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ABSTRACT

Contrastive learning methods based on InfoNCE loss are popular in node repre-
sentation learning tasks on graph-structured data. However, its reliance on data
augmentation and its quadratic computational complexity might lead to incon-
sistency and inefficiency problems. To mitigate these limitations, in this paper,
we introduce a simple yet effective contrastive model named Localized Graph
Contrastive Learning (LOCAL-GCL in short). LOCAL-GCL consists of two key
designs: 1) We fabricate the positive examples for each node directly using its first-
order neighbors, which frees our method from the reliance on carefully-designed
graph augmentations; 2) To improve the efficiency of contrastive learning on graphs,
we devise a kernelized contrastive loss, which could be approximately computed
in linear time and space complexity with respect to the graph size. We provide
theoretical analysis to justify the effectiveness and rationality of the proposed
methods. Experiments on various datasets with different scales and properties
demonstrate that in spite of its simplicity, LOCAL-GCL achieves quite competitive
performance in self-supervised node representation learning tasks on graphs with
various scales and properties.

1 INTRODUCTION

Self-supervised learning has achieved remarkable success in learning informative representations
without using costly handcrafted labels (van den Oord et al., 2018; Devlin et al., 2019; Banville et al.,
2021; He et al., 2020; Chen et al., 2020; Grill et al., 2020; Zhang et al., 2021; Gao et al., 2021).
Among current self-supervised learning paradigms, InfoNCE loss (van den Oord et al., 2018) based
multi-view contrastive methods (He et al., 2020; Chen et al., 2020; Gao et al., 2021) are recognized as
the most widely adopted ones, due to their solid theoretical foundations and strong empirical results.
Generally, contrastive learning aims at maximizing the agreement between the latent representations
of two views (e.g. through data augmentation) from the same input, which essentially maximizes
the mutual information between the two representations (Poole et al., 2019). Inheriting the spirits of
contrastive learning on vision tasks, similar methods have been developed to deal with graphs and
bring up promising results on common node-level classification benchmarks (Velickovic et al., 2019;
Hassani & Ahmadi, 2020; Zhu et al., 2020b; 2021).

The challenge, however, is that prevailing contrastive learning methods rely on predefined aug-
mentation techniques for generating positive pairs as informative training supervision. Unlike
grid-structured data (e.g., images or sequences), it is non-trivial to define well-posed augmentation
approaches for graph-structured data Zhu et al. (2021); Zhang et al. (2021). The common practice
adopted by current methods resorts to random perturbation on input node features and graph struc-
tures (You et al., 2020), which might unexpectedly violate the underlying data generation and change
the semantic information (Lee et al., 2021). Such an issue plays as a bottleneck limiting the practical
efficacy of contrastive methods on graphs. Apart from this, the InfoNCE loss function computes
all-pair distance for in-batch nodes as negative pairs for contrasting signals (Zhu et al., 2020b; 2021),
which induces quadratic memory and time complexity with respect to the batch size. Given that
the model is preferred to be trained in a full-graph manner (i.e., batch size = graph size) since the
graph structure information might be partially lost through mini-batch partition, such a nature heavily
constrains contrastive methods for scaling to large graphs.

Some recent works seek negative-sample-free methods to resolve the scalability issue by harnessing
asymmetric structures (Thakoor et al., 2021) or feature-level decorrelation objectives (Zhang et al.,
2021). However, these methods either lack enough theoretical justification (Thakoor et al., 2021) or
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necessitate strong assumptions on the data distributions (Zhang et al., 2021). Moreover, they still
require data augmentations to generate two views of the input graph, albeit non-contrastive and free
from negative sampling. Some other works construct positive examples using the target’s k-nearest-
neighbors (kNN) in the latent space (Dwibedi et al., 2021; Koohpayegani et al., 2021; Lee et al.,
2021). Nonetheless, the computation of nearest neighbors could be cumbersome, time-consuming,
and, therefore hard to scale.

Presented Work. To cope with the dilemmas above, in this paper we introduce Localized Graph
Contrastive Learning (LOCAL-GCL in abbreviation), a light and augmentation-free contrastive
model for self-supervised node-level representation learning on graphs. LOCAL-GCL benefits from
two key designs. First, it does not rely on data augmentation to construct positive pairs. Instead,
inspired by the graph homophiliy theory (McPherson et al., 2001), it directly treats the first-order
neighboring nodes as the positive examples of the target node. This not only increases the number of
positive examples for each node but also helps our model get rid of complicated data augmentations.
Besides, the computation of positive pairs can be performed in linear time and space complexity
w.r.t the graph size, bringing no additional cost for the model. Second, to deal with the quadratic
complexity curse of contrastive loss (i.e., InfoNCE loss (van den Oord et al., 2018)), we propose a
surrogate loss function in place of the negative loss term in the vanilla InfoNCE loss, which could be
efficiently and accurately approximated within linear time and space complexity (Rahimi et al., 2007;
Liu et al., 2020; Yu et al., 2016). Such a design greatly improves the efficiency of our model.

We evaluate the proposed methods on seven public node classification benchmarks with various
scales. The empirical results demonstrate that though not using any graph augmentations, our method
achieves state-of-the-art performance on six of seven datasets. On the challenging Ogbn-Arxiv
dataset, our method can also give a competitive performance with a much training speed compared
with other scalable models. Experiments on three heterophily graphs demonstrate that besides
homophily graphs, LOCAL-GCL can also perform well on graphs with low homophily ratios.

We summarize the highlights of this paper as follows:

1) We introduce LOCAL-GCL, a simple model for contrastive learning on graphs, where the positive
example is fabricated using the first-order neighborhood of each node. This successfully frees
node-level contrastive learning methods from unjustified graph augmentations.

2) To overcome the quadratic complexity curse of contrastive learning, we propose a kernelized
contrastive loss computation that can precisely approximate the original loss function within linear
complexity w.r.t. graph size. This significantly reduces the training time and memory cost of
contrastive learning on large graphs.

3) Experimental results show that without data augmentation and other cumbersome designs LOCAL-
GCL achieves quite competitive results on a variety of graphs of different scales and properties.
Furthermore, LOCAL-GCL demonstrates a better balance of model performance and efficiency than
other self-supervised methods.

2 BACKGROUND AND RELATED WORKS

2.1 CONTRASTIVE REPRESENTATION LEARNING

Inspired by the great success of contrastive methods in learning image representations (van den Oord
et al., 2018; Hjelm et al., 2019; Tian et al., 2020; He et al., 2020; Chen et al., 2020), recent endeavors
develop similar strategies for node-level tasks in graph domain (Velickovic et al., 2019; Hassani &
Ahmadi, 2020; Zhu et al., 2020b; 2021). Among graph contrastive learning methods, the most popular
methods should be those based on the InfoNCE loss (van den Oord et al., 2018) due to their simple
concepts and better empirical performance. InfoNCE-based graph contrastive learning methods,
including GRACE (Zhu et al., 2020b) and GCA (Zhu et al., 2021) aim to maximize the similarity
of positive node-node (or graph-graph) pairs (e.g., two views generated via data augmentation) and
minimize the similarity of negative ones (e.g., other nodes/graphs within the current batch). However,
they require well-designated data augmentations that could positively inform downstream tasks (Tsai
et al., 2021). The quadratic complexity also limits their applications to larger batch sizes/datasets.
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2.2 AUGMENTATION-FREE SELF-SUPERVISED LEARNING ON GRAPHS

Besides graph contrastive learning (Zhu et al., 2020b; 2021) and the similar two-branched mod-
els (Thakoor et al., 2021; Zhang et al., 2021) that use graph augmentations to create positive pairs,
there is another line of work exploring the rich structure information in the graph to create self-
supervised signals. Graph AutoEncoders (Kipf & Welling, 2016), for example, learn node embeddings
unsupervisedly through reconstructing the adjacency matrix, while GMI (Peng et al., 2020) maxi-
mizes the mutual information of both features and edges between inputs and outputs. Inspired by
the success of contrastive learning, some recent work explores constructing positive pairs using
reliable graph information instead of data augmentations. For example, SUGRL (Mo et al., 2022)
employs two encoder models: one is a GCN, and the another is an MLP, to generate two sets of node
embedding from different sources. Then for each node, the positive pair can be constructed using its
GCN output and MLP output. AFGRL (Lee et al., 2021) and AF-GCL (Wang et al., 2022) treat nodes
in the target node’s multi-hop neighborhood as candidate positive examples and use well-designed
similarity measures to select the most similar nodes as positive examples. LOCAL-GCL, by contrast,
treats all neighbors equally without discrimination. This not only simplifies the model design but
also offers a theoretical guarantee for the effectiveness of the proposed model. Empirical results also
demonstrate that our method can achieve better performance than them.

2.3 RANDOM FOURIER FEATURES

Though InfoNCE-loss-based based methods are successful in self-supervised node representation
learning, their quadratic time and memory complexity with respect to the graph size prevent them
from being applied to graphs with tens of thousands of nodes. This paper seeks to address this issue
by optimizing a surrogate loss function with Random Fourier Features (RFF or Random Features in
short) (Rahimi et al., 2007; Liu et al., 2020). RFF is an effective technique for enhancing the scalability
of kernel methods such as SVM, ridge regression (Avron et al., 2017) and independence test (Zhang
et al., 2018; Li et al., 2021). Also, recently, RFF has been adopted to develop linear Transformers
by approximating the softmax attention (Choromanski et al., 2020; Peng et al., 2021). Given d-
dimensional vectors x and y and a shift-invariant kernel κ(·), RFF constructs an explicit mapping ψ:
Rd → RD, such that κ(x,y) ≈ ψ(x)⊤ψ(y), which reduces the quadratic computation cost of the
kernel matrix to a linear one w.r.t data size. Generally, given a positive definite shift-invariant kernel
κ(x,y) = f(x − y), the Fourier transform p of kernel κ is p(ω) = 1

2π

∫
e−jω′∆k(∆)d∆, where

∆ = x− y. Then we could draw D i.i.d. samples ω1, · · · ,ωD ∈ Rd from p, and ψ(x) is given by:

ψ(x) =

[
cos(ω⊤

1 x), · · · , cos(ω⊤
Dx), sin(ω

⊤
1 x), · · · , sin(ω⊤

Dx)
]⊤

√
D

. (1)

Let W = [ω1, · · · ,ωD] ∈ Rd×D be a linear transformation matrix, one may realize that the
computation of Eq. 1 entails computingW⊤x. Specifically, when κ(·) is a standard Gaussian kernel
(a.k.a., RBF kernel), each entry ofW can be directly sampled from a standard Gaussian distribution.
The improved variants of RFF mainly concentrate on different ways to build the transformation
matrixW , so as to further reduce the computational cost (Le et al., 2013) or lower the approximation
variance (Yu et al., 2016).

3 CONTRASTIVE LEARNING ON GRAPHS WITH INFONCE LOSS

The InfoNCE (van den Oord et al., 2018) loss has been employed in various areas and has shown
great power in learning informative representations in a self-supervised manner. Given the embedding
of a target data point zi, together with one positive embedding z+i and a set of negative embeddings
{z−j }M−1

j=1 , the InfoNCE loss aims at discriminating the positive pair (zi, z+i ) from the negative pairs
{(zi, z−j )}M−1

j=1 via the following contrastive objective function:

LInfoNCE(i) = − log
exp(f(zi, z

+
i )/τ)

exp(f(zi, z
+
i )/τ) +

M−1∑
j=1

exp(f(z+i , z
−
j )/τ)

, (2)

where f(·, ·) is a similarity measure, usually implemented as the simple dot product f(x,y) =
x⊤y (He et al., 2020; Chen et al., 2020), and τ is the temperature hyperparameter. Note that zi, z+i
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and z−i are all ℓ2 normalized to have a unit norm, i.e., ∥zi∥22 = 1. In the context of node-level
contrastive learning, each zi denotes the embedding of node i, which is the output of an encoder
model which takes the node feature xi and the graph structure as input. As demonstrated in Eq. 2, the
InfoNCE loss is composed of two terms: 1) the numerator term on the positive pair that maximizes
the similarity between positive pairs (positive term); 2) the denominator term on M −1 negative pairs
and one positive pair (for simplicity, we call all the M terms in the denominator "negative terms")
that encourages the embeddings of negative pairs to be distinguished (negative term). Like the study
of contrastive learning on vision and language, recent node-level contrastive learning research mainly
focuses on how to construct/select more informative positive and negative examples.

The most popular method for constructing positive examples on graphs is through data augmentation.
For example, MVGRL (Hassani & Ahmadi, 2020) uses graph diffusion to generate a fixed, augmented
view of the studied graph. GCC (Qiu et al., 2020) resorts to random walk to sample subgraphs of
the anchored node as positive examples. GRACE (Zhu et al., 2020b) and GCA (Zhu et al., 2021)
employ random graph augmentation–feature masking and edge removing to generate two views of
the input graph before every training step. However, recent studies have shown that existing graph
augmentations might unexpectedly change or lose the semantic information (Lee et al., 2021; Wang
et al., 2022) of the target node, hurting the learned representation. This motivates us to investigate the
possibility of constructing positive examples without using random, ambiguous graph augmentations.

Compared with the construction of positive examples, negative examples are much easier to select. A
common adopted and effective practice is to use all other nodes in the graph as negative examples (Zhu
et al., 2020b; 2021; Zhang et al., 2021). However, the computation of the negative term of InfoNCE
has O(|V|2d) time complexity and O(|V|2) memory complexity, where |V| is the number of nodes
and d is the embedding dimension. Note that the real-world graphs are usually very large, Eq. 2 can
hardly be used in a full-graph training manner. One plausible remedy is to use down-sampling to
zoom in on a fraction of negative samples for once feedforward computation. However, theoretical
analysis demonstrates InfoNCE loss benefits from a large number of negative examples (Poole et al.,
2019), and empirical observations show that reducing the number of negative examples leads to
worse performance on downstream tasks (Thakoor et al., 2021) (also see our experiments in Sec. 5.4).
As a result, it would be promising to devise an efficient and scalable computation method for the
contrastive loss above, without reducing the number of negative examples.

In the next section, we propose Localized Graph Contrastive Learning with Kernel Approximation
(LOCAL-GCL in short) to mitigate the above issues. LOCAL-GCL distinguishes itself from previous
contrastive methods in the following two aspects: 1) instead of constructing positive examples
for target nodes using data augmentations or other techniques, we directly treat all the first-order
neighbors of each target node as its positive examples; 2) we introduce a Gaussian kernelized
surrogate loss function, which could be accurately and efficiently approximated with linear time and
memory complexity in place of the vanilla InfoNCE loss.

4 METHODOLOGY

4.1 ANCHORING NODE CONTRASTIVE LEARNING ON TOPOLOGY

Contrastive learning is firstly investigated in unsupervised visual representation learning where the
data points are i.i.d. sampled from the data distribution, and the ground-truth labels are unknown
during training. As a result, we have to employ well-defined augmentations to create two views of the
same image that are likely to share the same ground-truth label. Different from images or texts where
each input data is often assumed i.i.d. generated from a certain distribution and there is no explicit
prior knowledge about the relationship among different instances, in the graph domain, nodes within
the same graph are highly inter-dependent given the input graph structure. That is, the graph structure
could provide additional information that reflects the affinity of node pairs. Furthermore, in network
(graph) science, it is widely acknowledged that many real-world graphs (such as social networks (Wu
et al., 2019; McPherson et al., 2001) and citation networks (Ciotti et al., 2016)) conform with the
homophily phenomenon that similar nodes may be more likely to attach than dissimilar ones (Zhu
et al., 2003; McPherson et al., 2001). Such a phenomenon also inspires the core principle followed by
the designs of modern graph neural networks, i.e., connected nodes should have similar embeddings in
the latent space (Zhu et al., 2020a). This motivates us to directly treats all the first-order neighboring
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nodes of the target node as positive examples. Formally, the loss for the positive pairs of node i can
be written as

Lpos(i) = − log
∑

j∈N (i)

exp(z⊤i zj/τ)/|N (i)|. (3)

For the negative term, we can directly use all nodes in the graph as negative examples. Then the loss
for the negative pairs of node i can be formulated as:

Lneg(i) = log
∑
k∈V

exp(z⊤i zk/τ). (4)

The overall loss function is simply the sum of Lpos and Lneg, then averaged over all nodes:

LLocal−GCL = − 1

|V|

N∑
i=1

log

∑
j∈N (i)

exp(z⊤i zj/τ)/|N (i)|∑
k∈V

exp(z⊤i zk/τ)
. (5)

Then we’d like to provide a theoretical analysis of the effectiveness of constructing positive examples
directly with the first-order neighbors. First, let’s introduce some notations that will be used in
the following analysis. We denote a graph by G = (V, E), where V is the node st and E is the
edge set. The adjacency matrix and degree matrix are denoted by A and D, respectively. Let
Ã = D−1/2AD−1/2 be the symmetric normalized adjacency matrix, and L = I − Ã be the
symmetric normalized graph Laplacian matrix. Denote the eigenvalues of L in Zn ascending order
by {λi}|V|

i=1. Finally we denote the node embedding matrix Z = {zi}|V|
i=1 ∈ R|V|×d and the one-hot

label matrix by Y = {yi}|V|
i=1 ∈ R|V|×c. Without loss of generality we assume d ≤ |V|.

We then give a formal definition of graph homophily ratio ϕ:

Definition 1. (Graph Homophily Ratio) For a graph G = (V, E) with adjacency matrix A, its
homophily ratio ϕ is defined as the probability that two connected nodes share the same label:

ϕ =

∑
i,j∈V Aij · 1[yi = yj ]∑

i,j∈V Aij
=

∑
i,j∈V Aij · 1[yi = yj ]

|E|
(6)

With the conclusions in Balestriero & LeCun (2022) and HaoChen et al. (2021), which build
connections between contrastive loss and spectral method, the following theorem guarantees the
linear classification error of the embeddings learned from LOCAL-GCL:

Theorem 1. Let Z∗ be the global minimizer of Eq. 5, then for any labeling function ŷ : V → Rc

with graph homophily ϕ, there exists a linear classifierB∗ ∈ Rd×c with norm ∥B∗∥F ≤ 1/(1− λd)
such that

Ei∈V

[
∥ŷ(i)−B∗⊤z∗i ∥22

]
≤ 1− ϕ

λd+1
(7)

See proof in Appendix A.1. Theorem 1 demonstrates that the linear classification accuracy of the
learned embeddings through LOCAL-GCL is bounded by the homophily ratio ϕ and the d+1 smallest
eigenvalue λd+1. Specifically, the larger the homophily ratio, the smaller the prediction error. Besides,
Eq. 7 indicates that a larger embedding dimension can lead to better classification accuracy, which is
also validated empirically in Sec. 5.

4.2 FAST AND EFFICIENT APPROXIMATION FOR THE NEGATIVE LOSS

We next probe into how to reduce the computation complexity of the negative loss term Lneg =∑
i∈V

Lneg(i), for which the |V|2 pair-wise similarities can be efficiently and precisely approximated

with efficient computation methods for kernel functions (Rahimi et al., 2007; Liu et al., 2020).

We notice that the pair-wise similarity (in dot-product format) in Eq. 4 is essentially a Gaussian kernel
function, i.e.,

exp(z⊤i zj/τ) = exp(
2− ∥zi − zj∥22

2τ
) = e ∗ exp(−∥zi − zj∥

2τ
) = e · κG(zi, zk;

√
τ), (8)
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where κG(zi, zk;
√
τ) is the Gaussian kernel function with bandwidth

√
τ . This motivates us to seek

for a projection function ψ(x)(Rd → R2D) such that κG(x,y;
√
τ) ≈ ψ(x)⊤ψ(y). Then we are

able to use a surrogate negative loss function as a remedy of the previous one:

Lneg ≜
1

|V|
∑
i∈V

log
∑
j∈V

ψ(hi)
⊤ψ(hj)

 =
1

|V|
∑
i∈V

log

ψ(hi)
⊤
∑
j∈V

ψ(hj)

 . (9)

Once we obtain all the projected vectors {ψ(hi)}|V|
i=1, the summation term

∑
j∈V ψ(hj) in Eq. 9

could be calculated within O(|V|D) in advance (where D is the dimension of projected vectors).
In addition to the O(|V|D) cost for computing the loss, the overall computational cost will be
O(|V|D + |V|D) = O(V D), which is linear to the number of nodes. Then we discuss how to
formulate the projection function ψ(·) below.

Linear-Order Projection The theory of Random Fourier Features (Rahimi et al., 2007) introduced
in Sec. 2.3 demonstrates that a Gaussian kernel function κG(x,y;

√
τ) could be unbiasedly estimated

with ψ(x)⊤ψ(y), and the projection function ψ(x) is defined as follows:

ψ(x) =
[cos(W⊤x), sin(W⊤x)]√

D
=

[
cos(ω⊤

1 x), · · · , cos(ω⊤
Dx), sin(ω

⊤
1 x), · · · , sin(ω⊤

Dx)
]⊤

√
D

.

(10)
where W = [ω⊤

1 , · · · ,ω⊤
D], and each ωi is sampled from the Gaussian distribution p(ω) =

N (0, τI). D is the number of total samples. Usually, the larger the sampling number D is, the more
accurate the approximation will be:
Theorem 2. Let {ωi}Di=1 be i.i.d samples from Gaussian distribution N (0, τI), and ψ(x) is given by
Eq. 10, then with probability at least 1−ε, the approximation error ∆ = |ψ(hi)

⊤ψ(hj)−κG(hi,hj)|
will be bounded by O

(
1−exp(−4/τ)√

2Dε

)
.

Theorem 2 suggests that the Gaussian kernel function could be accurately approximated with Random
Fourier Features as long as we sample enough number of linear transformation vectors ω (i.e., D
should be large enough). Note that the computation of linear projectionWhi (i = 1 ∈ V) requires
additional O(|V|dD) time. A large number of the projection dimension D makes the computation of
Eq. 9 still expensive for high-dimensional data.

Log-Order Projection To handle the above issues, we resort to Structured Orthogonal Random
Features (SORF) (Yu et al., 2016), another Random Feature technique that imposes structural and
orthogonality on the linear transformation matrixW . Different from the vanilla RFF which directly
samples linear transformation vectors ω form normal distribution to construct the transformation
matrix Wrff = [ω⊤

1 , · · · ,ω⊤
D] ∈ Rd×D, SORF assumes D = d and constructs a structured or-

thogonal transformation matrix through the continued product of a series of structured matrixes
Wsorf =

√
d

σ HD1HD2HD3, where Di ∈ Rd×d, i = 1, 2, 3, are diagonal “sign-flipping” matri-
ces, with each diagonal entry sampled from the Rademacher distribution, and H ∈ Rd×d is the
normalized Walsh-Hadamard matrix. By this definition, the projected dimension is restricted to d,
but could be extended to any dimension by concatenating multiple independently generated features
or simply using a proportion of them. The stand-out merit of SORF is that it can be computed in
O(|V|D log d) time using fast Hadamard transformation (Fino & Algazi, 1976), and hardly requires
extra memory cost using in-place operations (Yu et al., 2016). This further reduces its complexity
and endows our method with desirable scalability to not only larger dataset sizes but also larger
embedding dimensions. If not specified, in the following section, the term LOCAL-GCL denotes our
method equipped with SORF to approximate the negative loss.

5 EXPERIMENTS

We conduct experiments to evaluate the proposed method by answering the following questions:

• RQ1: How does LOCAL-GCL perform compared with other self-supervised learning
methods on graphs with different properties?
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• RQ2: How do the specific designs of LOCAL-GCL, such as the embedding dimension and
projection dimension, affect its performance?

• RQ3: What’s the empirical memory and time consumption of LOCAL-GCL compared with
prior works? Is LOCAL-GCL able to scale to real-world large-scale graphs with satisfying
performance?

5.1 EXPERIMENTAL SETUPS

Datasets. We evaluate LOCAL-GCL on various datasets with different scales and properties. Fol-
lowing prior works (Zhu et al., 2020b; Zhang et al., 2021) on self-supervised node representation
learning, we adopt the 7 common small-scale benchmarking graphs: Cora, Citeseer, Pubmed,
Amazon-Computer, Amazon-Photo, Coauthor-CS, and Coauthor-Physics. To evalu-
ate the performance and scalability of LOCAL-GCL on larger graphs, we also adopt Ogbn-Arxiv
with about 170k nodes, on which a lot of methods fail to scale due to memory issues. Furthermore,
we adopt three widely used heterophily graphs, Chameleon, Squirrel, and Actor to evaluate
the generalization ability of LOCAL-GCL on graphs where the graph homophily assumption does
not hold. The detailed introduction and statistics of these datasets are presented in Appendix C.1

Baselines. We consider representative prior self-supervised models for comparison. We classify
previous methods into two types: 1) Augmentation-based, which uses data augmentations to generate
positive or negative pairs. 2) Augmentation-free, which uses other information rather than any
form of data augmentation to create self-supervised signals. For augmentation-based baselines, we
consider DGI (Velickovic et al., 2019), MVGRL (Hassani & Ahmadi, 2020), GRACE (Zhu et al.,
2020b), GCA Zhu et al. (2021), BGRL (Thakoor et al., 2021) and CCA-SSG (Zhang et al., 2021).
For augmentation-free baselines, we consider GMI (Peng et al., 2020), SUGRL (Mo et al., 2022),
AFGRL (Lee et al., 2021), AF-GCL (Wang et al., 2022).

Evaluation Protocols. We follow the linear evaluation scheme in previous works (Velickovic et al.,
2019; Hassani & Ahmadi, 2020; Zhu et al., 2021; Zhang et al., 2021): For each dataset, i) we first
train the model on all the nodes in a graph without supervision by optimizing the objective in Eq. 5; ii)
after the training ends, we freeze the parameters of the encoder and obtain all the nodes’ embeddings,
which are subsequently fed into a linear classifier (i.e., a logistic regression model) to generate a
predicted label for each node. In the second stage, only nodes in the training set are used for training
the classifier, and we report the classification accuracy on testing nodes.

Implementation Details. The model is implemented with PyTorch and DGL (Wang et al., 2019).
All experiments are conducted on an NVIDIA V100 GPU with 16 GB memory unless specified. We
adopt structure-net1 to do fast Walsh-Hadamard transformation, which enables much faster
forward and backward computation with CUDA accelerations. We use the Adam optimizer (Kingma &
Ba, 2015) for both self-supervised pretraining training and linear evaluation using logistic regression.
Following previous works (Zhu et al., 2021; Zhang et al., 2021; Thakoor et al., 2021; Wang et al.,
2022), we the random 1:1:8 split for Amazon-Computer, Amazon-Photo, Coauthor-CS
and Amazon-Computer, and use the public recommended split for the remaining datasets. For
each experiment, we report the average test accuracy with the standard deviation over 20 random
initialization. If not specified, we use a two-layer GCN model as the encoder to generate node
embeddings. More detailed hyperparameter settings for each dataset can be found in Appendix C.2

5.2 NUMERICAL RESULTS

Results on common graphs. We first report the results of node classification tasks on small-scale
citation networks and social networks in Table 1. We see that although not relying on data aug-
mentations or other complicated operations to create self-supervised signal, LOCAL-GCL performs
competitively with our self-supervised baselines, achieving state-of-the-art performance in 6 out of 7
datasets. It is worth noting that the competitive InfoNCE-loss based contrastive methods GRACE and
GCA suffer from OOM on Coauthor-Physics datasets due to the O(|V|2d) space complexity,
while LOCAL-GCL can avoid such an issue thanks to the linear approximation of the negative loss.

1https://github.com/HazyResearch/structured-nets
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Table 1: Comparison of self-supervised methods on benchmarking graphs. We group each method
according to whether it relies on graph augmentation.

Methods Cora Citeseer Pubmed Computer Photo CS Physics
A

ug
-b

as
ed

DGI 82.3±0.6 71.8±0.7 76.8±0.6 83.95±0.47 91.61±0.22 92.15±0.63 94.51±0.52
MVGRL 83.5±0.4 73.3±0.5 80.1±0.7 87.52±0.11 91.74±0.07 92.11±0.12 95.33±0.03
GRACE 81.9±0.4 71.2±0.5 80.6±0.4 86.25±0.25 92.15±0.24 92.93±0.01 OOM∗

GCA 82.3±0.4 72.1±0.4 80.7±0.5 87.85±0.31 92.49±0.09 93.10±0.01 OOM
BGRL 82.7±0.6 71.1±0.8 79.6±0.5 89.69±0.37 93.07±0.28 92.59±0.17 95.48±0.08
CCA-SSG 84.2±0.4 73.1±0.3 81.6±0.4 88.74±0.28 93.14±0.14 93.31±0.22 95.38±0.06

A
ug

-f
re

e GMI 82.4±0.6 71.7±0.2 79.3±1.0 84.22±0.52 90.73±0.24 OOM OOM
SUGRL 83.4±0.5 73.0±0.4 81.9±0.3 88.93±0.21 93.07±0.15 92.83±0.23 95.38±0.11
AFGRL 81.3±0.2 68.7±0.3 80.6±0.4 89.88±0.33 93.22±0.28 93.27±0.17 OOM
AF-GCL 83.2±0.2 72.0±0.4 79.1±0.8 89.68±0.19 92.49±0.31 91.92±0.10 95.12±0.15
LOCAL-GCL 84.5±0.4 73.6±0.4 82.1±0.5 88.81±0.37 93.25±0.40 94.90±0.19 96.33±0.13

∗ OOM indicates out-of-memory on an NVIDIA-V100 GPU of 16G memory.

Table 2: Performance on Ogbn-Arxiv
dataset. As recommended, we report both
the validation accuracy and test accuracy.

Methods Validation Test

DGI 71.21±0.23 70.32±0.25
GMI OOM OOM
MVGRL OOM OOM
GRACE OOM OOM
GCA OOM OOM
BGRL 72.71±0.22 71.54±0.17
CCA-SSG 72.31±0.18 71.21±0.20
AFGRL OOM OOM

LOCAL-GCL 72.29±0.25 71.34±0.25

Table 3: Performance on Heterophily graphs. Re-
sults of baseline methods are taken from Wang
et al. (2022)

Methods Chameleon Squirrel Actor

DGI 60.27±0.70 42.22±0.63 28.30±0.76
GMI 52.81±0.63 35.25±1.21 27.28±0.87
MVGRL 53.81±1.09 38.75±1.32 32.09±1.07
GRACE 61.24±0.53 41.09±0.85 28.27±0.43
GCA 60.94±0.81 41.53±1.09 28.89±0.50
BGRL 64.86±0.63 46.24±0.70 28.80±0.54
AF-GCL 65.28±0.53 52.10±0.67 28.94±0.69

LOCAL-GCL 68.74±0.49 52.94±0.88 33.91±0.57

Results on Ogbn-Arxiv. Then, we evaluate the effectiveness and scalability of LOCAL-GCL on
large-scale graphs taking Ogbn-Arxiv as an example. Following the practice in Thakoor et al.
(2021), we expand the encoder to a 3-layer GCN model. We report the validation and test accuracy of
baseline models and ours in Table 2. As demonstrated, many baseline methods cannot run in a full
graph manner (on a GPU with 16GB memory). Compared with other scalable methods, LOCAL-GCL
can give a competitive performance on Ogbn-Arxiv.

Results on Heterophily graphs. Finally, we investigate the performance on non-homophily graphs,
a much more challenging task as directly using first-order neighbors as positive examples without
discriminating might be harmful to non-homophily graphs. The results on the three heterophily
graphs are presented in Table 3. Counterintuitively, LOCAL-GCL achieves amazing performance,
outperforming all the baseline methods. This is probably due to the following reasons: 1) Even though
connected nodes may not share the same label, as long as the neighborhood distributions for different
classes are different, LOCAL-GCL is able to recognize the neighborhood patterns of different classes
and make the node embeddings for different classes distinguishable. This is also justified in one
recent work showing that a GCN model can still perform well on heterophily graphs (Ma et al., 2022).
2) Data augmentation-based methods tend to keep the low-frequency information while discarding the
high-frequency one (Wang et al., 2022; Liu et al., 2022), while high-frequency information is much
more important for classification on heterophilic graphs (Bo et al., 2021). By contrast, edge-wise
positive pairs enable LOCAL-GCL to learn the differences between connected nodes better, thus
benefiting heterophilic graphs. We provide more explanations for this point in Appendix C.4.

5.3 ABLATIONS

As demonstrated in Theorem 1 and Sec. 4.2, the embedding dimension d and projection dimension
D should be two critical hyperparameters affecting the model’s performance. In this section, we test
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Figure 1: Sensitivity analysis of embedding
dimension d and projection dimension D.
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Figure 2: Test accuracy and training time com-
parison of LOCAL-GCL, BGRL, CCA-SSG and
GRACE with subsampling.

LOCAL-GCL’ sensitivities with respect to them in Fig. 1. The observations are two-fold: 1) Similar
to other self-supervised learning models (Hassani & Ahmadi, 2020; Zhu et al., 2021; Zhang et al.,
2021; Lee et al., 2021), LOCAL-GCL that benefit from a large embedding dimension (e.g., 512),
LOCAL-GCL’s performance also grows as we increase the embedding dimension d. However, the
optimal embedding dimension for LOCAL-GCL is even larger, e.g., 2048 on Cora and Citeseer
(note that other methods do not benefit from such a large embedding dimension). This could be
justified by our analysis in Theorem 1, which demonstrates that with a larger embedding dimension,
the bound of the prediction error will become lower (because the target eigenvalue λd+1 becomes
larger). 2) Increasing the projection dimension can lead to better but minimal improvement. This
indicates that in practice, LOCAL-GCL can perform quite well without using a huge projection D.

5.4 SCALABILITY COMPARISON

To evaluate the scalability of LOCAL-GCL on real-world datasets, we compare the total training
time and accuracy with state-of-the-art scalable methods BGRL (Thakoor et al., 2021) and CCA-
SSG (Zhang et al., 2021) on Arxiv dataset. To further justify the necessity of adopting a large number
of negative examples, we additionally adopt GRACE (Zhu et al., 2020b), a powerful non-scalable
contrastive model. We use sub-sampling strategy to randomly sample a fixed number of negative
examples every epoch so that the GRACE model could be fit into a GPU with 16G memory. In Fig. 2
we plot the model’s performance and the corresponding training time of different methods. We can
see that compared with scalable methods CCA-SSG and BGRL, LOCAL-GCL achieves comparable
performance but with the least training time. We can also observe that although reducing the number
of negative examples (k in Fig. 2) can enable the model to be trained much faster, the performance
drop is significant, which cannot make up for the efficiency benefit. Furthermore, if we continue to
use an even larger number of negative examples, GRACE will soon run out of memory. This result
demonstrates that LOCAL-GCL can better balance the training efficiency and model performance.

6 CONCLUSIONS

In this paper, we have presented LOCAL-GCL, a simple, light-weighted yet effective contrastive
model for self-supervised node representation learning. LOCAL-GCL incorporates two orthogonal
techniques to address two key issues in contrastive learning on graph data: reliance on data augmenta-
tion and scalability, respectively. The former involves a new definition of positive examples such that
the model is free from data augmentation whose design could be more difficult than its counterparts
in vision and text, and calls for careful customization for different graph data and tasks. The latter
devises an approximated contrastive loss, which reduces the quadratic complexity of traditional
contrastive learning to linearity in terms of the graph size. Extensive experimental results on seven
public graph benchmarks show its efficiency and efficacy.
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A PROOFS

A.1 PROOF FOR THEOREM 1

Proof. To prove Theorem 1, we first introduce a lemma that shows the optimal representations learned
from InfoNCE-like loss function (e.g., Eq. 5) derived from Balestriero & LeCun (2022):

Lemma 1. Denote the eigendecomposition of the normalized graph adjacency matrix by Ã =
UΛU⊤, where U and Λ are the eigenvectors and eigenvalues of˜ respectively. Assume node
embeddings are free vectors, then a global minimizer of the loss function in Eq. 5 is given by:

Z∗ = (UΛ1/2):,1:d, (11)
up to permutations of the eigenvector associated with the same eigenvalue. 1 : d in Eq. 11 indicates
the largest d eigenvalues and the associated eigenvectors.

Besides, HaoChen et al. (2021) has presented the following theoretical guarantee for the model
learned with the matrix factorization loss:

Lemma 2. For a graph G with symmetric normalized graph adjacency matrix and Laplacian
matrix Ã and L̃, let f∗mf ∈ argminfmf :V→Rd be a minimizer of the matrix factorization loss:
Lmf(F ) = ∥(I − L̃− FF⊤)∥2F , where F is the embedding matrix. Then, for any labeling function
ŷ : V → [r], there exists a linear classifierB∗ ∈ Rd×c with norm ∥B∗∥F ≤ 1/(1− λd+1) such that:

Ev∈V

[
∥
→
y (v)−B∗f∗(v)∥22

]
≤ 1− ϕ

λd+1
, (12)

where ϕ is the graph homophily ratio defined in Eq. 6.

Then we just need to connect Z∗ in Eq. 11 with the optimal solution of the rthe matrix factorization
loss Lmf(F ) = ∥I − L̃− FF⊤∥2F = ∥Ã− FF⊤∥. According to Eckart–Young–Mirsky theorem,
the optimal FF⊤ is FF⊤ = U:,1:dΛ:,1:dU

⊤
:,1:d As a result, F ∗ = Z∗ = (UΛ1/2):,1:d is exactly the

global minimizer of Lmf (F ). Then the proof is complete.

A.2 PROOF FOR THEOREM 2

Proof. To prove Theorem 2, we first introduce the following lemma given by Lemma 1 in (Yu et al.,
2016).

Lemma 3. The Random Fourier Estimation KRFF (x,y) is an unbiased estimator of the Gaus-
sian kernel, i.e., Eω(ψ(x)

⊤ψ(y)) = e−∥x−y∥2
2/2τ . Let z = ∥x − y∥2/

√
τ , then the variance of

KRFF (x,y) is Vω(ψ(x)
⊤ψ(y)) = (1− e−z2

)2/2D.

The lemma shows that the Random Fourier Features can achieve an unbiased approximation for the
Gaussian kernel with a quantified variance.

Back to our main theorem, we can derive the following probability using the Chebyshev’s inequality:

P(∆ <
1− exp(−4/τ)√

2Dε
) ≥ 1− Vω(ψ(hi)

⊤ψ(hj)) ∗ 2Dε
(1− exp(−4/τ))2

(13)

where ∆ = |ψ(hi)
⊤ψ(hj)− κG(hi,hj)| denotes the deviation of the kernel approximation. Using

the result in Lemma 3, we can further obtain that the RHS of Eq. 13 is

1− (1− e−z2

)2 ∗ ε
(1− exp(−4/τ))2

(14)

As both hi and hj are ℓ2-normalized, we have z2 = ∥hi − hj∥22/τ ≤ 4/τ , so we can conclude the
stated result:

P(∆ <
1− exp(−4/τ)√

2Dε
) ≥ 1− (1− e−z2

)2 ∗ ε
(1− exp(−4/τ))2

≥ 1− ε (15)
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B ADVANTAGES OF LOCAL-GCL OVER PRIOR METHODS

We provide a systematic comparison for the proposed LOCAL-GCL with previous typical methods
self-supervised node representation learning, including DGI (Velickovic et al., 2019), MVGRL (Has-
sani & Ahmadi, 2020), GRACE (Zhu et al., 2020b), GCA (Zhu et al., 2021), BGRL (Thakoor et al.,
2021), CCA-SSG (Zhang et al., 2021) and AFGRL (Lee et al., 2021).

B.1 TOTALLY AUGMENTATION-FREE WITH SINGLE BRANCH

Most of previous self-supervised learning models (Velickovic et al., 2019; Hassani & Ahmadi, 2020;
Zhu et al., 2020b; 2021; Thakoor et al., 2021; Zhang et al., 2021) require carefully-defined graph
augmentations to obtain positive pairs. However, as noted above, it is hard and costly to design
task and dataset-specific graph augmentations. Our method LOCAL-GCL naturally avoids data
augmentation by using the first-order neighborhood information of each node. Moreover, different
from all previous methods that have two branches of models (double amounts of inputs, hidden
variables, outputs, etc.), our approach only requires a single branch, which makes our method
light-weighted.

B.2 PROJECTOR/PREDICTOR/DISCRIMINATOR-FREE

Most of the previous methods require additional components besides the basic encoder for decent
empirical results (Zhu et al., 2020b; 2021), to break symmetries to avoid trivial solutions (Thakoor
et al., 2021; Lee et al., 2021) or to estimate some score functions in their final objectives (Velickovic
et al., 2019; Hassani & Ahmadi, 2020). Compared with them, LOCAL-GCL is much simpler, in both
conceptual and practical senses, without using any parameterized model but the basic encoder.

B.3 THEORETICALLY GROUNDED WITH LINEAR COMPLEXITY

Empirically, InfoNCE-based contrastive methods (Zhu et al., 2020b; 2021) often show better perfor-
mance than DIM-based methods (Velickovic et al., 2019; Hassani & Ahmadi, 2020) yet suffers from
the scalability issue. Recent non-contrastive methods (Thakoor et al., 2021; Lee et al., 2021) could
maintain decent performance with linear model complexity through asymmetric structures, while
the rationale behind their success still remains unclear (Zhang et al., 2021). As a contrastive model,
LOCAL-GCL is theoretically grounded (through maximizing the mutual information between target
node’s embedding and its neighbor’s embeddings), and its kernelized approximation of negative loss
enables it to scale to large graphs with linear time and memory complexity with respect to the graph
size.

C EXPERIMENT DETAILS AND ADDITIONAL EMPIRICAL RESULTS

C.1 DATASETS

The statistics of the used datasets are presented in Table 4, and brief introduction and settings are as
follows:

Cora, Citeseer, Pubmed are three widely used node classification benchmarks (Sen et al., 2008;
Namata et al., 2012). Each dataset consists one citation network, where nodes represent papers and
edges represent a citation relationship from one node to another. We use the public split, where each
class has fixed 20 nodes for training, another fixed 500 nodes and 1000 nodes for validation/test,
respectively for evaluation.

Coauthor-CS, Coauthor-Physics are co-authorship graphs based on the Microsoft Academic
Graph from the KDD Cup 2016 challenge (Sinha et al., 2015). Nodes are authors that are connected
by an edge if they co-authored a paper; node features represent paper keywords for each author’s
papers, and class labels indicate the most active fields of study for each author. As there is no public
split for these datasets, we randomly split the nodes into train/validation/test (10%/10%/80%) sets.

Amazon-Computer, Amazon-Photo are segments of the Amazon co-purchase graph (McAuley
et al., 2015), where nodes represent goods, edges indicate that two goods are frequently bought
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Table 4: Statistics of benchmark datasets.

Dataset #Nodes #Edges #Classes #Features ϕ

Cora 2,708 10,556 7 1,433 0.810
Citeseer 3,327 9,228 6 3,703 0.736
Pubmed 19,717 88,651 3 500 0.802
Coauthor-CS 18,333 327,576 15 6,805 0.808
Coauthor-Physics 34,493 991,848 5 8,451 0.931
Amazon-Computer 13,752 574,418 10 767 0.777
Amazon-Photo 7,650 287,326 8 745 0.827
Ogbn-Arxiv 169,343 2,332,386 40 128 0.655
Chameleon 2,277 36,101 5 2,325 0.235
Squirrel 5,201 217,073 5 2,089 0.224
Actor 7,600 33,544 5 931 0.219

Table 5: Details of hyper-parameters of the experimental results in Table 1

Dataset Local-GCL
Encoder # Steps # layers lr wd d D τ

Cora GCN 50 2 5e-4 1e-6 2048 8192 0.5
Citeseer GCN 20 1 1e-3 1e-4 2048 4096 0.5
Pubmed GCN 50 2 5e-4 0 1024 8192 0.5
Amazon-Computer GCN 50 2 5e-4 0 1024 8192 0.8
Amazon-Photo GCN 50 2 5e-4 1e-6 2048 8192 0.5
Coauthor-CS MLP 50 2 5e-4 1e-4 1024 4096 0.5
Coauthor-Physics MLP 50 2 5e-4 0 1024 4096 0.7

together; node features are bag-of-words encoded product reviews, and class labels are given by the
product category. We also use a 10%/10%/80% split for these two datasets.

For simplicity, we use the processed version of these datasets provided by Deep Graph Library (Wang
et al., 2019)2. One can easily acquire these datasets using the api provided by DGL.

Ogbn-Arxiv is a directed graph, representing the citation network between all Computer Science
(CS) arXiv papers (Hu et al., 2020). Each node is an arXiv paper and each directed edge indicates
that one paper cites another one. Each paper comes with a 128-dimensional feature vector obtained
by averaging the embeddings of words in its title and abstract. The embeddings of individual words
are computed by running the skip-gram over the MAG corpus. All papers are also associated with the
year that the corresponding paper was published. We use the official split in our experiments.

Chameleon and Squirrel (Rozemberczki et al., 2021) are Wikipedia networks introduced.
Nodes represent web pages, and edges represent hyperlinks between them. Node features represent
several informative nouns in the Wikipedia pages. The task is to predict the average daily traffic of
the web page.

Actor is the actor-only induced subgraph of the film-director-actor-writer network used in Pei et al.
(2020). Each node corresponds to an actor, and the edge between two nodes denotes co-occurrence
on the same Wikipedia page. Node features correspond to some keywords in the Wikipedia pages.
The task is to classify the nodes into five categories in term of words of actor’s Wikipedia.

For Chameleon, Squirrel and Actor, we use the raw data provided by the Geom-GCN (Pei
et al., 2020) paper3, and we use the 10-fold split provided.

C.2 HYPER-PARAMETERS

We provide detailed hyper-parameters on the seven benchmarks in Table 5. All hyper-parameters are
selected through a small grid search, and the search space is provided as follows:

2https://docs.dgl.ai/en/0.6.x/api/python/dgl.data.html
3https://github.com/graphdml-uiuc-jlu/geom-gcn
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• Training steps: {20, 50}
• Number of layers: {1, 2}
• Embedding dimension d: {512, 1024, 2048}
• Projection dimension D: {2048, 4096, 8192}
• Temperature τ : {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
• Learning rate: {5e-4, 1e-3, 5e-3}
• Weight decay: {0, 1e-6, 1e-4}

C.3 EXTENSIVE ABLATION STUDIES

We further extend LOCAL-GCL with other designs of positive example construction, negative
example selection, and self-supervised objective functions to evaluate the effectiveness of each single
component of the proposed method.

C.3.1 DIFFERENT STRATEGIES FOR CONSTRUCTING POSITIVE EXAMPLES USING
NEIGHBORHOODS

In addition to treats each neighboring node equally as positive examples, we further explore two
other positive sampling strategies: 1) computing the similarities between neighboring nodes, and
use the most similar one as the positive example (we term it LOCAL-GCL-max); 2) reweighting
the importance of different neighboring nodes according to their similarities, where more similar
neighboring node should be assigned a larger weight (we term it LOCAL-GCL-weight).

For LOCAL-GCL-max, we first its the nearest neighbor:

si = argmin
zj ,j∈N (i)

∥∥∥∥ zj
∥zj∥22

− zi
∥zi∥22

∥∥∥∥2 , (16)

and the objective function is

LLocalGCL−max = − 1

|V|

|V|∑
i=1

log
exp(z⊤i si/τ)∑

k∈V
exp(z⊤i zk/τ)

. (17)

For LocalGCL-weight, we first compute the pair-wise similarities of neighboring nodes:

simij = Ai,j ·
z⊤i zj

∥zi∥22∥zj∥22
. (18)

Then, for a target node i, it softmax the scores of its neighboring nodes as the weights:

wi(j) = softmax[simij ]j∈N (i). (19)

The objective function of LocalGCL-weight is consequently defined as

LLocalGCL−weight = − 1

|V|

|V|∑
i=1

log

∑
j∈N (i)

wi(j) exp(z
⊤
i zj/τ)/|N (i)|∑

k∈V
exp(z⊤i zk/τ)

. (20)

The results of LOCAL-GCL-max and LOCAL-GCL-weight, together with the original LOCAL-GCL
is presented in Table 6: From this table, we can observe that using the nearest neighboring node as the
only one positive example is likely harmful (except on Citeseer) to the performance, this should
be because this operation can discard a lot of useful information in the local neighborhood. Besides,
LOCAL-GCL-weight improves the performance on Cora significantly but makes little difference
on Citeseer and Pubmed. This might be because, without supervision, a higher similarity in the
latent space does not necessarily indicate a higher probability of sharing the same label. Considering
that LOCAL-GCL-weight requires additional computational cost for computing the weights, and the
performance of the original LOCAL-GCL is already quite good, we just treat every neighboring node
equally in this work.
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Table 6: Performance variation when using different strategies of constructing positive examples
from neighboring nodes.

Cora Citeseer Pubmed
LOCAL-GCL (origin) 84.5 ± 0.4 73.6 ± 0.4 82.1 ± 0.5
LOCAL-GCL-max 83.6 ± 0.5 73.7 ± 0.5 81.7 ± 0.5
LOCAL-GCL-weight 84.9 ± 0.4 73.7 ± 0.4 82.2 ± 0.5

Table 7: Test accuracy, training time cost and memory cost when using the positive pair constructing
method in this paper compared with using data augmentation for BGRL and CCA-SSG.

Coauthor-CS Coauthor-Physics
Acc Time Memory Acc Time Memory

BGRL 92.59 ± 0.17 30.4 min 2.9G 94.48 ± 0.08 57.7 min 5.6G
BGRL-Local 92.98 ± 0.23 18.2 min 1.8G 95.82 ± 0.11 32.3 min 3.7G
CCA-SSG 93.31 ± 0.22 1.1 min 3.5G 95.38 ± 0.06 5.9 min 7.1G
CCA-SSG-Local 94.08 ± 0.19 0.7 min 2.2G 95.69 ± 0.09 4.3 min 4.4G

C.3.2 COMBINING WITH NEGATIVE-SAMPLE-FREE SELF-SUPERVISED LEARNING METHODS

using the target node’s first-order neighbors as positive examples) could also benefit non-contrastive
methods, like BGRL and CCA-SSG. Note that both BGRL and CCA-SSG use the exact same data
augmentations methods proposed in GRACE (a contrastive method). As a result, we can simply
replace the positive examples in BGRL, and on-diagonal terms in CCA-SSG with the ones used in
this paper, thus making them free from data augmentations. In such as a case, the models do not
require two-viewed data as inputs, so the size of inputs, intermediate variables, and outputs can be
reduced by half. To better demonstrate this point, we further extend our method with BGRL and
CCA-SSG.

For BGRL, denote the target embedding of node i by hi and the corresponding prediction by zi, our
BGRL-Local optimizes the following loss function:

LBGRL−Local = − 2

N

∑
i∈V

∑
j∈N (i)

zj · hi

∥zj∥22∥hi∥22
(21)

For CCA-SSG, denote the embedding of node i by hi, we first compute the local summary of node i
by zi = 1

|N (i)|
∑

j∈N (i)

hj . Then we compute two standardized embedding matrix by:

H̃ =
H − µ(H)

σ(H) ∗
√

|V|
, Z̃ =

Z − µ(Z)

σ(Z) ∗
√
|V|

. (22)

Finally, CCA-SSG-Local optimizes the following loss function:

LCCA−SSG−Local =
∥∥∥H̃ − Z̃

∥∥∥2
F
+ λ

(∥∥∥H̃⊤H̃ − I
∥∥∥2
F
+
∥∥∥Z̃⊤Z̃ − I

∥∥∥2
F

)
. (23)

We report the performance of BGRL-Local and CCA-SSG-Local compared with the original BGRL
and CCA-SSG on CS and Physics, together with their training time/memory cost in Table 7 (We
didn’t choose the three citation networks as BGRL performs really bad on them).

(BGRL takes much longer time for training, because it does require a lot of training epochs to
converge.) As demonstrated in the table. The performance of BGRL and CCA-SSG both get
improved after adopting neighboring nodes as positive examples, which highlights the value of graph
structure information as self-supervised learning signals. Besides, it also reduces the training time
and memory cost because it gets rid of the two-branch architecture caused by data augmentations.

C.3.3 COMBINING WITH HARD NEGATIVE SAMPLING METHODS

Furthermore, one important advantage of contrastive learning is that it can be incorporated with
hard negative sampling techniques (Robinson et al., 2021; Kalantidis et al., 2020; Zhang et al.,
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Table 8: Effect of combining LOCAL-GCL with hard-negative sampling methods.

Cora Citeseer Pubmed
LOCAL-GCL (origin) 84.5 ± 0.4 73.6 ± 0.4 82.1 ± 0.5
LOCAL-GCL +ProGCL-mix 84.9 ± 0.5 74.2 ± 0.4 82.3 ± 0.5

Table 9: Bootstrapped confidence interval (with 95% confidence).

Cora Citeseer Pubmed Computer Photo CS Physics
CCA-SSG [84.06, 84.30] [73.05, 73.21] [81.51, 81.72] [88.57, 88.86] [93.10, 93.22] [93.25, 93.41] [95.37, 95.41]
LOCAL-GCL [84.43, 84.75] [73.45, 73.83] [81.82, 82.29] [88.66, 89.06] [93.20, 93.48] [94.89, 94.98] [96.26, 96.35]

2022; Xia et al., 2022). These works either assign weights to different negative samples so that
true negative examples are more important than false negative examples, or use mix-up methods
to generate even harder negative examples. With these techniques, the performance of contrastive
learning can be greatly boosted. To demonstrate this point, we further combine our method with the
hard negative mining strategy ProGCL-mix proposed in Xia et al. (2022), and we report the perfor-
mance comparison on Cora, Citeseer and Pubmed in Table 8: The improvement is prominent
(especially on Citeseer) thanks to the hard-negative sampling strategy(however, ProGCL-mix is
not our contribution so we cannot include it in our method in this paper). Besides, we notice that
the improvement on Pubmed is smaller than that on the other two datasets, we guess this is because
there are only 3 classes of nodes on Pubmed, so it is less effective to mine hard negatives than 7
classes on Cora and 6 on Citeseer. By contrast, negative-sample-free method like BGRL and
CCA-SSG cannot get benefits from it.

C.4 ANALYSIS OF THE RESULTS ON HETEROPHILIC GRAPHS

Although a little bit counter-intuitive, the better performance of our method on heterophilic graphs
does exist, and can be justified through the differences between the two distinguished methods
of generating positive pairs: 1) data augmentations on graph data; 2) two connected nodes being
a positive pair. Two recent studies Wang et al. (2022) and Liu et al. (2022) both demonstrate
that existing data augmentations on graphs, such as graph diffusion used in MVGRL (Hassani &
Ahmadi, 2020), edge dropping and feature masking used in GRACE (Zhu et al., 2020b), GCA (Zhu
et al., 2021), BGRL (Thakoor et al., 2021) and CCA-SSG (Zhang et al., 2021) have larger impacts
on the high-frequency information of the graph than the low-frequency information. As a result,
the differences between two graph views are about low-frequency components. Considering that
contrastive learning aims at maximizing the mutual information shared between the two views, only
the invariant information (low-frequency) is encouraged to be learned by the embeddings, while the
middle and high-frequency information is discarded.

On the other hand, studies on GNNs for heterophilic graphs (Bo et al., 2021) demonstrate that
for heterophilic graphs, the high-frequency information in the graph is more effective for down-
stream classification performance. Considering that data-augmentation-based methods focus on
low-frequency information while neglecting high-frequency one, it is not strange that they cannot
give satisfactory performance. By contrast, as high-frequency knowledge in the graph represents the
differences between the node feature with its neighborhood features, the edge-wise contrastive loss
used in our work can better capture the differences in the information between two connected nodes,
thus performing better on heterophilic graphs.

C.5 STATISTICAL SIGNIFICANCE TEST

We further conduct statistical significance tests to show that LOCAL-GCL does perform better than
the previous SOTA method CCA-SSG (Zhang et al., 2021).

In Table 9 we present the bootstrapped confidence interval (with 95% confidence). We also conduct
Wilcoxon signed-rank test on the proposed LOCAL-GCL and the second best model CCA-SSG, using
the averaged test accuracy on the 7 datasets in Table 1. The p-value of CCA-SSG and LOCAL-GCL’s
performance on the 7 datasets is 0.0325 < 0.05. As a result, we can conclude that there is a genuine
performance difference between the performance of LOCAL-GCL and that of CCA-SSG.
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D REPRODUCIBILITY

We provide detailed codes and running instructions in the supplementary material.
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