
1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Understanding Attention Training via Output Relevance

Anonymous EMNLP submission

Abstract

In recurrent models with attention, the learned
attention weights sometimes correlate with in-
dividual token importance, even though the
training objective does not explicitly reward
this. To understand why, we study the train-
ing dynamics of attention for sequence classi-
fication and translation. We identify a quantity
in the model, which we call the output rele-

vance, and show that it drives the learning of
the attention. If we ablate attention by fixing it
to uniform, the output relevance still correlates
with the attention of a normally trained model;
but if we instead ablate output relevance, at-
tention cannot be learned. Using output rel-
evance, we explain why attention correlates
with gradient based interpretation; and perhaps
surprisingly, a Seq2Seq with attention model
sometimes fails to learn a simple permutation
copying task. Finally, we discuss evidence that
multi-head attention improves not only expres-
siveness but also learning dynamics.

1 Introduction

Attention-based models underlie many recent ad-
vances in natural language processing, such as
machien translation (Bahdanau et al., 2014) and
pretraining (Devlin et al., 2018). Beyond its predic-
tive performance, attention may also provide inter-
pretability by assigning higher attention weights to
more important tokens (Wang et al., 2016; Lee
et al., 2017; Deng et al., 2018). However, re-
cent work has shown that classification models
can be trained to attend to irrelevant tokens with-
out harming performance (Wiegreffe and Pinter,
2019; Pruthi et al., 2019), even though attention
weights do correlate weakly with token importance
(Ebrahimi et al., 2017) on classification and transla-
tion tasks if the model is normally trained (Jain and
Wallace, 2019; Serrano and Smith, 2019; Wiegreffe
and Pinter, 2019; Vashishth et al., 2019).

Why does a normally trained model attend to
tokens that are likely to be important, even though
the training objective does not explicitly reward
this? Explaining this discrepancy requires under-
standing the training dynamics. Section 2 defines
a quantity �l called the output relevance, which is
how much the hidden state hl is indicative of the
correct label. Higher output relevance attracts a
model’s attention. We corroborate this by showing
that even if the attention is fixed uniform, we can
still use output-relevance to predict where a nor-
mally trained model is likely to attend (Section 3.4);
furthermore, Section 3.3 shows that for translation
tasks and a synthetic classification task, the model
learns output relevance before learning attention.

Output relevance explains and predicts phenom-
ena in classification and translation. For classifi-
cation, output relevance increases for all hidden
positions as training progresses, but does so faster

at important token positions (Section 4.1). Intu-
itively, we expect this to hold for LSTM and other
sequence models, since hidden states see direct gra-
dient updates from their corresponding token but
only indirect updates from other tokens. This ex-
plains why model attention is attracted to important
positions.

For translation, we predict cases where learning
fails. Specifically, attention is approximately uni-
form when training starts and so the model only
uses word co-occurrence information to learn out-
put relevance; this is evocative of the first step
in the early IBM alignment models (Brown et al.,
1993). Our theory thus predicts that if word co-
occurrence information is removed, the model can-
not learn output relevance and hence fails to learn.
We verify this in Section 4.2 by designing a sim-
ple permutation-copying task. Although construct-
ing a model that completes this task is trivial, the
seq2seq models often fail to train. We also find
that multi-head attention can alleviate this problem

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

En: I [l=1] don’t [2] speak [3] English [4].

0.2
0.1
3.5
0.1
0.2
0.2
. . .

θl

0.1
0.3
0.3
4.0
0.1
0.2
. . .

θ2

0.1
0.0
0.0
0.0
0.2
2.0
. . .

θ3

0.3
2.9
0.2
0.1
0.2
0.1
. . .

θ4

hlBi-LSTM
h2 h3 h4

Attention a2
@ t = 2

DE: Ich [l=1] spreche [t=2] kein [3] Englisch [4]

𝛃2

0.1 0.0 0.9 0.0

∑ a2, l θl

Deutsche
Englisch
Ich
kein
sie
spreche
. . .

Figure 1: Each column represents ✓l values, and �2 is
defined as the row that corresponds to the second out-
put token “spreche” (after normalizing by rows). When
generating the t

th token, the model generates an atten-
tion distribution at over [L] and use it to aggregate ✓l.

by effectively acting as multiple random initial-
izations. Multi-head attention improves not only
expressiveness but also learning dynamics.

2 Model and Output Relevance
We consider a recurrent Seq2Seq model with atten-
tion. A classification model is a special case of a
Seq2Seq model with output length 1. Below we
use [N] to denote the set {1, . . . , N} and �N to
denote the probability simplex.

Suppose the input and output vocabulary have
sizes I and O respectively. We denote an input
token sequence (sentence) of length L as [i1 . . . iL],
where each il 2 [I]. The output [o1, . . . oT] is
a sequence of tokens in [O] with length T . The
model embeds the input sequence with an LSTM
to obtain a hidden state hl for each position l 2 [L].

To produce the predictive distribution for the
t
th output token, the model generates an attention

score ↵tl. for each input position l, then applies
softmax to obtain an attention distribution at 2 �L.
The model also applies a learnable linear trans-
formation to map each hidden state to a vector
✓l 2 RO of output logits. 1 Finally, the model
averages ✓l weighted by the attention distribution
at, and applies softmax to obtain a probability dis-
tribution over outputs. Concretely, the predictive
distribution pt is

pt = S(�t), where �t :=
LX

l=1

S(at)l✓l (1)

1This model is slightly different from the standard, where
a non-linearity follows the weighted average of hidden states.
However, it does not hurt performance in our experiments and
achieves BLEU score 33.3 on IWSLT’14 DE-EN.

and S is the softmax function. Figure 1 illustrates
this. We now define the output relevance �tl

�tl := log
e
✓lot

P
o 6=ot

e✓lo
(2)

We interpret �tl as “how strongly the l
th hidden

state predicts the true output token ot”, normalized
by other wrong outputs. Notice that this quan-
tity also needs to be learned by the model, and it
may or may not correspond to the correct word
alignment. Additionally, � is defined based on the
hidden state hl (which can contain contextual infor-
mation) rather than the token il. Intuitively, larger
output relevance attracts model’s attention: if the
model can only attend to one position, attending to
maximum output relevance minimizes the loss.

3 Output Relevance Drives Attention
We next study the dynamics of the attention weights
↵ throughout learning. Through several translation
and classification tasks, we show that the output
relevance � drives the learning of ↵. Specifically,
even if the attention is fixed uniform, � is indicative
of where a normally trained model would attend to;
in contrast, ↵ cannot be learned if � is fixed. 2

3.1 Datasets
We consider 6 classification and 2 translation
datasets, detailed in Appendix A.1. For classifi-
cation, we use IMDB, AG News, 20 Newsgroups
(NewsG), Stanford Sentiment Treebank (SST),
YELP, and Multi-Domain Sentiment (Amzn), and
for translation we use Multi30K (M30K) and
IWSLT’14 DE-EN (IW14). We also define a syn-
thetic classification task, “SynClf”, such that im-
portant tokens are clearly defined. Each input
is a length-40 sequence of tokens sampled from
{1, . . . , 40} uniformly at random; a sequence is la-
beled positive if and only if the token “1” appears in
the sequence. We report accuracy for classification
tasks and token accuracy for translation tasks.

3.2 Correlation Metric
For each output position t (t = 1 for classification),
↵t and �t are both vectors of length L, with each
value associated with an input position. We quan-
tify correlation between ↵t and �t via two metrics.
The first is exact match of the modes:

acc(↵t,�t) = [arg max
l
↵tl = arg max

l
�tl] (3)

2All model details can be seen in the Appendix Section
A.2

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

The second is similar, but gives credit as long as
the mode l

⇤ of ↵t is highly ranked (hr) in �t:

hr(↵t,�t) = [(rank of �tl⇤) in �t > 0.95L]

where l
⇤ = arg max

l
↵tl (4)

These ranking-based metrics account for the fact
that attention vectors are typically sparse. In our ex-
periments we measure correlation by reporting the
average of this metric over all sequences and output
tokens/labels in the test set. A random baseline for
this metric is approximately 5% and at most 10%
for all datasets we use.

3.3 Learning � Before ↵

We begin by studying how � and ↵ evolve early in
training. At iteration s, let ↵s and �

s denote the
attention and output relevance, respectively, and
let s⇤ be the iteration at which the model has max-
imum test accuracy. To account for randomness
in training, we define ↵̂, �̂ the same as ↵,�, ex-
cept with a different random seed. Figure 2 plots
acc(↵s

⇤
, ↵̂

s) and acc(↵s
⇤
, �̂

s) on the SynClf clas-
sification and Multi30K DE-EN translation tasks.
These two quantities track how well ↵̂s (red) and
�̂
s (blue) correlate with the model’s converged at-

tention ↵
s
⇤ during training. The attention of Syn-

Clf will converge exclusively to positions with the
important token “1”, and that of Multi30K will
converge approximately to word alignment.

For both tasks, acc(↵s
⇤
, ↵̂

s) and acc(↵s
⇤
, �̂

s)
start at random uniform baselines when training
starts. During early iterations, the latter increases
faster than the former: � is learned first, which
subsequently attracts models’ attention.

Connection to IBM models. If we further as-
sume that hl mainly contains information about
token il when training starts, learning output rele-
vance under uniform attention resembles the first
iteration of the IBM word alignment algorithm
(Brown et al., 1993). Initially, attention is uni-
form and all alignments are equally likely. Under
uniform attention, the model effectively translates
a bag of words/hidden states from the source to
a bag of words in the target, and hence use word
co-occurrence statistics to learn the output rele-
vance/vocab correspondence (e.g. “I” to “Ich” in
Figure 1). The network later learns the attention
from output relevance just as IBM model learns the
alignment from vocab correspondence.

Figure 2: On SynClf and Multi30K DE-EN translation
tasks, output relevance � (blue) is learned before atten-
tion ↵ (red) is learned. We average across 50 different
runs because small batch size causes noise; shaded area
is 99% confidence interval of the mean.

3.4 � under Uniform Attention
We next ablate attention (by fixing attention to
be uniform) and show that output relevance still
correlates with the attention of a normally trained
model. Let �s

unif be the output relevance under
uniform attention and ↵

s
norm be the attention of

a normally trained model; on some data sets, the
correlation between �

s

unif and ↵
s
⇤ first increases

and then decreases, so we define s
0 as the iteration

when hr(↵s
⇤
,�

s

unif) is maximized. For complete-
ness, we plot how hr(↵s

⇤
,�

s

unif) changes during
training in Appendix Section A.4.

Data hr (%) s @s (%) best (%)
SynClf 100 40 100 100
IMDB 18 150 84 93

AG 42 450 93 96
NewsG 36 10 61 93

SST 24 1950 82 82
Amzn 49 450 85 89
Yelp 58 150 90 96

M30K 40 1000 46 65
IW14 39 1000 33 66

Table 1: Output relevance under uniform attention
�
s⇤

unif is indicative (hr) of where the model attends to
if normally trained (↵s⇤

norm). s is the iteration when
hr(↵s⇤

norm, ↵̂
s
norm) exceeds hr(↵s⇤

norm,�
s⇤

unif). “@s” is
the accuracy of a normal attention model at iteration s;
“best” is the best performance of an attention model.

We compare hr(↵s
⇤
norm,�

s
0

unif) with a floor and a
ceiling. The floor is a random baseline, which is at
most 10% for every dataset. The ceiling is the cor-
relation between the attention weights of two identi-
cal models with different random seeds. According
to Section 3.3, the attention is not correlated with
where it will converge to when training begins, and
hence hr(↵s

⇤
norm, ↵̂

s) is around the random baseline.
As the model trains and converges, hr(↵s

⇤
norm, ↵̂

s)

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

will converge to approximately 1 if the attention
weights are relatively stable across training. We re-
port the iteration s when ↵

s
⇤
norm is more correlated

with the model’s attention weights ↵̂s than out-
put relevance �

s
0

unif ; i.e., when hr(↵s
⇤
, ↵̂

s) exceeds
hr(↵s

⇤
,�

s
0

unif). We also report the performance of
the normal attention model at iteration s.

Table 1 shows the results. On all datasets,
hr(↵s

⇤
norm,�

s
0

unif) outperforms the random baseline.
On datasets like IMDB, AG, and Yelp, the output
relevance under uniform attention is even more
correlated with the normally trained attention than
itself, at an iteration that yields non-trivial accu-
racy. In contrast, if we freeze � by only training
the attention layer while fixing all other parameters
at random initialization, the resulting attention is
not correlated with ↵

s
⇤
norm (appendix Table 3).

4 Empirical Predictions

We now use output relevance under uniform train-
ing to explain and predict various phenomena.

4.1 Attention Correlates With Interpretation

In all classification tasks, training with uniform
attention leads to nontrivial accuracy, which im-
plies that � must increase on average. However,
� increases faster at positions that correspond to
more influential tokens. We use a gradient based
influence approximation method (Ebrahimi et al.,
2017) to obtain the influence ⇠l for each token il

and then calculate hr(⇠,�s
⇤

unif). Figure 3 shows that
these quantities are correlated. This explains why
attention is correlated with relative token impor-
tance on many classification tasks, even though the
training objective does not explicitly reward this.

Figure 3: �s⇤

unif and ⇠ correlates on all datasets.

Unfortunately, we cannot predict exactly where
output relevance tends to increase faster under uni-
form attention in general. However, reasoning
about output relevance under uniform attention is

conceptually simpler than directly studying the at-
tention mechanism. As shown in Section 3.3, on
tasks like SynClf and machine translation where
individual token importance attribution is relatively
clear, output relevance does increase interpretably.

4.2 Permutation Copying is Hard for
Seq2Seq

In Section 3.3, we argued that models leverage
word co-occurrence information to learn � early in
training; however, if there is no word co-occurrence
information, our theory predicts that it would be
hard to learn �, which causes the attention to stay
uniform and obstructs learning. To verify this pre-
diction, we consider the following simple task:
each input sequence is permutation of {1, . . . , 40},
and the output is equal to the input. If the atten-
tion is uniform, the model is approximately a bag of
words model, and all input and output sequences ap-
pear as the same bag of words, thus making � ⇡ 0
and hence ↵ ⇡ 0; training thus gets stuck.

We verify this using a standard Seq2Seq model
with single directional LSTM and hidden dimen-
sion 256. We say that a model “succeeds” if it
achieves 90% token accuracy after 200 iterations
and otherwise “fails”. Over 20 random initializa-
tions, 11 succeed and 9 fail. In contrast, if input
tokens are instead sampled uniformly from [1, 40]
(so that there is variation in word frequency across
examples), all 20 runs succeed.

Since some random initializations still success-
fully learn, we investigated whether we can learn
more robustly by using several attention heads. We
first produce 5 single-head “bad” initializations that
failed to learn, and 5 “good” ones that learned suc-
cessfully. We then consider all 210�1 ways of com-
bining these initializations into a multi-head initial-
ization. 22 out of 31 combinations that only con-
tain bad initializations fail, while only 19 fail for
the rest of the 992 combinations. In this example,
multi-head attention benefits from having multiple
attention head initializations; if one of the heads is
lucky enough to learn the task successfully, then
the whole model is able to learn. Although a single
attention head is enough to construct a model that
completes this task, multi-head attention increases
learnability via over-parameterization. This obser-
vation is consistent with Voita et al. (2019) and
Michel et al. (2019): most of the heads can be
pruned in a transformer after training, but we can-
not train a model with fewer heads from scratch.

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint

arXiv:1409.0473.

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The math-
ematics of statistical machine translation: Parameter
estimation. Computational Linguistics, 19(2):263–
311.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
Bentivogli, and Marcello Federico. Report on the
11th iwslt evaluation campaign, iwslt 2014.

Yuntian Deng, Yoon Kim, Justin Chiu, Demi Guo, and
Alexander Rush. 2018. Latent alignment and varia-
tional attention. In Advances in Neural Information

Processing Systems, pages 9712–9724.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and De-
jing Dou. 2017. Hotflip: White-box adversarial
examples for text classification. arXiv preprint

arXiv:1712.06751.

Desmond Elliott, Stella Frank, Khalil Sima’an, and
Lucia Specia. 2016. Multi30k: Multilingual
english-german image descriptions. arXiv preprint

arXiv:1605.00459.

Sarthak Jain and Byron C Wallace. 2019. Attention is
not explanation. arXiv preprint arXiv:1902.10186.

Jaesong Lee, Joong-Hwi Shin, and Jun-Seok Kim.
2017. Interactive visualization and manipulation
of attention-based neural machine translation. In
Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing: System

Demonstrations, pages 121–126.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of

the Association for Computational Linguistics: Hu-

man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Ad-

vances in Neural Information Processing Systems,
pages 14014–14024.

Danish Pruthi, Mansi Gupta, Bhuwan Dhingra, Gra-
ham Neubig, and Zachary C Lipton. 2019. Learning
to deceive with attention-based explanations. arXiv

preprint arXiv:1909.07913.

Sofia Serrano and Noah A Smith. 2019. Is attention
interpretable? arXiv preprint arXiv:1906.03731.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on

empirical methods in natural language processing,
pages 1631–1642.

Shikhar Vashishth, Shyam Upadhyay, Gaurav Singh
Tomar, and Manaal Faruqui. 2019. Attention in-
terpretability across nlp tasks. arXiv preprint

arXiv:1909.11218.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-
head self-attention: Specialized heads do the heavy
lifting, the rest can be pruned. arXiv preprint

arXiv:1905.09418.

Yequan Wang, Minlie Huang, Xiaoyan Zhu, and
Li Zhao. 2016. Attention-based lstm for aspect-
level sentiment classification. In Proceedings of the

2016 conference on empirical methods in natural

language processing, pages 606–615.

Sarah Wiegreffe and Yuval Pinter. 2019. Atten-
tion is not not explanation. arXiv preprint

arXiv:1908.04626.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-

cessing systems, pages 649–657.

https://www.aclweb.org/anthology/J93-2003
https://www.aclweb.org/anthology/J93-2003
https://www.aclweb.org/anthology/J93-2003
https://www.aclweb.org/anthology/P11-1015
https://www.aclweb.org/anthology/P11-1015

6

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

A Appendices

A.1 Dataset Summarization
We summarize the datasets that we use for classifi-
cation and machine translation.

IMDB Sentiment Analysis (Maas et al., 2011)
A sentiment analysis data set with 50,000 (25,000
train and 25,000 test) IMDB movie reviews and
their corresponding positive or negative sentiment.

AG News Corpus (Zhang et al., 2015) 120,000
news articles and their corresponding topic (world,
sports, business, or science/tech). We classify be-
tween the world and business articles.

20 Newsgroups 3 A news data set containing
around 18,000 newsgroups articles split between 20
different labeled categories. We classify between
baseball and hocky articles.

Stanford Sentiment Treebank (Socher et al.,
2013) A data set for classifying the sentiment of
movie reviews, labeled on a scale from 1 (negative)
to 5 (positive). We remove all movies labeled as 3,
and classify between 4 or 5 and 1 or 2.

Multi Domain Sentiment Data set 4 Approxi-
mately 40,000 Amazon reviews from various prod-
uct categories labeled with a corresponding positive
or negative label. Since some of the sequences are
particularly long, we only use sequences of length
less than 400 words.

Yelp Open Data Set 5 20,000 Yelp reviews and
their corresponding star rating from 1 to 5. We
classify between reviews with rating 2 and � 4.

Multi-30k (Elliott et al., 2016) English to Ger-
man translation. The data is from translation image
captions.

IWSLT’14 (Cettolo et al.) German to English
translation. The data is from translated TED talk
transcriptions.

A.2 Model Architectures
Classification We use GloVe-6B pre-trained em-
beddings to embed the tokens and use a single layer
bidirectional LSTM to produce the hidden states hl
(dimension 256) for each position l. We then pro-
duce attention from these hidden states by taking

al = S(V ⇤ReLU(Whl)) (5)

, where v and W are learn-able parameters. We
then produce a weighted sum of the hidden state

3http://qwone.com/ jason/20Newsgroups/
4https://www.cs.jhu.edu/ mdredze/datasets/sentiment/
5https://www.yelp.com/dataset

Data median train seq len train #
IMDB 181 25000

AG News 40 60000
NewsG 183 1197

SST 16 5130
Amzn 71 32514
Yelp 74 88821

IWSLT14 (23 src, 24 trg) 160240
Multi-30k (16 src, 16 trg) 29000

Table 2: statistics for each dataset. Median sequence
length in the training set and train set size.

vectors:

�t =
TX

t=1

atht (6)

. Then we feed it to a final layer to produce the
output logits, which we Softmax over for classi-
fication. Our classification model has 8,049,216
parameters.

Translation We use a a bidirectional two layer
LSTM to encode the source and the use last hidden
state hL as the first hidden state of the decoder. At
each output position t, let the decoder output be
dt, we create calculate the attention logits for each
input position by

↵tl = d
T

t Whl (7)

, where W is a learnable parameter. We then take
the soft max to create an attention distribution at

over the input positions. Then we aggregate the
hidden states to obtain the context vector by taking
a weighted average:

�t =
X

l

atlhl (8)

We add this context vector to the decoder output
dt and feed it to the final layer to produce vocab
logits. This architecture achieves 33.3 BLEU score
on the IWSLT’14 DE-EN task.

Permutation Copying We use single directional
single layer LSTM with hidden dimension 256 for
both the encoder and the decoder.

Multi-head Attention For each head x we use
a separate parameter W x to produce the attention
logits. After each attention head produces the con-
text vector �xt , we apply another learn-able linear

7

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

transformation G
x after �xt , and sum the results:

�aggregate =
X

x

G
x
�
x

t (9)

We then feed �aggregate to the final fully connected
layer to produce vocab logits. Our translation
model has 10,594,382 parameters.

A.3 Other Configurations
Classification procedure For all classification
datasets we used a batch size of 32. We trained
for different number of iterations for each dataset:
2000 for IMDB, 1500 for AG News, 1500 for 20
Newsgroups, 2000 for SST, 2500 for Multi-Domain
Sentiment (Amazon), and 2300 for Yelp. We train
on the pre-defined training set if a dataset has one,
except that we pull out 400 examples to use as
validation for comparing the correlation metrics.
Additionally, if a dataset had a predefined test set,
we randomly sample 400 examples from this test
set. If a dataset did not have predefined splits, we
pulled out 400 examples as validation, 400 as test,
and left the rest for training.

Classification evaluation We tested each model
every 10 iterations for the first 100 iterations, and
then every 50 iterations after that.

Classification Tokenization We tokenized the
data at the word level. We mapped all words occur-
ring less than 3 times in the training set to <unk>.
For 20 Newsgroups and AG News we mapped all
non-single digit integer ”words” to <unk>. For
20 Newsgroups we also split words with the ” ”
character.

Classification Training We trained all classifica-
tion models on a single GPU. Some datasets took
slightly longer to train than others (largely depend-
ing on average sequence length), but each train
took at most 45 minutes.

Translation Hyper Parameters For translation
all hidden states in the model are dimension 256.
We use the sequence to sequence architecture de-
scribed above. The LSTMs used dropout 0.5.

translation procedure For all translation tasks
we used batch size 16 when training. We trained
IWSLT’14 for 50 epochs on the provided train split,
and we tested it every 1000 iterations on the pro-
vided validation split. We trained multi-30k for 20
epochs on the provided train split, and we tested ev-
ery 200 iterations on the provided validation split.

translation training We trained all translation
models on a single GPU. IWSLT’14 took approxi-
mately 5-6 hours to train, and multi-30k took closer
to 1 hour to train.

translation tokenization We tokenized both
translation datasets using the Sentence-Piece to-
kenizer trained on the corresponding train set.

A.4 hr(↵s
⇤
norm,�

s

unif) Plots
For each classification dataset we plot the corre-
lation between ↵

s
⇤
norm and �

s

unif on the test set, as
�
s

unif evolves over the course of training.

Figure 4: Correlation between ↵
s⇤
norm and �

s
unif first in-

creases over a random baseline, which is never greater
than 0.1 for all datasets, but eventually decreases later
in training.

A.5 Frozen � Correlations
For each classification task we initialize a random
model and freeze all parameters except for the atten-
tion layer (frozen � model). We then compute the
correlation between this trained attention (defined
as ↵s

froz) and the normal attention ↵
s
⇤
norm. Table 3

reports this correlation at iteration s
0, where ↵

s

froz
is most correlated with ↵

s
⇤
norm on a held out vali-

dation set. As shown in Table 3, the left column
is consistently lower than the right column. This
indicates that the model can learn output relevance
without attention , but not vice versa.

8

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Dataset hrfroz(%) hrnorm(%)
IMDB 9 18

AG News 17 42
Newsgroups 19 36

SST 14 24
Amazon 15 49

Yelp 8 58

Table 3: hr(↵s⇤
norm,↵

↵s0

froz) is referred to as hrfroz. We
compare it against hr(↵s⇤

norm,�
s0

unif) , the column hr%
defined in Table 1

