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Abstract

Recent research has demonstrated that debate mechanisms among Large Language1

Models (LLMs) show remarkable potential for enhancing reasoning capabilities2

and promoting responsible text generation. However, it remains an open question3

whether debate strategies can effectively generalize to Multi-Modal Large Lan-4

guage Models (MLLMs). In this paper, we address this challenge by proposing5

a location-aware debate framework specifically designed for MLLMs to mitigate6

hallucination without requiring additional external knowledge. Our approach in-7

troduces an asymmetric debate structure across both textual and visual modalities.8

For textual processing, one MLLM instance generates a comprehensive image9

description while identifying object locations, while a second instance "zooms in"10

on specific regions of interest to evaluate and refine the initial descriptions. For11

visual processing, we introduce a novel hybrid attention module that fuses visual12

self-attention with cross-modal attention between textual and visual information,13

effectively highlighting critical content regions. The framework incorporates a14

judge component that evaluates the complete debate process and selects the most15

reliable output between the two debating instances. Our experimental results16

demonstrate that this approach substantially reduces hallucination across diverse17

MLLMs and evaluation metrics. Moreover, the framework serves as a readily18

integrable complement to existing hallucination mitigation methods. By employing19

consistent procedures and standardized prompts across all investigated tasks, our20

framework proves both effective and highly adaptable, enabling direct application21

to a broad range of black-box MLLMs without architectural modifications.22

1 Introduction23

Recent advancements in multi-modal large language models (MLLMs) have demonstrated significant24

progress, achieving outstanding performance across various vision-language tasks Bai et al. (2023);25

Alayrac et al. (2022); Li et al. (2023); Zhu et al. (2023); Liu et al. (2024b,a); Peng et al. (2023b); Team26

et al. (2023); Dai et al. (2023). With the ability to process both image and text inputs, these general-27

purpose foundation models are versatile and can be adapted to a wide range of tasks, including image28

generation Black et al. (2023), biomedical applications Li et al. (2024), text-to-video generation Cai29

et al. (2023), and reasoning Lai et al. (2024).30

While the remarkable performance and versatility of MLLMs are highly favorable, they are plagued31

by a well-known issue called “hallucination." Specifically, MLLMs often generate incorrect responses32

regarding the existence of objects, their color, quantity, orientation, and spatial relationships. More-33

over, some of their responses are entirely irrelevant to the input images. These flaws pose significant34

challenges to the development of responsible and robust multi-modal intelligence agents, particularly35

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



Describe the image and provide object locations. Check hallucination with object locations

Debater1:

On the left side of the image, the man is floating above the 
surfboard, while near the center, the dog is sprinting forward, 
ready to leap.

Debater2:

After zooming in on the location provided by Debater1, I found 
that the man on the left is actually standing on the surfboard, 
not floating, while near the center, the dog is sprinting forward.
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Debater1:

Yes, Debater2 is right. On the left side of the image, that the man 
on the left is standing on the surfboard. Near the center, the dog 
is sprinting forward, ready to leap.

Debater2:

After zooming in on the location provided by Debater1, I found 
that the man on the left is standing on the surfboard, while near 
the center, the dog is lying down on the surfboard, not 
sprinting.

Input 1 - <Debate History>

Debater1: On the left side of the image …
Debater2: After zooming in …
…

Input 2 - <Original Image>

I AGREE with Debater2
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Attention Module

Debater1’s statement

Figure 1: The Overall Debating Pipeline of the Proposed Location-Aware Framework. Debater 1 is
tasked with generating general descriptions and identifying object locations within the image, while
Debater 2 focuses on providing detailed descriptions of specific regions of interest, guided by both
textual input and the hybrid attention module. The judge evaluates and selects between the debaters’
statements rather than modifying the final description.

in critical domains such as healthcare Li et al. (2024), autonomous driving Wei et al. (2024), and36

military applications Rivera et al. (2024).37

To address the challenge of “hallucination," various approaches have been proposed, including38

instruction tuning Liu et al. (2023), over-trust penalty Huang et al. (2024), instruction correlation39

Wang et al. (2024), the replacement of uncertain objects Zhou et al. (2023), and multi-agent debate40

Lin et al. (2024); Khan et al. (2024); Du et al. (2023). While all these methods have demonstrated41

effectiveness, the multi-agent debate strategy is particularly appealing, as it does not rely on costly42

external knowledge, such as additional instruction data for training, and offers an intuitively designed43

solution Liu et al. (2023).44

Building on this idea, debate mechanisms have been explored in LLM to enhance reasoning and45

factual accuracy in text generation Khan et al. (2024); Du et al. (2023); Liang et al. (2023). A similar46

framework was then directly extended to the domain of MLLMs Lin et al. (2024).47

In this paper, we argue that the debate framework should differ from the general LLM framework due48

to the presence of multi-modal inputs, i.e., text and images. The spatial information from images49

is often underutilized, leading to suboptimal results in the debating framework. To address this,50

we propose a simple yet highly effective asymmetric debate framework for MLLMs. Specifically,51

one MLLM is tasked with describing objects along with their corresponding spatial locations in the52

image, as illustrated in Figure 1. Another MLLM instance then reviews and critiques the responses53

from the first debater. Importantly, we emphasize spatial information in both modalities. While the54

textual description allows the second MLLM instance to infer object locations, we further enhance55

spatial awareness by utilizing a hybrid attention module that dims unrelated areas while highlighting56

the described regions in the image. This design enables the second debater to focus on key regions57

of interest through both textual and visual guidance. The process is repeated over multiple rounds.58

Finally, the debate history, along with the input image, is presented to a judge, who determines the59

winner and provides the final response to the query.60

To comprehensively assess the effectiveness of our proposed framework, we evaluate it from three61

key perspectives: object-level hallucination, object-existence hallucination, and overall text quality.62

These aspects are quantified using four evaluation metrics: Caption Hallucination Assessment with63

Image Relevance (CHAIR), GPT-4-assisted evaluation, and Polling-based Object Probing Evaluation64

(POPE). Through extensive experiments on benchmarks and hallucination metrics, we conclude the65

findings and contributions as follows:66

1. The proposed location-aware debate fosters more responsible responses compared to single-67

modal debate. Previous debate frameworks often overlook the spatial information inherent in objects68

within images. As a result, debaters tend to distribute their attention uniformly across regions of69
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interest rather than focusing on the most relevant areas, as guided by the input text and image. To70

address this, we first introduce a debater specifically tasked with clarifying the locations of recognized71

objects. This simple yet effective design significantly enhances response accuracy, reducing CHAIR72

scores by an average of 7.02%. Building on this, we further integrate spatial information into the73

image using an attention module, which mitigates hallucinations even further, reducing CHAIR74

scores by an average of 9.52%.75

2. The proposed location-aware debates between MLLMs help generate more responsible76

content and are widely adaptable. We conduct experiments across various decoding methods,77

including greedy decoding, nucleus sampling Holtzman et al. (2019), beam search decoding Sutskever78

(2014), DoLa Chuang et al. (2023), and OPERA Huang et al. (2024), as well as different types of79

MLLMs, including InstructBLIP Dai et al. (2023), MiniGPT-4 Zhu et al. (2023), LLaVA-1.5 Li et al.80

(2024), and Shikra Chen et al. (2023). While some of these baselines are specifically designed to81

reduce hallucinations, the location-aware debate framework continuously enhances their effectiveness82

as a general, readily integrable approach. Notably, we observe a 2% to 35.56% reduction in83

hallucination rates, consistently reflected in the CHAIR metric.84

3. The judge should choose the right statement among debaters rather than providing a85

summary. Providing the debating history and input data to the LLM judge allows for a more compre-86

hensive response to queries. However, this process may inevitably introduce new hallucinations if the87

judge is tasked with summarizing and refining the debaters’ statements. Therefore, we instruct the88

judge to select the most accurate statement rather than synthesizing or reinterpreting the debaters’89

responses. This design consistently reduces hallucinations across various evaluation metrics.90

2 Related Work91

2.1 Hallucination in Large Foundation Models92

Recent advancements in computational resources have significantly accelerated research on large-93

scale foundational models. MLLMs, such as LLaVA Liu et al. (2024b), Vicuna Chiang et al. (2023),94

Shikra Chen et al. (2023), MiniGPT-4 Zhu et al. (2023), and others Bai et al. (2023); Dai et al. (2023);95

Li et al. (2022, 2023), enhance content understanding and generation by leveraging information from96

multiple modalities. However, these models can sometimes generate text that is inaccurate or fails to97

address the given query Zhang et al. (2023a). Such limitations arise from various factors, including98

overfitting, training data biases, and insufficient response validation mechanisms. To address these99

challenges, previous research has explored various approaches, including data augmentation Lee100

et al. (2022), fine-tuning techniques Ouyang et al. (2022); Lee et al. (2023), debating Khan et al.101

(2024) and self-refinement strategies Manakul et al. (2023); Peng et al. (2023a). Extending to multi-102

modal foundation models, some efforts have been dedicated to instruction tuning Liu et al. (2023)103

and statistical analysis-based error correction Zhou et al. (2023). More recently, researchers have104

introduced a nearly cost-free approach that mitigates hallucinations by penalizing over-confident105

tokens Huang et al. (2024).106

2.2 Debate Strategies107

While numerous approaches have been proposed to reduce hallucinations using a single LLM agent108

Wei et al. (2022,?); Yao et al. (2024); Shinn et al. (2024), there is a growing trend of leveraging multiple109

agents working collaboratively to enhance generation quality through post-training refinement. The110

initial efforts focused on communicative agents for thought exploration, which later evolved into the111

concept of multi-agent debate, designed to mimic human-like discourse to improve factual accuracy112

and reasoning Du et al. (2023). Building on this foundation, the framework was extended to interactive113

debates, incorporating LLM judges to facilitate the selection of more truthful responses Khan et al.114

(2024). In parallel, the multi-agent debate (MAD) framework introduced divergent chain-of-thought115

exploration, demonstrating promising results in translation tasks Liang et al. (2023). Ultimately, this116

debate paradigm was further extended to the multi-modal LLM (MLLM) domain Lin et al. (2024).117

2.3 Region-Level Image Attention118

In vision-related research, identifying key regions for fine-grained analysis is a widely adopted119

strategy. This approach plays a crucial role in object detection Ren et al. (2016); Redmon (2016);120
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Zang et al. (2024), where it helps localize target objects. Beyond detection, large foundation models121

have applied similar techniques to open-vocabulary object recognition Kamath et al. (2021); Zhou122

et al. (2022); Liu et al. (2024c), enabling more flexible and adaptive visual understanding. Region-123

level attention has also been leveraged in related tasks such as image captioning Yang et al. (2017);124

Wu et al. (2024) and graph generation Tang et al. (2019); Yang et al. (2022), demonstrating its125

versatility in structured representation learning. More recently, this concept has been incorporated126

into instruction tuning to enhance model performance across a broader range of applications Zhang127

et al. (2023b). Building on these advancements, we extend region-aware mechanisms to multi-modal128

LLM debates, promoting hierarchical evaluation and improving the reliability of generated responses.129

3 Methodology130

In this section, we present our proposed multi-agent debate framework for MLLMs. First, we provide131

an overview of the framework in Section 3.1. Next, we detail the technical implementation of the132

Hybrid Attention Module in Section 3.2.133

3.1 The Overall Debating Pipeline134

Debater1’s Statement:
On the left side, a surfer is standing on 
a surfboard …

“On”    “ the”     “left”     “side”     “a”   …

Patch Embedding Token Embedding

Vision Encoder Text Encoder

Text ProjectorSelf-Attention Map (𝐴𝑆) Vision Projector

Averaging Cross-Attention Map (𝐴𝑐) 

Attention Fusion:
𝛼 ∗ 𝐴𝑆 + 1 − 𝛼 ∗ 𝐴𝐶

Figure 2: The design of the proposed hybrid atten-
tion module. The final attention map is composed
of visual self-attention and cross-attention between
Debater 1’s statements and visual content, ensuring
no critical objects are overlooked.

We adopt an asymmetric multi-agent debate135

framework with two MLLMs acting as debaters,136

as illustrated in Figure 1. Unlike previous de-137

bate methods, we assign two tasks to the first138

debater: (1) answering a standard query and (2)139

identifying the locations of recognized objects140

within the image. The input image for Debater1141

remains unaltered to ensure that no pre-assigned142

attention influences its response.143

Debater2 receives the same query as Debater1144

but is also provided with textual descriptions145

of object locations, making it location-aware.146

To further enhance object-level attention, we147

introduce a hybrid attention module shown in148

Figure 2, which enables more fine-grained artic-149

ulation of objects of interest. Specifically, the150

hybrid attention mechanism consists of a visual151

self-attention block and a cross-attention block,152

which operate between the raw input image and153

Debater1’s statement. This module helps high-154

light critical details for Debater2 and improves155

the overall debate process. A detailed explana-156

tion of the hybrid attention module is provided157

in Section 3.2.158

The attention module allows Debater2 to focus on key regions for further inspection and discussion,159

significantly reducing potential hallucinations. Importantly, the assigned attention from the hybrid160

attention module is dynamically adjusted based on Debater1’s description, meaning that the region of161

interest may shift accordingly.162

Finally, the debating history, along with the raw input image, is fed into the judge, a third MLLM163

instance. Crucially, instead of summarizing the debaters’ statements, the judge is tasked with selecting164

the most accurate description of the image. Additionally, we provide the judge with the unprocessed165

image to ensure a fair evaluation and prevent any potential bias introduced by the attention module.166

3.2 Hybrid Attention Module167

To enable fine-grained visual-linguistic understanding, we propose a hybrid attention mechanism that168

combines CLIP’s Radford et al. (2021) intrinsic self-attention with cross-modal attention and refines169

the resulting maps via advanced post-processing and adaptive fusion strategies. The overall design of170

this module is shown in Figure 2. More specifically, given an input image I ∈ RH×W×3, we first171
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employ CLIP’s Vision Transformer (ViT-B/32) to partition it into N = HW/P 2 non-overlapping172

patches (with P = 32). These patches are encoded into patch embeddings:173

X = {x1, . . . , xN} ∈ RN×d,

where d = 768 is the embedding dimension. N is a perfect square so that the patches can be arranged174

into a square grid of dimensions
√
N ×

√
N . Simultaneously, a text description D, is processed by175

CLIP’s text encoder to yield token embeddings, which is formally defined as:176

T = {t1, . . . , tM} ∈ RM×d,

with M denoting the sequence length.177

To capture spatial relationships within the image, we extract self-attention features from the final178

three layers (of the total L = 12 layers) of the Vision Transformer. For each layer l among the last179

three, the attention matrix A(l), with a shape [1, num_heads, N +1, N +1]) is averaged over heads,180

and the attention corresponding to the [CLS] token is removed. The resulting map is then reshaped181

into a
√
N ×

√
N grid:182

A
(l)
S = reshape

(
mean

(
A

(l)
:,1:,1:

)
,
√
N,

√
N
)
.

These layer-specific maps are averaged to produce a preliminary self-attention map AS , which183

is subsequently refined via Gaussian smoothing, normalization, and contrast enhancement using184

Contrast Limited Adaptive Histogram Equalization (CLAHE) Reza (2004), followed by percentile-185

based boosting.186

While self-attention captures most of the critical objects within the image, it may not always align187

precisely with the descriptions provided by Debater1. In some cases, certain objects may be over-188

looked, even when they are of interest to the MLLM instances and central to the discussion. To189

address this issue, we incorporate information from Debater 1’s descriptions to refine the attention190

mechanism. Specifically, by leveraging these spatial features, we compute cross-modal attention191

between visual and textual representations to improve alignment and ensure a more accurate fo-192

cus. Therefore, in parallel, cross-modal attention is computed by aligning the visual and textual193

representations. Specifically, we extract the text [CLS] token from the text encoder, denoted as194

tcls = T [:, 0], and project it into the common embedding space via CLIP’s text projection layer195

defined as Tproj = Projectortext(tcls). For the image, we discard the [CLS] token from the patch196

embeddings to form Xpatch = {x2, . . . , xN}, and project these using the vision projection layer197

Vproj = Projectorvision(Xpatch). The cross-attention map is then computed as:198

AC = softmax
(
Vproj T

⊤
proj/τ

)
,

where τ = 0.07, is a temperature parameter that scales the similarity scores. The map AC is reshaped199

into a
√
N ×

√
N grid and refined with Gaussian smoothing, CLAHE-based contrast enhancement,200

and percentile boosting.201

Finally, the two refined attention maps are fused to yield the final attention map:202

A = (1− α)AS + αAC , s.t. α >= 0,

where the fusion weight α is set to a fixed value, e.g., α = 0.3 for self-attention and 1− α = 0.7 for203

cross-attention. Finally, the integrated attention map is then thresholded at the 70th percentile using204

the operator Φ(·) and normalized via a sigmoid activation: M = σ(Φ(A)) , ensuring that the final205

mask M robustly highlights the image regions most relevant to the text description.206

4 Experiments and Results207

In this section, we present the experiments and related results. Specifically, in Section 4.1, we208

outline the experimental setup, including baseline MLLMs, generation and decoding methods,209

evaluation metrics, and implementation details. This setup ensures a comprehensive assessment of210

the proposed framework and provides the necessary information for reproducing the experimental211

results. In Section 4.2, we report the evaluation results with and without the proposed location-212

aware debate across multiple metrics, including CHAIR, GPT-4-assisted evaluation, and POPE. We213

provide an in-depth analysis of hallucination reduction and text quality improvements to demonstrate214

the effectiveness of the proposed framework. Lastly, in Section A, we conduct ablation studies to215

highlight the importance of location-aware debate and reveal the influence of critical hyperparameters.216
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4.1 Experiments Setup217

Baseline Models. Following the previous paradigm Huang et al. (2024), we select four representative218

MLLMs: InstructBLIP Li et al. (2022), MiniGPT-4 Zhu et al. (2023), LLaVA-1.5 Li et al. (2024), and219

Shikra Chen et al. (2023). These models are chosen to represent different strategies for vision-text220

alignment, including linear projection layers and Q-Former Li et al. (2023). To ensure consistency221

throughout the debate process, all debaters use the same 7B-parameter MLLM. Additionally, for the222

hybrid attention module, we employ CLIP ViT-B/32 Radford et al. (2021) across all experiments.223

Baselines Methods. We evaluate the proposed debate framework against various baseline methods,224

ranging from standard greedy decoding and nucleus sampling Holtzman et al. (2019) to beam search225

decoding Sutskever (2014), DoLA Chuang et al. (2023), and the more recent OPERA Huang et al.226

(2024).227

To further assess the robustness of our framework, we deliberately include two techniques specifi-228

cally designed to mitigate hallucination: DoLA and OPERA. Despite their hallucination-reducing229

mechanisms, we find that the proposed debate framework still provides additional benefits. DoLA230

refines token selection by contrasting differences in logits between earlier and later transformer231

layers, leveraging the observation that factual knowledge in LLMs is often localized to specific layers.232

Building on this, OPERA introduces a penalty term on model logits during beam search decoding to233

address overconfidence, along with a rollback strategy that detects and re-evaluates summary tokens234

in previously generated outputs, enabling a more reliable token allocation.235

Method InstructBLIP MiniGPT-4 LLaVA-1.5 Shikra
CS CI CS CI CS CI CS CI

Greedy 58.8 23.7 31.8 9.9 45.0 14.7 55.8 15.4
Greedy + Debate 53.9 20.4 27.5 8.8 40.2 12.9 51.6 14.2

Nucleus 54.6 23.8 31.8 11.2 46.8 14.0 55.3 15.2
Nucleus + Debate 50.1 21.5 28.3 10.5 43.6 13.4 51.0 14.1

Beam Search 55.8 16.0 31.2 9.5 47.2 13.4 52.4 14.2
Beam Search + Debate 51.0 13.5 27.7 8.9 43.2 12.8 49.0 13.5

DoLa 48.8 15.7 32.2 10.0 47.3 14.5 54.5 14.8
DoLa + Debate 45.6 14.5 29.0 9.9 42.2 13.9 50.2 12.7

OPERA 47.8 14.1 27.0 9.8 46.6 12.8 39.8 12.5
OPERA + Debate 42.5 12.7 17.4 9.6 41.4 11.8 35.1 10.4

Table 1: CHAIR hallucination evaluation results
on sentence (CS ↓) and image level (CI ↓) with
and without the proposed debate framework. The
max new tokens is set to 512.

Method InstructBLIP MiniGPT-4 LLaVA-1.5 Shikra
CS CI CS CI CS CI CS CI

Greedy 30.4 14.8 24.4 8.2 20.6 6.4 22.2 7.1
Greedy + Debate 28.3 13.3 21.7 7.5 18.2 6.0 19.6 6.6

Nucleus 30.4 15.8 23.8 8.6 26.4 8.6 22.5 7.8
Nucleus + Debate 28.2 14.2 21.1 7.8 23.2 7.8 19.6 6.8

Beam Search 21.5 7.2 23.4 7.8 19.0 6.0 21.2 6.6
Beam Search + Debate 19.5 7.0 22.1 7.6 15.8 5.6 18.8 5.8

DoLa 22.5 7.2 24.2 8.2 20.2 6.3 20.6 6.5
DoLa + Debate 20.9 7.0 21.7 8.0 18.6 5.8 18.4 6.0

OPERA 16.8 7.1 22.6 8.4 14.5 5.6 14.2 6.3
OPERA + Debate 15.2 6.5 20.2 7.3 12.6 5.2 12.7 5.8

Table 2: CHAIR hallucination evaluation results
on sentence (CS ↓) and image level (CI ↓) with
and without the proposed debate framework. The
max new tokens is set to 64.

236

4.2 Experimental Results237

4.2.1 CHAIR Evaluation238

The Caption Hallucination Assessment with Image Relevance (CHAIR) Rohrbach et al. (2018) is239

an evaluation metric designed specifically to assess object hallucination and object-existence-level240

hallucination in image captioning tasks. Given descriptions of images, CHAIR quantifies the degree241

of object hallucination with high accuracy. The metric measures the ratio of objects mentioned in the242

description that are not present in the ground-truth label set. More specifically, CHAIR evaluates243

hallucination in both textual and visual contexts, distinguishing between sentence-level hallucination,244

i.e., CHAIRS (CS) and image-level hallucination CHAIRI (CI ). Formally, these two metrics are245

defined as follows:246

CHAIRS =
|{hallucinated objects}|
|{all mentioned objects}|

,

CHAIRI =
|{captions with hallucinated objects}|

|{all captions}|
.

We use the MSCOCO dataset Lin et al. (2014) for our experiments and CHAIR evaluation. Specifi-
cally, we randomly select 1,000 images from the validation set of COCO2014 to compute the average
CHAIR value. The prompt consists of a system message that contains a user question and context
information. Concretely, the user question follows a standard prompt:

⟨User Question⟩ = “Please describe this image in detail”,

6
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Figure 3: The reduced hallucination ratio from GPT-4-assisted evaluation on the VG-100K dataset.
The numbers above the downward arrows of each bar represent relative decrease ratios. We report
four aspects of hallucination.

following previous research Huang et al. (2024); Chuang et al. (2023); Sutskever (2014). The system
message is designed to ensure that the MLLMs recognize their role as debaters and are tasked with
providing object locations. Formally, it is defined as:

“You are participating in a debate about an image.”
“Answer ⟨User Question⟩”
“Describe the location of detected objects.”
“Here is the previous context: ⟨Context⟩”,

where ⟨Context⟩ represents the statement from the other debater and remains empty if the debate is at247

the initialization stage.248

For the judge’s prompt, we only task it with selecting the better statement between the two debaters.
Formally, given the final statements from the two debaters, denoted as ⟨Context1⟩ and ⟨Context2⟩,
respectively, we apply the following prompt:

“Debater 1’s Statement: ⟨Context1⟩”
“Debater 2’s Statement: ⟨Context2⟩”
“As a Judge, choose the best statement from two debaters.”

To ensure a comprehensive evaluation, we set the max new tokens to 64 and 512 for the generation249

tasks of MLLMs. The results are presented in Table 1 and Table 2. We observe a notable reduction in250

sentence-level hallucinations, ranging from 6.56% to 35.56%. For image-level hallucinations, the251

reduction remains favorable, varying from 2.00% to 16.80%.252

We also report results with a 64 max token. In this setting, the reduction rate for CHAIRS ranges253

from 5.56% to 16.84%, while for image-level hallucinations, the reduction rate for CHAIRI varies254

from 2.44% to 13.10%. The average reduction ratio is lower compared to the 512 max token setting.255

However, this observation is expected, as longer generations are more prone to severe hallucinations256

Huang et al. (2024).257

4.2.2 GPT4-assisted Evaluation258

Beyond object and object-existence hallucination, additional evaluation aspects for the debate frame-259

work would be beneficial. In particular, attributes, locations, and spatial relationships of objects260

have not been systematically quantified or assessed. To address this gap, we further evaluate our261

framework on HalluBench Zhao et al. (2023), one of the most widely used benchmarks for halluci-262

nation assessment. For ground-truth references, we use descriptions from the Visual Genome (VG)263

dataset Krishna et al. (2017). To assess hallucinations in generated descriptions, we rely on GPT-4264

for detailed analysis. Specifically, the collected descriptions are fed directly into GPT-4, which is265

prompted to analyze hallucinations on a sentence-by-sentence basis. For MLLM prompting, we266

maintain the exact setup used in the CHAIR evaluation, setting the maximum token length to 512267

More specifically, we report four aspects of hallucination: the number of hallucinated sentences268

per image (HSPI), the number of hallucinated words per image (HWPI), the ratio of hallucinated269

sentences (HSR), and the ratio of hallucinated words (HWR). The three decoding methods, Greedy,270

DoLA, and OPERA, are presented in detail in Figure 3.271
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Method InstructBLIP MiniGPT-4 LLaVA-1.5 Shikra
Greedy 80.2 58.5 82.2 81.1
Greedy + Debate 83.1 60.2 83.6 83.8

Nucleus 80.2 57.8 82.5 81.2
Nucleus + Debate 83.4 59.5 83.9 83.6

Beam Search 84.4 70.3 84.9 82.5
Beam Search + Debate 85.3 71.8 86.5 84.2

DoLa 83.4 72.8 83.2 82.1
DoLa + Debate 85.1 74.9 84.4 83.9

OPERA 84.8 73.3 85.4 82.7
OPERA + Debate 85.4 75.1 85.8 84.2

Table 3: POPE (↑) hallucination evaluation results on four MLLM models. We report the average
F1-score computed on random, popular, and adversarial splits of POPE.

We observe that the debate framework consistently helps MLLMs generate more reliable content272

across various perspectives and evaluation metrics. Specifically, the average HSPI decreased from273

2.27 to 2.06, representing a relative reduction of 9.35% on average difference decoding methods.274

Similarly, averaged HWPI was significantly reduced from 47.09 to 38.89, corresponding to an average275

improvement of 17.42%. In terms of sentence-level hallucination, HSR dropped from 0.50 to 0.46,276

yielding an average reduction of 9.55%, while averaged HWR decreased from 0.54 to 0.50, resulting277

in an average decrease of 8.97%. These findings highlight the effectiveness of the proposed debate278

framework in mitigating hallucination across different models and decoding methods. Concrete279

numerical results and additional findings on Beam Search and Nucleus Sampling are provided in the280

Supplementary Materials.281

4.2.3 POPE Evaluation.282

More recently, the POPE evaluation has been introduced to assess MLLMs in terms of object-level
hallucination. It has gained widespread adoption in recent research Huang et al. (2024); Lin et al.
(2024). To evaluate our framework on this benchmark, we maintain the same prompt design used in
the CHAIR evaluation but modify the user question as follows:

⟨User Question⟩ = “Please describe this image in detail”,

which is a standardized query specifically designed to determine whether the model can accurately283

identify the presence of a given object in an image.284

The POPE evaluation consists of three distinct settings: Random, Popular, and Adversarial. Under285

the Random setting, objects are randomly sampled from the entire dataset to assess the model’s286

ability to recognize general objects. In the Popular setting, evaluation is conducted on the most287

frequently described objects in the dataset, focusing on the model’s capability to verify common288

object occurrences. Finally, the Adversarial setting evaluates the model’s ability to distinguish objects289

that are visually or semantically relevant to those present in the image, measuring its robustness290

against misleading cues.291

Consistent with previous evaluate settings, we report the results over four MLLMs with their averaged292

F1 scores with and without debate framework. We notice more obvious improvement especially over293

naive decoding method such as Greedy and Nucleus Search.294

5 Conclusion295

In this work, we introduce a novel and effective multi-modal debate framework to pursue more296

responsible generation and reduced hallucination. The location-aware debate differs significantly from297

traditional single-modal debate frameworks by incorporating location awareness in visual content.298

This is achieved through both textual descriptions and a hybrid attention module to encourage fine-299

grained attention in visual contexts. Extensive experiments demonstrate that the proposed framework300

effectively reduces object-level hallucination and object-existence hallucination while simultaneously301

enhancing overall text quality under various metrics. More importantly, the framework generalizes302

effectively across different MLLMs and decoding methods. We hope this work inspires further303

research on debate frameworks for MLLMs.304
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Textual Visual InstructBLIP MiniGPT-4 LLaVA-1.5 Shikra Avg.
Locations Locations CS CI CS CI CS CI CS CI

✗ ✗ 2.43% 4.31% 6.12% 3.77% 3.02% 2.23% 2.72% 3.41% 3.50%
✓ ✗ 6.44% 7.94% 13.23% 4.20% 7.32% 3.71% 6.98% 6.32% 7.02%
✗ ✓ 3.35% 6.77% 7.86% 4.10% 4.03% 3.89% 3.47% 5.42% 4.86%
✓ ✓ 8.56% 11.36% 16.25% 5.34% 9.58% 6.59% 8.30% 10.19% 9.52%

Table 4: Average decrease rates of CHAIR values for sentence-level (CS ↓) and image-level (CI ↓)
across four models. Each data point is the average over 5 decoding methods, including Greedy,
Nucleus, Beam Search, DoLA and OPERA.
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350–368. Springer.448
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alyzing and mitigating object hallucination in large vision-language models. arXiv preprint450

arXiv:2310.00754.451
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understanding with advanced large language models. arXiv preprint arXiv:2304.10592.453

A Ablation Study454

We conduct detailed ablation studies on critical hyperparameters, including the number of debate455

rounds, Judge’s role and the fusion weight α. Additionally, we analyze the impact of incorporating456

location information in both the text and vision branches by comparing results with and without457

this crucial information. These experiments are conducted across different decoding methods and458

MLLMs shown in Table 1. We then report the average reduction rate in the CHAIR evaluation with459

the maximum number of new tokens set to 512.460

Debate Rounds We report the average reduction rate in the CHAIR evaluation as the number of461

debate rounds varies from 0 to 4. The results are shown in left sub-plot Figure 4. While additional462

debate rounds consistently improve performance, we observe that the benefits become marginal463

beyond two rounds. Considering the trade-off between efficiency and model performance, we set the464

number of debate rounds to 2 in the previous experiments of this paper.465

The Judge’s Role We set the Judge with two settings: one that requests it to naively choose the466

better statement from two debaters, and another that refines the statements from debaters with467

further summarization. The results are shown by the red curve in the left sub-plot in Figure 4.468

We found that the judge should choose the right statement among debaters rather than providing469

a summary, especially as the number of debate rounds increases. We believe this observation is470

expected, as the quality of generated content improves with further debate among debaters. However,471

the judge’s statement is not evaluated, thus may potentially introduce some additional, but marginal,472

hallucination.473

Fusion Weight Similarly, we explore the range of fusion weight from 0 to 1 and reported the474

decreased rate of the averaged CHAIR value. We set α = 0.3 in previous experiments given it’s best475

results. The details are in right sub-plot Figure 4.476

Importance of Location-Aware Debate We ablate the most critical components that enable MLLMs477

to be location-aware of different detected objects and facilitate fine-grained discussion with appro-478

priate attention. The results are shown in Table 4. We observe that textual location descriptions479

contribute the most to the overall performance of the debate framework. While hybrid visual attention480

also improves the framework’s effectiveness, it is additive to textual descriptions and further helps481

reduce hallucinations.482
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Figure 4: Left: Impact of debate rounds on CHAIR reduction rate with and without further summary
from the Judge. Right: Impact of fusion weight (α) on CHAIR reduction rate.

B Implementation details.483

We set all the debaters and the judge to be the same type of MLLM during the debate process. The484

debate proceeds through two rounds. For the attention module, we build upon CLIP’s ViT-B/32485

backbone, which relies on a 12-layer Vision Transformer and a matching 12-layer text transformer,486

both pre-trained on large-scale image-text data. The input image is partitioned into non-overlapping487

32 × 32 patches. Similarly, each input text sequence is tokenized and embedded to produce 768-488

dimensional token representations. The final attention map is generated through a weighted fusion of489

the self- and cross-attention maps, where α = 0.7 by default, followed by a thresholding operator that490

retains values above the 70th percentile. For OPERA and beam search, we set Nbeam = 5. For nucleus491

sampling, we set p = 9. The indices of candidate pre-mature layers are set to “0,2,4,6,8,10,12,14,”492

while the mature layer index is set to 32 for DoLa.493

In the greedy decoding approach, the next token is simply selected based on the highest probability.494

Beam search decoding, on the other hand, maintains a set of candidate sequences, i.e., beams, to495

optimize the final generation. Unlike these deterministic methods, nucleus sampling dynamically496

truncates the probability distribution, filtering out low-probability tokens and sampling from a497

concentrated set of high-confidence candidates.498
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