
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARD PRACTICAL LEARNING-BASED FREQUENCY
ESTIMATION WITHOUT GROUND TRUTH

Anonymous authors
Paper under double-blind review

ABSTRACT

Estimating the frequency of items on the high-volume, fast data stream has been
extensively studied in many areas, such as database and network measurement.
Traditional sketch algorithms only allow to give very rough estimates with limited
memory cost, whereas some learning-augmented algorithms have been proposed
recently, their offline framework requires actual frequencies that are challenging
to access in general for training, and speed is too slow for real-time processing,
despite the still coarse-grained accuracy. To this end, we propose a more practical
learning-based estimation framework namely UCL-sketch, by following the line
of equation-based sketch to estimate per-key frequencies. In a nutshell, there are
two key techniques: online training via equivalent learning without ground truth,
and highly scalable architecture with logical estimation buckets. We implemented
experiments on both real-world and synthetic datasets. The results demonstrate
that our method greatly outperforms existing state-of-the-art sketches regarding
per-key accuracy and distribution, while preserving resource efficiency. Our code
is attached in the supplementary material, and will be made publicly available.

1 INTRODUCTION

The frequency or volume estimation of unending data streams is a concern in many domains, starting
with telecommunications but spreading to social networks, finance, and website engine. In network
fields, for example, professionals want to keep track of the activity frequency to identify overall net-
work health and potential anomalies or changes in behavior, which, however, is often challenging
because the amount of information may be too large to store in an embedded device or to keep con-
veniently in fast storage (Cormode, 2017). As a consequence, sketch, which is a set of counters or
bitmaps associated with hash functions, and a set of simple operations that record approximate infor-
mation (Yang et al., 2018b), has grown in popularity in the context of high-velocity data streams and
limited computational resources. Such an approximate algorithm is much faster and more efficient,
yet this comes at the expense of unsatisfactory accuracy and cover proportion, especially when fac-
ing unbalanced stream characteristics, such as a Zipf or Power-law distribution (Kumar et al., 2004;
Roy et al., 2016).

On the other hand, recent years have witnessed the integration of deep learning technology with nu-
merous classic algorithms: index (Kraska et al., 2018), bloom filter (Mitzenmacher, 2018; Rae et al.,
2019), caching (Lykouris & Vassilvitskii, 2021), graph optimization (Khalil et al., 2017; Feng et al.,
2023) and so on. In particular, the research about learning-augmented streaming algorithms (Hsu
et al., 2019; Jiang et al., 2020; Du et al., 2021; Yan et al., 2022; Cheng et al., 2023; Aamand et al.,
2024) is receiving significant attention due to the powerful potential of machine learning (ML) to
relieve or eliminate the binding of data characteristics and the sketch design. Their typical workflow
involves training a heavy hitter oracle, which receives a key and returns a prediction of whether it
will be heavy or not, then inserts the most frequent keys into unique buckets and applies a sketch to
the remaining keys. Although filtering heavy items has been proven to improve the overall sketch
performance on heavy-tailed distribution (Roy et al., 2016; Hsu et al., 2019), these offline and su-
pervised methods could hardly work in real-world applications. First, an unavoidable difficulty in
designing algorithms in the learned sketch model is that ground truth like actual frequencies or labels
for which key is large are not known in advance (Jiang et al., 2020). Moreover, since their models
are only fitted on the past data, the prediction performance of the oracle tends to deteriorate rapidly
over time. That is to say, the neural network must be retrained with new labeled datasets frequently,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Learned

Oracle

Buckets

& Sketch

Buckets

& Sketch

Learned

Solver

Past Streaming

Dataset

Label

Offline

Training

key

freq x

…

… y

Insertion InsertionRecovery Recovery

… …

Input Data Stream Input Data Stream

Online

Training

Sketch Counters

Sample

Our ApproachPrior Works

ICLR 2019, 2020

ICML 2021

NeurIPS 2023
Collect

key

freq x

…

… y

Figure 1: Comparison between the previous learning-augmented sketches and our studied
learning-based sketch: In our approach, we empower the sketch with learning technologies in the
recovery phase to improve streaming throughput. The model is online trained using just compressed
counters in the sketch, which is much more practical and efficient than the prior works.

therefore, all the above-mentioned sketches face a common problem in terms of updating the out-
of-date classifier (Li et al., 2020). Besides, the idea of passing a deep model to reduce conflicts also
incurs more insertion time and space cost, which may not be advisable for hashing-intense situations
by considering data stream is processed sequentially in only one pass.

Building upon the limitations observed in the “hashing-enhanced” learning strategy, our study here
is primarily motivated by equation-based sketches (Fu et al., 2020; Sheng et al., 2021; Huang et al.,
2021), from the perspective of compressed nature of sketching algorithms (Cormode, 2011). Specif-
ically, they employed a compressive sensing (CS) approach in the query phase to achieve a very low
relative error, given counter values and per-key aggregations. While these works showed great ap-
plications of the CS theory (Cormode & Muthukrishnan, 2005a) to sketch-based estimation, their
sensing matrix constructing and iterative-optimization-style recovery operation to get all frequencies
of observed keys introduces considerable time and memory complexity even with state-of-the-art
numerical solvers (Dalt et al., 2022).

Consequently, one cannot help but pose the following intriguing question: Can we design a learning-
based sketch (without ground truth) via the linear system by training and recovering on the fly?

The comparison between the question-oriented approach in this work and existing learned sketches
is shown in Fig. 1. Without slowing down the conventional sketch insertions, our approach contin-
uously trains the ML model to recover per-key frequencies using only sketch counters. Although
promising, the process raises the following two challenges: (1) The first is self-supervision. Unsu-
pervised learning, without access to real frequencies or labels, is crucial for overcoming the imprac-
ticalities associated with existing learning-based frequency estimation algorithms. (2) The second
is scalability or complexity. Many modern streaming scenarios have evolved into complex systems
featuring tens of thousands of distinct items, and the entire key space invariably includes some un-
certain keys that will be observed in the future. To decrease the complexity for per-key prediction,
models dealing with such data need to be highly scalable as the size of streams grows infinitely.

To address these challenges, we introduce a new frequency estimation framework called UCL-
sketch (Unsupervised Compressive Learning Sketch), which aims to integrate the advantages of
both equation-based and learned sketching approaches. This framework achieves a significant im-
provement in practical feasibility and accuracy compared to learning-augmented algorithms, while
maintaining substantially lower query overhead than equation-based competitors. A notable distinc-
tion from prior works is that our model is entirely ground-truth free, relying solely on downsampled
frequencies for online training. This property endows UCL-sketch with great flexibility and the
capability for quick response to streaming distribution drift. To realize these benefits, we theo-
retically and empirically demonstrate that the recovery function can be learned from compressed
measurements alone using an equivalent learning scheme, given per-key aggregations and keys set.
Additionally, to mitigate the impact of large-scale and unbounded streams, we adopt the concept
of logical buckets to split and jointly learn multiple bucket-associated mappings with shared pa-
rameters, leading to an efficient and expandable architecture. Experimental results demonstrate the
potential of our proposed algorithm through detailed evaluations of the frequency estimation prob-
lem. Our contributions can be summarized as follows:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Data Plane Control Plane

Monitor Device

Centralized Server

Key Tracking Mechanism

Data Structure (Local Counters)

()1 1k , v

()1 1k , v

()2 2k , v

()1 3k , v

()i jk , v

…

Hash Functions

& Keys Set

1c 2c 3c 4c 5c 6c …

…

kc

k 1c + k 2c + k 3c + k 4c + k 5c +

Insert Query

Data Stream

k 6c +

Application
2kc

Report

Sample

Construct

Equation

Solver

Measurement Vector

Sensing Matrix

Per-key

Volume

Vector

Figure 2: The overall processing framework of equation-based sketch: In the data plane, it builds
a local sketch to record the data stream and a key tracking mechanism for new item identification and
reporting. After the centralized server receives sketch counters and keys from the monitor device,
the control plane can recover the frequencies through solving an under-constrained equation system.

• We open up a new direction of learning-based frequency estimation algorithm design.
Specifically, we propose a more practical framework with learning technologies, dubbed
as UCL-sketch, to recover per-key frequencies from compressed counters in the sketch,
which is scalable, accurate, and self-supervised.

• We further provide a theoretical performance analysis of the ULC-sketch, and present how
our training scheme enables solving data sketching problems without ground truth.

• We conduct an extensive evaluation with real-world and synthetic datasets to show that the
proposed sketching method brings noticeable performance gain over existing state-of-the-
art sketches.

2 PRELIMINARIES

2.1 KEY IDEAS OF EQUATION-BASED SKETCH

We follow prior studies that uncover the linear compression nature of equation-based sketch frame-
work (Fu et al., 2020; Sheng et al., 2021; Huang et al., 2021). Typically, a sketching algorithm
comprises an insertion component that feeds the key-value input to a compact structure that approx-
imates these key-value pairs with one or multiple hash-based buckets arrays, a recovery component
that inverses queried pairs from key-aggregations based on the same set of hash functions. Theo-
rem 1 establishes the equivalence between the sketch with the linear system as follows:

Theorem 1. The goal of frequency estimation based on a linear sketch is equivalent to solving
linear equations from the given keys, hash functions, and counters. Let x ∈ CN denote the vector
of the streaming key-frequency sequence and y ∈ CM denote sketch counters, the insertion process
corresponds to y = Ax, while the result of recovery phase corresponds to

x = A†y + (I −A†A)x, (1)

where A ∈ CM×N is an indicator matrix of mapping the vector x to a buckets array y, and A† ∈
CN×M satisfies AA†A ≡ A.

The proof can be found in Appendix C. As shown in Fig. 2, the equation-based sketch needs to build
a local sketch like CM-sketch in the data plane and perform its original update operation. It deploys
an additional key tracking mechanism to identify new keys and transfer them to the control plane.
What distinguishes the design from other sketches is that it leverages an equation-based approach
to compensate for per-key error caused by counter sharing in the recovery phase (or control plane),
which can be concluded as three steps: (i) Transform sketch counters to the measurement vector y.
(ii) For all distinct stream items, construct a sketch operator A based on the hash functions that map
them in the sketch. (iii) Fix the system of linear equations by an equation solver.

2.2 PROBLEM STATEMENT

Simply speaking, we formulate our frequency estimation algorithms via compressive sensing (CS),
like the equation-based sketch introduced in Section 2.1. Let a data stream of running length n be
a sequence of n tuples. The t-th tuple is denoted as (kt, vt), where kt is a data-item key used for
hashing and vt is a frequency value associated with the item. For each item, the insertion process
applies an update to sketch counters (vector) y of length M , with a sensing matrix A defined by

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

hash functions and the key value as shown in Fig. 11. Then given the collected y and A, the out-
put of recovery phase is a list of estimated frequencies, i.e., ground-truth (GT) vector x. Also note
that we assume the size of possible keys space N > M in this work, because keys are usually
drawn from a large domain (e.g, IP addresses, URLs) while available space in data plane is lim-
ited, leading to an ill-posed system. Formally, the recovery phase builds an optimization problem:
max

x
log p (x|y) , s.t. y = Ax.

2.3 MOTIVATION

Limitation of Baseline Solution. There have been many implementations and extensions of
equation-based sketch. Among these sketching solutions, the PR-sketch (Sheng et al., 2021) and
SeqSketch (Huang et al., 2021) represent the most recent examples. These methods involve key
tracking mechanisms to collect distinct keys in the stream and apply optimization techniques, such
as Orthogonal Matching Pursuit (OMP), to solve a linear system. However, the computational cost
of streaming problems grows significantly with the number of keys, making iterative process of
“decode” algorithms less feasible for modern streams. As a result, they have remarkably increased
per-key accuracy as well as computation time and peak memory consumption at query time.

Impact of a Learned Equation Solver. One idea here to eliminate the need for iterative optimiza-
tion is a learned equation solver that directly maps measurement y to frequencies x. Clearly, the deep
solver requires extra training cost (but in parallel with stream processing), however, in return, it can
greatly reduce the query processing time through one-shot prediction, while inheriting impressive
performance of baseline solutions, just as they have done in the field of CS.

Challenges of Supporting Learning-based Solution. Building upon the above discussions, our
primary goal is to develop equation-based sketches that exploit learning a solver to automate the
process of per-key recovery. However, there are two key challenges: (1) Ensure online training
without any ground truth, since it is very difficult to collect the true frequencies of all possible
keys in real time for training; (2) Alignment with large-scale data stream under limited parameters
overhead as the solver’s complexity increases monotonically over time. In what follows, we give a
detailed description of the proposed self-supervised learning framework for per-key recovery.

3 METHODOLOGY

In this section, we present UCL-sketch for stream frequency estimation, and elaborate on its design.

3.1 BASIC DESIGN

Key Ideas. To mitigate the extra bandwidth overhead used for transmitting keys, the UCL-sketch
employs a Bloom Filter during the update phase, ensuring that each unique key is identified and
reported at most once. Moreover, we filter hot keys twice, storing them separately in a hash table
and an array, which has been proven beneficial for skewed streams (Huang et al., 2021).

key new old

x y

… …

xx yy …

sketch

HF BF

…

… …………

…

…

0

0

1

0

w

d

s
1k

k s bm

Data

Plane
Conrtol Plane

Exchanged Keys

Other Keys

Learned

Solver

1,1c 1,2c 1,3c 1,4c 1,c w

,1cd ,2cd ,3cd ,4cd ,cd w

Figure 3: Data Structure of UCL-sketch.

Data Structure. Fig. 3 depicts the data struc-
ture of UCL-sketch. In the data plane, it has
three types of data structures: (1) a heavy filter
(hash table) HF to track frequent key pairs, (2)
a sketch to record the remaining items, and (3)
a Bloom Filter BF for key identification. Each
slot in the HF consists of three fields. In ad-
dition to a key identifier, the slot contains two
counters: new count, which tracks the values
associated with the key, and old count, which
records the values not attributed to the key. For
the control plane, apart from a learned solver, we maintain two non-repeating and non-overlapping
arrays to record inserted keys and exchanged keys from HF in our sketch, respectively.

Update Operation. The procedure of inserting an item in our UCL-sketch is very similar to previous
equation-based sketch, e.g. SeqSketch (Huang et al., 2021). The main difference is the exchanged
keys that are supposed to be relatively hot are stored separately in preparation for subsequent training
phase. Due to space limitations, detailed descriptions are in Appendix B.

3.2 TRAINING STRATEGY

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Server Sample Point

Sketch Update Point

F
re

q
u
en

cy
F

re
q
u
en

cy

…

Key IDKey ID

F
re

q
u
en

cy
F

re
q
u
en

cy

…

Key IDKey ID

Sketching

Sketching

F
re

q
u
en

cy
F

re
q
u
en

cy

…

Key IDKey ID

F
re

q
u
en

cy
F

re
q
u
en

cy

…

Key IDKey ID

y

x
1

x Ax

x

x̂

D

D

pT

Ax

x

x

D

x
y

Ax
x̂

TimeTime

Test Occurs

Unbounded Frequency Set

(a)

(c) (d)

Positive

Transform
Inverse

Transform

(b)

Past Data Training Data Future Data

Sliding Training Set

c

pT pT

Figure 4: Main ideas of training strategy: (a) The unbounded set of frequency vectors is tolerant
of certain Zipfian transformations. (b) Continually adapting the model using sampled counters in a
sliding window for online training. (c) The learned solver y → x should also be invariant to these
natural transformations. (d) Illustration of our self-supervised equivalent loss design.

0 200 400 600 800 1000
Rank

Fr
eq

ue
nc

y

skewness = 1.0
skewness = 1.5
skewness = 2.0

Figure 5: Example of the Zipfian distri-
bution with different skewness.

Goal and intuitions. As mentioned in Section 2.3, we
consider a challenging but reasonable setting in which
only sampled measurement vector y, and the sketch sens-
ing matrix A are available for on-line training our solver
D : y = Ax → x. As shown in Eq. 1, the root prob-
lem is a non-trivial null space defined by (I − A†A)x
while y only provides the information of range space of
A, i.e., its pseudo-inverse A†. Therefore, a simple solver
without additional constraints is not efficient enough to
resolve the GT ambiguity. Our intuition for achieving un-
biasedness is the distribution of item frequencies follow
approximate Zipf’s law, then the GT domain (output of the solver) should be invariant to certain
groups of transformations that allow us to learn beyond the range space.

Online Training. First of all, we present an online training procedure for continually adapting
the learned solver. When analyzing or processing continuous streaming data, one only needs to
keep track of recent stream because queries always occur in the future, while the useful information
contained in past streaming data is diminishing over time. Therefore, as shown in Fig. 4 (b), our
approach for dealing with non-stationary data streams is to adopt a sliding window (SW) mechanism
which retains a fixed number of sampled “snapshots” of sketch counters in memory, instead of
training on the entire history. The concept revolves around maintaining a “window” that slides with
time, capturing only the recent state of the unbounded stream. The sample point depends on the
times of sketch updates, for instance, these counters are transmitted to the control plane after every
1,000 insertions.

Equivariant Learning. A straightforward practice of unsupervised frequency recovery is to im-
pose the measurement consistency on the model, using a range space loss of form like ∥Ax− y∥22.
However, the sketch operator A1 has a null space, which means the model converges freely to the
biased solution A†y + H(y) with AH(y) = 0. This will cause unstable reconstructions without
meeting ground truth data or prior information. According to CS theory, one direct way to alleviate
the problem is “L1 minimization” by adding a regularization ∥x∥1 penalizes against the lack of spar-
sity (Huang et al., 2021). Fortunately, it makes sense in streaming algorithms because heavy-tailed
data such as network traffic exhibits high sparsity, but it is not enough to eliminate the impact of null
space, since the accuracy of particular items is still unsatisfactory (Li et al., 2023).

1Note that we do not need to explicitly maintain the 0-1 sparse sensing matrix A in memory, although the
control plane has sufficient space. Instead, we generate its elements on demand.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

……

… …

…

……

……+

1y
my 1y

my

1x lx kx 1kx +

… …

…

……

1y
my 1y

my

… …… + …

Replace

… 1x lx

Bucket 1 Bucket i

Ix 1kx +

… …

…

……

1y
my 1y

my

…1x lx

Bucket 1

… … …
Bucket i

Ix 1kx + …

i

Use Buckets Share Buckets

t-1 t t-1 t t-1 t

…

Figure 6: Expansion design of a learned solver: Left: Redesigning. Whenever a new key emerges,
the entire output layer learned on previous streams is replaced and retrained. Center: Partial-
redesigning with buckets. The keys are separated into independent buckets, so the solver is affected
only by newly updated bucket. Right: Non-redesigning with logical buckets. By sharing buckets,
the solver can be adapted to varying key space, and greatly reduces the number of parameters.

In order to learn more knowledge beyond the range space of A, we draw on ideas from the Zipf
Law prior of streaming item frequencies, and this is a common and natural reoccurring pattern in
real-world data (Aamand et al., 2024). At their simplest, zipfian models are based on the assumption
of a simple proportionality relationship: f(kj) ∝ 1

j , where f(kj) is the frequency of j-th key kj in
keys set sorted by volume as shown in Fig. 5. Furthermore, we posit an additional assumption of
“temporal smoothness” in the heavy-tailed prior, observing that frequencies within adjacent tempo-
ral sample points tend to express similar zipfian behavior: a few frequent items exhibit approximate
proportional growth, while other infrequent items remain their original size.

Under this mild prior information, we define a group of transformations P =
{
p1,...,|P|

}
, in which

arbitrary pi can be summarized in the following steps: Given a positive integer c which usually takes
value around the sampling interval, pi allocates it proportionally based on the volume of exchanged
(or hot) keys in the input frequency vector. Next, the transformation randomly selects a small number
of frequencies, i.e. 5% from the remaining non-hot keys, and increments them by minimum update
unit. As Fig. 4 (a) shows, for all possible x in the unbounded frequency set X , the equivalent
relationship Tpx ∈ X , ∀p ∈ P holds, where Tp ∈ RN×N is the corresponding transformation
matrix of p. Then, our learned solver D should also capture such invariant property of the target
domain, that is, D(ATpx) = TpD(Ax). This additional constraint on the mapping allows the
model to learn beyond the range space (see details in Theorem 3). If the incremental component
can be handled by the solver, then the ambiguity in null space recovery can be effectively mitigated
during learning. As shown in Fig. 4 (c) and (d), the network weights are updated by minimizing the
following objective:

argmin
θ

Ey∈AX ,p∈P

{
∥AD (y)− y∥22 + λ∥D (y)∥1 + ∥D (ATpD (y))− TpD (y)∥22

}
, (2)

where the first term enforces measurement consistency, the second term imposes sparse constraint,
and the third term enforces system equivariance, and λ is a trade-off coefficient. The training pseudo-
code in one epoch is exhibited in Algorithm 1.

Algorithm 1 One-Epoch Training Algorithm of UCL-sketch

Require: η, λ, sketch matrix A, exchanged key ids h,
measurement set Y , and number of keys n

Ensure: trained model D
1: for measurement vector y in Y do
2: x← Per Key Recovery(D, y, n);
3: x′ ← Positive Transform(x, h, n);
4: x̂′ ← Per Key Recovery(D,Ax, n);
5: Take gradient descent step on

η∇θD (∥Ax− y∥22 + ∥x̂′ − x′∥22 + λ ∥x∥1);
6: end for
7: return D;

Algorithm 2 Query Operation on the UCL-sketch

Require: learned model D, keys set Ω, key k,
current measurement vector y, and
bucket length L

Ensure: estimated frequency xk

1: position← Get Key Position(Ω, k);
2: bucket id← position // L;
3: inner id← position - bucket id × L;
4: x← D(y, bucket id);
5: xs

k ← x[inner id];
6: xk ← xs

k+ Heavy Filter Query(k);
7: return xk;

3.3 SCALABLE ARCHITECTURE

Goal and intuitions. UCL-sketch is explicitly designed to allow for sketching large-scale data
steam, where an unknown number of new items arrive at the monitor device in sequence, rather
than designed for a fixed or small key space. Specifically, our goal here is to let the learned solver

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

key new old

x y

… …

xx yy

…

sketch

HF
BF

…

… …………

…

…

0

0

1

0

1k

k s

(a) Insertion Process

1,1c 1,2c 1,3c 1,4c 1,c w

,1cd ,2cd ,3cd ,4cd ,cd w

()1 1k , v

()1 1k , v

()2 2k , v

()1 3k , v

()i jk , v

…

filteredevicted

1

0

exchanged keys other keys

(b) Sensing Process (c) Scalable Solver

(d) Online GT-free Training

(e) Query Process

1

0

0

1

0

0

0

1

0

1

0

0

0

1

0

0

0

1

0

0

1

0

1

0

0

1

0

0

0

1

1

0

0

0

1

0

…

…

…

…

…

…

A

hashingExchanged

Keys

Other Keys

()y

D 1x

2x

3x

4x

5x

nx

…

1key

2key

3key

4key

5key

keyn

…

i

…y

bucket

id

counters

vector

x

y

Sliding dataset

D

,i1,

…

x

+

=

c

x xA x̂

solver

D

,i1,

…

solver

Transformation

Objective:
2 2

2 1 2
ˆarg min ' '

D

x y x x x


 − +  + −
 

A

Exchanged

Keys

Other Keys

keyi
key new old

x y

… …

xx yy

…

1k

k s

hf sketchfrequency f fi i i= +

sketchfi

y D

bucket

id

inner

id

hffi

Figure 7: The overview of complete version of our UCL-sketch.
dynamically expand its capacity once new elements arrive, while achieving efficiency in parameters.
The intuition for designing such a lifelong network is to incrementally adapt to new items while
retaining acquired frequencies of previous items, so parameter sharing is a good and natural choice.

Network Expansion. A most naive way to design the network for a sequence of items would be
retraining the output layer(s) every time a new item emerges. However, such retraining would incur
significant costs for a deep neural network. Instead, we suggest dividing keys set into small buck-
ets, where each bucket is maintained with its own parameters, thereby reducing the extra expanding
overhead. Given the information collected about the observed stream, this design transforms the
problem into a maximum-a-posteriori (MAP) estimate of the bucket-associated frequencies (Dalt
et al., 2022). Unfortunately, it is still very intensive in terms of memory usage since the network’s
size scales with the observed keys, under high-speed streams where the computational cost is a sig-
nificant concern. Note that the statistical properties of sketch-based estimation should be stationary
over buckets, as it implies that the similar underlying transformation (random hash) can be applied at
each key (or bucket) inserted in the sketch. Thus, a better solution in such a case is sharing parame-
ters across these buckets. Specifically, we train a solver to model the mapping (y, i)→ xi, in which
i denotes the index of our selected bucket and xi ⊂ x is predicted frequencies in the logical bucket.
Borrowing ideas from literature in diffusion models (Song et al., 2020; Ho et al., 2020), we learn
the bucket-shared network using the sinusoidal position embedding (Vaswani et al., 2017). After
this bucket sharing and logification, the network needs to update its weights by repeatedly forward
propagation since the split changes the overall structure. Fortunately, in practice, this operation can
be performed for all logical buckets in parallel. Fig. 6 illustrates our dynamically scalable network
architecture and shows what happens when the set is partitioned into independent buckets.

Query Operation. When querying an item k, we initially locate its index in the keys set such that
we can determine the bucket id and relative position of k. Then we query the hash table in the data
plane to obtain its filtered frequency, and return 0 if the key is not in it. The partial result and sampled
sketch counters will be reported to the server together. With the previously acquired position, we
predict the remaining frequency of k by inputting counters and bucket id into the learned solver. The
final estimated frequency is a sum of the two parts. The process is depicted in Algorithm 2.

3.4 PUTTING IT TOGETHER

We now put the basic design and our optimizations together, to build the final version of UCL-sketch.
Fig. gives overview of the complete version. Fig. 7 (a) shows the procedure of insertion process in
data plane. Then in Fig. 7 (b) and (c), we construct the corresponding sketch sensing matrix A and
present scalable inference of our bucket-wise network, respectively. To train the deep solver, since
no real frequency is sent to the control plane, as illustrated in Fig. 7 (d), our goal is to reconstruct
per-key frequencies x conforms to three constraints: measurement, sparsity and Zipfian distribution.
Finally, to query the frequency of keys, we sum up the results from the learned solver and the hash
table as shown in Fig. 7 (e).

4 THEORETICAL ANALYSIS

In this section, we analyze the proposed UCL-sketch, including complexity, keys coverage, error
bound, and requirement for unbiased estimation during training. Due to space constraints, we only
list the conclusions here. Detailed proofs, remarks and bound comparison with prior works can be
found in Appendix C.

Notation. We define the following notations. In the context of sketching algorithms: ε controls the
accuracy of the sketch; smaller ε means higher accuracy but potentially larger sketch size. δ controls

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

the confidence of the result; smaller δ means higher confidence that the error is within bounds. Then
given parameters (εc, δc), set sketch array width w = ⌈e/εc⌉ and depth d = ⌈ln (1/δc)⌉where e
is the base of the natural logarithm, with cutoff (s reserved slots equipped with b flag bits for each
pair) in the heavy filter. We use (εb, δb) as the coefficient and error probability of the Bloom Filter:
the number of bits mb = kbK/ln 2, K is the number of true existing keys, and the number of hash
functions kb = log (1/εbδb); xT := {x (i) : i ∈ T ; 0 : i /∈ T} where x is a vector has the same size
with xT .

Definition 1 (s-restricted Isometry Constant (Candes & Tao, 2005)). For every integer s = 1, 2, . . .,
we define the s-restricted isometry constants σs of a matrix A as the smallest quantity such that

(1− σs) ∥x∥22 ≤ ∥Ax∥22 ≤ (1 + σs) ∥x∥22 (3)

for all s-sparse vectors, where a vector is said to be s-sparse if it has at most s nonzero entries.

Lemma 1 shows the complexities of memory space, and update time of UCL-sketch.

Lemma 1. The space complexity of UCL-sketch is O
(

K
ln 2 log

1
εbδb

+ e
εc

ln 1
δc

+ bs
)

, and the time

complexity of update operation is O
(
log 1

εbδb
+ ln 1

δc

)
in the data plane.

Lemma 2 guarantees the error bound for missing keys in the recovery phase of UCL-sketch.

Lemma 2. The keys coverage of the Bloom Filter in UCL-sketch obeys

Pr (Y ≥ Ky) ≤
K

Ky

(
1− e

− kbK

mb

)
, (4)

where variable Y denotes the number of keys that are not covered but viewed as covered.

We show UCL-sketch’s worst-case error bound of per-key recovery (without equivalent loss) from
sketch counters as shown in Theorem 2.

Theorem 2. Let f = (f(1), f(2), . . . , f(n)) be the real volume vector of a stream that is stored in
the sketch, where f(i) denotes the volume of i-th distinct item. Consider T0 as the locations of the s
largest volume of f , and T c

0 as the complement of T0. Assume that the reported volume vector f∗ is
the optimal solution that minimizes the first two objective in Eqn. 2. Then the worst-case frequency
estimation error is bounded by

∥f∗ − f∥1 ≤
2 +

(
2
√
2 + 2

)
σ2s

1−
(√

2 + 1
)
σ2s

∥∥fT c
0

∥∥
1

(5)

Theorem 3 gives the necessary condition of UCL-sketch to achieve full accuracy in the training set
with our GT-free learning strategy.

Theorem 3. A necessary condition for recovering the true volume from compressed counters is that
the following linear system has a unique solution:

Bx =


A

ATp1

...
ATp|P|

x =


y
y1

...
y|P|

 , (6)

where y(·) is the measurement corresponding to the transformation p(·). Rigorously, rank(B) = n.

5 EVALUATION

We next report key results compared to state-of-the-art methods with real-world steam datasets.

5.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on three real-world datasets. The first is CAIDA (Caida), real
traffic data collected on a backbone link between Chicago and Seattle in 2018. We form 13-byte keys

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

with five fields: source and destination IP addresses, source and destination ports, and protocol. In
our experiments, we use 1 million packets of it with around 100K distinct keys. The second is
Kosarak (Ferenc), consists of anonymized click-stream data from a Hungarian online news portal.
We also extract a segment of data with a length of 1 million for our experiments, where about 25K
unique keys are in it. The third is Retail (Brijs et al., 1999), which contains retail market basket data
supplied by an anonymous Belgian retail supermarket store. There are nearly 910K items in this
stream, and we utilize the entire dataset comprising a total of 16K unique keys. Each key is 4-byte
long in the above two datasets.

Metrics. For comparing the accuracy of frequency estimations, we leverage Average Absolute Error
(AAE) and Average Relative Error (ARE). Additionally, we use Weighted Mean Relative Difference
(WMRD) and Entropy Relative Error to evaluate the accuracy of the per-key distribution. The de-
tailed descriptions can be found in Appendix D.1.

Algorithm Comparisons. For comparison, we implement nine existing frequency estimation al-
gorithms, such as CM-sketch (CM) (Cormode & Muthukrishnan, 2005b), C-sketch (CS) (Charikar
et al., 2002), Elastic Sketch (ES) (Yang et al., 2018a), UnivMon (UM) (Liu et al., 2016), Nitrosketch
(NS) (Liu et al., 2019) and three ideally learned sketches: Learned CM-sketch (LCM), Learned C-
sketch (LCS) (Hsu et al., 2019) and Leaned Sketch (LS) (Aamand et al., 2024). Two baselines using
zeros and means as estimates are also provided, denoted by 0s and Ms, respectively. In addition, we
compare our UCL-sketch with SeqSketch (Huang et al., 2021), an equation-based sketch, in our ab-
lational experiments. We give them the same local memory of buckets & sketch as ours and present
their formal details in Appendix D.4.

5.2 PERFORMANCE COMPARISON

20 40 60 80 100 120
Memory (KB)

0

200

400

600

800

1000

A
A

E

CM CS LCM LCS ES UM NS 0s Ms LS Ours

20 40 60 80 100 120
Memory (KB)

0

200

400

600

A
R

E

20 40 60 80 100 120
Memory (KB)

0.5

1.0

1.5

2.0
W

M
R

D

0

50

100

150

0

20

40

60

80

(a) CAIDA Dataset

20 40 60 80 100 120
Memory (KB)

0

200

400

600

A
A

E

CM CS LCM LCS ES UM NS 0s Ms LS Ours

20 40 60 80 100 120
Memory (KB)

0

100

200

300

A
R

E

20 40 60 80 100 120
Memory (KB)

0.5

1.0

1.5

2.0

W
M

R
D

0

20

40

60

0

10

20

30

(b) Kosarak Dataset

20 40 60 80 100 120
Memory (KB)

0

200

400

600

800

A
A

E

CM CS LCM LCS ES UM NS 0s Ms LS Ours

20 40 60 80 100 120
Memory (KB)

0

50

100

150

200

A
R

E

20 40 60 80 100 120
Memory (KB)

0.5

1.0

1.5

2.0

W
M

R
D

0

20

40

60

80

0

5

10

15

20

(c) Retail Dataset

Figure 8: Performance comparison between our UCL-sketch and existing state-of-the-art sketches.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Estimation Results. First, we compare the AAE, ARE, and WMRD metrics for all seven sketches,
by varying the local memory budgets from 16KB to 128KB. In the first two columns of Fig. 8, all
methods achieve smaller AAE and ARE by increasing the space budget, whereas the UCL-sketch
nearly always performs the best. In particular, when the memory cost is lower than 64KB, UCL-
sketch achieves 6∼20 times smaller error rate, compared to the best algorithm. On the stream data
with much larger key space, i.e. CAIDA dataset, there is a more remarkable accuracy gap between
our method and other sketches in all memory settings. For example, AREs of CM, CS, LCM, LCS,
ES, UM, NS are 23.77 times, 15.67 times, 41.39 times, 16.45 times, 54.04 times, 14.78 times, and
17.25 times of that of ours on average, respectively. Despite the additional BF to keep tracking
unique items, the reason is that existing algorithms cannot estimate per-key aggregations accurately
without leveraging the linear system of sketching.

Regarding frequency distribution alignment, we find that UCL-sketch still achieves better accuracy
than the state-of-the-art sketches. As shown in the last column in Fig. 8, we observe that UCL-sketch
maintains the WMRD value lower than 0.55 in all settings on three datasets. Unfortunately, such
a stable performance does not persist in other competitors. We see that they are significantly less
precise than UCL-sketch, although the metric drops as memory increases in general. Even worse,
the baselines only achieve WMRDs over 1.5 with 128KB of memory on CAIDA, because the trace
set contains too many keys to reliably measure the distribution of the stream with traditional point-
wise methods, and their desired resources exceed the hardware capacity. Moreover, we list entropy
relative errors of all estimation algorithms in Table 4 (see Appendix E). As expected, similar trends
to WMRD on the frequency entropy can be observed in the table, where our algorithm consistently
achieves the smallest relative error, substantially outperforming the second-best. Overall, UCL-
sketch achieves both high performance in frequency query and distributional accuracy.

4 bite 8 bite 13 bite
Key Size

0

20000

40000

60000

80000

100000

Th
ro

ug
hp

ut

Ours
CM
CS

LCM
LCS
ES

UM
NS
LS

Figure 9: Processing speed comparison.

Processing Speed. We perform insertions of all items
in a stream, record the total time used, and calculate the
throughput. By using Kosarak with 64KB of memory,
we evaluate the throughput of UCL-sketch and other so-
lutions under different key sizes. Fig. 9 provides the
comparison results of processing speed, in which we run
a simple two-layer RNN model once before each up-
date operation to simulate the actual practice of learning-
augmented algorithms. From the figure, it becomes ev-
ident that previous learning-based sketch, i.e. LCM and
LCS, fails to meet the requirements of processing high-
speed data streams, since the propagation time over-
whelms the insertion time, encumbering the efficiency of
sketching. Note that LS improves the throughput via par-
simonious learning, which only query the heavy-hitter oracle with some probability (we set 2%
here). Nevertheless, their processing speed is still inferior to other methods. Meanwhile, ES achieves
the highest throughput through its lightweight data structure. Fig. 9 also shows that ULC-sketch
which performed as the second fastest can achieve almost 50× speed of learning-augmented sketch
due to the model-free update and heavy filter in the data plane.

5.3 ADDITIONAL EXPERIMENTS

We put additional experiments on ablational study, synthetic zipfian data, parameter sensitivity and
analysis which we omitted due to space limitations in the main body of the paper in Appendix F.

6 CONCLUSION

In this paper, we present the first GT-free learning-based frequency estimation algorithm, called
UCL-sketch which provides a novel perspective for approximate measurement by leveraging the
binding between sketch sensing and machine learning. Through extensive evaluation, the efficiency
and accuracy of the UCL-sketch demonstrate the power of our methodology. Finally, we hope that
this work will spark more research in the area of learning combinatorial sketching techniques.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anders Aamand, Justin Chen, Huy Nguyen, Sandeep Silwal, and Ali Vakilian. Improved frequency
estimation algorithms with and without predictions. Advances in Neural Information Processing
Systems, 36, 2024.

Tom Brijs, Gilbert Swinnen, Koen Vanhoof, and Geert Wets. Using association rules for prod-
uct assortment decisions: A case study. In Proceedings of the fifth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pp. 254–260, 1999. http:
//fmi.uantwerpen.be/data/retail.dat.gz.

Caida. Caida anonymized internet traces 2018 dataset. http://www.caida.org/data/
passive/passivedataset.xml.

Emmanuel J Candes. The restricted isometry property and its implications for compressed sensing.
Comptes rendus. Mathematique, 346(9-10):589–592, 2008.

Emmanuel J Candes and Terence Tao. Decoding by linear programming. IEEE transactions on
information theory, 51(12):4203–4215, 2005.

Emmanuel J Candes, Justin K Romberg, and Terence Tao. Stable signal recovery from incomplete
and inaccurate measurements. Communications on Pure and Applied Mathematics: A Journal
Issued by the Courant Institute of Mathematical Sciences, 59(8):1207–1223, 2006.

Yukun Cao, Yuan Feng, Hairu Wang, Xike Xie, and S Kevin Zhou. Learning to sketch: A neural
approach to item frequency estimation in streaming data. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams.
In International Colloquium on Automata, Languages, and Programming, pp. 693–703. Springer,
2002.

Dongdong Chen, Julián Tachella, and Mike E Davies. Equivariant imaging: Learning beyond the
range space. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
4379–4388, 2021.

Xiaojun Cheng, Xuyang Jing, Zheng Yan, Xian Li, Pu Wang, and Wei Wu. Alsketch: An adap-
tive learning-based sketch for accurate network measurement under dynamic traffic distribution.
Journal of Network and Computer Applications, 216:103659, 2023.

Graham Cormode. Sketch techniques for approximate query processing. Foundations and Trends
in Databases. NOW publishers, 15, 2011.

Graham Cormode. Data sketching. Communications of the ACM, 60(9):48–55, 2017.

Graham Cormode and S Muthukrishnan. Towards an algorithmic theory of compressed sensing.
Center for Discrete Math. and Comp. Sci.(DIMACS), Tech. Rep. TR, 25:2005, 2005a.

Graham Cormode and Shan Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005b.

Francesco Da Dalt, Simon Scherrer, and Adrian Perrig. Bayesian sketches for volume estimation in
data streams. Proceedings of the VLDB Endowment, 16(4):657–669, 2022.

Elbert Du, Franklyn Wang, and Michael Mitzenmacher. Putting the “learning” into learning-
augmented algorithms for frequency estimation. In International Conference on Machine Learn-
ing, pp. 2860–2869. PMLR, 2021.

Cristian Estan and George Varghese. New directions in traffic measurement and accounting. In
Proceedings of the 2002 conference on Applications, technologies, architectures, and protocols
for computer communications, pp. 323–336, 2002.

Yuan Feng, Yukun Cao, Wang Hairu, Xike Xie, and S Kevin Zhou. Mayfly: a neural data structure
for graph stream summarization. In The Twelfth International Conference on Learning Represen-
tations, 2023.

11

http://fmi.uantwerpen.be/data/retail.dat.gz
http://fmi.uantwerpen.be/data/retail.dat.gz
http://www.caida.org/data/passive/passive dataset.xml
http://www.caida.org/data/passive/passive dataset.xml

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Bodon Ferenc. Anonymized click-stream data. http://fmi.uantwerpen.be/data/
kosarak.dat.gz.

Yongquan Fu, Dongsheng Li, Siqi Shen, Yiming Zhang, and Kai Chen. Clustering-preserving net-
work flow sketching. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications,
pp. 1309–1318. IEEE, 2020.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings of
the 27th international conference on international conference on machine learning, pp. 399–406,
2010.

Jintao He, Jiaqi Zhu, and Qun Huang. Histsketch: A compact data structure for accurate per-
key distribution monitoring. In 2023 IEEE 39th International Conference on Data Engineering
(ICDE), pp. 2008–2021. IEEE, 2023.

Lihan He and Lawrence Carin. Exploiting structure in wavelet-based bayesian compressive sensing.
IEEE Transactions on Signal Processing, 57(9):3488–3497, 2009.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation
algorithms. In International Conference on Learning Representations, 2019.

Qun Huang, Siyuan Sheng, Xiang Chen, Yungang Bao, Rui Zhang, Yanwei Xu, and Gong Zhang.
Toward {Nearly-Zero-Error} sketching via compressive sensing. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 21), pp. 1027–1044, 2021.

Tanqiu Jiang, Yi Li, Honghao Lin, Yisong Ruan, and David P Woodruff. Learning-augmented data
stream algorithms. ICLR, 2020.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. Advances in neural information processing systems, 30, 2017.

Yookyung Kim, Mariappan S Nadar, and Ali Bilgin. Compressed sensing using a gaussian scale
mixtures model in wavelet domain. In 2010 IEEE International Conference on Image Processing,
pp. 3365–3368. IEEE, 2010.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Computer Science,
2014.

Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned
index structures. In Proceedings of the 2018 international conference on management of data,
pp. 489–504, 2018.

Abhishek Kumar, Minho Sung, Jun Xu, and Jia Wang. Data streaming algorithms for efficient
and accurate estimation of flow size distribution. ACM SIGMETRICS Performance Evaluation
Review, 32(1):177–188, 2004.

Gene Moo Lee, Huiya Liu, Young Yoon, and Yin Zhang. Improving sketch reconstruction accuracy
using linear least squares method. In Proceedings of the 5th ACM SIGCOMM conference on
Internet Measurement, pp. 24–24, 2005.

Linxi Li, Kun Xie, Shuyu Pei, Jigang Wen, Wei Liang, and Gaogang Xie. Cs-sketch: Compressive
sensing enhanced sketch for full traffic measurement. IEEE Transactions on Network Science and
Engineering, 2023.

Shangsen Li, Lailong Luo, Deke Guo, Qianzhen Zhang, and Pengtao Fu. A survey of sketches
in traffic measurement: Design, optimization, application and implementation. arXiv preprint
arXiv:2012.07214, 2020.

Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir Braverman. One
sketch to rule them all: Rethinking network flow monitoring with univmon. In Proceedings of the
2016 ACM SIGCOMM Conference, pp. 101–114, 2016.

12

http://fmi.uantwerpen.be/data/kosarak.dat.gz
http://fmi.uantwerpen.be/data/kosarak.dat.gz

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman, Roy Friedman,
and Vyas Sekar. Nitrosketch: robust and general sketch-based monitoring in software switches.
Proceedings of the ACM Special Interest Group on Data Communication, 2019.

Yi Lu, Andrea Montanari, Balaji Prabhakar, Sarang Dharmapurikar, and Abdul Kabbani. Counter
braids: A novel counter architecture for per-flow measurement. ACM SIGMETRICS Performance
Evaluation Review, 36(1):121–132, 2008.

Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice. Jour-
nal of the ACM (JACM), 68(4):1–25, 2021.

Michael Mitzenmacher. A model for learned bloom filters and optimizing by sandwiching. Advances
in Neural Information Processing Systems, 31, 2018.

Christopher C. Paige and Michael A. Saunders. Lsqr: An algorithm for sparse linear equations and
sparse least squares. ACM Trans. Math. Softw., 8(1):43–71, mar 1982. ISSN 0098-3500. doi:
10.1145/355984.355989.

Tongyao Pang, Yuhui Quan, and Hui Ji. Self-supervised bayesian deep learning for image recov-
ery with applications to compressive sensing. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16, pp. 475–491. Springer,
2020.

Jack Rae, Sergey Bartunov, and Timothy Lillicrap. Meta-learning neural bloom filters. In Interna-
tional Conference on Machine Learning, pp. 5271–5280. PMLR, 2019.

Pratanu Roy, Arijit Khan, and Gustavo Alonso. Augmented sketch: Faster and more accurate stream
processing. In Proceedings of the 2016 International Conference on Management of Data, pp.
1449–1463, 2016.

Siyuan Sheng, Qun Huang, Sa Wang, and Yungang Bao. Pr-sketch: monitoring per-key aggregation
of streaming data with nearly full accuracy. Proceedings of the VLDB Endowment, 14(10):1783–
1796, 2021.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, et al. Score-based generative modeling
through stochastic differential equations. arXiv preprint arXiv:2011.13456, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, NIPS’17, pp. 6000–6010, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Mingqing Xiao, Shuxin Zheng, Chang Liu, Zhouchen Lin, and Tie-Yan Liu. Invertible rescaling
network and its extensions. International Journal of Computer Vision, 131(1):134–159, 2023.

Yangsheng Yan, Fuliang Li, Wei Wang, and Xingwei Wang. Talentsketch: Lstm-based sketch for
adaptive and high-precision network measurement. In 2022 IEEE 30th International Conference
on Network Protocols (ICNP), pp. 1–12. IEEE, 2022.

Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao, Xiaoming Li, and
Steve Uhlig. Elastic sketch: Adaptive and fast network-wide measurements. In Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communication, pp. 561–575,
2018a.

Tong Yang, Lun Wang, Yulong Shen, Muhammad Shahzad, Qun Huang, Xiaohong Jiang, Kun Tan,
and Xiaoming Li. Empowering sketches with machine learning for network measurements. In
Proceedings of the 2018 Workshop on Network Meets AI & ML, pp. 15–20, 2018b.

Jian Zhang and Bernard Ghanem. Ista-net: Interpretable optimization-inspired deep network for
image compressive sensing. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1828–1837, 2018.

Chen Zhao, Siwei Ma, Jian Zhang, Ruiqin Xiong, and Wen Gao. Video compressive sensing recon-
struction via reweighted residual sparsity. IEEE Transactions on Circuits and Systems for Video
Technology, 27(6):1182–1195, 2016.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Appendix to “Toward Practical Learning-
based Frequency Estimation without
Ground Truth”

A RELATED WORK

Classic Sketch. A sketch is a compact structure and solution that takes limited space to support
approximate frequency queries over high-speed data streams. Classic sketch algorithms (Cormode
& Muthukrishnan, 2005b; Charikar et al., 2002; Estan & Varghese, 2002; Roy et al., 2016; Liu
et al., 2016; Yang et al., 2018a; Liu et al., 2019) include Count-Min Sketch (CM-sketch), Count
Sketch (C-sketch), Conservative Update Sketch (CU-sketch), Augmented Sketch (A-sketch), and
so on. They adopt a common underlying structure which is essentially a w × d array of counters
for preserving key frequencies. Each of the d rows of the array is associated with a hash function
for mapping items to w counters, then they consider the counts of d different buckets array (e.g.
minimum for CM-sketch (Cormode & Muthukrishnan, 2005b), the median for C-sketch (Charikar
et al., 2002)) to which the data is mapped as the estimation. The CU-sketch (Estan & Varghese,
2002) changed the insertion of the CM-sketch, which only updates the value of the minimum bucket
in each insertion process. The A-sketch (Roy et al., 2016) added a filter to the CM-sketch and
exchanged data between the filter and the sketch to ensure that hot keys are retained in the filter
to reduce hash conflicts. Since classic sketches have been proven to deliver high accuracy only
with impractical memory consumption, these algorithms are subject to an undesirable compromise
between estimation accuracy and memory efficiency.

Equation-based Sketch. Recent works have made progress in mitigating the trade-off by designing
advanced query methods of sketch algorithms. Lee et al. (2005) and Lu et al. (2008) first disclose
that sketch and compressive sensing are thematically related. The locality-sensitive sketch (LSS) (Fu
et al., 2020) leverages the relationship between the sketch with the compressed projection, then ex-
tends it to a K-means clustering method. The PR-sketch (Sheng et al., 2021) recovers keys of stream-
ing data by establishing linear equations. The SeqSketch (Huang et al., 2021) and HistSketch (He
et al., 2023) store a few high-frequency items, then employ a compressed-sensing approach to de-
code infrequent keys. By solving the linear system, these equation-based sketches compensate for
the error introduced by counter sharing, and recovers the complete keys in the shared part with much
higher accuracy than the classical sketch. Unfortunately, such global sketches have been shown to
suffer from greatly increased time and memory costs of estimation.

Learning-based Sketch. In the last few years, machine learning has taken the world by storm than
ever before, which also motivates the design of learning-based frequency estimation algorithms.
Yang et al. (2018b) pioneered the idea of employing machine learning to reduce the dependence of
the accuracy of sketches on network traffic characteristics. TalentSketch (Yan et al., 2022) applies
a long short-term memory (LSTM) model to network measurement tasks. And most recently Cao
et al. (2024) introduced meta-learning into sketch design, which can be robust to different local dis-
tributions, with performance scarcely affected by shifts in item-frequency correspondences. In (Hsu
et al., 2019), the authors first proposed a learned frequency estimation framework by using a trained
classifier (or oracle) to store hot and cold items separately. The overall design is similar to A-
sketch, but the latter one uses a data exchange structure. Jiang et al. (2020) adjusted the learning-
augmented sketch, which uses a regression model to directly outputs the predicted frequency of hot
keys rather than inserting them in unique buckets. Then a series of works have also studied theoret-
ical analyses and optimizations under this framework (Du et al., 2021; Cheng et al., 2023; Aamand
et al., 2024). However, these hand-derived methods are excessively dependent on offline models
and cannot handle dynamic data distribution. Differently, UCL-sketch provides a new paradigm for
learning-enhanced sketch design. It obtains accuracy close to original equation-based sketches while
maintaining the efficient query execution time by continuously adapting models without ground
truth.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 3 Update Operation on the UCL-sketch

Require: key-value pair (k, v)
Ensure: inserted UCL-sketch

1: i← hash (k)
2: if HF[i].key = Null then
3: HF[i].new← v; HF[i].old← 0; HF[i].key← k;
4: else
5: if HF[i].key = k then
6: HF[i].new← HF[i].new + v;
7: else
8: HF[i].old← HF[i].old + v;
9: if (HF[i].new - HF[i].old) > 0 then

10: insert sketch with (HF[i].key, HF[i].new);
11: insert BF with HF[i].key;
12: report hot key HF[i].key to the control plane;
13: HF[i].new← v; HF[i].old← 0; HF[i].key← k;
14: else
15: insert sketch with (k, v);
16: if k /∈ BF then
17: insert BF with k;
18: report cold key k to the control plane;
19: end if
20: end if
21: end if
22: end if
23: return ;

key new old key new old

key new old key new old

key new old key new old

2k

3k
8 2

10 1

8 2

10 1

2 0

2k

3k

1k

… …

… …

… …

2k 8 2

10 1

4 1

6 0

10 1

4 1

3k

1k

4k

3k

1k

+8

+8

6 0

10 1

4 1

hash
4k

3k

1k

6 0

10 1

4 2

+1

+1

4k

3k

1k

Before After

sketch sketch

sketch sketch

sketch sketch

HF

BF

HF

BF

HF

BF

HF

BF

HF

BF

HF

BF

Send 2k

Send
5k

5k BF

Exchange

Case 1

Case 2

Case 3

Before After

Before After

()1k ,2

()4k ,6

()5k ,1

key new old key new old

2k

3k

1k

8 2

10 1

2 1

8 2

10 1

4 1

2k

3k

1k

… …

Before After

sketch sketch

HF

BF

HF

BF
Case 1

()1k ,2

Figure 10: Examples of update processing.

Compressive Sensing. Given the linear measurements, Compressive Sensing (CS) methods usually
reconstruct the original signal by solving an (generally convex) optimization problem, which is
similar to ours. Many traditional works incorporate additional prior knowledge about transform
coefficients (Candes et al., 2006; He & Carin, 2009; Kim et al., 2010; Zhao et al., 2016) into the CS
reconstruction framework. Also note that the network-based CS reconstruction has been adopted in
many magnetic resonance imaging (MRI) and super-resolution (SR) algorithms (Gregor & LeCun,
2010; Zhang & Ghanem, 2018; Pang et al., 2020; Chen et al., 2021; Xiao et al., 2023). However,
UCL-sketch is the first to apply the idea to large-scale stream frequency estimation and specifically
address the data sketching problem.

B UPDATE ALGORITHM

Algorithm 3 outlines the procedure of inserting a key-value pair (k, v). We first compute its hash
position in HF, then as Fig. 11 shows, there are overall three cases:

Case 1: The slot is empty or the existing entry has the same key. We insert the item into the position
or just increment the new count by its value.

Case 2: The current position does not have the same key and (new count - old count) ≤ 0 after
incrementing the old count by the item’s value. We replace the existing entry with the new item and
evict the old entry into the sketch. Then we transfer the exchanged key with the “hot” flag to the
control plane, and update the BF.

Case 3: The current position does not have the same key and (new count - old count) > 0 after
incrementing the old count by the item’s value. We insert the item into the sketch. After inserting
the BF, only if it is identified as a new key, UCL-sketch sends the key to the control plane.

Given a heavy-tailed distribution of stream data, Case 1 constitutes a large portion while Case 2
represents the opposite. Thus after filtering by the hash table, UCL-sketch is memory efficient as
the number of exchanges is usually very small (Roy et al., 2016).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C PROOFS AND REMARKS

In this section, we prove the theoretical results in the paper by partially following Candes (2008).

Theorem 1. The goal of frequency estimation based on a linear sketch is equivalent to solving
linear equations from the given keys, hash functions, and counters. Let x ∈ CN denote the vector
of the streaming key-value sequence and y ∈ CM denote sketch counters, the insertion process
corresponds to y = Ax, while the result of recovery phase corresponds to

x = A†y + (I −A†A)x, (7)

where A ∈ CM×N is an indicator matrix of mapping the vector x to a buckets array y, and A† ∈
CN×M satisfies AA†A ≡ A.

v
v

v

+

+

1y 2y 3y

4y 5y 6y

()1hash key 0i =

()2hash key 2i =

0 1 2

1y

2y

3y

4y

5y

6y

= 

1x

2x

3x

4x

5x

nx

…

1key

2key

3key

4key

5key

keyn

…

1

0

0

1

0

0

0

1

0

1

0

0

0

1

0

0

0

1

0

0

1

0

1

0

0

1

0

0

0

1

1

0

0

0

1

0

…

…

…

…

…

…

1 2 3 4 5 …

1

2

3

4

5

6

n

y A x

keyi

 1 0, 1A i+ =

 4 2, 1A i+ =

(a) Count-Min Sketch Sensing

 4 2, 1A i+ =

v

v

-

+

1y 2y 3y

4y 5y 6y

()1hash key 0i =

0 1 2

1y

2y

3y

4y

5y

6y

= 

1x

2x

3x

4x

5x

nx

…

-1

0

0

1

0

0

0

1

0

-1

0

0

0

-1

0

0

0

1

0

0

-1

0

-1

0

0

1

0

0

0

1

1

0

0

0

-1

0

…

…

…

…

…

…

1 2 3 4 5 …

1

2

3

4

5

6

n

y A x
()2hash key 2i =

()3hash key 1i = −
 1 0, 1A i+ = −

()4hash key 1i =

1key

2key

3key

4key

5key

keyn

…

vkeyi

(b) Count Sketch Sensing

Figure 11: The sensing process of and CM-sketch and C-sketch is based on the linear hash operation.

Proof. Suppose that the hashing operation randomly maps incoming items to a bucket array uni-
formly at random. For an incoming key-value pair, the sketch selects one counter indexed by hash-
ing the key with a hash function at each array. Let A [i, j] = 1 or−1 if the j-th key is mapped to the
i-th bucket, and set other entries in this row vector to 0s. Then the insertion process for all key-value
pairs can be equivalently represented as an algebraic equation y = Ax. For example, we present
the mapping matrices for CM-sketch and C-sketch in Fig. 11. Thus the approximated counters of a
sketch can be calculated as a decoding phase: we can obtain the general solution of per-key x, i.e.,
x = A†y + (I −A†A)t, ∀t ∈ CN , where the first part is in the range-space of A while the latter is
in the null-space. One can justify this by left multiplying each side of the equation by A. Then

x = A†Ax+ (I −A†A)t⇔ x− t = A†A (x− t) (8)

Since A†A ̸= I , we thus have t = x, which concludes the proof. □

Remark. Considering Theorem 1, if we model a relation as defining a vector or matrix, then the
sketch of this is obtained by multiplying the data by a (fixed) matrix. In this regard, a single update to
the underlying volume has the effect of modifying a single entry in the frequency vector. Therefore,
sketch-based frequency estimation is equivalent to solve a linear inverse problem.

Lemma 1. The space complexity of UCL-sketch is O
(

K
ln 2 log

1
εbδb

+ e
εc

ln 1
δc

+ bs
)

, and the time

complexity of update operation is O
(
log 1

εbδb
+ ln 1

δc

)
in the data plane.

Proof. Since the bucket arrays of CM-sketch contain w × d counters, the total size of the heavy
filter is fixed as b× s, and the Bloom Filter occupies mb bits, the total space complexity in the data
plane is O(mb + wd+ bs) = O

(
K
ln 2 log

1
εbδb

+ e
εc

ln 1
δc

+ bs
)

. For each item in the stream, it first
requires 1 hash operation to locate its slot in the heavy filter. Thus, the time complexity of filtering
is only O(1). Then the sketch hashes the key d times, and the Bloom Filter hashes that kb times.
Therefore, the time complexity of insertion is O(kb + d+ 1) = O

(
log 1

εbδb
+ ln 1

δc

)
. □

Lemma 2. The keys coverage of the Bloom Filter in UCL-sketch obeys

Pr (Y ≥ Ky) ≤
K

Ky

(
1− e

− kbK

mb

)
, (9)

where variable Y denotes the number of keys which are not covered but viewed as covered.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof. Suppose that independent hash functions uniformly map keys to random bits, the probability
that a certain bit will still be 0 after one insertion is 1− 1

mb
. Consequently, the probability that any

bit of the Bloom Filter is 1 after Ki distinct items have been seen is given by 1−
(
1− 1

mb

)kbKi

.

We can use the identity
(
1− 1

mb

)mb

= 1
e for large mb → ∞, then we have approximation(

1− 1
mb

)kbKi

≈
(
1
e

)kbKi/mb . Therefore, the false positive probability of an unobserved key is

1 − e−kbKi/mb . Also note that E (Y) =
K∑
i=1

(
1− e−kbi/mb

)
≤ K

(
1− e−kbK/mb

)
. Now by

Markov’s inequality, the bound can be derived as: Pr (Y ≥ Ky) ≤ E(Y)
Ky
≤ K

Ky

(
1− e−kbK/mb

)
,

which concludes the proof. □

Lemma 3. Given disjoint subsets Ta, Tb ⊆ {1, 2, 3, . . . } with |Ta|, |Tb| = s, and x an arbitrary
vector can be supported on them, we have ⟨AxTa , AxTb

⟩ ≤ σ2s∥xTa∥2∥xTb
∥2.

Proof. The proof of Lemma 3 can be concluded from (Candes, 2008). According to (Candes, 2008),
⟨Ax,Ax′⟩ ≤ σs+s′∥x∥2∥x′∥2 holds for all x, x′ supported on the disjoint subsets. We replace x, x′

with xTa
, xTb

. Then, we have ⟨AxTa
, AxTb

⟩ ≤ σ2s∥xTa
∥2∥xTb

∥2. □

Theorem 2. Let f = (f(1), f(2), . . . , f(n)) be the real volume vector of a stream that is stored in
the sketch, where f(i) denotes the volume of i-th distinct item. Consider T0 as the locations of the s
largest volume of f , and T c

0 as the complement of T0. Assume that the reported volume vector f∗ is
the optimal solution that minimizes the first two objective in Eqn. 2. Then the worst-case frequency
estimation error is bounded by

∥f∗ − f∥1 ≤
2 +

(
2
√
2 + 2

)
σ2s

1−
(√

2 + 1
)
σ2s

∥∥fT c
0

∥∥
1

(10)

Proof. Given f = f∗ + l, we start by dividing the residual vector l: let T1 denote the locations of
the largest s value in lT c

0
, T2 denote the locations of the next largest s value in lT c

0
, and so on. By

this definition, we can obtain
∥∥lTj

∥∥
2
=
√∑

i

l2Tj
(i) ≤

√
smax

i

2
(∣∣lTj

(i)
∣∣) ≤ 1√

s

∑
i

∣∣lTj−1
(i)
∣∣ =

1√
s

∥∥lTj−1

∥∥
1
. This holds for j ≥ 2, which derives the following useful inequality:∑

j≥2

∥∥lTj

∥∥
2
≤ 1√

s

∑
j≥1

∥∥lTj

∥∥
1
=

1√
s

∥∥lT c
0

∥∥
1

(11)

Since f∗ minimize ∥f∗∥1 subject to Af∗ = Af , which intuitively means ∥f∗∥1 would not bigger
than ∥f∥1, we have ∥f∥1 ≥ ∥f∗∥1 and ∥Af∗ −Af∥2 = ∥Al∥2 = 0. It gives

∥fT0
∥1 +

∥∥fT c
0

∥∥
1
= ∥f∥1 ≥ ∥f

∗∥1 = ∥f − l∥1 =
∥∥(f − l)T0

∥∥
1
+
∥∥∥(f − l)T c

0

∥∥∥
1

≥ ∥fT0
∥1 −

∥∥fT c
0

∥∥
1
+
∥∥lT c

0

∥∥
1
− ∥lT0

∥1
⇔
∥∥lT c

0

∥∥
1
≤ 2
∥∥fT c

0

∥∥
1
+ ∥lT0

∥1.

(12)

Also note that ∥lT0∥1 ≤
√
s∥lT0∥2 ≤

√
s∥lT0∪1∥2, which is is derived by

1√
s
∥lT0∥1 =

√√√√(∑
i

1√
s
|lT0 (i) |

)2

≤

√√√√√
 s∑

j=1

1

s

∑
i

l2T0
(i) = ∥lT0∥2 (13)

using Cauchy–Schwarz inequality. And following from Definition 1, one can get (1− σ2s) ∥lT0∪1
∥22

≤ ∥AlT0∪1
∥22. Therefore, we instead bound ∥AlT0∪1

∥22 as follows:

∥AlT0∪1
∥22 = ⟨AlT0∪1

,AlT0∪1
⟩ =

〈
AlT0∪1

,A
(
l − lT c

0∪1

)〉
≤ |⟨AlT0∪1

,Al⟩|+
∣∣〈AlT0∪1

,AlT c
0∪1

〉∣∣ ≤ ∥AlT0∪1
∥2∥Al∥2 +

∑
j≥2

∣∣〈AlT0∪1
,AlTj

〉∣∣
≈ 0 +

∑
j≥2

∣∣〈AlT0 +AlT1 ,AlTj

〉∣∣ ≤∑
j≥2

∣∣〈AlT0 ,AlTj

〉∣∣+∑
j≥2

∣∣〈AlT1 ,AlTj

〉∣∣. (14)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Here using the Lemma 3, we have∑
j≥2

∣∣〈AlT0
,AlTj

〉∣∣ ≤ σ2s ∥lT0
∥2
∑
j≥2

∥∥lTj

∥∥
2

(15)

The proof for the upper bound of
∑
j≥2

∣∣〈AlT1
,AlTj

〉∣∣ follows from the similar procedure, and thus

applying Ineqn. 11,

∥AlT0∪1∥
2
2 ≤ σ2s (∥lT0∥2 + ∥lT1∥2)

∑
j≥2

∥∥lTj

∥∥
2

≤
√
2σ2s ∥lT0∪1∥2

∑
j≥2

∥∥lTj

∥∥
2
≤
√

2

s
σ2s ∥lT0∪1∥2

∥∥lT c
0

∥∥
1

(16)

where the first part of the second line is derived by

∥lT0∥2 + ∥lT1∥2 =

√
∥lT0∥

2
2 + ∥lT1∥

2
2 + 2∥lT0∥2∥lT1∥2 ≤

√
2
(
∥lT0∥

2
2 + ∥lT1∥

2
2

)
=
√
2 ∥lT0∪1∥2

(17)

Then recall that

∥lT0∪1∥
2
2 ≤

1

1− σ2s
∥AlT0∪1∥

2
2 ≤

√
2/sσ2s

1− σ2s
∥lT0∪1∥2

∥∥lT c
0

∥∥
1

⇔ ∥lT0∪1
∥2 ≤

√
2/sσ2s

1− σ2s

∥∥lT c
0

∥∥
1

(18)

which gives ∥lT0
∥1 ≤

√
s∥lT0∪1

∥2 ≤
√
2σ2s

1−σ2s

∥∥lT c
0

∥∥
1
. Now we combine it with Ineqn. 12 to obtain

the certain bound

∥lT0
∥1 ≤

√
2σ2s

1− σ2s

∥∥lT c
0

∥∥
1
≤
√
2σ2s

1− σ2s

(
2
∥∥fT c

0

∥∥
1
+ ∥lT0

∥1
)

⇔ ∥lT0
∥1 ≤

2
√
2σ2s

1−
(√

2 + 1
)
σ2s

∥∥fT c
0

∥∥
1
.

(19)

Finally, the error bound of reported volumes is given by

∥f∗ − f∥1 = ∥l∥1 =
∥∥lT c

0

∥∥
1
+∥lT0

∥1 ≤ 2
∥∥fT c

0

∥∥
1
+2∥lT0

∥1 ≤
2 +

(
2
√
2 + 2

)
σ2s

1−
(√

2 + 1
)
σ2s

∥∥fT c
0

∥∥
1
, (20)

which concludes the proof. □

Table 1: Theoretical comparison with state-of-the-art frequency estimation algorithms
Algorithm Space Complexity Time Complexity Expected Error Reference

CM-sketch O
(

e
εc

ln 1
δc

)
O
(
ln 1

δc

)
O
(

log(K)
M

)
or O (Kεc ∥F∥1) Hsu et al. (2019)

C-sketch O
(

e
ε2c

ln 1
δc

)
O
(
ln 1

δc

)
O
(

1
M

)
or O (Kεc ∥F∥2) Aamand et al. (2024)

Learned CM-sketch O
(
So +

e
εc

ln 1
δc

+ bs
)

O
(
To + ln 1

δc

)
O
(

log2(K/M)
M logK

)
Hsu et al. (2019)

Learned C-sketch O
(
So +

e
ε2c

ln 1
δc

+ bs
)

O
(
To + ln 1

δc

)
O
(

log(K/M)
M logK

)
Aamand et al. (2024)

Elastic Sketch O
(

−H logK
ln(1−εbδb)

+ e
ε2c

ln 1
δc

)
O
(
ln 1

δc

)
O (Kεc ∥f∥1) Yang et al. (2018a)

UCL-sketch O
(

K
ln 2 log

1
εbδb

+ e
εc

ln 1
δc

+ bs
)
O
(
log 1

εbδb
+ ln 1

δc

)
O
(∥∥fT c

0

∥∥
1

)
Lemma 2 & Theorem 3

Remark. We list theoretical comparison between UCL-sketch and six methods in Table 1. Note
that expected error :=

∑
i

f(i)∑
i f(i)

· |f∗(i)− f(i)| ≤ ∥f∗ − f∥1. Here, we additionally define H

as the number of hot keys, F as the unfiltered frequencies, So and To as the used memory and
inference time of learned oracle in the learning-augmented sketch, respectively. Although some
classic sketches have slightly lighter structure than ours, they obtain more inaccurate error bound.
Specifically, it is worthy noting that

∥∥fT c
0

∥∥
1
≪ Kεc ∥f∥1 in most scenarios due to heavy-tailed

(sparse) property of real-world streams. It has also been proven in Yang et al. (2018a) that the bound

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

of Elastic Sketch is lower than that of C-sketch and CM-sketch, e.g., εc ∥f∥1 < εc ∥F∥1. Therefore,
our equation-based algorithm significantly outperforms these three competitors regarding estimation
accuracy. Meanwhile, the cost of learning-augmented sketches is heavily implicated by their learned
oracle, while their error bounds stay coarse-grained. Note that the effect of equivalent learning was
not considered in our analysis. Consequently, the practical performance achieved by our algorithms
may surpass the theoretical result, which has been substantiated by the empirical results presented
in Section 5.

Theorem 3. A necessary condition for recovering the true volume from compressed counters is that
the following linear system has unique solution:

Bx =


A

ATp1

...
ATp|P|

x =


y
y1

...
y|P|

 , (21)

where y(·) is the measurement corresponding to the transformation p(·). Rigorously, rank(B) = n.

Proof. Recall that the general form of the true frequency is x = A†y + (I −A†A)x as Theorem 1
shows, thus for p1, p2, . . . , p|P| ∈ P ,

x = A†y + (I −A†A)x

x =
(
(ATp1

)†y1 + (I − (ATp1
)†(ATp1

)
)
x

...
...

...

x =
(
(ATp|P|)

†y|P| + (I − (ATp|P|)
†(ATp|P|)

)
x.

(22)

Stacking all these equations together into
x
x
...
x

 =


A†y

(ATp1
)†y1

...
(ATp|P|)

†y|P|

+


x
x
...
x

−


A†A
(ATp1

)†ATp1

...
(ATp|P|)

†ATp|P|

x (23)

By left multiplying each side of Eqn. 23 by
(
A,ATp1

, · · · ,ATp|P|

)
, we have that

Bx =


A

ATp1

...
ATp|P|

x =


y
y1

...
y|P|

 , (24)

and therefore B ∈ R|P|m×n needs to be of full rank n so that the true frequency x can be accurately
recovered from the null space.

Remark. Due to the set invariance of zipfian streaming data, Theorem 3 states the requirement to
learn a deep solver without ground truth, is that multiple virtual sketch operators {ATp(i)

}i=1,2,...,|P|
have enough different range space to determine unique per-key frequencies x. That means the choice
of transformation group P in above system is not arbitrary, but needs to be rank n or at least > m
so that the model is guaranteed to learn from the null space of A. Critically though, much room
beyond A† will be filled after a large number of random transformations during training. Thus, it is
possible to train the solver from only sketch counters using our scheme, but also note that the group
P might in some cases not be sufficient since the target x is rapidly and continuously extending in
complex streams.

D IMPLEMENTATION DETAILS

Our experiments run in a machine with one AMD 6-Core CPU (3.70 GHz), 32GB DRAM, and a
single 12GB NVIDIA GeForce RTX 3060 GPU. For the learning-driven part, we used the PyTorch
implementation. Besides, all these experiments are repeated multiple times using different fixed
random seeds, and then their average results are reported in this paper.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D.1 METRICS

There are five metrics used in our experiments:

(1) Average Absolute Error (AAE): It equals 1
n

∑n
i=1 |f(i)− f∗(i)|, where f(·) and f∗(·) are real

and estimated frequency respectively.

(2) Average Relative Error (ARE): It equals 1
n

∑n
i=1

|f(i)−f∗(i)|
f(i) , where f(·) and f∗(·) are the same

as those defined above.

(3) Weighted Mean Relative Difference (WMRD) (Sheng et al., 2021): It can be written as∑z
i=1 |n(i)−n∗(i)|∑z
i=1

n(i)+n∗(i)
2

, where z is the maximum single-key frequency, and n(i) and n∗(i) are the real

and estimated number of keys with frequency i respectively.

(4) Entropy Relative Error (Yang et al., 2018a): We calculate the entropy e based on a frequency
set as−

∑z
i=1

(
i× n(i)∑z

i=1 n(i) log2
n(i)∑z
i=1 n(i)

)
, then the relative error is |e−e∗|

e where e and e∗ are the
true and estimated entropy. Here we define 0 log(0) = 0.

(5) Throughput: We use update operations per second to measure the processing speed of various
sketching algorithms.

D.2 PARAMETERS

Table 2: Parameter configurations of the local sketch and hash table
Memory 16KB 32KB 48KB 64KB 80KB 96KB 112KB 128KB

Number of slots 500 1500 2000 3000 3500 4500 5500 6000

Depth of sketch 4 4 4 4 6 6 6 8

Width of sketch 512 512 1024 1024 1024 1024 1024 1024

The parameters of the local sketch and hash table for each memory setting are listed in Table 2. As
for the Bloom Filter, we determine the maximum number of bits by setting the coverage propor-
tion over 99% according to Lemma 2 and fixing kb as 8. We provide detailed parameters for the
learned solver of this work in Table 3. We adopt the same key hyperparameter of NN throughout
the experiments. In particular, λ is the hyperparameter that reweights the sparse term in Eqn. 2.
For optimization, we use Adam optimizer (Kingma & Ba, 2014) with default (β1, β2) for all the
experiments.

Table 3: hyperparameters setting and overhead for learning parts
Hyperparameter Setting value Refer range

Bucket length 512 [128, 256, 512, 1024, 2056]
Extra layers 0 [0, 1, 2, 3]

Hidden dimension 128 [32, 64, 128, 256, 512]
Trade-off λ 0.1 0.05 ∼ 1

Training epoch 300 100 ∼ 500
Patience 30 10 ∼ 50

Learning rate 0.001 0.0001 ∼ 0.01
Batch size 32 [8, 16, 32, 64, 128]

Sliding window length 128 [32, 64, 128, 256, 512]
Sampling interval 1000 [500, 1000, 2000]

Training time (per epoch) 0.2s
Inference time 0.3s ∼ 0.5s

Trainable parameters 0.75MB ∼ 1.25MB

D.3 DATA NORMALIZATION

Since there is no predefined end to a stream, meaning that reliable statistics (mean, variance, and
maximum) do not exist, the data normalization in our implementation is operated on each individ-

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Linear Block

(),b d w (), ,b d w

(), ,b d h (),b d h

Linear Block

Reshape

Linear Block

Instance

Norm

Scale & Shift
Embedding

Block

Bucket ID i

During Inference

i = [1, 2, 3, …]

During Training

Input Counters

N  +

Reshape

Fully Connected Layer

Sigmoid 

Estimation Bucket(),b l

Additional

Extraction

Layers

Fully Connected Layer

ReLU

Fully Connected Layer

ReLU

Embedding Block

Sinusoidol Embedding

SiLU

Fully Connected Layer

scale shift

Number of rows in sketch

Number of columes in sketch

Hidden dimmension

d

w

h

Length of the bucketl

Figure 12: Neural network architecture of the learned solver used in our proposed approach.

ual sample in a batch separately. Now recalling the sketch update procedure, when a streaming
item arrives, its volume is added to one counter in each row, where the counter is determined by
hj , 1 ≤ j ≤ d. Therefore, counters in our sketch have the following guarantee: any inserted fre-
quency should ≤ scale := min

1≤j≤d
max
1≤i≤w

sketch count [j, i]. All we need is to find the minimum of

the maximum counts from all the rows, which can be done in linear time. Then we calculate the
instance-normalized measurement y′ = y

scale , and the inverse transformation for final estimations
can be written as x = scale× xθ, in which xθ is the output of the learned solver.

D.4 BASELINES

As mentioned in Section 5.1, we compare our method with eight state-of-the-art sketch-based al-
gorithms2: CM-sketch, C-sketch, Elastic Sketch, UnivMon, Nitrosketch, SeqSketch, Learned CM-
sketch, and Learned C-sketch. For these original sketches, we manually configure it to approach the
best memory-accuracy trade-off and allocate the same amount of memory for a fair comparison. To
be more specific, the number of hash functions has been fixed at 4 across all methods. We fix levels
as 2 in the universal sketch of UnivMon. For Elastic Sketch, we allocate 25% ∼ 50% memory for its
hash table. In particular, the neural network oracle in two learned sketches is replaced with an ideal
oracle that knows the identities of the heavy hitters, whose target domain depends on the number of
its unique buckets which take up around 50% memory. We implement a version of Aamand et al.
(2024)’s learned sketch which uses a single CS table. If the median estimate of an element is below
a threshold of CK/w for a tunable constant C = 1, the estimate is instead set to 0.

D.5 MODEL DETAILS

The details of our neural network (NN) architecture are illustrated in Fig. 12. To recover an estima-
tion bucket of length l, the size of the NN input measurements is d×w. The measurement vector is
first transformed to the shape (d,w). After projection by a linear block, each containing two fully

2The implementation of all sketches (in Python) can be found in our codebase, which is written mainly
based on a C++ Github repository: https://github.com/N2-Sys/BitSense.

21

https://github.com/N2-Sys/BitSense/tree/main/simulator/src/sketch

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

connected layers (FCs) using ReLU Nonlinear, the size of the tensor returns to d × h. Then, it will
be fed into the second linear block. We adopt this design with the following motivations: (a) Con-
sidering the need to reduce the computational cost, the total number of parameters is several times
less than that of its counterpart without transformations. (b) Motivated by the studies in sketching
algorithms, hash (row) independence should have a certain regularization effect on the estimation
process. Next, we integrate an embedding block to learn the bucket offset with information in the
sketch. For the bucket ID, we employ Sinusoidal embedding to represent each i as a h-dimensional
vector, and then apply one fully connected layer after activating by SiLU Nonlinear. i is injected into
the network with scaleix + shifti, where x is the shallow representation of our sampled counters.
The fused feature is then extracted by a series of layers, e.g. FCs. Finally, features are projected back
to the ground-truth domain with the Sigmoid function, as the normalized frequency is guaranteed to
be ≤ 1.

E OMITTED RESULTS OF FREQUENCY ENTROPY

In Table 4, we present experimental results of estimated entropy comparison on all datasets. Ad-
ditionally, Table 5 provides a comparison of UCL-sketch and its variates with the same setting as
before. As for Os and Ms, their entropy relative errors are both 126.49 on CAIDA, 489.29 on
Kosarak, 618.81 on Retail, respectively.

Table 4: Entropy relative error on different streaming data sets (bold indicates best performance)
Datasets Sketches 16KB 32KB 48KB 64KB 80KB 96KB 112KB 128KB

C
A

ID
A

Ours 16.44 9.68 10.75 7.54 6.72 4.51 4.06 3.39
CM 4117.71 1550.48 843.59 543.85 379.17 284.8 221.26 176.97

CS 2781.76 1252.46 770.21 550.84 481.88 385.78 316.6 236.29

LCM 7476.93 2475.28 937.02 806.84 442.46 394.74 239.47 227.62

LCS 3042.2 1042.73 452.74 380.76 390.41 341.08 214.80 124.86

ES 9745.67 3969.5 1486.76 1459.49 794.73 774.28 497.61 490.86

UM 1820.53 1196.32 879.91 571.56 493.42 429.74 375.90 557.75

NS 1187.6 510.67 305.52 212.99 162.92 131.79 107.70 105.86

LS 6780.68 1001.38 502.98 276.07 32.22 21.54 16.60 13.42

K
os

ar
ak

Ours 58.24 35.10 21.63 16.85 14.29 13.19 10.79 10.18
CM 2620.64 841.5 404.67 231.51 144.01 98.37 70.56 52.63

CS 3270.70 1438.2 876.32 608.17 542.87 430.44 347.66 247.36

LCM 4506.12 1008.47 295.55 196.1 86.35 60.62 27.47 23.44

LCS 3469.50 846.16 317.96 202.46 173.8 119.25 61.44 34.50

ES 6537.66 2268.03 703.97 643.72 299.46 274.27 155.77 144.44

UM 1875.06 1222.37 902.99 565.21 524.43 483.68 393.32 654.84

NS 3575.26 1532.43 914.97 625.38 462.48 361.92 294.88 288.81

LS 7840.86 1887.36 683.64 439.85 227.36 154.53 79.38 34.03

R
et

ai
l

Ours 69.16 41.02 27.14 22.20 18.87 15.07 12.56 10.56
CM 3166.01 1066.05 511.37 291.21 179.20 119.71 82.79 59.45

CS 3468.11 1569.19 984.25 690.76 643.02 516 419.62 305.66

LCM 5527.20 1265.28 346.69 211.31 83.16 50.66 17.72 13.67

LCS 4129.77 1097.03 415.05 254.86 208.78 130.63 60.03 32.82

ES 7601.40 2621.57 850.06 742.85 344.02 282.78 156.78 129.85

UM 1766.46 1197.95 894.09 582.79 591.83 494.88 448.04 773.58

NS 3857.67 1734.13 1051.95 740.24 554.35 441.95 362.26 358.09

LS 9349.86 2466.50 893.28 549.42 276.40 170.72 79.21 62.11

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 5: Entropy relative error with viariates of UCL-sketch (bold indicates best performance)
Viariates UCL-sketch w/o SA w/o EQ w/o SR OMP LSQR CM

Relative Error 16.85 408.93 376.53 358.09 346.78 301.32 204.29

F ADDITIONAL EXPERIMENTS

We supplement more extra experiments including ablational study, sensitivity studies and evaluation
on synthetic datasets that are not presented in Section 5 due to the limit of space.

F.1 ABALTIONAL STUDY

In Fig. 13 and Table 5 (see Appendix E), we compare the original UCL-sketch with its modified
version to analyze the impact of each designed component. Our used dataset is Kosarak and memory
is 64KB.

0

20

40

60

80

A
A

E

Ours
w/o SA

w/o EQ
w/o SR

OMP LSQR CM

0.0

0.5

1.0

1.5

W
M

R
D

Figure 13: Quantitative results of ablational studies.

Learning version v.s. Non-learning ver-
sion. Three traditional versions of the de-
coding method are used for comparison:
OMP used in SeqSketch, LSQR (Paige &
Saunders, 1982), and Count-Min (CM).
As shown in Fig. 13, we can find that the
accuracy under our learning-based algo-
rithm is consistently better than that under
non-learning methods. CM performs the
worst since it does not utilize information

from the linear system. Meanwhile, OMP is more precise than LSQR owing to its sparse greedy
solution. We then measure its inference time for different numbers of keys. The left of Fig. 14 gives
a recovery time of OMP that is over 60 seconds in some cases, which is much slower than ours
which keeps the time around 0.5 seconds. Therefore, proposed learning technologies do boost the
design of high-performance sketches.

Basic training v.s. Optimized training. Also see Fig. 13 for the ablation results on training options,
whose details are as follows. Without EQ: We retrain the solver by removing the third term in Eqn. 2.
Noticeable performance degradation is observed in both AAE and WMRD when compared to ours.
This has indicated the effectiveness of equivalent learning for handling the null-space ambiguity
without ground truth. Without SR: We remove the second loss term in Eqn. 2 and retrain the model.
The accuracy is close to the situation without EQ. But it’s interesting to see that WMRD after
discarding the sparse regularization is slightly lower than the original version. The reason may
be the sparsity assumption limits the model’s ability to learn the heavy-tailed distribution weakly.
However, Table 5 shows that UCL-sketch offers a much better estimation of frequency entropy than
the other two variates for all memory sizes.

1K 10K 20K 100K
Number of Keys

0

200

400

600

R
ec

ov
er

y
Ti

m
e

(s
) Ours

OMP

1K 10K 20K 100K 500K
Number of Keys

0

50

100

150

200

250

M
od

el
 S

iz
e

(M
B

) Scalable
Non-scalable

Figure 14: Left: Recovery time. Right: Size of parameters.

Scalable network v.s. Non-scalable
network. To demonstrate the im-
pact of scalable architecture (SA), we
train a network with unshared buck-
ets. Surprisingly, the unshared ver-
sion does not achieve the best perfor-
mance in Fig. 13. This is because
the parameter sharing acts as a form
of regularization, preventing overfit-
ting so that the solver is more likely
to generalize well to future counters, especially for very large-scale streams. A summary of the
required memory is reported on the right of Fig. 14. Obviously, in the scalable network, with the
increase in the number of keys, the parameters significantly decrease. By setting 500K unique items,
the non-scalable network takes up a memory of over 250MB, while ours only requires a consumption
of 1MB. This indicates that our compression scheme in parameters is very promising and practical,
with an even better effect on estimation performance.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

F.2 SENSITIVITY ANALYSIS

We measure the influence of some key parameter settings, i.e. size of the bucket and hidden di-
mension, on accuracy, distribution, and resource usage. Also, we use the Kosarak dataset in these
experiments.

F.2.1 THE IMPACT OF BUCKET LENGTH

128 256 512 1024 2048
Bucket Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
em

or
y

U
sa

ge
 (M

B
)

Figure 15: Total trainable pa-
rameters using 64KB sketch.

In this experiment, we vary bucket length in [128, 256, 512, 1024,
2056]. The results in Fig. 16 show that a small size of bucket can
achieve similar AREs, but it leads to notable degradation in the en-
tropy of estimated frequencies. Therefore, we choose 512 or 1024
as its value in other experiments to make a balance between overall
performance and memory usage (see Fig. 15). In fact, users can set
bucket length according to the key space they are interested in, and
a length of 1024 will be enough in general.

Memory (KB)
163248648096112128

Bucket Length

128
256

512
1024

2056

0

2

4

6

8

(a) Average Relative Error
Memory (KB)

163248648096112128

Bucket Length

128
256

512
1024

2056

0
10
20
30
40
50
60
70

(b) Entorpy Relative Error

Figure 16: Effects of the shared bucket length.

F.2.2 THE IMPACT OF HIDDEN DIMENSION

32 64 128 256 512
Hidden Dimension

0

1

2

3

4

M
em

or
y

U
sa

ge
 (M

B
)

Figure 17: Total trainable pa-
rameters using 64KB sketch.

We retrain models with hidden dimensions from 32 to 512 to obtain
5×2 groups of experimental results in Fig. 18. As shown in Fig. 18,
the performance of frequency estimation improves with increasing
the hidden dimension, indicating that the higher-dimensional rep-
resentation is available, the better the model can be trained and the
better results can be achieved by the extracted feature. However,
after the size reaches a certain value e.g. 128, the increase of di-
mension does not boost the recovery performance obviously. Also
note that the memory overhead of the model exhibits exponential
growth in high-dimensional (over 64) hidden spaces, which can be
observed in Fig. 17. We thus set it to 128 in all experiments.

F.3 ADDITIONAL RESULTS OF WEIGHTED ESTIMATION ERROR

Next, we also consider the following notion of overall weighted error as done in (Hsu et al., 2019)
and (Aamand et al., 2024), which equals 1

n

∑n
i=1 f(i) · |f(i)− f∗(i)|, where f(·) and f∗(·) are

real and estimated frequency respectively. The weighted error is more natural from the machine
learning perspective, as it can be interpreted as measuring the error with respect to the real frequency
distribution. Fig. 19 plots the weighted errors of nine algorithms except for 0s and Ms, because they
are generally larger than 300000. We see that three ideally learned sketches, e.g., LCM, LCS and

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Memory (KB)

163248648096112128

Hidden Dimension

32
64

128
256

512

0

2

4

6

8

10

(a) Average Relative Error
Memory (KB)

163248648096112128

Hidden Dimension

32
64

128
256

512

0
10
20
30
40
50
60

(b) Entorpy Relative Error

Figure 18: Effects of the hidden dimension in the learned solver.

20 40 60 80 100 120
Memory (KB)

0

2000

4000

6000

8000

10000

W
E

CAIDA
CM CS LCM LCS ES UM NS LS Ours

20 40 60 80 100 120
Memory (KB)

0

5000

10000

15000

20000

25000

Kosarak

20 40 60 80 100 120
Memory (KB)

0

10000

20000

30000

40000
Retail

Figure 19: Comparison of weighted error on there real-world datasets.

LS, achieve obviously better estimation since they perfectly preserve the frequency of the largest
error-weighted terms, and LS performs better in predicting the low-frequency components (set to
0). The practical performance of UCL-sketch is slightly inferior to theirs, but it remains highly
competitive overall, achieving approximately an average 10% improvement compared to the best
non-learning sketch.

F.4 ARES OF DIFFERENT SKETCHES WITH MORE MEMORY USAGE

We now report additional details about the ARE experiments we show in the main body of the paper.
In this section, we focus on the sketch performance with more memory usage. In Fig. 20, it becomes
evident that when employing different sketches with a memory capacity exceeding 1MB, its ARE
exhibit significant reductions, approaching approximately zero error. In particular, the figure shows

16 32 64 128 256 512 1024 2048
Memory (KB)

0

200

400

600

A
R

E

CAIDA

CM CS LCM LCS ES UM NS 0s Ms LS Ours

16 32 64 128 256 512 1024 2048
Memory (KB)

0

100

200

300

Kosarak

16 32 64 128 256 512 1024 2048
Memory (KB)

0

50

100

150

200
Retail

0

2

4

6

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

Figure 20: Comparison of AREs on three real-world datasets.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

that learned sketch, i.e., LS achieves smallest error using memory over 512KB, while our GT-free
approaches obtained results comparable to the supervised learning one.

F.5 FREQUENCY ESTIMATION FOR TOY ZIPFIAN DATASETS

20 40 60 80 100 120
0

2000

4000

6000

8000

W
E

Skewness = 1.2

CM
CS

LCM
LCS

ES UM NS LS Ours

20 40 60 80 100 120
0

1000

2000

3000

4000
Skewness = 1.3

20 40 60 80 100 120
Memory (KB)

0

2000

4000

6000

8000

W
E

Skewness = 1.4

20 40 60 80 100 120
Memory (KB)

0

2000

4000

6000

8000

10000
Skewness = 1.5

Figure 21: Comparison of weighted error on different
Zipfian datasets.

To evaluate the robustness of the proposed
algorithm, we also synthesize four datasets
that satisfy Zipf’s law, where the skewness
varies in [1.2, 1.3, 1.4, 1.5] and keys with
length of 4-byte distinguish items in these
datasets. There are 2M elements in each
dataset, with around 22K ∼ 214K total
distinct items depending on the skewness.
Fig. 21 and Fig. 22 plot the average results
regarding WE, AAE, ARE, and WMRD,
while frequency entropy relative errors are
listed in Table 6. The results confirm the
conclusion shown in the main body of the
paper: We observe that the performance of
most methods increases as skewness rises.
This is because the heavy-tailed distribution leads to fewer keys given the same total count. Nev-
ertheless, our UCL-sketch always performs the best in all memory settings. Note that even with
the lowest skewness, the proposed algorithm can still achieve minimal deviation, e.g. average en-
tropy relative errors never exceeding 9 in that case, beating the other algorithms with a significant
advantage.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 6: Entropy relative error on different Zipfian datasets (bold indicates best performance)
Skewness Sketches 16KB 32KB 48KB 64KB 80KB 96KB 112KB 128KB

1.2

Ours 8.18 6.23 5.53 2.87 2.58 3.56 4.64 3.01
CM 3556.66 1354.36 757.90 502.69 359.71 277.20 220.82 180.74

CS 4687.94 1869.68 1065.96 724.66 552.55 431.75 345.01 242.73

LCM 6543.01 2290.03 921.88 830.31 481.52 448.20 295.59 288.44

LCS 3107.83 1008.36 438.68 369.63 544.17 497.78 331.26 133.06

ES 8435.34 3369.08 1286.89 1259.31 701.99 675.75 447.01 443.37

UM 2362.29 1405.47 959.04 556.77 596.86 537.01 437.41 694.09

NS 2816.48 1109.91 637.40 433.10 317.79 250.64 204.9 263.25

LS 2854.41 490.34 418.59 237.34 270.75 217.02 105.18 50.12

1.3

Ours 3.70 3.26 2.64 1.41 1.54 2.29 3.19 1.60
CM 1694.94 592.36 314.16 201.90 140.67 105.46 82.66 66.54

CS 3189.71 1192.73 669.42 435.7 329.11 248.73 200.2 141.37

LCM 2977.00 913.99 342.29 294.59 162.95 147.04 91.61 88.00

LCS 1675.31 476.62 200.51 159.95 217.34 192.65 123.57 52.50

ES 4258.16 1569.04 543.37 509.99 272.29 263.63 168.56 164.57

UM 1858.68 1047.64 726.18 391.56 373.41 373.41 261.99 416.50

NS 2160.49 816.45 454.08 296.26 210.27 167.69 132.00 167.98

LS 1950.57 325.30 118.29 196.67 84.10 161.87 94.01 46.21

1.4

Ours 34.26 1.71 3.65 0.53 0.30 0.89 1.26 0.61
CM 777.78 249.71 126.36 77.86 52.84 38.47 29.64 23.46

CS 2015.95 724.19 394.16 289.24 188.41 137.07 115.87 83.55

LCM 1303.13 338.55 116.05 93.28 48.16 41.25 23.69 22.19

LCS 834.16 205.26 83.62 62.56 76.59 64.79 39.95 18.21

ES 2106.11 660.07 213.24 200.60 100.88 94.11 58.06 55.11

UM 1437.18 772.68 517.9 265.29 216.73 216.73 195.21 244.32

NS 1528.59 525.88 278.60 174.61 131.69 96.45 81.31 102.76

LS 982.51 156.91 56.34 63.64 23.80 46.63 23.91 20.09

1.5

Ours 24.69 2.94 4.86 4.25 1.71 4.02 4.46 0.79
CM 357.16 105.53 50.26 29.70 19.52 13.76 10.51 7.98

CS 1335.87 460.32 264.98 149.75 107.31 78.85 62.8 46.58

LCM 554.13 117.42 36.07 26.13 12.23 9.47 4.73 4.22

LCS 398.21 83.63 32.43 22.49 24.34 19.31 11.19 5.88

ES 966.71 286.85 83.11 73.99 34.8 29.52 17.22 15.01

UM 991.13 467.95 309.66 162.53 129.13 129.13 89.86 159.09

NS 993.50 339.90 179.28 103.97 75.11 56.80 46.64 58.71

LS 464.66 56.41 20.48 6.77 16.61 9.74 5.29 4.07

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

20 40 60 80 100 120
Memory (KB)

0

200

400

600

800

A
A

E

CM CS LCM LCS ES UM NS 0s Ms LS Ours

20 40 60 80 100 120
Memory (KB)

0

200

400

600

800

A
R

E

20 40 60 80 100 120
Memory (KB)

0.5

1.0

1.5

2.0

W
M

R
D

0

25

50

75

100

0

20

40

60

80

100

(a) Skewness = 1.2

20 40 60 80 100 120
Memory (KB)

0

100

200

300

400

A
A

E

CM CS LCM LCS ES UM NS 0s Ms LS Ours

20 40 60 80 100 120
Memory (KB)

0

100

200

300

400

A
R

E

20 40 60 80 100 120
Memory (KB)

0.5

1.0

1.5

2.0

W
M

R
D

0

10

20

30

40

50

0

10

20

30

40

(b) Skewness = 1.3

20 40 60 80 100 120
Memory (KB)

0

50

100

150

200

250

A
A

E

CM CS LCM LCS ES UM NS 0s Ms LS Ours

20 40 60 80 100 120
Memory (KB)

0

50

100

150

200

A
R

E

20 40 60 80 100 120
Memory (KB)

0.5

1.0

1.5

2.0

W
M

R
D

0

10

20

30

0

5

10

15

20

(c) Skewness = 1.4

20 40 60 80 100 120
Memory (KB)

0

50

100

150

A
A

E

CM CS LCM LCS ES UM NS 0s Ms LS Ours

20 40 60 80 100 120
Memory (KB)

0

20

40

60

80

A
R

E

20 40 60 80 100 120
Memory (KB)

0.5

1.0

1.5

2.0

W
M

R
D

0

5

10

15

0

5

10

(d) Skewness = 1.5

Figure 22: Performance comparison between our UCL-sketch and existing state-of-the-art sketches
on synthetic Zipfian datasets with different skewness.

28

	Introduction
	Preliminaries
	Key Ideas of Equation-based Sketch
	Problem Statement
	Motivation

	Methodology
	Basic Design
	Training Strategy
	Scalable Architecture
	Putting It Together

	Theoretical Analysis
	Evaluation
	Experimental Setup
	Performance Comparison
	Additional Experiments

	Conclusion
	Appendix
	Appendix to ``Toward Practical Learning- based Frequency Estimation without Ground Truth"
	Related Work
	Update Algorithm
	Proofs and Remarks
	Implementation Details
	Metrics
	Parameters
	Data Normalization
	Baselines
	Model Details

	Omitted Results of Frequency Entropy
	Additional Experiments
	Abaltional Study
	Sensitivity Analysis
	The impact of bucket length
	The impact of hidden dimension

	Additional Results of Weighted Estimation Error
	AREs of Different sketches with More Memory Usage
	Frequency Estimation for Toy Zipfian Datasets

