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Abstract

Many studies of the human brain using functional magnetic resonance imag-
ing (fMRI) lack physiological measurements, which substantially impacts the
interpretation and richness of fMRI studies. Natural fluctuations in autonomic
physiology, such as breathing and heart rate, provide windows into critical func-
tions including cognition, emotion, and health, and can heavily influence fMRI
signals. Here, we developed DeepPhysioRecon, a Long-Short-Term-Memory
(LSTM)-based network that decodes continuous variations in respiration ampli-
tude and heart rate directly from whole-brain fMRI dynamics. Through sys-
tematic evaluations, we investigate the generalizability of this approach across
datasets and experimental conditions. We also demonstrate the importance of
including these measures in fMRI analyses. This work highlights the importance
of studying brain-body interactions, proposes a tool that may enhance the efficacy
of fMRI as a biomarker, and provides widely applicable open-source software.
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1 Introduction

The brain and body are closely coupled and continuously influencing each other.
Brain-body interactions underpin key functions, including cognition and emotion, as
well as the overall health of an organism (Barrett and Simmons, 2015; Shokri-Kojori
et al, 2018; Azzalini et al, 2019; Koban et al, 2021).

Functional magnetic resonance imaging (fMRI) is a powerful and widely used
technique in human brain research. While fMRI studies do not routinely incorpo-
rate physiological signals measured from the body, there is a growing trend toward
acquiring continuous physiological measurements (such as heart rate and respiration)
during fMRI scans. One motivation stems from considerations about interpretation
and reproducibility of fMRI, a pressing issue in the neuroscience field (Botvinik-
Nezer et al, 2020). Since fMRI is based on measurements of blood oxygenation,
fMRI signals are influenced not only by spatially local changes in neural activity
(Ogawa et al, 1992; Kwong et al, 1992; Bandettini et al, 1992), but also by any bod-
ily physiological process that modulate blood oxygenation (Murphy et al, 2013). If
not modeled, the presence of these additional effects can complicate the inferences
drawn from fMRI as well as drive variability across results, such as in the mapping
of large-scale brain networks (Birn et al, 2006; Xifra-Porxas et al, 2021).

Moreover, although physiological effects in fMRI are often regarded merely
as confounds, several lines of work indicate that they also provide valuable infor-
mation. For example, breathing and heart rate exert spatially structured, dynamic
influences on cerebral blood oxygenation that closely mirror the spatial structure of
core neuronal networks, suggesting a close connection (and potential interactions)
between the regulation of blood flow and neuronal responses (Chen et al, 2020;
Bright et al, 2020). Indeed, blood-flow responses to heart rate variability have poten-
tial to strengthen neural connectivity within networks involved in emotion regulation,
highlighting the bi-directional connection between brain and body (Nashiro et al,
2022). Further, removing physiological components of fMRI signals has been shown
to reduce test-retest reliability of individual differences in functional connectivity
(Dubois and Adolphs, 2016).

Two major physiological drivers of the fMRI signal arise from natural, slowly
varying (<0.15 Hz) fluctuations in respiration volume (RV) and heart rate (HR).
RV and HR are thought to influence fMRI signals through altering blood pressure,
autonomic tone, and arterial carbon dioxide (Wise et al, 2004; Birn et al, 2006;
Shmueli et al, 2007; Chang et al, 2009; Power et al, 2017; Tong et al, 2019; Picchioni
et al, 2022). RV and HR variations are found to account for substantial variance in
fMRI signals and to have a larger impact on brain functional connectivity measures
compared to physiological effects that are directly synchronized with the breath-
ing and cardiac cycles (Xifra-Porxas et al, 2021). Further, the influence of RV and
HR substantially overlaps with neuronally mediated BOLD responses, spanning the
same low frequency range (0.01-0.15 Hz) and overlapping with widely distributed
functional networks (Birn et al, 2006). Therefore, the ability to precisely identify
such physiological components of BOLD is crucial for their use as either ‘noise’ or
valuable ‘signal’.
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However, it is not always possible to acquire clean external physiological mea-
sures during fMRI (Glasser et al, 2018), and many existing datasets lack such
measures altogether (ADNI (Jack Jr et al, 2015); UK Biobank (Bycroft et al, 2018);
HCP 7T Release (WU-Minn, 2017)). Accordingly, computational approaches have
been developed for detecting RV and HR effects in the absence of physiological mon-
itoring. Data-driven methods include global signal regression and ICA, yet currently,
these methods cannot unambiguously identify RV and HR components of fMRI
signals without the use of recorded physiological waveforms for reference. Recent
proof-of-concept studies (Bayrak et al, 2020; Salas et al, 2021) indicated that the RV
time course can be directly reconstructed from fMRI signals, but did not examine
HR. Since HR has been associated with functional circuits for emotion regulation
and correlates with dynamic variation in large-scale functional networks, the ability
to reconstruct an HR signal directly from fMRI would contribute an additional rich
source of information to fMRI studies. Data-driven techniques have been proposed
to infer cardiac phase information directly from fMRI (Beall and Lowe, 2007; Ash
et al, 2013; Aslan et al, 2019), from which low-frequency variation in heart rate can
be derived. Here we aim to integrate HR estimation in the same framework as RV,
with the goals of: (1) improving usability through a single end-to-end model, and (2)
to leveraging known covariation between RV and HR to improve HR estimation.

Here, we develop a computational approach for inferring slow changes in res-
piratory volume and heart rate directly from the fMRI signal. Motivated by the
inter-dependence of RV and HR, we propose to jointly learn these signals using a
multi-task learning (MTL) architecture, and train models to simultaneously learn
RV and HR signals. This work aims to enrich the information content of exist-
ing and prospective neuroimaging datasets with missing or corrupted physiological
information. An earlier form of this work has been presented (Bayrak et al, 2021).

2 Results

In Section 2.1, we introduce the proposed DeepPhysioRecon framework. We
then show the agreement between measured and decoded RV and HR signals
(Section 2.2), and in Section 2.3, we demonstrate how DeepPhysioRecon can enable
investigating these low-frequency physiological effects in the absence of measured
respiration and cardiac data. In Section 2.4, we assess model generalizability and per-
formance across datasets and experimental conditions. Section 2.5 and 2.6 explore
the interpretability of our learning framework. Finally, in Section 2.7 we investigate
DeepPhysioRecon as a potential tool for denoising RV and HR measures derived
from corrupted physiological recordings.

2.1 DeepPhysioRecon Framework

We developed a generalizable deep learning framework to estimate RV and HR from
fMRI data. We hypothesized that RV and HR share information that can foster their
mutual learning, such that joint learning of RV and HR may enhance model accuracy
and generalizability. The proposed network architecture (Figure 1) is composed of
a bidirectional Long-Short Term Memory (bi-LSTM) block followed by two linear
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Fig. 1 DeepPhysioRecon Pipeline. The pipeline for estimating respiration volume (RV) and heart rate
(HR) signals from fMRI time-series dynamics is shown. Regions of interest are defined using 4 published
atlases that had been constructed from different imaging modalities, comprising areas in cerebral cortex,
white matter, subcortex, and the ascending arousal network. ROI time-series signals are extracted from
the fMRI volumes, detrended, bandpass filtered and downsampled. The preprocessed signals are provided
to a candidate network as input channels. A bidirectional LSTM network architecture is adapted for joint
estimation. The output of linear layers are RV and HR signals.

layers. An LSTM network allows for learning an explanatory feature space with tem-
poral dependencies, while linear layers hone the focus on each physiological signal
separately.

To reduce computational demands and improve signal-to-noise ratio, we employ
atlases for dimensionality reduction. As input to the model, fMRI time-series are
extracted from 4 different atlases constructed from several imaging modalities, and
include cortical, subcortical, white matter, and ascending arousal network regions.
The output of the linear layers contains the estimated RV and HR signals, which are
of the same length as the input fMRI scans, and sampled at the same rate. The pre-
dicted signals are evaluated against the measured RV and HR signals using Pearson
correlation.

2.2 Decoding Low-Frequency Peripheral Physiological Signals
from Resting State Data

We first demonstrate the applicability of our joint learning approach using the pub-
licly available Human Connectome Project (HCP) resting-state (rs) fMRI dataset.
In the HCP rs-fMRI scans, subjects lie quietly with no externally imposed task or
stimulation, and each scan lasted for ~ 14.4 min. Cardiac and respiration data are
continuously monitored throughout these scans. RV and HR are extracted as the
temporal standard deviation of the raw respiration waveform, and the mean beat-
to-beat interval, respectively, within a 6-sec sliding window centered on each fMRI
time point. Further details of the fMRI and physiological signal preprocessing are
described in Section 5.2.

Models were trained using preprocessed HCP rs-fMRI data from 375 subjects
scanned 4 times (1500 scans). The resulting models are referred to as rs-models.
Five-fold cross validation was used. Figure 2a shows the results for one example
scan, where decoded signals aligned with the measured (ground truth) signals with a
Pearson correlation of r = 0.884 for RV and r = 0.749 for HR. The resulting model
accuracy for all folds shown in Figure 2b. The proposed framework reconstructs RV
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and HR signals on test cohorts with high agreement against those calculated from the
measured physiological data, with a median r ~ 0.689 for RV, and median r ~ 0.627
for HR. To note, the 5 cross-validation folds produced models with highly similar
performance on the test partitions (detailed in Section 5.4).

a Low-Frequency Physio Components ¢ b rs-model performance
. — Predicted RV ---- Measured RV 10
< 2 /
g | {12 0.8-
S 0 4 v
r i 0.6
<
5 —— Predicted HR ~--- Measured HR S 04-
2 @
< ©
S & o2- o HR
no
. 0.0-
-0.2

¢ % Variance Explained - . -
Single Scan Group Average ~—— d Functional Connectivity

by Measured Physio Signals by Measured Physio Signals . fr't’;?'ﬁaff:dnph Signals Removed

by Predicted Physio Signals
e AT
y N

=13

e DMN-Based Correlation -

f W W a1 m
Single Scan Group Average e ——]

Before Physio Signals Regressed O‘L‘t After Predicted Physio Signals Removed
L G k] SOyl

Before Physio Signals Removed

Before Physio Signals Regressed Out
U
e o\

ignals Removed

4 uosiead

4 uosiead

I Ton - Subcortcal
AN - Branstem

Fig. 2 Resting-state model performance on withheld test data. (a) Low-frequency physiological sig-
nals predicted by our model are overlaid on the measured signals for one example scan. Accuracy is
measured using Pearson correlation coefficient between measured and predicted signals. (b) Models are
trained and evaluated with resting-state data under a 5-fold cross validation paradigm. Each marker repre-
sents the Pearson correlation (r) scores between measured and predicted signals for respiration variation
(RV — shown in blue) and heart rate (HR — shown in orange), pooled across the withheld resting-state test
sets. Single scan and group effects observed on resting-state fMRI data. Single scan and group effects
observed on resting-state fMRI data. (c) Percent (%) variance explained maps shown for selected slices,
indicate the percentage variance explained at each brain voxel by the measured and predicted physio-
logical signals, for one example scan and averaged across the subject group. (d) Functional connectivity
matrices highlight the change in ROI-to-ROI correlation after the indicated signals were removed from the
ROI time-series data for one example scan. (¢) DMN-based correlation maps at the voxel level show the
seed-based correlation across the brain regions before and after the measured (as well as predicted) physi-
ological signals are regressed out from the fMRI data, again for one example scan and averaged across the
subject group.
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2.3 Impact on fMRI signals and network connectivity

We next demonstrate how these decoded physiological signals can improve widely
conducted fMRI analyses, and compare the results against analyses conducted using
measured (“ground truth”) physiological signals. Figure 2 provides examples of the
impact of decoding RV and HR at the single-scan and the group levels.

To gauge the influence of RV and HR on fMRI, we first show the proportion
of temporal variance explained by a linear combination of RV and HR in the fMRI
signal at each voxel, across the whole brain. For this example subject, the variance
explained by the predicted RV/HR signals reaches 50% (Figure 2c) — i.e., there are
parts of the brain where half of the fMRI signal fluctuation is accounted for by
RV/HR. When averaged across the entire set of 1500 scans, the variance explained
by RV and HR signals across the brain ranged from 6.5 to 33% (Figure 2c); note that
colorbar limits were set to a larger range to maximize image contrast.

We next assess the impact of these decoded physiological signals on functional
connectivity analysis. In functional connectivity analysis, correlations between the
fMRI time courses of different brain areas are investigated as a proxy for neuronal
interactions (Van Den Heuvel and Pol, 2010; Noble et al, 2019; Zhang et al, 2021),
but non-neuronal influences (such as RV and HR) can obscure underlying connec-
tivity patterns. When physiological signals are recorded, they are typically removed
from the data to control for their influence on functional connectivity. If DeepPhys-
ioRecon is successful, regressing out the decoded (versus measured) RV and HR
signals should have a similar impact upon functional connectivity.

We therefore assess the functional connectivity between all 497 ROIs drawn
from the aforementioned cortical, white matter, subcortical, and ascending arousal
network atlases, both before and after projecting out the estimated physiological sub-
space. Further details of the projection are provided in Section 5.5.1. The Pearson
correlation between signals from each pair of ROIs is used to construct a 497 x 497
symmetrical connectivity matrix. As a complementary analysis, we also map the
whole-brain, voxel-wise connectivity with respect to a reference (“seed”) region in
the default mode network (DMN), both before and after removing the estimated phys-
iological subspace. We observe that both the ROI-based (Figure 2d - Single Scan)
and seed-based (Figure 2e - Single Scan) correlations are altered with the removal of
physiological signals, and that comparable results are obtained using the measured
and decoded physiological waveforms, as shown for an example scan. When aver-
aged across all 1500 scans, regressing out the predicted and measured physiological
signals had a more mild effect overall but also exerted similar effects on the DMN,
enhancing negative correlations while sustaining positive correlations (Figure 2e -
Group Average), as expected (Chang and Glover, 2009; Chai et al, 2012). Similar
effects of measured and predicted physiological signals on functional connectivity
were also obtained at the group level (Supplementary Figure 2).
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2.4 Generalizability across tasks and acquisitions

The above results indicate that RV and HR can be decoded from rs-fMRI data. To
what degree do these models directly generalize to other fMRI paradigms or acqui-
sition parameters? To test this question, we applied a randomly selected model from
the 5-fold CV on resting-state data, without any additional training or fine-tuning, to
data acquired during seven different task paradigms from the HCP dataset. Further,
as an even stronger test of model generalizability, we also evaluated the performance
of the HCP resting-state model, again without any additional training, on an exter-
nal dataset that was acquired on a different scanner and with different acquisition
parameters, including temporal resolution (results from models built from each of
the 5 folds are reported in Supplementary Figures 3 and 4). Further details about the
datasets and preprocessing are described in Section 5.1, and Section 5.2.
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Fig. 3 Generalizability of rs-model to scans acquired under different experimental conditions and
acquisition parameters. From the five models trained on resting-state data under the 5-fold cross val-
idation paradigm, a model is randomly selected for this assessment. Seven tasks from Dataset 2 (HCP:
emotion, working memory, gambling, social, relational, language and motor), and Dataset 3 (in-house:
rest/auditory) were used to assess generalization of the model. Each plot represents the aggregated Pearson
correlation scores between measured and predicted signals for respiration variation (RV — shown in blue)
and heart rate (HR — shown in orange) in the withheld test set. Median r is indicated by the horizontal line.

The results (see Figure 3) suggest that for the held-out datasets, the model trained
on the HCP resting-state data captures a transferable feature space. The agreement
between measured and predicted signals for RV was high in the in-house dataset
(median r > 0.6), and moderate for all HCP tasks. For HR, the performance was also
high for the in-house dataset. Moreover, HR had notably high performance on the
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HCP social and language tasks (median r ~ 0.6), and a moderate agreement for the
other HCP tasks.

Finally, we asked whether training models on task data could improve the perfor-
mance on datasets involving tasks that are different from those on which the model
is trained. This question also probes whether the relationship between fMRI and
physiology is largely independent of task condition. To investigate this question, we
preserve the same framework used for the rs-model (including hyperparameter val-
ues and model architecture) and train a new model, which we will refer to as the
task-model, using only four of the seven tasks (working memory, social cognition,
emotion processing, and gambling tasks). The task-model is then deployed to test
generalizability on the three remaining tasks (relational processing, language, motor
tasks), as well as on the HCP resting-state scans and the in-house dataset. The results
show (see Figure 4) that overall, the task-model is able to learn both RV and HR
with moderate agreement against ground truth (median r ~ 0.5). When tested on the
HCP tasks, the task-model showed an improvement in performance compared to the
rs-model (Supplementary Table 5).
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Fig. 4 Generalizability of task-model on test cohorts acquired with different task conditions and
acquisition parameters. Three tasks from Dataset 2 (HCP: relational, language and motor), Dataset 1
(HCP: resting-state) and Dataset 3 (in-house: rest/auditory) were used to assess generalization of a model
trained on data consisting of 4 other task conditions. Each plot represents the aggregated Pearson corre-
lation scores between measured and predicted signals for all scans in a set. Median r is indicated by the
horizontal line.

2.5 Spatially constraining what the network sees

Our learning framework can flexibly accommodate any set of atlas regions for dimen-
sionality reduction. Although we chose a large number of brain regions when fitting
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the original model in order to maximize brain coverage, we hypothesized that cer-
tain brain regions convey more physiological information than others. For example,
regions near major blood vessels may be more strongly influenced by physiology,
and thus provide greater predictive value. To investigate this hypothesis, three linked
experiments are designed. In the first, we use only one input ROI times-series signal
at a time, generating what we will refer to as individual ROI models. These mod-
els are trained in a manner identical to that of the original (multi-ROI) model. The
model performance for each scan is assessed using Pearson correlation between the
predicted and measured physiological signals, and an average score for the entire test
cohort is noted (see Section 5.4). Figure 5a shows these average scores mapped onto
their corresponding regions for all 497 regions, representing the predictive ability of
each individual ROI. The best performance of individual ROI models reaches r ~ 0.5
(note that colorbar limits were set to a smaller range to maximize image contrast).

Next, we assess whether the number of regions included in training affected the
model performance. Here, models are trained using successively increasing numbers
of ROIs (from 1% to 100%), rank-ordered by the results of the individual ROI analy-
sis. These models will be referred to as percent ROI models. While the improvement
in model performance continuously increased with the number of included ROIs
(Figure 5b, i.e. for RV median Pearson r ~ 0.45 and r ~ 0.65 respectively with 1%
and 25% of ROIs), the rate of increase slows after the model includes approximately
25% of the top ROIs, and reaches median Pearson r ~ 0.7 with 100% of the regions.

Given that brainstem and cerebellar regions are often absent from fMRI acquisi-
tions, and yet are implicated in cardiovascular regulation, the last experiment assesses
the performance when using all regions except those that spatially overlap with
brainstem and cerebellum. Excluding brainstem and cerebellar regions resulted in
comparable performance (Figure 5c).

2.6 Factors driving model performance

We further investigated the various factors that may drive or affect model perfor-
mance. For this, we first examine whether the results are driven by BOLD signal
in regions near blood vessels. To investigate this relationship between the “vessel-
ness” of a region and its relative predictive ability, we carried out linear regression
analysis between Time of Flight (ToF) and Susceptibility Weighting Imaging (SWI)
measurements of vessel density (Bernier et al, 2018) in an ROI and the correspond-
ing individual ROI model prediction accuracy. The results are shown in (Figure 6a).
Interestingly, the vessel density metric is negatively associated with predictive value,
showing that the higher the vessel density, the less accurate the model predictions
from the fMRI signal within that region.

Another candidate factor could relate to the magnitude of RV and HR fluctua-
tions exhibited by the subject in a given scan, as larger physiological variations would
modulate brain hemodynamics more strongly. To investigate the relationship between
the magnitude of fMRI physiological responses and model accuracy, we carried out a
linear regression analysis between the amount of fMRI temporal variance explained
in a scan (averaged across all voxels in the brain) and the model prediction accuracy.



10 Article Title

a Individual ROl models
Cortical White Matter Subcortical Brainstem

%
[E—— |
0 ur 0.3
[ ]
0.2 K . . . 0 Hr 0.3
b Percent ROl models ¢ Models w and w/o brainstem regions
0.7 I—
S PUEEEES, - 5 0.8 - - 5 0.8
§06 & % 06 % 06
55 5 04 5 04
3S g g
v
£g% § RV § o2 HR
= RV © 00 S
Soa w| & g °°
02" witH WITHOUT -0.2-  WITH WITHOUT
1% 10%  25% 50% 100% BRAINSTEM  BRAINSTEM BRAINSTEM  BRAINSTEM

Fig. 5 (a) Individual ROI models. Using resting-state data, models were trained separately for each indi-
vidual ROI. Predictiveness of a given ROI was assessed using Pearson correlation between measured and
predicted signals. Results were visualized by projecting the mean r onto (left to right) cerebral cortex (400
ROIs), white matter bundle regions (72 ROIs), subcortical regions (16 ROIs) and ascending arousal net-
work (9 ROIs). (b) Percent ROI models. A set of models are trained with an increasing number of ROIs.
Starting from the top 1% of the total ROIs, rank-ordered by results of the individual ROI analysis, models
are trained using successively increasing numbers of ROIs, up to 100% of ROIs. (c) Model compari-
son without brainstem and cerebellar regions. A model is trained using 477 ROIs, excluding regions
that spatially overlap with brainstem and cerebellum. Each plot represents the Pearson correlation scores
between measured and predicted signals for all scans in the unseen test data.

The results (Figure 6b) indeed indicate a positive correlation between the two, sug-
gesting that the amount of physiologically induced BOLD variation during a scan
impacts the ability to predict RV/HR from an fMRI scan.

2.7 Potential for denoising physiological waveforms

Low correlation scores can emerge when there are artifacts in the measured physio-
logical recordings, coloring the performance during testing and therefore necessitat-
ing close inspection. We speculate that the signals predicted from DeepPhysioRecon
may have the potential to ‘fix’ some of the artifacts in the measured physiological
data. In Figure 7, we provide one example in which possible motion-induced artifacts
can be observed in the raw cardiac signal, whose effects propagate to the ~’ground
truth” low-frequency HR signal. We observe that the predicted HR smooths over
these artifacts, suggesting that the model may be able to clean up RV/HR measures
through this data-driven learning process. Another observation is that in some cases
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Fig. 6 (a) Vessel density as a factor that may underlie regional prediction accuracy. In each plot, the
x-axis represents model accuracy for each individual-ROI model. The y-axis represents the average vessel
density for Time-of-Flight (ToF - shown in green) and Susceptibility Weighting Imaging (SWI - shown
in purple) measures, averaged across all voxels within each ROL (b) Percent variance accounted for
by physiology in fMRI data, as a factor that may underlie model prediction accuracy. In each plot,
the x-axis represents cross-validated model accuracy calculated using Pearson correlation scores between
measured and predicted signals for respiration variation (RV — shown in blue) and heart rate (HR — shown
in orange) in the withheld resting-state test set. The y-axis represents the percentage of temporal variance
explained in the fMRI data, averaged across all brain regions, by the respective (measured) physiological
signal.

wherein the predicted RV/HR signals exhibited low correlation with the ground-
truth RV/HR signals, the predicted signals explained a larger variance in the fMRI
data compared to the measured physiological signals. Two such examples are shown
in Figure 8 (Subject A, Subject B). Notably, although having stronger magnitudes,
the spatial maps associated with the predicted physiological signals retain subject-
specific patterns that are also present in the maps associated with the measured
physiological signals. These examples may also indicate that the model can gener-
ate physiological estimates that are cleaner than the recordings. In cases where the
measured physiological signals appear to be clean and have high correlation with the
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predicted waveforms (Subject C), close correspondence is also seen in their effects
on fMRI data.
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Fig. 7 An example recording is shown. The transient artifacts in the HR waveform (bottom; orange) are
likely due to motion in the raw PPG signal (top). DeepPhysioRecon may help to ’fix’ noisy physiological
recordings, as indicated by the predicted HR signal (bottom; black).

3 Discussion

This work presents a framework for jointly inferring respiration and heart rate fluc-
tuations directly from fMRI dynamics. The DeepPhysioRecon framework provides
these two key low-frequency physiological signals (RV, HR) to datasets that fully or
partially lack external physiological measures, or which lack measurements of suf-
ficient quality. We demonstrate that the proposed models of RV and HR, trained on
resting-state fMRI data, generalize across datasets with varying experimental condi-
tions and significant acquisition differences. Consistent with the literature (Birn et al,
2006; Chang et al, 2009; Power et al, 2017; Kassinopoulos and Mitsis, 2019), we
also find that RV and HR can, in certain scans, account for large amounts of temporal
variance in fMRI signals. By including the predicted RV and HR signals in func-
tional connectivity analyses, we also show that large-scale network maps are altered
in agreement with the changes introduced by incorporating the measured RV and HR
signals. The proposed models are tested not only in independent participants within
each dataset, but also across datasets acquired with different experimental conditions,
MR scanners, and protocols.

Models trained and tested on resting-state fMRI data succeeded in decoding RV
and HR signals with high accuracy. These models were also found to generalize well
between experimental conditions, different subjects, and even across significantly
different acquisition parameters, including different temporal resolutions (TR=0.72s
to 2.1s). Figure 3 indicates that models that were directly applied to different fMRI
conditions (i.e. resting-state models applied to task, and task models applied to
resting-state or unseen task conditions), could infer information in a new set of
experimental conditions. This ability to transfer models between fMRI conditions
suggests that the relationship between fMRI and physiology could be largely brain
state-invariant. However, as expected, models trained using task fMRI data exhibited
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Fig. 8 Low correlation between measured (’ground truth’) and predicted RV signals may not accurately
reflect the quality of reconstruction. In the selected examples, artifacts are observed in the raw time-
series signals. For example, data from Subject A is shown to have periodic artifacts likely related to the
equipment, and data from Subject B exhibits clipping artifacts. These are then carried over to the derived
low-frequency RV and HR waveforms. We observe that the predicted waveforms appear to mitigate some
of these artifacts, suggesting that the model may be able to clean up physiological signal measures through
this data-driven learning process. The percent variance explained maps indicate that the predicted RV sig-
nals accounted for a much larger proportion of the fMRI signal variations compared to the measured RV
signals. On the contrary, in the example of Subject C, the respiration and cardiac recordings from the same
scan (without any major artifacts) are shown. The variance explained maps indicate that measured and
predicted RV signals accounted not only for a similar proportion of the fMRI signal variations but spatial
distribution of these maps closely aligned.

improvements on decoding task data in comparison to those trained on resting-state
data (Figure 4; Supplementary Table 5), though the degree of performance improve-
ment varied across tasks. Likewise, models trained on resting-state data performed
better on held-out resting-state data than they did on task data.

One possible explanation for this increase in accuracy is that within a particu-
lar condition (task vs. rest), it is expected that the distribution (signal and/or noise)
matches more closely. For the case of task, there may be task-related brain activ-
ity that shows up in more systematic ways both in the fMRI data and physiological
recordings. Therefore, we can speculate that the model learns to isolate these patterns
when trained with task data. Further, the success of rs-models to more accurately
decode an external dataset with different acquisition parameters, compared to the t-
model, may also relate to the conditions used in the external (in-house) dataset. The
in-house dataset tasks involved only simple sensory stimulation (auditory tones) that
were presented at long-inter-stimulus intervals (ISI) for some scans, or at very short
ISI but continuously throughout the experiment for others. Both of these designs will
have more contribution from spontaneous fluctuations, resembling the resting-state
conditions.

Nonetheless, we found that even when training and testing on the respective con-
ditions, model performance was higher on the rs-fMRI data than for task fMRI data.
One explanation may be that the resting-state scans were longer than the task scans.
It has been shown that increasing the scan duration may increase the reliability of
fMRI connectivity estimates (Birn et al, 2014), so perhaps training models with long
duration (~ 15 min) scans (as in the HCP resting-state data) may offer advantages
over training with the shorter-duration (2-5 min) scans.

We suggest that depending on the goal of the study, different training datasets
should be considered. If the goal is to create the data in its absence (i.e., to recon-
struct physiological signals in a dataset that does not include any physiological
measurements), a large cohort including variety of fMRI conditions and acquisition
parameters may give a more robust model. Training models using the same task as
the one for which prediction is needed can further increase accuracy, as the models
may be trained using the same dataset and same condition. While this will reduce
the generalizability of a model across conditions, it may allow for better condition-
specific reconstruction as well as for ’fixing’ corrupted data within a dataset (i.e.,
cases in which the dataset has physiological measurements but contains corrupted
samples). However in the latter case, we would extra caution against overfitting to the
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data, which can be achieved in various ways. For instance, initializing the weights by
a model pretrained with large-scale fMRI data across a broad set of conditions can
provide a good starting point.

Our neural network architecture was designed to handle many unique challenges
related to fMRI. First, bi-directional LSTM networks support varying-length input
and multivariate output. This allows for learning on varying-length input signals and
for predicting RV and HR simultaneously. Given that fluctuations in respiration and
heart rate evoke delayed responses in the BOLD signal (i.e., the BOLD effects occur
asynchronously and persist beyond the duration of the physiological response) (Birn
et al, 2008; Chang et al, 2009), a neural network that takes past and future informa-
tion into account — such as bi-LSTM — means that no hemodynamic lag needs to be
explicitly considered. Further, the ability to integrate over multiple time-scales may
offer benefits over fixed-windowed methods (Salas et al, 2021).

Given that RV and HR are strongly coupled, we had hypothesized that learning
the features of one (i.e. RV) could boost the accuracy of predicting the other (i.e. HR)
even with a few learning instances. However, experiments with pre-training a net-
work based on RV and fine-tuning these weights to predict HR (compared to training
with random weights), see Supplementary Section: Handling Missing Data During
Training, resulted in only a small performance increase, and further experiments may
be warranted. Commonly, transfer learning is performed by freezing the early layers
(high-level features) and training the remaining layers (low-level features) to spe-
cialize on another task. Since our network architecture comprises only two levels, a
bi-LSTM layer and linear layers, fine-tuning only the LSTM layer may not be enough
to transfer the knowledge between RV and HR and needs further investigation with
different architectures. This direction is of particular interest given that the measured
HR signal is often noisy.

Here, we adopted a large dataset to train and evaluate our models. Although an
initial quality-check was performed on physiological recordings, visual inspection
indicated that many still contained artifacts such as clipping and imperfect heart-beat
detection. However, substantial improvement in performance beyond recent pub-
lished work (from medians of approximately r ~ 0.5 (Bayrak et al, 2020; Salas et al,
2021) tor ~ 0.7 for RV in the current study) was attained. (Of note, fMRI data has
low signal-to-noise ratio. Given that meaningful fluctuations comprise about 1-4%
in the data, correlations at and above 0.5-0.6 between fMRI and an external measure
are considered to be relatively strong in the neuroscience field.) In the previous stud-
ies, we used a small, visually inspected subset of the HCP data consisting only of RV
signals. The aforementioned improvement suggests that a larger, albeit less strictly
vetted, dataset was effective for learning physiological patterns. Nonetheless, while a
wide variety of signals (including some low-quality examples) may be advantageous
during training, low-quality physiological data colors measurements of performance
during testing, as these physiological recordings are taken as ground truth. In other
words, low correlation scores can emerge when there are artifacts in the physiological
recordings, necessitating close inspection as in Figure 8.

White matter regions in the brainstem were shown to be very predictive of
breathing as well as heart rate. While much remains to explore in terms of regional
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predictiveness of physiological signals beyond the current heuristic approach, the
strong performance of tractography-based ROIs suggest that incorporating parcel-
lation boundaries derived from other imaging modalities (e.g., diffusion-weighted
MRI) and non-gray-matter regions could benefit fMRI prediction tasks. Further,
results of the percent ROI models (Section 2.5) demonstrate that performance
could be boosted by increasing the number of ROIs that are included in the train-
ing. While this finding supports the need for comprehensive atlases with finer
subdivisions, the exponentially decaying projection in Figure 5b suggests that dimen-
sionality reduction using atlases sufficiently captures low-frequency physiological
information.

The present work is directly inspired by reports showing that low-frequency phys-
iological processes can impact fMRI analyses (Xifra-Porxas et al, 2021; Power et al,
2017; Birn et al, 2006; Wise et al, 2004). Consistent with prior work, we found that
modeling physiological effects could alter maps of functional connectivity, and that
RV and HR signals can account for substantial temporal variation in certain brain
regions. Previous studies have also found that in task conditions, changes in cerebral
oxygenation, captured in part by respiration and heart rate signals, may modulate the
magnitude of observed task activation responses (Bright et al, 2020). These findings
suggest that accounting for RV and HR signals can advance individual-level pre-
cision in neuroscience and medicine using fMRI. As such, it is important to have
general, versatile models that can reconstruct these features in the common scenario
of missing or noisy physiological recordings.

Notably, in addition to its use for ‘denoising’ - i.e., removing RV and HR effects
from fMRI signals, the proposed method may also open possibilities for studying
neural processes relating to autonomic regulation in data where physiological sig-
nals have not been monitored. Specifically, we may expect that a component of the
reconstructed RV and HR signals may track large-scale neural activity that is linked
with physiological modulations (e.g., (Tu and Zhang, 2022)). Based on our experi-
ments with individual ROI models, we observed that cortical regions with the highest
individual predictive power tended to span somatomotor, salience, and ventral atten-
tion regions, which have known connections with autonomic regulation (Mckay et al,
2003; Beissner et al, 2013). While these autonomic signals may not be of interest for
some studies, they may inform work on brain-body interactions.

The current results suggest a number of future directions. One springs from lim-
itations in the use of population-level atlases for defining fMRI parcellations. The
present study used atlases that had been derived from populations, yet individuals
can exhibit variability in the spatial boundaries of functional regions (Kong et al,
2021). Thus, individual- or cohort-specific parcellations may enable higher preci-
sion in extracting personalized physiological information from fMRI. The issue of
precision is amplified when working with datasets from different stages of human
life, including infant or aging datasets, which do not conform with the topographi-
cal features of the young cohort that is used to train networks in this work. Another
limitation that can be addressed in future work is model interpretability, a common
problem with machine learning models. Methods such as Shapley Values (Ghorbani
and Zou, 2019) can offer explanations for model predictions and provide insights into
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the model development process. Architectural modularity (multiple layers) could be
considered to allow transfer learning (Chollet, 2021), since the ability to freeze lay-
ers that capture high-level information may further boost the performance of joint
learning.

4 Conclusions

Modeling physiological variability is increasingly recognized as crucial for both (1)
improving the sensitivity of fMRI to neural effects, as well as (2) providing valuable
information about cerebrovascular health, brain states, and emotion regulation. Since
high-quality physiological signals are often missing from fMRI datasets, the present
study fills this gap by introducing a generalizable tool for reconstructing two key
physiological signals (RV, HR) from fMRI data. The proposed framework was found
to be robust across a broad range of experimental conditions and imaging protocols,
indicating that it can enrich a broad array of fMRI datasets with missing physiolog-
ical information. This study motivates future work on methodological advances for
modeling RV/HR, and enables retrospective studies of physiological effects in health
and disease, leveraging the large body of fMRI databases that have been acquired
without physiological signals.

5 Methods
5.1 Datasets

Models were trained on the Human Connectome Project (HCP) data (Van Essen
et al, 2013). Our models can be divided into two categories, resting state models (rs-
models) and task models (t-model). The rs-models were trained using HCP resting
state data using 5-fold cross-validation. To evaluate the generalizability of rs-models
across subjects both within (resting state) and between (task vs. resting state) condi-
tions, rs-models were tested on both HCP task data as well as a separate, in-house
dataset with different acquisition parameters. Similarly, the t-model was trained on
HCP task datasets, and tested on held-out HCP task data (with different task con-
ditions), HCP resting state data, and the in-house dataset. The individual datasets
and acquisition parameters are described below. For more details, please refer to the
published articles (WU-Minn, 2017; Goodale et al, 2021).

5.1.1 Dataset 1

A set of resting-state fMRI (rs-fMRI) scans was drawn from the publicly available
HCP 1200 subject release. fMRI scans in this release were acquired using a simulta-
neous multi-slice EPI sequence with the following parameters: TR = 0.72 s, duration
of 14.33 mins, voxel size of 2 mm isotropic, TE = 33.1 ms, multi-band factor = 8, flip
angle = 52 deg and 72 slices. During the resting-state scans, subjects were instructed
to keep their eyes open and fixate on a cross-hair, and subjects underwent 4 scans
(two runs on one day, and two runs on a second day). A subset of the HCP rs-fMRI
dataset, consisting only of those subjects whose physiological signals were reported
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to have passed a quality assessment in both Power et al. (Power et al, 2020) and Xifra-
Porxas et al. (Xifra-Porxas et al, 2021), was included in this study. This procedure
resulted in N = 375 subjects (with all 4 runs, totalling 1500 scans).

5.1.2 Dataset 2

Our study also drew upon task fMRI (t-fMRI) scans from the HCP 1200 subject
release. These scans were acquired with the same parameters as the rs-fMRI data,
described above, except for the duration of the scans. The task dataset comprises
seven tasks: Working Memory, Social Cognition, Emotion Processing, Gambling,
Relational Processing, Motor, Language. These tasks were designed to activate a
variety of brain networks, and each subject underwent 2 scans per task (both runs
on the same day). signals was one that had excluded that subject from the All scans
from t-fMRI datasets were initially considered. A quality assessment was employed,
using automated selection criteria to remove scans with poor-quality physiological
data (this script will be found here upon acceptance: http://github.com/deep-physio-
recon/qa). Briefly, these criteria checked for clipping of waveforms (values clamped
at 0 and 4095), unrealistic heart rates (mean heart rates below 30 bpm or above 97
bpm, or constant at 48 bpm (Xifra-Porxas et al, 2021), and missing waveforms. A
subset of fMRI scans for each task, consisting of only those scans whose physiologi-
cal data were labeled as ’clean’ by the above criteria, was included in this study. For
detailed information about task fMRI scans, please see Supplementary Table 2.

5.1.3 Dataset 3

A different, in-house dataset was used as an external validation dataset. fMRI data
were acquired with a multi-echo, gradient-echo EPI sequence, with the following
parameters: TR = 2.1 s, duration of 24.5 mins, voxel size of 3 mm isotropic, echo
times of [13.0, 29.4, 47.5 ms], flip angle = 75 deg, 30 axial slices (for detailed
acquisition information see (Goodale et al, 2021)). The scans were acquired under
5 different conditions: cued deep breaths, eyes-open auditory task, eyes-closed audi-
tory task, passive eyes-closed auditory task (i.e. no button press) and eyes-closed rest
(no stimuli presented). In the auditory tasks, auditory tones were delivered at long
inter-stimulus intervals, and subjects were instructed to press a button as quickly as
possible. We selected a random subset of these scans that additionally underwent
visual inspection to have clean physiological data. This yielded a total of 23 scans
(drawn from 11 subjects).

5.2 Preprocessing
5.2.1 fMRI

Both resting-state and task fMRI scans had undergone the HCP minimal prepro-
cessing pipeline (Glasser et al, 2013). Beyond this, we applied linear and quadratic
detrending to remove slow scanner drifts. This was followed by band-pass filtering,
within the low-frequency range of (0.01 - 0.15 Hz) and temporal downsampling by
a factor of 2 (which does not result in further information loss, since the Nyquist
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criterion is satisfied). The HCP minimal preprocessing pipeline included motion
coregistration, and while an additional step of regressing out head motion parameters
is an integral part of many fMRI preprocessing pipelines, we did not regress out head
motion parameters when training our models since they may carry predictive infor-
mation about physiological fluctuations. For example, recent evidence has shown that
apparent head motions can be introduced by respiration (Power et al, 2019), and we
have previously found that retaining head motion slightly improved the reconstruc-
tion of respiration variation signal (Salas et al, 2021). Therefore, head motion was
retained in the training data, to preserve information relevant to predicting RV and
HR. The in-house data were preprocessed according to a multi-echo ICA pipeline
described in (Goodale et al, 2021). All fMRI scans were already spatially aligned to
the common MNI152 space.

5.2.2 Physiological Recordings

From the pulse oximetry signal, heart rate (HR) was extracted as the inverse of the
mean inter-beat-interval in sliding windows of 6 seconds centered at each fMRI time
frame (TR). Likewise, the respiration variation (RV) signal was calculated as the
temporal standard deviation of the raw respiration waveform in a window of 6 sec
centered at each TR (Chang et al, 2009). Both RV and HR were then band-pass
filtered (0.01 — 0.15 Hz) and were resampled to temporal resolution of 1.44 seconds,
in a manner identical to the HCP fMRI data, the fMRI data that is used to train the
models.

5.2.3 Normalization

fMRI signals and respiration belt data were both acquired with arbitrary units and
may carry scan- and subject-specific amplitude differences. Unless stated otherwise,
all time-series signals, including heart rate, were temporally normalized to zero mean
and unit variance.

5.2.4 Dimensionality Reduction

When training a neural network on voxelwise, 4D whole-brain data, downsampling
or patch/window-based implementations are typically required due to GPU memory
limitations. Extracting time courses that are averaged within functional or anatomi-
cally defined regions of interest (ROIs) enables computationally efficient modeling.
The use of ROI time courses also renders the approach less sensitive to the spatial
resolution of the acquired fMRI data. Therefore, here we carried out dimensionality
reduction by parcellating the brain into regions of interest based on four published
atlases. Of note, our learning framework can flexibly accommodate any set of atlas
regions for dimensionality reduction. The four published atlases used here were
derived from multiple imaging modalities: a cerebral cortex atlas that was derived
from rs-fMRI data provided 400 cortical regions embedded within 7 larger functional
networks (Schaefer et al, 2018); the Pandora TractSeg white matter atlas, which was
derived from diffusion MRI data and included 72 uni-/bi-lateral white matter regions
(Hansen et al, 2020); the Melbourne subcortex atlas, which provides a multi-modal
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segregation of 16 subcortical regions (Tian et al, 2020); and an ascending arousal
network (AAN) atlas that includes 9 regions located in the brainstem (Edlow et al,
2012). Dimensionality and noise were reduced by extracting the mean fMRI time
series from all voxels within each ROI.

All four atlases were already registered to MNI152 space, and when neces-
sary, were also resampled to 2 mm isotropic voxels to match the resolution of the
preprocessed fMRI scans. While the Pandora white matter atlases (Hansen et al,
2020) includes various options, a probabilistic atlas created using TractSeg method
(Wasserthal et al, 2018) on the HCP cohort was utilized in this study. We thresholded
the probabilistic atlas (at 95%) to exclude voxels with lower confidence and minimize
the overlap between white matter and gray matter regions. The 7 Tesla HCP Scale
I atlas from Melbourne subcortex atlases (Tian et al, 2020) was selected, with the
assumption that 7T may provide better spatial precision and the Scale I granularity
could support generalizability to external cohorts.

5.3 Network Architecture and Implementation Details

Deep neural networks have shown remarkable success for image and time-series data
(Sharma and Singh, 2017), including in the field of fMRI. The success of these net-
works stems from their ability to find a non-linear representation of the data and to
make meaningful connections between spatial and temporal information implicit in
the data. The proposed framework consists of a bidirectional LSTM (bi-LSTM) net-
work followed by dropout and two linear layers. Long short term memory networks
(LSTM) were selected as a candidate approach based on their capacity to automat-
ically learn the temporal dependencies present in time series and their capability of
operating on data of varying lengths (Van Houdt et al, 2020). Linear layers are com-
monly used for inferring an objective-specific feature space, and here they were used
to infer unique RV and HR estimates from LSTM hidden units. The framework is
illustrated in Figure 1. The input to the networks consist of ROI time-series signals
provided as different channels (# of channels = # of ROIs). The bi-LSTM network is
followed by a dropout layer and is connected to two linear layers, which output the
estimated RV and HR time series. These estimated signals are the same length as the
corresponding input ROI time series.

We conducted a grid search to select hyperparameters for the resting-state mod-
els. The size of hidden states was selected from values of [32, 64, 512, 1000, 1024,
2000, 2048], batch size from values of [1, 2, 8, 16, 32, 64], for dropout rates of
[0.1, 0.3, 0.5, 0.6], for learning rates from [1.0e-2, 1.0e-3, 1.0e-4, 1.0e-5] and for the
decaying learning rate with decay rate of [0.01, 0.1, 0.2, 0.5].

All models were then trained with the following, empirically chosen hyperparam-
eters: a hidden state (h) size 2000 (i.e., depth), a batch size of 16, dropout rate 0.3 and
were trained with decaying learning rate (Ir) of 1.0e-3 with patience 2 and decay rate
of 0.5, saving only the best models according to validation performance. The mod-
els were trained using ADAM optimizer with default parameters. The experiments
were performed on an NVIDIA RTX 2080Ti GPU. Programs were implemented
with Python using the Pytorch deep learning library. The code for the model training
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framework will be publicly available at https://github.com/neurdylab/deep-physio-
recon/journal-name.

5.4 Model training and evaluation

Resting state (rs-) models. Only for the model training on the HCP resting-state
dataset (Datasets: Dataset 1), we used 5-fold cross validation, with 68% for train-
ing and 12% for validation and 20% for testing. A subset of 375 subjects (1500
scans) were used for training by rotating the partitions (Supplementary Figure 5;
left), and the resulting performance (pooled over the 5 testing partitions) is reported.
In addition, to evaluate the generalizability across subjects both within (resting state)
and between (task vs. resting state) conditions, rs-models were tested on HCP task
(Dataset 2) and in-house (Dataset 3) datasets. Since the 5-fold CV on the rs-fMRI
data resulted in 5 different models, one of these models was randomly selected to
be applied to the task and in-house datasets (Supplementary Figure 5; right). For
detailed information about number of scans used for training and testing, please see
Supplementary Table 3.

Training task (t-fMRI) model. t-fMRI model is trained using HCP task fMRI
dataset (Dataset 2). More specifically, models were trained using 4 tasks (working
memory, social cognition, emotional processing, and gambling tasks), and assessed
using the remaining 3 tasks (relational processing, motor and language tasks). Of
note, the subjects that were included in the training t-fMRI model were excluded
from testing cohorts (Supplementary Figure 6; left), in order to assess generalizability
across different subjects. In addition, to further evaluate the generalizability across
subjects and between (task vs. resting state) conditions, t-models were also tested on
HCP resting (Dataset 1) and in-house (Dataset 3) datasets (Supplementary Figure 6;
right). For detailed information about number of scans used for training and testing,
please see Supplementary Table 4.

5.5 Impact on fMRI signals and network connectivity
5.5.1 Percent Variance

To assess the degree to which our reconstructed RV and HR signals could account for
fMRI signal fluctuations across the brain, we examined the percentage of temporal
variance explained in each fMRI voxel signal by the reconstructed RV and HR sig-
nals. The predicted time courses were first convolved with a previously determined
transfer function (for RV, respiration response function (Birn et al, 2008); for HR,
cardiac response function (Chang et al, 2009)) that captures the forward mapping
between physio and fMRI fluctuations, as well as their time and dispersion deriva-
tives (Chen et al, 2020) to allow for small deviations in latency and shape from the
canonical model (Henson et al, 2002). The percent variance explained was defined
as the fraction by which a voxel’s original temporal variance would be reduced after
projecting out (via ordinary least squares) a linear combination of the aforementioned
regressors, and multiplying by 100. For each scan, the RV and HR predictions used
in this analysis were obtained from cross-validated rs-models, where the model that
was applied to derive a subject’s predicted RV/HR signals was one that had excluded
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that subject from the training. This analysis used the HCP resting-state data that has
been bandpass filtered and downsampled by a factor of 2 (see Section 5.2). The per-
cent variance maps calculated from individual scans were then averaged to get the
population-level mapping of the RV and HR effects.

5.5.2 Connectivity Analysis

For both the ROI-based and seed-based connectivity analyses, we used resting-state
scans that have undergone the HCP ICA-FIX preprocessing pipeline (Griffanti et al,
2014). The rationale behind using ICA-FIX data for this analysis is to show the utility
of physiological signals even beyond ICA-FIX denoising, as substantial RV and HR
effects may remain. Beyond ICA-FIX, we applied linear and quadratic detrending
to remove slow scanner drifts. This was followed by band-pass filtering within the
low-frequency range of (0.01 - 0.15 Hz) and temporal downsampling by a factor of 2.

ROI-based. To assess the impact of the physiological signal of interest on
regional correlations, we pursued a functional connectivity analysis. Functional con-
nectivity commonly refers to similarities in brain activity signals between regions,
and is calculated as the pairwise (Pearson) correlation of ROI time series and rep-
resented as a symmetrical matrix. We assessed the pairwise functional connectivity
between all 497 ROIs drawn from cortical, white matter, subcortical, and ascending
arousal network atlases (Section 5.2.4) both before and after projecting out the esti-
mated physiological subspace using the same basis functions described above (see
Section 5.5.1), as well as 6 rigid-body head motion parameters and their derivatives.
The Pearson correlation between each pair of ROIs were calculated and used to con-
struct 497 x 497 symmetrical connectivity matrices where each element represents
temporal similarity score between two ROISs.

Seed-based. Seed-based analysis is one of the most common ways to explore
functional connectivity within the brain (Van Den Heuvel and Pol, 2010). In a seed-
based correlation analysis, connectivity is calculated as the correlation between the
time course of a selected reference (“seed”) region to all other voxels in the brain.
The resulting connectivity map represents the Pearson correlation scores for each
voxel, indicating how well each voxel’s time series correlates with the time series of
the seed. In this analysis, we pursued seed-based connectivity with respect to a seed
region in the default mode network (DMN). For comparison, these analyses were
repeated after projecting out the measured and predicted RV and HR waveforms,
using the basis sets and derivatives described above (see Section 5.5.1), as well as 6
rigid-body head motion parameters and their derivatives.
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