration process is shown in Fig. 7.

The figure shows the passing of the box in three passes,
namely: (a) The operator passes the box forward by holding
the sides of the box with both hands. (b) The operator holds
the box from underneath and passes it. (c) The operator passes
the box with his arms raised. The robot then makes a pair of
corresponding interaction actions. The experiments show that
the method can correctly perform the human-robot collaboration
task. The video of human-robot collaboration experiments are
available at https://youtu.be/ryBdcYr0Aog.

V. CONCLUSION

This study presents a multi-scale skeleton-based human ac-
tivity recognition method for human-robot collaboration tasks.
Considering practical application scenarios, a skeleton sequence
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dataset for human activity recognition is collected, which con-
tains skeleton sequences of eight interactive actions. To accom-
plish accurate recognition of human activity, a multi-scale graph
convolutional neural network is utilized to extract multi-order
neighborhood point features of skeletal key points, and a tempo-
ral attention mechanism is included to increase feature extraction
of temporal graphs. In this study, the proposed algorithm was
evaluated, and the outcomes indicate that the proposed multi-
scale graph convolutional neural network attains a recognition
accuracy of 94.16% on this dataset, surpassing other analogous
approaches. Finally, this letter deploys the recognition algorithm
to a robotic system and demonstrates the implementation of
a human-robot collaboration task in a real-world environment
through a human recognition model. Future works will adopt
adaptive nonliner control solutions [30] to achieve stable control
of complex robotic systems.
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