
Fine-tuning LLM Agents with Retrospective
In-Context Online Learning

Wen-Tse Chen1, Jiayu Chen1, Fahim Tajwar1, Hao Zhu2, Xintong Duan1,
Ruslan Salakhutdinov1, Jeff Schneider1

Carnegie Mellon University1, Stanford University2
{wentsec, jiayuc2, xintongd}@andrew.cmu.edu

{ftajwar, rsalakhu, Jeff.Schneider}@cs.cmu.edu
zhuhao@stanford.edu

Abstract

Fine-tuning large language models (LLMs) using online learning, where models
learn from self-sampled data and environmental feedback, presents a promising
but challenging research direction due to the typically sparse nature of rewards.
Traditional methods for addressing this challenge often involve training domain-
specific Q-functions to convert sparse rewards into dense signals. However, these
methods suffer from poor sample efficiency and limited generalizability. In this
work, we propose a novel framework that leverages the pre-trained knowledge of
LLMs to transform sparse rewards into dense supervised signals through in-context
learning. Specifically, we introduce a retrospective in-context learning approach,
where LLMs assign temporal credit to past actions based on feedback. Unlike
previous approaches, which rely heavily on extensive feedback data or intricate
prompt engineering, our method uses online learning to iteratively update the policy
by combining in-context learning with gradient-based fine-tuning. We empirically
demonstrate the effectiveness of our approach on the BabyAI benchmark, showing
that it is significantly more sample-efficient than traditional online reinforcement
learning (RL) algorithms while achieving comparable performance to imitation
learning. Our findings suggest that LLM-based agents can refine their policies
using sparse feedback in an online manner, making them more adaptive to dynamic
environments.

1 Introduction

Fine-tuning large language models (LLMs) using online learning, where they learn from self-sampled
data and environment feedback, is a promising research direction [Dong et al., 2024]. However, the
task is inherently difficult due to the typically sparse nature of environment feedback [Andrychowicz
et al., 2017, Sukhbaatar et al., 2017]. This sparse environmental feedback not only increases the
sample complexity of the algorithm but also raises its variance and instability [Chaudhari et al.,
2024, Cao et al., 2024]. In this work, we propose leveraging the pre-trained knowledge of LLMs
to transform sparse rewards into dense signals, enabling more efficient learning from environment
feedback.

In-context learning, which allows agents to adapt quickly to new tasks with limited samples [Chen
et al., 2024a], is a powerful method for utilizing the pre-trained knowledge of LLMs. Despite its
success in decision-making tasks, LLM-based agents have faced criticism for their limited ability to
self-correct, even when provided with environmental feedback [Kamoi et al., 2024]. Previous works
have mostly relied on LLMs’ generalization abilities for reflection, typically using either (1) large

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

amounts of feedback generation data to train the reflector [Chen et al., 2024b], or (2) intricate prompt
engineering [Shinn et al., 2024].

To reduce the reliance on LLMs’ in-context learning capacity for self-correction, we propose a
retrospective approach to assign temporal credit using in-context learning. Specifically, when a sparse
environment feedback is received, LLMs use in-context learning to update all of its prior actions on
the trajectory. Empirically, we show that retrospectively in-context policy updating is more effective
than general policy improvement.

In this work, we propose an online learning framework that embraces the instability of LLMs while
leveraging their pre-trained knowledge. We use LLMs as both the initial policy and a reflector that
evaluates whether past actions were beneficial or detrimental based on environmental feedback. While
retrospective in-context learning simplifies policy refinement for observed trajectories, it does not
generalize to unseen states. To address this, we apply gradient updates and retrospective in-context
learning iteratively to store the in-context updated policy. Given the dynamic programming nature of
decision-making tasks, the proposed framework can continuously learn from environmental feedback
in an online manner.

In summary, our contribution are as follow:

(1) Empirically showed that LLM agents can improve their policy on the given trajectory through
in-context learning when provided with environment feedback.

(2) Proposed an online learning framework where agents utilize retrospective in-context learning
to transform sparse environment feedback into dense supervised signals, followed by supervised
fine-tuning to embed these feedback into the model’s parameters.

(3) We empirically demonstrate the effectiveness of our algorithm on the BabyAI benchmark, showing
it is more sample efficient than online RL algorithms, while achieving comparable performance to
imitation learning.

2 Using In-context Learning to Accelerate Online Learning

In this section, we outline the rationale behind the algorithm. First, we revisit the classic online RL
algorithm, demonstrating how to effectively integrate in-context learning with online RL. Second, we
explain the role of in-context learning in the proposed algorithm and show how it can generate dense
supervised signals from sparse environment feedback and how to use the in-context updated policy to
refine the base policy.

2.1 Notation

We consider a Markov decision process [Puterman, 1990], defined by the tuple (S,A, p, r), where S
is the state space,A is the actio space, p : S×S×A → [0,∞) is an unknown transition function, and
r is the rewards function. We will use dπ(s) =

∑∞
t=0 γ

tq(st = s|π) to represent the unnormalized
discounted state distribution induced by the policy π, where q(st = s|π) is the likelihood of the agent
being in state s after following π for t time-steps. The goal of policy learning is to maximizes the
expected sum of rewards, Es∼dπ(s)a∼π(·|s)[r(s, a)].

2.2 Revisit Online RL

Online RL operates in two phases: policy evaluation and policy improvement. During policy
evaluation, the agent uses environment feedback to update the Q-function, resulting in more accurate
Q-value estimates for the state-action pairs along the trajectory. In the policy improvement phase, the
agent uses the updated Q-function to refine the policy, where the Q-values serve as dense supervised
signals, making it easier to train the policy.

We proposed two insights here. First, the success of online RL suggests that environment feedback
can be effectively used to update the Q-value for the trajectory just experienced, though its impact
on improving estimation accuracy for other states is uncertain. During policy evaluation, the RL
agent updates the Q-value only for the states along the observed trajectory. However, the dynamic
programming nature of the algorithm leads to overall improvements in Q-value estimation. Similarly,
in in-context learning with environment feedback, we focus on using the feedback to back-propagate

2

updates to the policy based on the trajectory just taken. This approach is simpler than trying to learn
an improved policy across all possible states, thereby reducing the proposed method’s reliance on
LLM’s in-context learning capabilities.

The second insight is that in-context learning enables direct policy improvement from environment
feedback, bypassing the traditional value function updates. Online RL uses rewards to guide the
training of value function, and uses well-trained value function as a dense supervised signal to train
the policy. By leveraging in-context learning, we can directly produce a better policy compared
to the base policy using environment feedback. This approach allows us to bypass value function
learning, and indicates that we have to use in-context learning as the way we use value function.
While in-context learning does not guarantee monotonic improvement like online RL, it leverages the
pre-trained knowledge of LLMs and can accommodate non-numerical feedback, such as text-based
input, significantly accelerating the training process.

2.3 In-context Learning as Dense Rewards Generator

This subsection explains how in-context learning improves policy using environment feedback. The
goal of in-context learning is to use the environment feedback to back-propagate updates to the policy
along the trajectory just traversed. Following Shinn et al. [2024], in-context learning can be broken
down into two key steps: generating verbal feedback in response to trial-and-error interactions, and
subsequently using that verbal feedback to in-context update the policy.

We highlight three important considerations for in-context learning. First, the LLM used to generate
verbal feedback should be distinct from the policy model, as fine-tuning the policy could diminish
its generalization ability [Kirkpatrick et al., 2017]. Second, while previous works generated one
universal verbal feedback for all states, our framework allows the agent to produce individualized
verbal feedback for each state, which further simplifies tasks solved by in-context learning. Third,
similar to centralized training with decentralized execution [Yu et al., 2022] in multi-agent RL, global
or privileged states can be utilized to generate feedback, since they are only needed during training
and not during inference.

After getting the in-context updated policy, the next step is applying gradient updates to align the base
policy with it. Similar to online RL [Schulman, 2015], we incorporate a trust region term into the
optimization objective to enhance the stability of online training. That is, we don’t want the current
policy deviate a lot from the sampling policy. The rationale for introducing the trust region term is
twofold. Firstly, feedback is based on trajectories collected by πk. When π diverges significantly
from πk, the feedback becomes less informative. Secondly, due to the noisy nature of verbal feedback,
the trust region acts as a regularizer to avoid collapsing into sub-optimal solutions.

In sum, while our primary contribution is demonstrating that in-context learning can accelerate online
training, much of our discussion focuses on how to manage the instability of in-context learning. We
tackle this by simplifying the tasks assigned to in-context learning and designing the online learning
algorithm to be robust against noisy outputs from in-context learning.

Algorithm 1 Retrospective In-Context Online Learning(RICOL)

Input: π0,K
for k = 0 · · ·K − 1 do

τk ∼ πk(·|s0) ▷ Sample new trajectory
for st = s0 · · · sT ∈ τk do

feedbackt ∼ πreflect(·|st:T , rt:T) ▷ Feedback generation
π′
k+1(·|st)← πk(·|st, feedbackt) ▷ In-context update

end for
πk+1 ← argminπ Es∈τ [Distance

(
π(·|s), π′

k+1(·|s)
)
] ▷ Gradient update

end for

3 Methodology

In this section, we introduced a practical algorithm Retrospective In-Context Online Learning
(RICOL). As shown in Algorithm 1, RICOL is an online learning algorithm, switching between data

3

collection, in-context learning and gradient update. We will elaborate each steps in the following
paragraph. The prompt can be found in Appendix D.

3.1 Feedback Generation

The first step is to use policy πk to collect trajectories τk. For each time step t, we use the sequence
st:T , at:T , and rt:T as a prompt to query the critic model πcritic, where πcritic is an LLM distinct
from πk. The critic model is prompted to evaluate whether the action at was good, given the future
trajectory. The output of πcritic is a verbal feedback, denoted as feedbackt.

3.2 In-context Update

After getting feedbackt, we append it to the prompt and query πk to obtain the in-context updated
policy π′

k+1. Note that π′
k+1 is not used to generate a new roll-out. Instead, we store the probability

output by π′
k+1 on all the state of τk and use them to guide policy training later.

3.3 Gradient Update

After obtaining the dense supervised signal π′
k+1, we apply a gradient update to update the current

policy π, moving it closer to π′
k+1. At the same time, we don’t want it to deviate too much from the

sampling policy πk. Similar to Peng et al. [2019], the loss function can be defined as follow:

min
π

Es∼dπk
(s)

[
DKL

(
1

Z(s)
· πk(·|s)⊙ exp(

log π′
k+1(·|s)
α

)||π(·|s)
)]

, (1)

where ⊙ represents the element-wise multiplication and α is a hyper-parameter defining the size of
the trust region. The derivation process can be found in Appendix B.

4 Experiments

This section addresses three research questions. Q1: Is retrospective in-context policy updating
with environment feedback easier than updating the general policy? Q2: Does the proposed online
learning framework rely heavily on the model’s in-context learning ability? Q3: How does RICOL’s
performance and sample efficiency compare to baseline algorithms?

We evaluated our method using the BabyAI benchmark [Chevalier-Boisvert et al., 2018]. BabyAI is
a 2D grid-world navigation task where the agent follows language-based instructions. This task is
challenging for LLM agents due to their known limitations in spatial reasoning [Wu et al., 2024]. By
default, we use Llama-3.1-8B-Instruct as policy π, and use Llama-3.1-70B-Instruct as critic πcritic.

4.1 Retrospective In-Context Policy Updating(Q1)

Figure 1: Using in-context learning to
retrospectively update the policy (Retro-
ICL) is more effective than updating a
general policy (ICL).

In this subsection, we empirically show that using environ-
mental feedback to backpropagate and update the policy
in-context based on the trajectory just taken is easier than
updating for states the agent has not encountered. Fig-
ure 1 compares the performance of retrospective in-context
learning (Retro-ICL) with traditional in-context learning
(ICL). Since retrospective in-context learning cannot alter
the policy distribution during evaluation, we do not use
win rate as an evaluation metric. Instead, we measure how
accurately the policy predicts the expert’s behavior in a
given trajectory.

The base policy reflects the performance of zero-shot
LLMs. In ICL, we use in-context learning to generate
verbal feedback from one trajectory and evaluate the
in-context updated policy (which takes the verbal feedback as input) on a different trajectory.
Retrospective-ICL, on the other hand, evaluates the updated policy on the same trajectory used

4

to generate the feedback, and provides different verbal feedback for each state. Our empirical results
show that Retro-ICL outperforms ICL by 7.2%, confirming that retrospectively updating the policy is
easier than updating the general policy. The reported results are averaged over 1,000 data points.

0 2 4 6 8
Iterations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Su
cc

es
s R

at
e

Imitation Learning
100% feedback
80% feedback
70% feedback

(a) robustness.

0 100 5k 100k 1M
Frames

0.5

0.6

0.7

0.8

0.9

W
in

 R
at

e

Llama-3.1-8B
Imitation
PPO
RICOL(ours)

(b) main results.

0 2 4 6 8
Iterations

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90 win rate

correct feedback rate

(c) feedback accuracy.

Figure 2: (a) shows that the proposed online algorithm is able to learn from noisy verbal feedback,
where 80% feedback implies training with feedback that is accurate only 80% of the time. (b) shows
that our method has similar performance with imitation learning but doesn’t need expert policy and
is more efficient than online RL. (c) shows that the accuracy of the generated feedback is stable
during training, indicating that we are not exploiting critic model’s extra information but learn from
environment feedback.

4.2 Robustness of Online Learning (Q2)

In this subsection, we discuss how the accuracy of verbal feedback impacts the performance of the
online learning algorithm. Specifically, we train the agent using hand-written verbal feedback and
then manually adjust its accuracy to evaluate the robustness of the algorithm. Figure 2a illustrates
that the proposed online learning algorithm is capable of training effectively even when the verbal
feedback accuracy is as low as 70%, where random feedback has an accuracy of 50%. This result
demonstrates that the algorithm does not heavily depend on highly accurate in-context learning for
training.

4.3 Main Results(Q3)

In this subsection, We compared our method against imitation learning and online RL. Figure 2b
demonstrates that our method exhibits performance comparable to imitation learning, despite being
an online approach that trains on self-sampled data rather than an expert policy. Additionally, our
method is more sample-efficient than online RL methods, which must learn a domain-specific Q
function from scratch. In contrast, our approach utilizes LLMs as a pre-trained policy and generates
dense rewards to accelerate training. The implementation detail can be found in Appendix C.

Figure 2c shows that the accuracy of verbal feedback remains relatively constant throughout the
training process. This stability suggests that the agent is effectively learning from environmental
feedback rather than relying on additional information stored in the critic network. If the agent were
primarily benefiting from corrections provided by the critic, we would expect the accuracy of verbal
feedback to decline over time, due to the critic’s limited knowledge capacity.

5 Conclusion and Limitation

We proposed an online learning framework that uses retrospective in-context learning to convert
sparse rewards into dense signals, allowing LLM agents to improve policies based on past trajecto-
ries. By combining this with gradient-based fine-tuning, our method addresses in-context learning
instability and enables continuous policy refinement. Empirical results on the BabyAI benchmark
show our approach is more sample-efficient than traditional online RL while performing comparably
to imitation learning.

The proposed method has the following limitations. First, we did not incorporate chain-of-thought
prompting Wei et al. [2022] when designing the algorithm pipeline; the current version only allows
the agent to output actions directly. Second, we tested the method on a single navigation benchmark
and with one LLM, leaving its broader applicability to other benchmarks, including token-level MDPs
and other LLMs, uncertain.

5

References
M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,

O. Pieter Abbeel, and W. Zaremba. Hindsight experience replay. Advances in neural information
processing systems, 30, 2017.

M. Cao, L. Shu, L. Yu, Y. Zhu, N. Wichers, Y. Liu, and L. Meng. Drlc: Reinforcement learning with
dense rewards from llm critic. arXiv preprint arXiv:2401.07382, 2024.

T. Carta, C. Romac, T. Wolf, S. Lamprier, O. Sigaud, and P.-Y. Oudeyer. Grounding large language
models in interactive environments with online reinforcement learning. In International Conference
on Machine Learning, pages 3676–3713. PMLR, 2023.

S. Chaudhari, P. Aggarwal, V. Murahari, T. Rajpurohit, A. Kalyan, K. Narasimhan, A. Deshpande,
and B. C. da Silva. Rlhf deciphered: A critical analysis of reinforcement learning from human
feedback for llms. arXiv preprint arXiv:2404.08555, 2024.

Y. Chen, S. Zhang, G. Qi, and X. Guo. Parameterizing context: Unleashing the power of parameter-
efficient fine-tuning and in-context tuning for continual table semantic parsing. Advances in Neural
Information Processing Systems, 36, 2024a.

Z. Chen, K. Zhou, W. X. Zhao, J. Wan, F. Zhang, D. Zhang, and J.-R. Wen. Improving large language
models via fine-grained reinforcement learning with minimum editing constraint. arXiv preprint
arXiv:2401.06081, 2024b.

M. Chevalier-Boisvert, D. Bahdanau, S. Lahlou, L. Willems, C. Saharia, T. H. Nguyen, and Y. Bengio.
Babyai: A platform to study the sample efficiency of grounded language learning. arXiv preprint
arXiv:1810.08272, 2018.

M. Chevalier-Boisvert, B. Dai, M. Towers, R. de Lazcano, L. Willems, S. Lahlou, S. Pal, P. S. Castro,
and J. Terry. Minigrid & miniworld: Modular & customizable reinforcement learning environments
for goal-oriented tasks. CoRR, abs/2306.13831, 2023.

H. Dong, W. Xiong, B. Pang, H. Wang, H. Zhao, Y. Zhou, N. Jiang, D. Sahoo, C. Xiong, and T. Zhang.
Rlhf workflow: From reward modeling to online rlhf. arXiv preprint arXiv:2405.07863, 2024.

R. Kamoi, Y. Zhang, N. Zhang, J. Han, and R. Zhang. When can llms actually correct their own
mistakes? a critical survey of self-correction of llms. arXiv preprint arXiv:2406.01297, 2024.

J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan,
T. Ramalho, A. Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

M. Kwon, S. M. Xie, K. Bullard, and D. Sadigh. Reward design with language models. arXiv preprint
arXiv:2303.00001, 2023.

H. Li, X. Yang, Z. Wang, X. Zhu, J. Zhou, Y. Qiao, X. Wang, H. Li, L. Lu, and J. Dai. Auto mc-reward:
Automated dense reward design with large language models for minecraft. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16426–16435, 2024.

Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Jayaraman, Y. Zhu, L. Fan, and A. Anand-
kumar. Eureka: Human-level reward design via coding large language models. arXiv preprint
arXiv:2310.12931, 2023.

R. Y. Pang, W. Yuan, K. Cho, H. He, S. Sukhbaatar, and J. Weston. Iterative reasoning preference
optimization. arXiv preprint arXiv:2404.19733, 2024.

X. B. Peng, A. Kumar, G. Zhang, and S. Levine. Advantage-weighted regression: Simple and scalable
off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

M. L. Puterman. Markov decision processes. Handbooks in operations research and management
science, 2:331–434, 1990.

6

R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn. Direct preference
optimization: Your language model is secretly a reward model. Advances in Neural Information
Processing Systems, 36, 2024.

J. Schulman. Trust region policy optimization. arXiv preprint arXiv:1502.05477, 2015.

N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan, and S. Yao. Reflexion: Language agents with
verbal reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

S. Sukhbaatar, Z. Lin, I. Kostrikov, G. Synnaeve, A. Szlam, and R. Fergus. Intrinsic motivation and
automatic curricula via asymmetric self-play. arXiv preprint arXiv:1703.05407, 2017.

X. Wang, J. Chen, Z. Wang, Y. Zhou, Y. Zhou, H. Yao, T. Zhou, T. Goldstein, P. Bhatia, F. Huang,
et al. Enhancing visual-language modality alignment in large vision language models via self-
improvement. arXiv preprint arXiv:2405.15973, 2024.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-of-thought
prompting elicits reasoning in large language models. Advances in neural information processing
systems, 35:24824–24837, 2022.

W. Wu, S. Mao, Y. Zhang, Y. Xia, L. Dong, L. Cui, and F. Wei. Visualization-of-thought elicits
spatial reasoning in large language models. arXiv preprint arXiv:2404.03622, 2024.

C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu. The surprising effectiveness of
ppo in cooperative multi-agent games. Advances in Neural Information Processing Systems, 35:
24611–24624, 2022.

W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas, H.-T. L. Chiang, T. Erez, L. Hasen-
clever, J. Humplik, et al. Language to rewards for robotic skill synthesis. arXiv preprint
arXiv:2306.08647, 2023.

W. Yuan, R. Y. Pang, K. Cho, S. Sukhbaatar, J. Xu, and J. Weston. Self-rewarding language models.
arXiv preprint arXiv:2401.10020, 2024.

A. Zhao, D. Huang, Q. Xu, M. Lin, Y.-J. Liu, and G. Huang. Expel: Llm agents are experiential
learners. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages
19632–19642, 2024.

7

A Related works

A.1 Using LLMs as Critic or Reflector

Several methods Yuan et al. [2024]Pang et al. [2024], Wang et al. [2024] utilized LLMs’ self-critique
capabilities to label a preference dataset, then trained the agent using DPO Rafailov et al. [2024]. Our
method also employs LLMs to label the dataset, but rather than requesting binary labels in text form,
we use the log probabilities output by LLMs as the supervised signal. Chen et al. [2024b] proposed
using LLMs as reflectors to output dense rewards. Half of their contribution focuses on training the
reflector model, whereas our work embraces the inherent instability of LLMs. Furthermore, they
address token-level MDPs, while we tackle tasks involving LLM agents. Lastly, after receiving dense
rewards, they train a value-function and use the PPO objective to update their policy. In contrast, we
bypass the need for a value-function and learn directly from the generated dense supervised signals.

A.2 Updating LLMs with environmental feedback

Several methods have improved LLMs by using in-context learning as a dense rewards generator. Ma
et al. [2023], Kwon et al. [2023], Yu et al. [2023]Li et al. [2024] utilized LLMs to output rewards either
as code or prompts, and then updated these rewards with environmental feedback through in-context
learning. Shinn et al. [2024], Zhao et al. [2024] encoded prior experiences into text-form memory
and incorporated this memory into the prompt to improve decision-making in subsequent trials.
These approaches require LLMs to fully comprehend the dynamics of the environment with only a
few-shot task transition provided, while our method only requires LLMs to improve performance on
the trajectory they have just experienced.

A.3 Fine-tuning LLMs as Multi-tasks Agent

Chen et al. [2024a] integrates in-context learning with low-rank fine-tuning to encode few-shot exam-
ples into model parameters, addressing catastrophic forgetting in multi-task continuous learning. Our
approach shares a similar pipeline but focuses on encoding environmental feedback into parameters,
utilizing online learning rather than expert demonstrations.

B Derivation of The Loss Function

The derivation is mainly from Peng et al. [2019]. The goal of the gradient update step is to bring π
closer to π′. One way to achieve this is by maximizing the following objective:

η(π) = Es∼dπ(s),a∼π(·|s) [log π
′(a|s)] , (2)

where dπ(s) =
∑∞

t=0 γ
tp(st = s|π) represents the unnormalized discounted state distribution

induced by the policy π, and p(st = s|π) is the likelihood of the agent being in state s after following
π for t time-steps.

In practice, to enhance sample efficiency, we aim to use dπk
(s) instead of dπ(s) when estimating

η(π), where πk is the policy used to sample new data. Therefore, similar to , we can employ η̂(π) as
an approximation of η(π) in practical implementations.

η̂(π) =

∫
s

dπk
(s)

∫
a

π(a|s) [log(π′(a|s))] dads. (3)

η̂(π) is a reasonable estimator of η(π) only when π and πk are sufficiently similar. Therefore, rather
than directly solving the optimization problem maxπ η(π), we can instead reformulate it as the
following optimization problem:

argmax
π

∫
s

dπk
(s)

∫
a

π(a|s) [log(π′(a|s))] dads

s.t.
∫
s

dπk
(s)DKL (π(·|s)||πk(·|s)) ≤ ϵ∫

a

π(a|s)da = 1,∀s.

(4)

8

By applying the method of Lagrange multipliers to the constrained optimization problem, the optimal
policy can be expressed as follows:

π∗(a|s) = 1

Z(s)
πk(a|s) exp

(
1

α
log π′(a|s)

)
, (5)

where Z(s) =
∫
a′ πk(a

′|s) exp
(
1
α log π′(a|s)

)
normalizes the optimal policy and α is the Lagrange

multiplier.

Finally, we need to project π∗ back onto the manifold of parameterized policies. This can be achieved
by optimizing the following objective:

argmin
π

Es∼dπ0 (s)
[DKL (π∗(·|s)||π(·|s))]

=argmin
π

Es∼dπ0
(s)

[
DKL

(
1

Z(s)
· πk(·|s)⊙ exp(

log π′
k+1(·|s)
α

)||π(·|s)
)]

,
(6)

where ⊙ represents the element-wise multiplication. In practice, we treat α as a hyper-parameter that
controls the size of the trust region.

C Experiment

In this section, we provide the implementation detail of the environment, baseline algorithms and the
training setup.

Figure 3: Screenshot of the environment.

We evaluate our algorithm in the BabyAI environ-
ment [Chevalier-Boisvert et al., 2018], a 2D grid world
where the player navigates an agent to accomplish speci-
fied tasks. We use Chevalier-Boisvert et al. [2023]’s imple-
mentation of the environment, and use Carta et al. [2023]’s
caption function to get the text form observation. Our
primary focus is on the GoToLocal scenario. As shown in
Figure 3, the player directs the agent (a red triangle) to-
ward a specified local object. The environment is partially
observable, with the agent having a 7x7 window of visi-
bility in front of it, viewed from an egocentric perspective.
The agent can perform six actions: Turn Left, Turn Right,
Move Forward, Pickup, Drop, and Toggle. Both input and output for the tasks are presented in text
form.

We use the open-source project rl-starter-files to implement the PPO algorithm as reported in the
paper, leveraging BERT and CNN as the model backbones. To ensure a fair comparison, we train
a policy that achieves a 55% win rate, matching the zero-shot win rate of Llama-3.1-8B-Instruct,
using PPO. This policy serves as the starting point for our training, while the value network is trained
from scratch. We admit that the baseline algorithm utilizes a much smaller model size than our
method. However, we emphasize that this baseline is used to illustrate the slow pace of training a
value function from scratch, and any RL-based method will require this training process.

Finally, we use the open-source project LLaMA-Factory to implement our algorithm. The training
process requires 4 NVIDIA RTX A6000 GPUs and takes 3 hours to complete 10 iterations.

D Prompt Template

D.1 Agent Prompt

You a r e a h e l p f u l n a v i g a t i o n a g e n t i n a 2D g r i d wor ld wi th t h e s e r u l e s :

1 . " Forward " moves you "1 s t e p " i n t h e d i r e c t i o n you ’ r e f a c i n g .
2 . " L e f t " makes you t u r n 90 d e g r e e s i n p l a c e t o t h e l e f t .
3 . " R i g h t " makes you t u r n 90 d e g r e e s i n p l a c e i n t h e r i g h t d i r e c t i o n .
4 . You c a n n o t move on to a g r i d wi th an i t em .

9

https://github.com/lcswillems/rl-starter-files/tree/master
https://github.com/hiyouga/LLaMA-Factory

I w i l l p r o v i d e you wi th t h e g o a l and t h e c u r r e n t s t a t e ,
which i n c l u d e s t h e l o c a t i o n o f a l l n ea r by o b j e c t s r e l a t i v e t o you .
You s h o u l d t h e n r e s p o n d t o me wi th t h e n e x t a c t i o n you s h o u l d t a k e
t o a c h i e v e your g o a l s .
The a c t i o n needs t o be i n p o s s i b l e a c t i o n s .

< p o s s i b l e a c t i o n s >
Pickup .
Drop .
Toggle .
Forward .
L e f t .
R i g h t .
</ p o s s i b l e a c t i o n s >

DESIRED FORMAT:
< n e x t a c t i o n >
YOUR ACTION HERE
</ n e x t a c t i o n >

D.2 Critic Prompt

You a r e a h e l p f u l n a v i g a t i o n a g e n t i n a 2D g r i d wor ld wi th t h e s e r u l e s :

1 . " Forward " moves t h e a g e n t "1 s t e p " i n t h e d i r e c t i o n i t i s f a c i n g .
2 . " L e f t " makes t h e a g e n t t u r n 90 d e g r e e s i n p l a c e t o t h e l e f t
from i t s c u r r e n t o r i e n t a t i o n .
3 . " R i g h t " makes t h e a g e n t t u r n 90 d e g r e e s i n p l a c e t o t h e r i g h t
from i t s c u r r e n t o r i e n t a t i o n .
4 . The a g e n t c a n n o t move on g r i d s o c c u p i e d by w a l l s o r o t h e r o b j e c t s .
5 . The c o o r d i n a t e s o f t h e o b j e c t a r e r e p r e s e n t e d by (x , y) .

I ’ l l p r o v i d e you wi th a t r a j e c t o r y t h a t i n c l u d e s your g o a l (d e s t i n a t i o n) ,
a c t i o n s t aken , and s t a t e s e n c o u n t e r e d .
The map i s p r e s e n t e d a t s t a t e t , and i n t h e f o l l o w i n g s t a t e ,
we on ly p r o v i d e t h e agen t ’ s p o s i t i o n and o r i e n t a t i o n
At t h e end of t h e t r a j e c t o r y , i t shows whe the r you s u c c e s s f u l l y r e a c h t h e g o a l .
You have t o a n a l y z e t h e t r a j e c t o r y and d e t e r m i n e i f you would change o r m a i n t a i n
your a c t i o n a t s t a t e t based on t h e i n f o r m a t i o n p r o v i d e d .

Now you have a n o t h e r chance t o r e t r y t h e t a s k .
You a r e p l a c e d a t s t a t e t a g a i n .
Your g o a l i s t o move t h e a g e n t b e s i d e t h e g o a l and f a c e i t o r app roch
t h e g o a l a s c l o s e as p o s s i b l e .
Reply wi th whe the r you would change or m a i n t a i n your a c t i o n t .
C o n s i d e r e n v i r o n m e n t a l f e e d b a c k and g o a l when making d e c i s i o n s .
E x p l a i n your r e a s o n i n g , t h e n c o n c l u d e wi th your d e c i s i o n .
Be c o n c i s e and c l e a r .

DESIRED FORMAT:
< f e e d b a c k you s h o u l d fo l l ow >
In t h e g i v e n s t a t e t , t h e a g e n t i s a t (X,Y) , f a c i n g DIRECTION ,
wi th t h e g o a l l o c a t e d a t (X, Y) .
The g o a l i s l o c a t e d t o t h e DIRECTION−DIRECTION of t h e a g e n t .
YOUR REASONING HERE .
</ f e e d b a c k you s h o u l d fo l l ow >
< c o n c l u s i o n >

10

In t h e p r e v i o u s a t t e m p t , I chose a c t i o n <<ACTION T HERE> >.
Th i s t ime , I w i l l m a i n t a i n / change t h e s e l e c t e d a c t i o n .
</ c o n c l u s i o n >

11

	Introduction
	Using In-context Learning to Accelerate Online Learning
	Notation
	Revisit Online RL
	In-context Learning as Dense Rewards Generator

	Methodology
	Feedback Generation
	In-context Update
	Gradient Update

	Experiments
	Retrospective In-Context Policy Updating(Q1)
	Robustness of Online Learning (Q2)
	Main Results(Q3)

	Conclusion and Limitation
	Related works
	Using LLMs as Critic or Reflector
	Updating LLMs with environmental feedback
	Fine-tuning LLMs as Multi-tasks Agent

	Derivation of The Loss Function
	Experiment
	Prompt Template
	Agent Prompt
	Critic Prompt

