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Abstract

The objective to be minimized in the variational
quantum eigensolver (VQE) has a restricted form,
which allows a specialized sequential minimal
optimization (SMO) that requires only a few ob-
servations in each iteration. However, the SMO it-
eration is still costly due to the observation noise—
one observation at a point typically requires av-
eraging over hundreds to thousands of repeated
quantum measurement shots for achieving a rea-
sonable noise level. In this paper, we propose an
adaptive cost control method, named subspace
in confident region (SubsCoRe), for SMO. Sub-
sCoRe uses the Gaussian process (GP) surrogate,
and requires it to have low uncertainty over the
subspace being updated, so that optimization in
each iteration is performed with guaranteed accu-
racy. The adaptive cost control is performed by
first setting the required accuracy according to the
progress of the optimization, and then choosing
the minimum number of measurement shots and
their distribution such that the required accuracy
is satisfied. We demonstrate that SubsCoRe sig-
nificantly improves the efficiency of SMO, and
outperforms the state-of-the-art methods.

1. Introduction
Introduced a decade ago by Peruzzo et al. (2014), the varia-
tional quantum eigensolver (VQE) (McClean et al., 2016)
has become a widespread hybrid quantum-classical algo-
rithm for approximating the ground-state of a given Hamil-
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tonian. It utilizes a quantum device to efficiently prepare a
trial state in the form of a parameterized ansatz circuit and
to measure the expectation value of the Hamiltonian, i.e.,
the energy, in the given ansatz. Subsequently, based on the
measurement outcome, a classical optimizer is used to com-
pute a new set of parameters that likely lowers the energy.
Running the feedback loop between the quantum device and
the classical optimizer until convergence, the parametric
ansatz encodes an approximation for the ground-state of the
Hamiltonian, and the final energy measurement provides an
estimate for the ground-state energy.

VQEs may offer the potential to overcome computational
challenges in many fields of science, including quantum
chemistry, biology, and material science (Kandala et al.,
2017; Grimsley et al., 2019; Bauer et al., 2020; Fedorov
& Gelfand, 2021; Ollitrault et al., 2020), where accurately
identifying the ground-state energy of complex molecules
or materials is intractable for classical computers. By lever-
aging the principles of quantum mechanics, VQEs may
efficiently solve such problems, enabling advancements in
drug discovery, materials design, and other fields (Cao et al.,
2018). Furthermore, applications of VQEs to other com-
putationally challenging tasks, e.g., high-energy physics
calculations (Humble et al., 2022; Di Meglio et al., 2023) in-
cluding lattice field theory simulations (Funcke et al., 2023),
have been recently investigated. We refer readers to Tilly
et al. (2022) for a comprehensive review.

As is typical for any type of quantum computing protocols,
VQEs suffer from two types of noise—hardware noise and
shot noise. The hardware noise is caused by the imperfect
quantum circuit that systematically or stochastically distorts
the observations, while the shot noise is due to the intrinsic
(and therefore unavoidable) stochastic nature of quantum
computing. Throughout the paper, we do not consider the
hardware noise* and focus on the shot noise, i.e., statistical
uncertainties due to a finite number of repeated measure-
ments (shots) to estimate expected values of observables
on the quantum computer. We treat the shot noise as i.i.d.
observation noise when regression is applied to the mea-
surements.

*Recent progress in quantum hardware development has sub-
stantially reduced the hardware noise, see, e.g., Bluvstein et al.
(2023).
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Figure 1. Illustration of SubsCoRe. (a) After iteration t − 1, the
function value at the best point x̂t−1, which is in the CoRe (yellow
rectangle) due to the previous observations, is predicted by the
GP with sufficiently low uncertainty (red curves). Two equidistant
shifts (blue points) at x̂t−1 ± 2π

3
edt are chosen, yet not mea-

sured, along the line parallel to the dt axis at the current step. (b)
SubsCoRe finds the minimum number of measurement shots for
measuring the points {x̂t−1,x±} such that the entire line will be
included in the CoRe, i.e., the posterior uncertainty at any point
on the line is smaller than the required threshold. The three points
are measured (green circles), with the middle point x̂t−1 typically
requiring fewer shots because of its lower prior uncertainty. (c)
Using the trigonometric polynomial regression, the minimum x̂t

(orange point) along the line (where the GP mean function is fully
identified by predicting any three points) is computed along with
the corresponding energy, thus becoming the starting point for the
next iteration.

For quantum circuits that consist of parametrized rotation
gates and non-parametric unitary gates (e.g., the Hadamard
gate and the Controlled-Z gate), it is known that the ob-
jective function in VQE is a low-order trigonometric poly-
nomial along each axis, and therefore can be fit exactly
by a linear model with low degrees of freedom (Nakan-
ishi et al., 2020). Based on this property, Nakanishi et al.
(2020) proposed an efficient sequential minimal optimiza-
tion (SMO) (Platt, 1998)—often referred to as Nakanishi-
Fuji-Todo (NFT)—which requires only a few (two in the
most typical case) observations in each iteration of the 1D
subspace optimization. Nicoli et al. (2023a) introduced the
corresponding VQE kernel, and enhanced NFT with Gaus-
sian processes (GP). Specifically, they applied Bayesian
optimization (BO) to find the best locations to be observed

in each SMO iteration. To make use of the property that
only a few points determine the complete functional form
in the 1D subspace, they introduced the notion of confident
region (CoRe)—the region on which the uncertainty of the
GP prediction is lower than a threshold—and proposed the
expected maximum improvement over CoRe (EMICoRe)
acquisition function to evaluate how much the CoRe ex-
tends and how much improvement is expected within the
CoRe after new points are observed. BO with EMICoRe
successfully enhanced NFT, proving the usefulness of GP
for VQE (Nicoli et al., 2023a).

In this paper, we enhance NFT in an orthogonal way—
introducing adaptive observation cost control. Due to the
shot noise, each observation, i.e., each evaluation of the
cost function value at a single point, consists of hundreds
to thousands of measurement shots—a repeated quantum
computation from the initial state preparation to the final
quantum state observation, often also referred to as read-
outs. The computational cost on the quantum computer
is largely dominated by this quantum process and should,
therefore, be measured by the total number of shots. This
implies that one can improve the computational efficiency
by adapting the number of shots according to the progress
of optimization, e.g., saving shots in the early phase where
the best value rapidly decreases, and using more shots in
the converging phase where accurate prediction guides the
optimizer towards the very bottom of the objective, i.e., the
ground-state. Such strategies adapting the number of shots
have been proposed and applied to gradient-based meth-
ods. For example, Tamiya & Yamasaki (2022) proposed
the stochastic gradient line BO (SGLBO) approach, where
the number of shots is set according to the norm of the esti-
mated gradient, and showed that SGLBO outperforms NFT
with a fixed number of shots. An adaptive-shots strategy
for NFT—where the gradient is not estimated—is yet to be
established and is the primary goal of this paper.

Our approach, named subspace in confident region (Sub-
sCoRe), distributes the minimum number of shots in each
SMO iteration so that the uncertainty in the updated sub-
space is lower than a threshold. In other words, we search
for the minimum number of shots, i.e., minimize the ob-
servation cost, such that the optimized subspace is a subset
of the CoRe (see Figure 1). Although identifying the op-
timal distribution of thousands of shots seems intractable,
our theory implies that we do not need to distribute the
shots thinly over the subspace. More specifically, observing
1 + 2Vd equidistant points, where Vd is the number of gates
parameterized by the d-th variable, with equally divided
shots results in a min-max optimal uniform posterior uncer-
tainty. Based on our theory, we propose a few variants of
SubsCoRe and show their state-of-the-art performance.
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Related Work Some of the recently proposed optimiza-
tion techniques for VQEs rely on special properties of the
VQE objective, i.e., the parameter shift rule (PSR) (Mitarai
et al., 2018; Schuld et al., 2019) and the low-order trigono-
metric polynomial form along each axis (Nakanishi et al.,
2020), which have been shown to be equivalent (Nicoli
et al., 2023a). The PSR is used for efficient gradient estima-
tion (Mitarai et al., 2018), while the trigonometric polyno-
mial form allows for efficient SMO, i.e., NFT (Nakanishi
et al., 2020). Vanilla BO with a GP surrogate was also ap-
plied to VQE (Iannelli & Jansen, 2021; Tamiya & Yamasaki,
2022; Nicoli et al., 2023a). Tamiya & Yamasaki (2022)
combined stochastic gradient descent and 1D BO with an
adaptive number of measurement shots, which outperforms
NFT with a fixed number of shots. Nicoli et al. (2023a)
introduced the VQE kernel and the EMICoRe acquisition
function, and enhanced NFT with BO. Although the useful-
ness of GP for VQE has already been reported, to the best
of our knowledge, no prior work has used it for observation
cost control. In the more general BO context, works dealing
with heteroscedastic noise by incorporating the variance in
the acquisition function for BO and active learning have
also been proposed (Mickaël Binois & Ludkovski, 2019;
Makarova et al., 2021).

Difference between EMICoRe and SubsCoRe All ap-
proaches analyzed in our numerical experiments, i.e, the
NFT, EMICoRe, SGLBO and the newly proposed Sub-
sCoRe, differ substantially from each other. While the dif-
ference between SubsCoRe and SGLBO is apparent, here
we elaborate on the crucial differences between EMICoRe
and SubsCoRe. A key feature of both SubsCoRe and EMI-
CoRe is that both approaches rely on the notion of Con-
fident Region (CoRe) and on the VQE kernel introduced
by Nicoli et al. (2023a). However, besides this, the objec-
tive and the optimization of both approaches substantially
differ. EMICoRe uses a special acquisition function (based
on the CoRe) to select the best points to measure at the next
iteration of SMO, and the observations are performed at a
fixed number of shots (repeated measurements on a quantum
computer). Namely, it tries to minimize the number of SMO
steps required to converge with a fixed number of shots for
each observed point. This approach is fundamentally differ-
ent from SubsCoRe, which focuses on minimizing the total
quantum computing budget, i.e., the total number of shots,
regardless of the number of classical optimization steps. We
stress that in VQEs the crucial bottleneck is the number of
operations performed on the quantum device, and, therefore,
minimizing the total number of shots as the “observation
cost” is more appropriate than minimizing the SMO steps
required for convergence. In addition, SubsCoRe relies on
the min-max optimality of the equidistant measurements
under the “subspace in the CoRe” requirement, and thus
observes fixed points in each SMO step without using ac-

quisition functions. SubsCoRe adapts the number of shots
based on how the CoRe extends after the measurements,
and, therefore, the necessary number of shots is inherently
tied to the confidence of the GP. More specifically, our al-
gorithm chooses the number of measurement shots at each
observed point such that the posterior variance is within a
given threshold, which is adapted during the optimization.
To summarize, both the methodology and the objective of
EMICoRe and SubsCoRe are fundamentally different, de-
spite both relying on the notion of CoRe. Furthermore, we
note that both approaches are not mutually exclusive and
can be combined. We defer such a study to future work.

2. Background
2.1. Gaussian Process (GP) Regression with

Heteroscedastic Observation Noise

Assume that we aim to learn an unknown function f∗(·) :
X 7→ R from the training data X = (x1, . . . ,xN ) ∈
XN ,y = (y1, . . . , yN )⊤ ∈ RN ,σ = (σ2

1 , . . . , σ
2
N ) ∈

RN
++ that fulfills

yn = f∗(xn) + εn, εn ∼ N1(yn; 0, σ
2
n), (1)

where ND(·;µ,Σ) denotes the D-dimensional Gaussian
distribution with mean µ and covariance Σ. With the Gaus-
sian process (GP) prior

p(f(·)) = GP(f(·); 0(·), k(·, ·)), (2)

where 0(·) and k(·, ·) are the prior zero-mean and the kernel
(covariance) functions, respectively, the posterior distribu-
tion of the function values f ′ = (f(x′

1), . . . , f(x
′
M ))⊤ ∈

RM at arbitrary test pointsX ′ = (x′
1, . . . ,x

′
M ) ∈ XM is

given as

p(f ′|X,y) = NM (f ′;µ′
|X,σ,y,S

′
|X,σ), where (3)

µ′
|X,σ,y =K ′⊤ (K + Diag(σ))−1

y, (4)

S′
|X,σ =K ′′ −K ′⊤ (K + Diag(σ))−1

K ′ (5)

(Rasmussen & Williams, 2006). Here Diag(v) is the
diagonal matrix with v specifying the diagonal entries,
and K = k(X,X) ∈ RN×N ,K ′ = k(X,x′) ∈
RN×M , and K ′′ = k(x′,x′′) ∈ RM×M are the train,
train-test, and test kernel matrices, respectively, where
k(X,X ′) denotes the kernel matrix evaluated at each
column of X and X ′ such that (k(X,X ′))n,m =
k(xn,xm). We also denote the posterior as p(f(·)|X,y) =
GP(f(·);µ|X,σ,y(·), s|X,σ(·, ·)) with the posterior mean
µ|X,σ,y(·) and covariance s|X,σ(·, ·) functions, e.g.,
µ|X,σ,y(x

′) = µ′
|X,σ,y ∈ R and s|X,σ(x

′,x′) =

S′
|X,σ ∈ R++ for a single test pointX ′ = (x′).
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2.2. Variational Quantum Eigensolvers

The VQE (Peruzzo et al., 2014; McClean et al., 2016) is a
hybrid quantum-classical computing protocol for estimat-
ing the ground-state energy of a given quantum Hamilto-
nian for a Q-qubit system. A quantum computer is used
to prepare a trial state |ψ0⟩ transformed via a paramet-
ric quantum circuit G(x), which depends on D angular
parameters x ∈ X = [0, 2π)D. The final state |ψx⟩ is
thus generated by applying D′(≥ D) quantum gate oper-
ations, G(x) = GD′ ◦ · · · ◦ G1, to the initial trial state
|ψ0⟩, i.e., |ψx⟩ = G(x)|ψ0⟩. All gates {Gd′}D′

d′=1 are
unitary operators, parameterized by at most one variable
xd. Let d(d′) : {1, . . . , D′} 7→ {1, . . . , D} be the map-
ping specifying which one of the variables {xd} param-
eterizes the d′-th gate. We consider parametric gates of
the form Gd′(x) = Ud′(xd(d′)) = exp

(
−ixd(d′)Pd′/2

)
,

where Pd′ is an arbitrary sequence of the Pauli operators
{1q, σ

X
q , σ

Y
q , σ

Z
q }

Q
q=1 acting on each qubit at most once.

This general structure covers both single-qubit gates, such
as RX(x) = exp

(
−iθσX

q

)
, and entangling gates acting

on multiple qubits simultaneously, such as RXX(x) =
exp

(
−ixσX

q1 ◦ σ
X
q2

)
and RZZ(x) = exp

(
−ixσZ

q1 ◦ σ
Z
q2

)
for q1 ̸= q2, commonly realized in trapped-ion quantum
hardware setups (Kielpinski et al., 2002; Debnath et al.,
2016).

The quantum computer is used to evaluate the energy of the
resulting quantum state |ψx⟩ by observing

y = f∗(x) + ε, where

f∗(x) = ⟨ψx|H|ψx⟩ = ⟨ψ0|G(x)†HG(x)|ψ0⟩, (6)

where † denotes the Hermitian conjugate. For each obser-
vation, multiple measurement shots, denoted by Nshots, are
acquired to suppress the variance σ∗2(Nshots) of the noise ε
in evaluating the expectation value of the Hamiltonian, i.e.,
the energy of the quantum system.† Since the observation
y is the sum of many random variables, it approximately
follows a Gaussian distribution, according to the central
limit theorem. The Gaussian likelihood (1) therefore ap-
proximates the observation y well if f(x) ≈ f∗(x) and
σ2 ≈ σ∗2(Nshots). Using the noisy estimates of f∗(x) ob-
tained from the quantum computer, a protocol running on a
classical computer is used to solve the following minimiza-
tion problem:

minx∈[0,2π)D f
∗(x), (7)

†When the Hamiltonian consists of Nog groups of non-
commuting operators, each of which needs to be measured sep-
arately, Nshots denotes the number of shots per operator group.
Therefore, the number of shots per observation is Nog ×Nshots.
Throughout the paper, we use the total number of shots per opera-
tor group, i.e., the cumulative sum of Nshots over all observations,
to evaluate the observation cost.

thus finding the minimizer x̂, i.e., the optimal parameters
for the (rotational) quantum gates.

Let Vd be the number of gates parameterized by xd, i.e.,
Vd = |{d′ ∈ {1, . . . D′}; d = d(d′)}|, and

ψγ(θ) = (γ,
√
2 cos θ,

√
2 cos 2θ, . . . ,

√
2 cosVdθ,

√
2 sin θ,

√
2 sin 2θ, . . . ,

√
2 sinVdθ)

⊤ ∈ R1+2Vd (8)

be the (1-dimensional) Vd-th order Fourier basis for arbitrary
γ > 0. Nakanishi et al. (2020) found that the VQE objective
function f∗(·) in Eq. (6) with any‡ G(·), H , and |ψ0⟩ can
be exactly expressed as

f∗(x) = b⊤vec
(
⊗D

d=1ψγ(xd)
)

(9)

for some b ∈ R
∏D

d=1(1+2Vd), where ⊗ and vec(·) denote
the tensor product and the vectorization operator for a tensor,
respectively. Based on this property, the NFT (Nakanishi
et al., 2020) method performs SMO (Platt, 1998), where the
optimum in the 1D subspace in each iteration is analytically
estimated from only 1 + 2Vd observations.

Nakanishi-Fuji-Todo (NFT) Algorithm Let {ed}Dd=1 be
the standard basis. NFT is initialized with a random point
x̂0 with a first observation ŷ0 = f∗(x̂0) + ε0, and iterates
the following procedure: for each iteration step t,

1. Select an axis d ∈ {1, . . . , D} sequentially and ob-
serve the objective y ∈ R2Vd at 2Vd points X =
(x1, . . . ,x2Vd

) = {x̂t−1 + αwed}2Vd
w=1 ∈ RD×2Vd

along the axis d.§ Here α ∈ [0, 2π)2Vd is such that
αw ̸= 0, αw′ ̸= αw, for all w and w′ ̸= w.

2. Apply the 1D trigonometric polynomial regression

f̃(θ) = b̃
⊤
ψ1(θ) to the 2Vd new observations y, to-

gether with the previous best estimated score ŷt−1,
and analytically compute the new optimum x̂t =

x̂t−1 + θ̂ed, where θ̂ = argminθ f̃(θ).

3. Update the best score by ŷt = f̃(θ̂).

Note that if the observation noise is negligible, i.e., y ≈
f∗(x), each step of NFT reaches the global optimum in the
1D subspace along the chosen axis d for any choice of α,
and thus performs SMO exactly. Otherwise, errors can be
accumulated in the best score ŷt, and therefore an additional
measurement may need to be performed at x̂t after a certain
iteration interval.

Inspired by the trigonometric polynomial form (9), Nicoli

‡Any circuit consisting of parametrized rotation gates and non-
parametric unitary gates as stated in the introduction.

§With slight abuse of notation, we use the set notation to specify
the column vectors of a matrix, i.e., (x1, . . . ,xN ) = {xn}Nn=1.
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et al. (2023a) used the corresponding VQE kernel

kγ(x,x
′) = σ2

0

∏D
d=1

(
γ2+2

∑Vd
v=1 cos(v(xd−x′

d))
γ2+2Vd

)
, (10)

which is decomposed as kγ(x,x′) = ϕγ(x)
⊤ϕγ(x

′) for
ϕγ(x) =

σ0

(γ2+2Vd)
D/2vec

(
⊗D

d=1ψγ(xd)
)
, for GP regres-

sion, and enhanced NFT with BO, using the notion of CoRe

Z|X,σ(κ
2) =

{
x ∈ X ; s|X,σ(x,x) ≤ κ2

}
, (11)

i.e., the region in which the uncertainty of the GP predic-
tion is lower than a threshold κ. Specifically, Nicoli et al.
(2023a) introduced the EMICoRe acquisition function to
find the best observation points, i.e., α in Step 1 of NFT,
such that the maximum expected improvement within CoRe
is maximized. Note that the kernel parameter γ2 controls
the smoothness of the function, i.e., suppressing the interac-
tion terms when γ2 > 1. When γ2 = 1, the Fourier basis
(8) is orthonormal, and the VQE kernel (10) is proportional
to the product of Dirichlet kernels (Rudin, 1964).

3. Subspace in Confident Region (SubsCoRe)
We propose an adaptive observation cost control method,
named subspace in confident region (SubsCoRe), for NFT,
where the notion of CoRe (Nicoli et al., 2023a) for GP
plays an essential role. Specifically, in each NFT iteration t,
SubsCoRe uses the minimum total number of measurement
shots and distributes them optimally, so that the subspace
optimization is performed with the required accuracy κ2t .
This is guaranteed by requiring that the entire subspace
Sd(x̂) = {x̂+α′ed;α

′ ∈ [0, 2π)} to be updated is a subset
of the CoRe, i.e.,

Sd(x̂) ⊆ Z|(X,X̆),(σ,σ̆)(κ
2
t ), (12)

when the GP is trained on the augmented data
(X, X̆), (σ, σ̆) with new observation points X̆, σ̆. Let
N

t

shot be the total number of shots we use in the t-th iter-
ation. In one extreme, we can allocate each single shot
to an arbitrary position, i.e., choose α ∈ [0, 2π)N

t
shot

and set X̆ = {x̂ + αwed}
N

t
shot

w=1 ∈ RD×N
t
shot and σ̆ =

σ∗2(1)1
N

t
shot

, where σ∗2(1) is the shot noise with a single
measurement shot, and 1N denotes the all-one vector in the
N -dimensional space. Here, we note that the observation
noise variance is defined as a function of Nshots to be

σ∗2(Nshots) =
σ∗2

Nshots
,

where σ∗2 is the observation noise variance for single-shot
measurements. The optimum number of shots and their
distribution are given by solving

min
Nshot,α∈[0,2π)N

t
shot

N shot s.t. Sd(x̂)⊆Z|(X,X̆(α)),(σ,σ̆)(κ
2
t ).

(13)

The following theory implies that we do not need to solve
such a huge (N shot ∼ 103)-dimensional problem, and
guides us to simple approximate solutions (the proof is
given in Appendix C):

Theorem 3.1. Assume that, for an arbitrary x̂ ∈ [0, 2π)D,
we observed the function values y ∈ R1+2Vd at the equidis-
tant points X = {x̂ + αwed;αw = 2w

1+2Vd
π}2Vd

w=0 along
the d-th axis with the same observation noise variance σ2.
Then, the posterior variance of GP with the VQE kernel at
the test point x′ = x̂+ α′ed for arbitrary α′ ∈ [0, 2π) is

sX(x′,x′)=
σ2

(
(γ2+2Vd)

2 σ2

σ2
0
+(1+2Vd)

2γ2

)
(
(γ2+2Vd)

σ2

σ2
0
+1+2Vd

)(
(γ2+2Vd)

σ2

σ2
0
+(1+2Vd)γ2

) .
(14)

This theorem assumes that we do not use the previous ob-
served pointsX , and only use new 1+2Vd observed points
(including the point at x̂ or α0 = 0).

Notably, the posterior variance does not depend on α′, and is
therefore uniform along the 1D subspace. Figure 2 depicts
the GP uncertainty with equidistant and non-equidistant
observed points for Vd = 1 (left) and Vd = 3 (right). The
left plot shows that, in terms of the worst uncertainty within
the subspace, the optimal choice¶ for the Vd = 1 case is
not α = (0, π/2, 3π/2)⊤ = (0, π/2,−π/2)⊤—the setting
used in the original NFT (Nakanishi et al., 2020) —but the
equidistantα = (0, 2π/3, 4π/3)⊤ = (0, 2π/3,−2π/3)⊤—
the setting used for the baseline NFT in Nicoli et al. (2023a).

One might have naturally expected the uniform uncertainty
at the observed equidistant points {x̂ + 2w

1+2Vd
πed}2Vd

w=0

from the viewpoint of the Fourier analysis: GP with the
VQE kernel is equivalent to Bayesian linear regression with
the Fourier basis (8), and therefore the equidistant observa-
tions result in a regularized version of the discrete Fourier
transform (see Appendix C.1). However, the uniform uncer-
tainty between the equidistant points is not trivially expected,
because the posterior variance (5) has a quadratic form of
K ′, which can contain 2Vd-th order components (i.e., twice
higher frequency than the highest frequency of the trigono-
metric polynomial (9)), as observed in the non-equidistant

¶Here the “optimality” is with respect to the minimization (13)
of the total number of shots that makes the entire updated subspace
within the CoRe. For a fixed observation budget, the equidistant
observed points are proved to give the uniform uncertainty, which
is min-max optimal, i.e., it minimizes the maximum uncertainty.
The minimum observation cost can be obtained by adjusting the
total number of shots, while keeping the optimized observed points,
so that the uniform uncertainty (14) matches the required accuracy
κ. Note that this does not necessarily mean that the equidistant
measurements are optimal for the overall VQE performance. We
defer further analysis and a full ablation study relating the opti-
mality to the choice of the shift to future work, e.g., by combining
EMICoRe and SubsCoRe.
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Figure 2. Uncertainty of GP with the VQE kernel trained on equidistant (darker green, round markers) and non-equidistant (olive, triangle
markers) observation points. The left and right plots show the Vd = 1 and Vd = 3 cases, respectively. The green and olive solid lines refer
to the GP posterior uncertainty obtained after observing 1 + 2Vd points with an equidistant and non-equidistant spacing. For instance, in
the Vd = 1 case, the observations along a one-dimensional subspace (parallel to the d-axis) are performed at xd = π − α, π, π + α with
α being π

2
(olive) and 2π

3
(green) in the non-equidistant and equidistant cases, respectively. Following our theory, observing 1 + 2Vd

equidistant points leads to uniform posterior uncertainty.

case in Figure 2. One might have expected that the middle
points between the neighboring observed points would have
higher uncertainty, a belief disproved by Theorem 3.1.

An important practical implication of Theorem 3.1 is that
we can achieve uniform uncertainty—implying the min-max
optimality—by observing 1 + 2Vd equidistant points with
N

t

shot/(1 + 2Vd) shots each, which drastically simplifies
the problem (13). Furthermore, it is crucial for GP with
cubic complexity not to use too many training samples with
large observation noise, although the classical computation
cost is not counted in this paper. The following corollary
implies an even simpler alternative.
Corollary 3.2. The predictive uncertainty is upper-bounded
by the observation noise variance, i.e.,

sX(x′,x′) < σ2.

Based on the theory above, we propose variants of Sub-
sCoRe, all of which observe the fixed 1 + 2Vd equidis-
tant points X̆ = {x̂t−1 + αwed;αw = 2w

1+2Vd
π}2Vd

w=0 with
adapted observation noise variance σ̆ ∈ R1+2Vd

++ . Ignoring
the rounding error, the total number of shots is proportional
to N shot ∝ (∥σ̆∥1)−1. Therefore, under our fixed choice of
X̆ , the SubsCoRe problem (13) reduces to

max
σ̆∈R1+2Vd

++

∥σ̆∥1 s.t. Sd(x̂) ⊆ Z(X,X̆),(σ,σ̆)(κ
2
t ). (15)

The following variants give approximate feasible solutions.

SubsCoRe-Bound We set σ̆ = κ2t11+2Vd
, which satisfies

the SubsCoRe requirement, i.e., the constraint in Eq. (15),

according to Corollary 3.2.

SubsCoRe-Center We set σ̆ = (σ̆2
0 , σ̆

2, . . . , σ̆2)⊤, i.e.,
we tie the entries except for the variance σ̆2

0 at the previous
best point x̂t−1, and solve the SubsCoRe problem (15) by a
2D search with respect to σ̆2

0 and σ̆2.

SubsCoRe-Bound ignores the existence of previous training
data X , and therefore gives a loose bound. On the other
hand, SubsCoRe-Center makes use of the fact that GP al-
ready has low uncertainty (≤ κ2t−1) at the current best point
x̂t−1 after the previous iteration, and adjust the observa-
tion accuracy σ̆2

0 at x̂t−1 and the accuracy σ̆2 at the other
points separately. Therefore, SubsCoRe-Center is more effi-
cient than SubsCoRe-Bound. The difference in efficiency
is expected to be more prominent in the converging phase,
where the best point moves only slightly in each iteration,
and therefore, the GP can already posses a low uncertainty
over the subspace to be updated before new observations
are acquired.

Once we specify the necessary observation noise σ̆, the
number of shots is chosen such that σ∗2(Nshot) = σ̆2

w for
each observed point. Below, we describe the whole pro-
cedure of SubsCoRe-Center, which equips NFT with the
adaptive number of shots control. For further details on the
algorithm we defer the reader to Appendix D.2. Throughout
the manuscript, SubsCoRe will always implicitly refer to
SubsCoRe-Center unless specified otherwise.

SubsCoRe Algorithm SubsCoRe is initialized with a ran-
dom point X0 = (x̂0) and a first observation y0 = ŷ0 =

6
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Figure 3. Energy (left) and fidelity (right), as the difference from the ground-truth (see Eqs. (18) and (19)), achieved by our SubsCoRe-
Center and the baselines, NFT, SGLBO, and EMICoRe for the Ising model with (Q,L) = (5, 3). Both plots are on a logarithmic scale,
and the horizontal axis indicates the cumulative number of shots (per operator group) as the total quantum computation cost. The fidelity
by SGLBO is not shown since the original code does not store the optimal parameters x̂ to reproduce the quantum state |ψx̂⟩. However,
given its slower convergence in terms of energy (left), we expect that the achieved fidelity is also worse than our SubsCoRe-Center.

f∗(x̂0) + ε0 with observation noise σ̆2 = κ20. Then, it
iterates the following procedure: in each iteration step t,

1. Select an axis d ∈ {1, . . . , D} sequentially and ob-
serve the objective y̆ ∈ R1+2Vd at the 1+ 2Vd equidis-
tant points X̆ = {x̂t−1 + αwed;αw = 2w

1+2Vd
π}2Vd

w=0

along the d-th axis. Here, the observation variances
σ̆ are determined by SubsCoRe-Center (or SubsCoRe-
Bound), using the CoRe threshold κ2t , as well as the
training dataXt−1,σt−1 up to the previous iteration.

2. Train GP with updated training data Xt =
(Xt−1, X̆),σt = (σt−1, σ̆),yt = (yt−1, y̆).

3. Analytically find the minimum of the GP mean

x̂t = argmin
x′

µ|Xt,σt,yt(x′)

in the 1D subspace x′ = x̂t−1 + α′ed by applying the
trigonometric polynomial regression to the GP predic-
tions at 1 + 2Vd equidistant points.

4. Update the best score by ŷt = µ|Xt,σt,yt(x̂t).

5. Update the CoRe threshold for the next iteration by

κt+1 = max(C0, −C1 · Slope({ŷt
′}tt′=t−TAve

)).

(16)

In Eq. (16), Slope(·) estimates the progress of optimiza-
tion by linear regression to the TAve recent best values, and
C0, C1 ≥ 0 are the hyperparameters controlling the lower
bound and linear relation between κ and the slope, respec-
tively. In our experiments we set C0 so that the number of
shots is at most 1024 per data point (and per operator group),
which is a typical value achievable on current quantum hard-
wares. Upper-bounding the number of shots allows us to
keep the observation cost under control in the later stage of
optimization, where the energy improvement, and thus the
threshold κ, tends to be small. We set C1 = 1.

4. Experiment
4.1. Setup

We demonstrate the performance of our adaptive cost con-
trol method, following the same experimental setup as in
Nicoli et al. (2023a). Our Python implementation based on
Qiskit (Abraham et al., 2019), one of the most widely used
library for developing and simulating quantum programs, is
available at https://github.com/angler-vqe/subscore.

Hamiltonian and Quantum Circuit We focus on the
quantum Heisenberg Hamiltonian with open boundary con-
ditions,

H = −
∑

i∈{X,Y,Z}

[∑Q−1
j=1 (Jiσ

i
jσ

i
j+1) +

∑Q
j=1 hiσ

i
j

]
,

(17)

where {σi
j}i∈{X,Y,Z} are the Pauli operators acting on the

j-th qubit. The Heisenberg Hamiltonian is a widely-studied
benchmark for assessing VQE performance (Tilly et al.,
2022) because it is of high practical relevance—for example,
many lattice field theories can be represented as generalized
spin chains (Di Meglio et al., 2023; Funcke et al., 2023)
—and the true ground-state wave function can be analyti-
cally computed for a small number Q of qubits. For the
quantum circuit, we adopt the commonly used L-layered
Efficient SU(2) circuit with open boundary condi-
tions (see Nicoli et al. (2023a) for more details).

Evaluation Metrics We evaluate our methods with two
metrics: the best achieved true energy f∗(x̂) for f∗(·) de-
fined in Eq. (6), and the fidelity ⟨ψGS|ψx̂⟩ ∈ [0, 1], which
is the inner product between the true ground-state wave
function |ψGS⟩ and the wave function |ψx̂⟩ corresponding
to the optimized parameters x̂. For both metrics, we plot the
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Figure 4. Prior (top) and posterior (middle) GP with SubsCoRe-
Center (left) and SubsCoRe-Bound (right) in an SMO step. The red
solid lines are the true function f∗(x), and the blue solid lines and
shadows are the GP mean and uncertainty, respectively. The verti-
cal lines represent the previous best point x̂0 and the equidistant
shifts (x±) as visualized in the cartoon in Figure 1. The bottom
row reports the number of shots required by SubsCoRe-Center
and SubsCoRe-Bound at each observed point. Before the new
observations (i.e., prior), the previous best point x̂0 is already in
the CoRe, i.e., the uncertainty of GP is within the CoRe require-
ment (shown as black dashed lines). After the new observations
(i.e., posterior), the entire subspace is in the CoRe. We see the
gap (highlighted in orange) between the CoRe requirement and
the posterior uncertainty with SubsCoRe-Bound. This is because
SubsCoRe-Bound relies on a looser bound and assigns many shots
to the previous best point x̂0, on which the prior GP was already
trained accurately (see bottom-right plot).

difference (the smaller is the better) from the ground-truth
optimum, i.e.,

∆Energy = f∗(x̂)− ⟨ψGS|H|ψGS⟩, (18)
∆Fidelity = ⟨ψGS|ψGS⟩ − ⟨ψGS|ψx̂⟩

= 1− ⟨ψGS|ψx̂⟩, (19)

in the log scale. Here, |ψGS⟩ and ⟨ψGS|H|ψGS⟩ are the
ground-state wave function and the true ground-state energy,
respectively, both of which are computed analytically. As
the quantum computation cost, we count the total number
of measurement shots per operator group (see the footnote
2 in Section 2.2), i.e., the cumulative sum of Nshot over all
observations in the whole optimization process.

Baseline Methods We compare our SubsCoRe approach
to the state-of-the-art baselines, NFT (Nakanishi et al., 2020)
(with α = ± 2π

3 shifts), SGLBO (Tamiya & Yamasaki,
2022), and EMICoRe (Nicoli et al., 2023a). SGLBO is

a gradient-based method equipped with adaptive shot con-
trol, while NFT and EMICoRe are SMO-based approaches
for which no adaptive shot control technique was available
before our approach. Therefore, we evaluate NFT and EMI-
CoRe with a fixed number of shots Nshot = 1024, i.e., the
same setting as in Nicoli et al. (2023a).

Further details on the algorithms, including the parameter
setting, and the experiments are given in Appendices D and
E, respectively.

4.2. Performance Evaluation

We evaluate our SubsCoRe and the baseline methods on
the Ising Hamiltonian, a special case of the Heisenberg
Hamiltonian (17) with the coupling parameters set to JX =
−1, JY = JZ = 0, hX = hY = 0, hZ = −1, with the
(L = 3)-layered quantum circuit with (Q = 5)-qubits.
Figure 3 shows the achieved energy (18) and the fidelity
(19)—as the difference from the ground truth—with the
cumulative number of measurement shots in the horizontal
axis. On the right-hand side of each plot, we show the trial
density after 2.5 · 106 measurement shots are used. We ap-
plied the kernel density estimation over the 100 independent
seeded trials to produce the trial density. We observe that
SubsCoRe-Center outperforms the baselines with statistical
significance (p-value < 0.05 according to the Wilcoxon
signed-rank test), thus proving the usefulness of our adap-
tive cost control for SMO. We show the evolution of the
number of measurement shots taken by SubsCoRe-Center
as a function of the SMO steps in Appendix E.2.

Figure 4 shows the trained GP with SubsCoRe-Center (left)
and SubsCoRe-Bound (right), prior (top) and posterior (mid-
dle) to the acquisition of the new observations for an SMO
step. We see that the posterior uncertainty with SubsCoRe-
Center is almost uniform and just inside the CoRe require-
ment, i.e., µ(x)± κ. Crucially, fine-tuning the number of
measurement shots (bottom) allows not to consume shots
at the previous best point x̂0, which was already in the
CoRe for the prior GP (see the top plot). On the other hand,
SubsCoRe-Bound, which relies on a looser bound, allocates
shots also to the previous best point, making some regions
too accurate (highlighted by orange). This explains the infe-
rior efficiency of SubsCoRe-Bound, which will be shown in
Figure 5 in Section 4.3.

4.3. Discussion

GP vs. Suffix Averaging The SGLBO baseline is not
only equipped with adaptive shot control but also with
suffix averaging (SA), i.e., it takes the average of the
best point trail over the last, e.g., 10% iterations, i.e.,
x̂ = 1

0.1T

∑T
t=0.9T x̂

t. The idea behind SA is that, in the
converging phase, the best point can fluctuate around the
optimum because of the noisy observations, and therefore,
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Figure 5. Energy (left) and fidelity (right), as the difference from the ground-truth (see Eqs. (18) and (19)), achieved by SubsCoRe-Center
and SubsCoRe-Bound. The inferior efficiency of SubsCoRe-Bound is due to the fact that it relies on a looser bound.

taking the average over the optimization steps can better
align the best point to the true optimum. Significant im-
provement by using SA was reported in Tamiya & Yamasaki
(2022). We argue that our SubsCoRe enjoys this effect in
a statistically more pronounced way as it uses the GP sur-
rogate trained not only on the new observations but also on
those from the previous steps. We emphasize that, while
SGLBO also uses a GP surrogate, it is not trained on previ-
ous observations, and therefore, previous observations are
only leveraged through the SA heuristics.

SubsCoRe-Center vs. SubsCoRe-Bound As discussed
in Section 4.2, the SubsCoRe-Bound variant does not con-
sider the contribution from the previous observations. A
consequence can be observed in Figure 5, where SubsCoRe-
Bound is outperformed by SubsCoRe-Center, and the differ-
ence increases in the later phase of the optimization.

5. Conclusion
The intrinsic probabilistic nature of measurements is one
of the major drawbacks of quantum algorithms, to which
noise-resilient statistical techniques are expected to make
significant contributions. Our subspace in confident region
(SubsCoRe) approach for variational quantum eigensolvers
(VQEs) has shown to improve the optimization efficiency
by dynamically controlling the observation costs, and thus
reducing the quantum computation budget without sacrific-
ing the accuracy of the optimization. Here, the uncertainty
estimation, a key implement in Bayesian statistics, plays an
essential role. Specifically, harnessing the notion of the con-
fident region (CoRe) of Gaussian processes (GP), SubsCoRe
minimizes the observation costs while guaranteeing the re-
quired accuracy for prediction. Our theory, built upon the
unique physical property of VQEs and the analytic form of
GP regression, proved the uniform uncertainty of GP predic-
tions trained on equidistant observations, leading to simple

algorithms that approximate the optimal cost distribution.
The developed SubsCoRe outperforms the state-of-the-art
methods with and without adaptive cost control. Our anal-
ysis also clarified the relation between GP with the VQE
kernel and the Fourier analysis, which may facilitate further
development of efficient VQE algorithms. In future work,
we plan to run experiments on real quantum devices, and
thus benchmark our approaches in the presence of quantum
hardware noise. Another future plan is to apply our methods
to different Hamiltonians with high practical relevance in
quantum chemistry and lattice field theory.
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A. Limitations
The limitations of our approach are inherently related to those of VQEs. In fact, applications of the proposed method
on current quantum devices are mostly obstructed by hardware limitations. In addition to the probabilistic nature of the
measurement process, which we tackled in this paper, other types of noise resulting from imperfect isolation from the
environment and limited experimental control still significantly affect current quantum hardware. In light of this, the
SubsCoRe approach we proposed in this paper in principle does not suffer from crucial limitations per se, but indeed will
also be affected by the same bottlenecks of VQEs. Nonetheless, we envision that leveraging machine learning techniques
and Bayesian statistics, in particular BO and GP regression in this context, is particularly promising as it might allow us to
cope better with the inherent probabilistic nature of such hybrid quantum-classical algorithms.

B. Theoretical Details

C. Proofs of Theorem 3.1 and Corollary 3.2
We use basic properties of the discrete Fourier transform, derived by the root of unity, i.e., ξL = e2πi/L. Since

L−1∑
l=0

ξlwL =
1− ξwL

L

1− ξwL
= 0 for w = 1, . . . , L− 1,

we have

2Vd∑
v=0

e
vw 2πi

1+2Vd = 0 for w = 1, . . . , 2Vd.

Comparing the real and imaginary parts, we have

2Vd∑
v=0

cos

(
vw

2π

1 + 2Vd

)
=

{
1 + 2Vd for w = 0,

0 for w = 1, . . . , 2Vd,
(20)

2Vd∑
v=0

sin

(
vw

2π

1 + 2Vd

)
= 0 for w = 0, . . . , 2Vd. (21)

From the symmetry,

Vd∑
v=1

cos

(
vw

2π

1 + 2Vd

)
=

2Vd∑
v=Vd+1

cos

(
vw

2π

1 + 2Vd

)
, (22)

and thus

1 + 2

Vd∑
v=1

cos

(
vw

2π

1 + 2Vd

)
= 0 for w = 1, . . . , 2Vd. (23)

By using the basic equations (20)–(23), we will derive the predictive variance of GP in the following.

The kernel matrix for the training points {x̂+ 2w
1+2Vd

πed}2Vd
w=0 is Toeplitz as

K = σ2
0



τ0 τ1 τ2 · · · τ2Vd−1 τ2Vd

τ1 τ0 τ1 τ2Vd−1

τ2 τ1 τ0
...

. . .
τ2Vd−1 τ0 τ1
τ2Vd

τ2Vd−1 τ1 τ0


∈ R(1+2Vd)×(1+2Vd),

12
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where

τw =
γ2 + 2

∑Vd

v=1 cos
(

2vw
1+2Vd

π
)

γ2 + 2Vd
.

The test kernel components for a test point at x′ = x̂+ α′ed for arbitrary α′ ∈ [0, 2π) are

k′ = σ2
0


ρ0
ρ1
...

ρ2Vd

 ,

k′′ = σ2
0 ,

where

ρw =
γ2 + 2

∑Vd

v=1 cos
(
v
(

2wπ
1+2Vd

− α′
))

γ2 + 2Vd
.

Eq. (23) implies that

τw =

{
1 for w = 0,
γ2−1

γ2+2Vd
for w = 1, . . . , 2Vd,

and therefore

K = σ2
0

(
1 + 2Vd
γ2 + 2Vd

I1+2Vd
+

γ2 − 1

γ2 + 2Vd
11+2Vd

1⊤
1+2Vd

)
,

where IN and 1N denote the N -dimensional identity matrix and the N -dimensional vector with all entries equal to one,
respectively. The matrix inversion lemma gives(
K + σ2I1+2Vd

)−1

=
1

σ2
0

((
σ2/σ2

0 +
1 + 2Vd
γ2 + 2Vd

)
I1+2Vd

+
γ2 − 1

γ2 + 2Vd
11+2Vd

1⊤
1+2Vd

)−1

=
1

σ2
0

(
σ2/σ2

0 +
1 + 2Vd
γ2 + 2Vd

)−1(
I1+2Vd

+
γ2 − 1

(γ2 + 2Vd)σ2/σ2
0 + 1 + 2Vd

11+2Vd
1⊤
1+2Vd

)−1

=
1

σ2
0

(
σ2/σ2

0 +
1 + 2Vd
γ2 + 2Vd

)−1

(
I1+2Vd

− γ2 − 1

(γ2 + 2Vd)σ2/σ2
0 + 1 + 2Vd

11+2Vd

(
1 +

(1 + 2Vd)(γ
2 − 1)

(γ2 + 2Vd)σ2/σ2
0 + 1 + 2Vd

)−1

1⊤
1+2Vd

)

=
1

σ2
0

γ2 + 2Vd
(γ2 + 2Vd)σ2/σ2

0 + 1 + 2Vd

(
I1+2Vd

−
(
(γ2 + 2Vd)σ

2/σ2
0 + (1 + 2Vd)γ

2

γ2 − 1

)−1

11+2Vd
1⊤
1+2Vd

)

=
1

σ2
0

a(I1+2Vd
+ b11+2Vd

1⊤
1+2Vd

), (24)

where

a =
γ2 + 2Vd

(γ2 + 2Vd)σ2/σ2
0 + 1 + 2Vd

,

b = − γ2 − 1

(γ2 + 2Vd)σ2/σ2
0 + (1 + 2Vd)γ2

.

13
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By using Eqs. (20) and (21), we have

∥k′∥2 = σ4
0

2Vd∑
w=0

ρ2w

= σ4
0

2Vd∑
w=0

γ2 + 2
∑Vd

v=1 cos
(
v
(

2wπ
1+2Vd

− α′
))

γ2 + 2Vd

2

=
σ4
0

(γ2 + 2Vd)2

2Vd∑
w=0

{
γ4 + 4γ2

Vd∑
v=1

cos

(
v

(
2wπ

1 + 2Vd
− α′

))

+4

Vd∑
v=1

Vd∑
v′=1

cos

(
v

(
2wπ

1 + 2Vd
− α′

))
cos

(
v′
(

2wπ

1 + 2Vd
− α′

))}

=
σ4
0

(γ2 + 2Vd)2

2Vd∑
w=0

{
γ4 + 4γ2

Vd∑
v=1

cos

(
v

(
2wπ

1 + 2Vd
− α′

))

+2

Vd∑
v=1

Vd∑
v′=1

(
cos

(
(v + v′)

(
2wπ

1 + 2Vd
− α′

))
+ cos

(
(v − v′)

(
2wπ

1 + 2Vd
− α′

)))}

=
σ4
0

(γ2 + 2Vd)2

2Vd∑
w=0

{
γ4 + 4(γ2 − 1)

Vd∑
v=1

cos

(
v

(
2wπ

1 + 2Vd
− α′

))

+ 2

Vd∑
v=1

Vd∑
v′=0

(
cos

(
(v + v′)

(
2wπ

1 + 2Vd
− α′

))
+ cos

(
(v − v′)

(
2wπ

1 + 2Vd
− α′

)))}

=
σ4
0

(γ2 + 2Vd)2

{
γ4(1 + 2Vd) + 4(γ2 − 1)

Vd∑
v=1

2Vd∑
w=0

cos

(
v

(
2wπ

1 + 2Vd
− α′

))

+ 2

Vd∑
v=1

Vd∑
v′=0

2Vd∑
w=0

(
cos

(
(v + v′)

(
2wπ

1 + 2Vd
− α′

))
+ cos

(
(v − v′)

(
2wπ

1 + 2Vd
− α′

)))}

=
σ4
0

(γ2 + 2Vd)2

{
γ4(1 + 2Vd) + 4(γ2 − 1)

Vd∑
v=1

2Vd∑
w=0

cos
2wvπ

1 + 2Vd
cos (vα′)

+ 2

Vd∑
v=1

Vd∑
v′=0

2Vd∑
w=0

(
cos

2w(v + v′)π

1 + 2Vd
cos ((v + v′)α′) + sin

2w(v + v′)π

1 + 2Vd
sin ((v + v′)α′)

+ cos
2w(v − v′)π

1 + 2Vd
cos ((v − v′)α′) + sin

2w(v − v′)π

1 + 2Vd
sin ((v − v′)α′)

)}

=
σ4
0

(γ2 + 2Vd)2

{
γ4(1 + 2Vd) + 2

Vd∑
v=1

(1 + 2Vd)

}

=
σ4
0

(γ2 + 2Vd)2
{
γ4(1 + 2Vd) + 2Vd (1 + 2Vd)

}
= σ4

0

(1 + 2Vd)(γ
4 + 2Vd)

(γ2 + 2Vd)2
, (25)

and

∥k′∥1 = k′⊤11+2Vd
= σ2

0

2Vd∑
w=0

γ2 + 2
∑Vd

v=1 cos
(
v
(

2wπ
1+2Vd

− α′
))

γ2 + 2Vd

14
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= σ2
0

γ2(1 + 2Vd) + 2
∑Vd

v=1

∑2Vd

w=0 cos
(
v
(

2wπ
1+2Vd

− α′
))

γ2 + 2Vd

= σ2
0

γ2(1 + 2Vd) + 2
∑Vd

v=1

∑2Vd

w=0

(
cos 2wvπ

1+2Vd
cos vα′ + sin 2wvπ

1+2Vd
sin vα′

)
γ2 + 2Vd

= σ2
0

(1 + 2Vd)γ
2

γ2 + 2Vd
. (26)

With Eqs. (24)–(26), the predicitive variance is computed as

s(x′,x′) = k
′′
− k′⊤

(
K + σ2I1+2Vd

)−1
k′

= σ2
0 − k

′⊤ 1

σ2
0

a
(
I1+2Vd

+ b11+2Vd
1⊤
1+2Vd

)
k′

= σ2
0 −

1

σ2
0

a
(
∥k′∥2 + b(k′⊤11+2Vd

)2
)

= σ2
0 −

1

σ2
0

a

(
σ4
0

(1 + 2Vd)
(
γ4 + 2Vd

)
(γ2 + 2Vd)2

+ bσ4
0

(1 + 2Vd)
2γ4

(γ2 + 2Vd)2

)

= σ2
0

(γ2 + 2Vd)
2 − a

(
(1 + 2Vd)

(
γ4 + 2Vd

)
+ −(1+2Vd)

2γ4(γ2−1)
(γ2+2Vd)σ2/σ2

0+(1+2Vd)γ2

)
(γ2 + 2Vd)2

= σ2
0

(γ2 + 2Vd)
2 − γ2+2Vd

(γ2+2Vd)σ2/σ2
0+1+2Vd

(
(1+2Vd)(γ

4+2Vd)(γ
2+2Vd)σ

2/σ2
0+(1+2Vd)

2γ2(γ2+2Vd)

(γ2+2Vd)σ2/σ2
0+(1+2Vd)γ2

)
(γ2 + 2Vd)2

= σ2

(
(γ2 + 2Vd)

2σ2/σ2
0 + (1 + 2Vd)

2γ2

((γ2 + 2Vd)σ2/σ2
0 + (1 + 2Vd)) ((γ2 + 2Vd)σ2/σ2

0 + (1 + 2Vd)γ2)

)
, (27)

which proves Theorem 3.1.

Since (γ2 + 2Vd)σ
2/σ2

0 > 0, we have

s(x′,x′) < σ2

(
(γ2 + 2Vd)

2σ2/σ2
0 + (1 + 2Vd)

2γ2

(1 + 2Vd) ((γ2 + 2Vd)σ2/σ2
0 + (1 + 2Vd)γ2)

)
= σ2,

which proves Corollary 3.2. In addition, asymptotic expansion of Eq.(27) for the case when σ2/σ2
0 ≪ 1 gives the following

corollary.

Corollary C.1. If σ2

σ2
0
≪ 1,

sX(x′,x′) =


σ2
(
1 +O(σ

2

σ2
0
)
)

for γ2 = Θ(1),

σ2
(

2Vd

1+2Vd
+O(σ

2

σ2
0
)
)

for γ2 → +0,

σ2
(

1
1+2Vd

+O(σ
2

σ2
0
)
)

for γ2 → ∞.

Corollary C.1 implies that, for any γ2 ∈ (0,∞), the asymptotic uncertainty has the same form. Setting γ2 → +0 removes
the constant term, and thus the degree of freedom is reduced by one. Similarly γ2 → ∞ removes the 2Vd terms except the
constant, and thus the degree of freedom is reduced by 2Vd.

C.1. Relation to Fourier Analysis

C.1.1. EQUIVALENCE BETWEEN GP REGRESSION AND BAYESIAN LINEAR REGRESSION

In general, it is known that the GP regression model

p(yn|xn, f(·)) = ND(yn; f(xn), σ
2
n), (28)
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p(f) = GP(f ; 0(·), k(·, ·)), (29)
(30)

is equivalent to the Bayesian linear regression model

p(yn|xn, b) = ND(yn; f(xn; b), σ
2
n), (31)

f(x; b) = b⊤ϕ(x), (32)
p(b) = NH(b;0, IH), (33)

where ϕ(x) ∈ RH is the finite-dimensional input feature such that k(x,x′) = ϕ(x)⊤ϕ(x′). This can be shown as follows.

LetX = (x1, . . . ,xN ) ∈ RD×N ,y = (y1, . . . , yN )⊤ ∈ RN be the training data, andΦ = (ϕ(x1), . . . ,ϕ(xN )) ∈ RH×N

be the corresponding input features. The posterior of the Bayesian liner regression model (31)–(33) is

p(b|X,y) ∝ p(y|X, b)p(b)

∝ exp

(
− (y −Φ⊤b)⊤S−1(y −Φ⊤b)

2
− b⊤I−1

H b

2

)

∝ exp

(
− (b− µb)

⊤
Σ−1

b (b− µb)

2

)
,

where

µb = ΣbΦS
−1y,

Σb =
(
ΦS−1Φ⊤ + IH

)−1

= IH −Φ
(
S +Φ⊤Φ

)−1

Φ⊤.

Therefore, the posterior is

p(b|X,y) = NH(b;µb,Σb).

The noiseless predictions f ′ = (f(x′
1), . . . , f(x

′
M ))⊤ ∈ RM at the test points X ′ = (x′

1, . . . ,x
′
M ) ∈ RD×M with the

corresponding features Φ′ = (ϕ(x′
1), . . . ,ϕ(x

′
M )) ∈ RH×M follow

p(f ′|X ′,X,y) = NM (y′;µf ′ ,Σf ′),

µf ′ = Φ′⊤µb

= Φ′⊤ΣbΦS
−1y,

= Φ′⊤
(
IH −Φ

(
S +Φ⊤Φ

)−1

Φ⊤
)
ΦS−1y

=

(
Φ′⊤Φ−Φ′⊤Φ

(
S +Φ⊤Φ

)−1

Φ⊤Φ

)
S−1y

= Φ′⊤Φ

(
IN −

(
S +Φ⊤Φ

)−1

Φ⊤Φ

)
S−1y

=K ′⊤
(
IN − (S +K)

−1
K
)
S−1y

=K ′⊤
(
S−1 − (S +K)

−1
KS−1

)
y

=K ′⊤ (S +K)
−1
y (34)

Σf ′ = Φ′⊤ΣbΦ
′

= Φ′⊤
(
IH −Φ

(
S +Φ⊤Φ

)−1

Φ⊤
)
Φ′

= Φ′⊤Φ′ −Φ′⊤Φ
(
S +Φ⊤Φ

)−1

Φ⊤Φ′
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=K ′′ −K ′⊤ (S +K)
−1
K ′, (35)

which match the posterior (3)–(5) of the GP regression model (28)–(29). Here, we obtained Eq. (34) by using the matrix
inversion lemma

(A+UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

withA = S,U = S,C = S−1,V =K, namely,

(S + SS−1K)−1 = S−1 − S−1S((S−1)−1 +KS−1S)−1KS−1

= S−1 − (S +K)−1KS−1.

C.1.2. RELATION TO FOURIER TRANSFORM

Similarly to the analysis in Appendix C, we compute the posterior mean of the GP regression at a test point x′ = x̂+ α′ed,

µ(x′) = k′⊤
(
K + σ2I1+2Vd

)−1
y,

= k′⊤
1

σ2
0

a
(
I1+2Vd

+ b11+2Vd
1⊤
1+2Vd

)
y

=
1

σ2
0

a
(
k′⊤y + bk′⊤11+2Vd

1⊤
1+2Vd

y
)

=
1

σ2
0

a

σ2
0

(
2Vd∑
w=0

yw
γ2 + 2

∑Vd

v=1 cos
(
v
(

2wπ
1+2Vd

− α′
))

γ2 + 2Vd

)
+ bσ2

0

(1 + 2Vd)γ
2

γ2 + 2Vd

2Vd∑
w=0

yw


=

a

γ2 + 2Vd

2Vd∑
w=0

yw

(
γ2 + 2

Vd∑
v=1

cos

(
v

(
2wπ

1 + 2Vd
− α′

))
+ b(1 + 2Vd)γ

2

)

=
a

γ2 + 2Vd

2Vd∑
w=0

yw

(
γ2 + 2

Vd∑
v=1

{
cos v

(
2wπ

1 + 2Vd

)
cos vα′ + sin v

(
2wπ

1 + 2Vd

)
sin vα′

}

− (γ2 − 1)(1 + 2Vd)γ
2

(γ2 + 2Vd)σ2/σ2
0 + (1 + 2Vd)γ2

)

=
a

γ2 + 2Vd

2Vd∑
w=0

yw

(
2

Vd∑
v=1

{
cos v

(
2wπ

1 + 2Vd

)
cos vα′ + sin v

(
2wπ

1 + 2Vd

)
sin vα′

}

+
γ2
(
(γ2 + 2Vd)σ

2/σ2
0 + (1 + 2Vd)γ

2
)
− (γ2 − 1)(1 + 2Vd)γ

2

(γ2 + 2Vd)σ2/σ2
0 + (1 + 2Vd)γ2

)

=
1

(γ2 + 2Vd)σ2/σ2
0 + 1 + 2Vd

2Vd∑
w=0

yw

(
2

Vd∑
v=1

{
cos v

(
2wπ

1 + 2Vd

)
cos vα′ + sin v

(
2wπ

1 + 2Vd

)
sin vα′

}

+
γ2(γ2 + 2Vd)σ

2/σ2
0 + (1 + 2Vd)γ

2

(γ2 + 2Vd)σ2/σ2
0 + (1 + 2Vd)γ2

)

= η0 +

Vd∑
v=1

(
ηcos,v

√
2 cos vα′ + ηsin,v

√
2 sin vα′

)
,

where

η0 =
γ2

(γ2 + 2Vd)σ2/σ2
0 + (1 + 2Vd)γ2

2Vd∑
w=0

yw,

ηcos,v =
1

(γ2 + 2Vd)σ2/σ2
0 + 1 + 2Vd

2Vd∑
w=0

yw
√
2 cos v

(
2wπ

1 + 2Vd

)
,
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Table 1. Algorithm-specific choice of parameters for EMICoRe and SubsCoRe for all experiments (unless specified otherwise).

Algorithm-specific parameters

--acq-params EMICoRe params as in Nicoli et al. (2023a)

func func=ei Base acq. func. type
optim optim=emicore Optimizer type
pairsize (JSG) 20 # of candidate points
gridsize (JOG) 100 # of evaluation points
corethresh (κ) 1.0 CoRe threshold κ
corethresh_width (TAve) 10 # averaging steps to update κ
coremin_scale (C0) 0.0 Coefficient C0 for updating κ
corethresh_scale (C1) 1.0 Coefficient C1 for updating κ
samplesize (NMC) 100 # of MC samples
smo-steps (TNFT) 0 # of initial NFT steps
smo-axis True Sequential direction choice

--acq-params SubsCoRe params this paper||

optim readout Optimizer type
readout-strategy center/core Alg type SubsCoRe/SubsCoRe-Bound
corethresh-strategy linreg Linear regression for κ
corethresh (κ) 512 Initial Nshots for CoRe
corethresh_width (TAve) 40 # averaging steps to update κ
coremin_scale (C0) 1024 Coefficient C0 for updating κ
corethresh_scale (C1) 1.0 Coefficient C1 for updating κ
coremetric readout Metric to set CoRe

ηsin,v =
1

(γ2 + 2Vd)σ2/σ2
0 + 1 + 2Vd

2Vd∑
w=0

yw
√
2 sin v

(
2wπ

1 + 2Vd

)
.

When γ = 1,

η0 =
1

(1 + 2Vd) (σ2/σ2
0 + 1)

2Vd∑
w=0

yw,

ηcos,v =
1

(1 + 2Vd) (σ2/σ2
0 + 1)

2Vd∑
w=0

yw
√
2 cos v

(
2wπ

1 + 2Vd

)
,

ηsin,v =
1

(1 + 2Vd) (σ2/σ2
0 + 1)

2Vd∑
w=0

yw
√
2 sin v

(
2wπ

1 + 2Vd

)
,

which is the regularized discrete Fourier transform, i.e., converges to the standard Fourier transform as σ2/σ2
0 → 0.

D. Algorithm Details
D.1. Parameter Setting

Every algorithm evaluated in our benchmarking analysis has several hyperparameters to be set. For transparency and to
allow the reproduction of our experiments, we detail the choice of parameters for EMICoRe and SubsCoRe in Table 1. The
SGLBO results were obtained using the original code from Tamiya & Yamasaki (2022) and we used the default setting
from the original paper. For the NFT run, we used the default parameters specified in Table 2. For (classical) computational

||All hyperparameters not specified in the table are set to the default values in Nicoli et al. (2023a).
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efficiency, all EMICoRe and SubsCoRe runs used the inducer option retaining only the last < 100 measured points once
more than 120 points were stored in the GP. Specifically, after determining the points to be discarded, we train a temporary
GP on those points and replace them with the pivot point right after the latest discarded points, along with its prediction by
the temporary GP. This allows the GP to be of constant size throughout the optimization.

D.2. Pseudocode

In this section we provide a detailed description of our proposed algorithm. Specifically, Algorithm 1 describes the full
SubsCoRe algorithm while Algorithm 2 focuses on the sub-routine used therein.

Algorithm 1 (SubsCoRe Algorithm) Optimization scheme using the SubsCoRe subroutine, as described in Algo-
rithm 2, for finding the optimal parameters x̂ for the quantum circuit. The optimization stops when the total number of
measurement shots reaches the maximum number of observation shots allowed, i.e., Ntot−shots. To avoid cluttering
notation, the algorithm is restricted to the case where Vd = 1. Generalization to an arbitrary Vd is straightforward.
Input :

• x̂0: initial starting point (best point)
• N̄0: initial number of shots for starting point
• κ0 : Initial CoRe threshold at step t = 0.

Parameters :
• Vd = 1
• D : number of parameters to optimize, i.e., x̂ ∈ RD .
• α̂ : shift from best point at the previous step (default to α̂ = 2π

3
)

• Ntot-shots : Total # of shots, i.e., maximum allowed quantum computing budget.
Output :

• x̂T : optimal choice of parameters for the quantum circuit.

1 n← 0 /* initialize consumed shot budget */
2 t← 0 /* initialize optimization step */
3 d← 0 /* initialize optimization subspace/ direction */

4 y0 ← quantum circuit(parameters=x̂0, shots=N̄0)/* measure initial best point */

5 X0, y0, σ0 ← (x̂0), (y0), (
η2

N0
) /* initialize gaussian process */

6 while n < Ntot-shots do
7 X̆←

(
x̂t − α̂ · ed, x̂

t, x̂t + α̂ · ed

)
/* choose points to measure along d */

8 N̄ t+1 ← choose shots(Xt, yt, σt, X̆, κt, d) /* choose number of shots (Alg. 2) */

9 for i ∈ {1, ..., |X̆|} do
10 y̆i ← quantum circuit(parameters=X̆i, shots=N̄0)/* measure chosen points */

11 σ̆i ← η2

N̄t+1
i

12 end
13 y̆ , σ̆ ← (y̆1, ..., y̆|X̆|) , (σ̆1, ..., σ̆|X̆|)

14 Xt+1, yt+1, σt+1 ← (Xt , X̆), (yt , y̆), (σt , σ̆) /* add new points to gaussian process */

15 x̂t+1 ← argminx′ µ|Xt+1,σt+1,yt+1(x′) /* find point with minimum GP mean on d */

16 ŷt+1 ← µ|Xt+1,σt+1,yt+1(x̂t+1) /* remember current minimum GP mean as best value */

17 if t > TAve then
18 κt+1 ← max(C0, −C1 · Slope({ŷt

′
}t+1
t′=(t+1)−TAve

)). /* update the CoRe threshold */

19 /* N.B. Slope(·) estimates the progress of optimization by linear regression to
the TAve recent best values. */

20 end
21 t← t+ 1 /* update the step */

22 n← n+
∑

i N̄
t+1
i /* update the consumed shot budget */

23 d← (d+ 1) mod D /* select the new subspace/direction to optimize */
24 end
25 return x̂T
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Algorithm 2 (SubsCoRe Subroutine to identify the number of shots) Find the number of shots for the points
chosen to be measured in SubsCoRe. Can be used for either SubsCoRe-Bound, or SubsCoRe-Center.
Input :

• Xt,yt,σt : Gaussian Process at step t
• X̆ : Points for which to choose the number of shots (in order: left shift, center, right shift; see line 7 of Alg. 1)
• κ : CoRe threshold at step t.
• d : direction along which X̆ are distributed

Parameters :
• Vd = 1
• η2 : measurement variance using a single shot.

Output :
• N̄t+1 : shots for performing new measurements at step t+ 1.

1 begin
2 Sd(X̆1)← {X̆1 + α · ed ; α ∈ [0, 2π)}; /* define points along d */

3 σ̆± ← κ /* initialize shifted point variance to worst case */

4 for σ̃ ∈ [η, κ] do
5 /* create temporary GP copies, add chosen points with σ̃ observation noise */

6 Xt′ , yt′ , σt′ ← (Xt , X̆), (yt , 0, 0, 0), (σt , σ̃, σ̃, σ̃)

7 /* get smallest observation noise for which temporary GP’s prediction of all
points along d are within the core */

8 if (∀x ∈ Sd(X̆1)) : s|Xt′ ,σt′ (x,x) ≤ κ2) ∧ (σ̆± > σ̃) then
9 σ̆± ← σ̃

10 end
11 end
12 N̄± ← η2

σ̆±
/* compute shots from variance through single shot variance η2 */

13 if using SubsCoRe-Bound then
14 N̄t+1 ← (N̄±, N̄±, N̄±) /* choose the same number of shots for each point */
15 return N̄t+1

16 end
17 /* otherwise, we use SubsCoRe-Center, where we reevaluate the center */

18 σ̆0 ← κ /* initialize center point variance to worst case */

19 for σ̃ ∈ [η, κ] do
20 /* create temporary GP copies, add shifted points with σ̆± and center with σ̃

observation noise */

21 Xt′ , yt′ , σt′ ← (Xt , X̆), (yt , 0, 0, 0), (σt , σ̆±, σ̃, σ̆±)

22 /* get smallest observation noise for which temporary GP’s prediction of all
points along d are within the core */

23 if (∀x ∈ Sd(X̆1)) : s|Xt′ ,σt′ (x,x) ≤ κ2) ∧ (σ̆0 > σ̃) then
24 σ̆0 ← σ̃
25 end
26 end
27 N̄0 ← η2

σ̆0
/* compute shots from variance through single shot variance η2 */

28 N̄t+1 ← (N̄±, N̄0, N̄±) /* choose shots for center different from shifted points */
29 return N̄t+1

30 end

E. Experimental Details
E.1. Experimental Setting

As mentioned in the main text, we follow the experimental setup in Nicoli et al. (2023a). Specifically, starting from the
quantum Heisenberg Hamiltonian, we focus on the special case of the Ising Hamiltonian at the critical point by choosing the
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Table 2. Default choice of circuit parameters and hyperparameter optimization (for EMICoRe and SubsCoRe) in all experiments (unless
specified otherwise).

Deafult params

--n-qbits 5 # of qubits
--n-layers 3 # of circuit layers
--circuit esu2 Circuit name
--pbc False Open Boundary Conditions
--n-iter 3*10**6 # max number of readouts
--iter-mode readout # max number of readouts
--kernel vqe Name of the kernel

--hyperopt Hyperparams optim

optim grid Grid-search optimization of γ
max_gamma 20 Max value for γ
interval 100*1+20*9+10*100 Scheduling for grid-search
steps 90 # steps in grid
loss loo Loss type

suitable couplings, namely

Ising Hamiltonian at criticality: J = (−1.0, 0.0, 0.0); h = (0.0, 0.0, −1.0).

It is important to note that for the system at hand, this choice of parameters already represents a challenging setup for a fixed
number of qubits, as discussed in Sec. I.2 in Nicoli et al. (2023a).

For all methods, we stopped the optimization when a maximum number of cumulative shots (total measurement budget
on the quantum computer) is reached; unless specified otherwise we set this cutoff to Nmax

shots = 2.5 · 106. We based our
implementation on the EMICoRe code available on GitHub (Nicoli et al., 2023b) at https://github.com/emicore/emicore.
Since EMICoRe and SubsCoRe use a GP combined with the VQE kernel (Nicoli et al., 2023a), we need to set the kernel
parameters γ and σ0. Similarly to Nicoli et al. (2023a), we set σ0 based on a rough approximation of the ground-state energy,
and optimize γ by the leave-one-out cross validation with grid-search (90 points) in the range [γmin, γmax] = [

√
2, 20]. γmax

and the frequency of the γ update can be specified by max_gamma and interval, respectively, in our code (see Table 2).
For NFT, we used the fixed equidistant shifts α = ± 2π

3 .

Each experiment shown in the paper has been repeated 100 times (independent seeded trials) with different starting points
determined by the seeds. We aggregated the statistics from these independent seeded trials and presented them in our plots.
For a fair comparison, we used the same starting point in each trial (i.e., for each corresponding seed) for all algorithms. All
experiments were conducted on Intel Xeon Silver 4316 @ 2.30GHz CPUs.

E.2. Number of Shots per SMO Step

The adaptive number of total shots (for all measurements combined) per SMO step for SubsCoRe-Center (red) is shown in
Figure 6.
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Figure 6. Number of measurement shots (Readout) taken by SubsCoRe-Center for each SMO step. The x-axis indicates the SMO step
while the y-axis represents the total number of measurement shots taken at every step (i.e., distributed over the three observed points per
step).
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