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ABSTRACT

Non-prehensile manipulation offers a robust alternative to traditional pick-and-
place methods for object repositioning. However, learning such skills with dex-
terous, multi-fingered hands remains largely unexplored, leaving their potential
for stable and efficient manipulation underutilized. Progress has been limited by
the lack of large-scale, contact-aware non-prehensile datasets for dexterous hands
and the absence of wrist–finger control policies. To bridge these gaps, we present
DexMove, a tactile-guided non-prehensile manipulation framework for dexterous
hands. DexMove combines a scalable simulation pipeline that generates physi-
cally plausible wrist–finger trajectories with a wearable device, which captures
multi-finger contact data from human demonstrations using vision-based tactile
sensors. Using these data, we train a flow-based policy that enables real-time,
synergistic wrist–finger control for robust non-prehensile manipulation of diverse
tabletop objects. In real-world experiments, DexMove successfully manipulated
six objects of varying shapes and materials, achieving a 77.8% success rate. Our
method outperforms ablated baselines by 36.6% and improves efficiency by nearly
300%. Furthermore, the learned policy generalizes to language-conditioned, long-
horizon tasks such as object sorting and desktop tidying.

Figure 1: Overview of DexMove. The framework integrates synthetic non-prehensile manipulation trajectories
and human-demonstrated tactile data to train a flow-matching policy for dexterous hands. The learned policy
generalizes across diverse objects, surface frictions, and various language-conditioned tasks such as tidying.

1 INTRODUCTION

Non-prehensile manipulation is a fundamental skill that humans routinely employ to interact with
their surroundings (Lyu et al., 2025; Cho et al., 2024; Li et al., 2025b). Unlike grasping, it in-
duces object motion without lifting the object. This capability is particularly valuable for handling
items that are large, heavy, fragile, or geometrically unsuitable for grasping, thereby circumventing
the stability and control challenges of full pick-and-place cycles Li et al. (2025a). Consequently,
non-prehensile manipulation expands robotic dexterity and applicability of dexterous hands across
broader settings, making it a problem worthy of deeper investigation in robotic research.
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Given this potential, non-prehensile manipulation has attracted considerable attention in recent
years. Most prior work has focused on pushing or pressing objects with robot grippers or rods (Lyu
et al., 2025; Cho et al., 2024; Zhou et al., 2023; Suresh et al., 2021). In contrast, the use of dexterous,
multi-fingered hands in this context remains largely unexplored (Li et al., 2025b; Wang et al., 2025).
Our key insight is that dexterous hands are inherently well-suited for non-prehensile tasks, as they
can establish multiple distributed contacts, providing greater stability than a two-finger gripper or
pushing rod. This multi-contact capability not only broadens non-prehensile manipulation to thin,
cylindrical, and round objects whose dynamics are less predictable during pushing (Lyu et al., 2025;
Cho et al., 2024), but also enhances efficiency through coordinated finger motions.

Despite recent advances, deploying dexterous hands for non-prehensile manipulation still faces two
key challenges. First, learning generalizable strategies requires large, physically plausible datasets
covering variations in object geometry, mass distribution, and surface properties (Lin et al., 2024;
Zhu et al., 2024). However, such datasets are not yet available. Acquiring them via teleoperation
is limited by inefficiency and compromised force fidelity due to the absence of high-fidelity haptic
feedback. Purely simulation-based synthesis is also challenging because of domain gaps, particu-
larly in tactile perception. Second, multi-contact manipulation generates coupled forces and motions
across fingers through hand-object dynamics. However, current research lacks a whole-hand motion
planner for coordinating multi-contact interactions. Together, the scarcity of scalable, high-fidelity
datasets and the absence of force-aware, multi-contact coordination policies hinder progress toward
generalizable dexterous non-prehensile manipulation.

To address these challenges, we propose DexMove, a framework for dexterous non-prehensile ma-
nipulation (Fig. 1). First, to overcome the difficulty of scaling multi-contact interaction data, we
build a large-scale simulation pipeline that synthesizes diverse, force-aware wrist–finger trajectories
across objects with varying geometry, friction, and mass distribution. Second, to exploit tactile in-
formation, we develop a wearable system with vision-based tactile sensors that captures fingertip
force distributions from human demonstrations. The tactile knowledge is distilled into TaFo-Net, a
network that learns a spatiotemporal inter-finger force representation from human demonstrations.
Third, to seamlessly bridge the trajectory in simulation and tactile data from the real domain, we
introduce the DexMove-Policy, a flow-matching network that learns synergistic, tactile-based coor-
dination strategies for jointly controlling the wrist and fingers. The significance of DexMove lies
in three key aspects: (i) the first non-prehensile policy tailored for tactile dexterous hands, (ii)
a novel data synthesis paradigm that integrates large-scale trajectory simulation with limited
human tactile demonstrations, enabling the incorporation of tactile data with minimal domain
gaps. (iii) a novel wearable exoskeleton system with vision-based tactile sensors.

The remainder of this paper is organized as follows. Sec. 2 reviews prior work on tactile-based
non-prehensile manipulation. Sec. 3 details our hybrid data acquisition pipeline, which integrates
simulation-based trajectory generation with tactile force data from human demonstrations. Sec. 4
presents the proposed learning framework, including the contact-establishment policy, DexMove-
Policy for jointly controlling the wrist and fingers to reposition the object, and tactile-force planning
network (TaFo-Net). Sec. 5 reports quantitative and qualitative experiments, including performance
evaluation, ablation studies, and downstream applications. Finally, Sec. 6 summarizes our findings,
discusses limitations, and outlines directions for future research.

2 RELATED WORK

2.1 NON-PREHENSILE MANIPULATION

Non-prehensile manipulation refers to strategies for interacting with objects without grasping (Oller
et al., 2024; Yang & Posa, 2024; Lyu et al., 2025), offering efficiencies beyond what pick-and-place
cycles can achieve. Based on contact dynamics, it can be broadly categorized into single-contact
and multi-contact strategies. Single-contact manipulation typically employs a tool or end-effector to
induce object motion, with planar pushing (Mason, 1986; Stüber et al., 2020) as a canonical example
where a rod is used to translate or rotate an object. Subsequent studies (Chi et al., 2024; Ferrandis
et al., 2024) extended this paradigm by allowing controlled contact breaking and reestablishment,
facilitating sequences of intermittent pushes. However, single-contact strategies inherently suffer
from higher uncertainty due to unconstrained lateral forces, especially under non-uniform friction
or uneven surfaces. In contrast, multi-contact manipulation distributes forces across several con-
tact points, yielding more stable interactions. Prior research Bhat et al. (2023) demonstrated that
even simple two-point contact configurations provide greater stability than single-point approaches.
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Building on these insights, our work leverages the multiple fingers of a dexterous hand and augments
them with tactile sensing for closed-loop finger control. This design enhances motion robustness and
thus overall efficiency. Moreover, unlike prior methods that typically address ad hoc object sets (Li
et al., 2025b; Wang et al., 2025), our approach generalizes non-prehensile manipulation across un-
seen objects.

2.2 DATA COLLECTION FOR TACTILE-GUIDED MANIPULATION

Tactile sensing has played a central role in advancing robotic manipulation (She et al., 2021; Do
et al., 2023; Jin et al., 2023; Qi et al., 2023; Huang et al., 2024; Zhu et al., 2025; Taylor et al.,
2024; Higuera et al., 2025). To leverage tactile feedback, recent work has emphasized data-driven
approaches for developing control policies (Dong et al., 2021; Suresh et al., 2024; Sun et al., 2025).
A major bottleneck across these approaches is the need to collect tactile data at scale. While sim-
ulation is possible, it is computationally expensive due to soft-body dynamics and suffers from a
sim-to-real gap (Si & Yuan, 2022).

In contrast, teleoperation provides a domain-gap-free approach to data collection. However, most
existing teleoperation systems primarily employ parallel-jaw grippers (Wu et al., 2025a). By con-
trast, dexterous multi-fingered hands are much harder to control without haptic feedback, leading to
high variability in tactile signals and lower task success rates (Zhang et al., 2025). To mitigate this,
several studies have explored exoskeleton-based teleoperation (Yang, 2025; Zhang et al., 2025; Fang
et al., 2025). These systems provide real-time haptic feedback but are labor-intensive and constrain
natural hand motion, limiting scalability. An alternative is to capture tactile data directly from hu-
mans. Tactile gloves (Liu et al., 2024; Jiang et al., 2024; Xing et al., 2025) measure pressure across
the hand, but their sensor configurations often differ from those of robotic hands, leading to domain
gaps. More recent solutions leverage isomorphism sensor design (Zhu et al., 2025; Wu et al., 2025b),
enabling portable acquisition of domain-gap-free tactile data while preserving natural hand motion.

Building on this insight, we propose a hybrid data-acquisition paradigm that combines the scalability
of simulation with the fidelity of real-world measurements. From the data perspective, we generate
large-scale motion datasets in simulation and complement them with a real-world tactile dataset to
mitigate the limited fidelity of simulated tactile signals. From the hardware perspective, this goal is
achieved through an exoskeleton interface that transfers human tactile interactions to robotic hands
equipped with isomorphic sensors. These systematic efforts enable policies that learn from both data
sources in a complementary manner.

3 DATA ACQUISITION FOR NON-PREHENSILE MANIPULATION

This section introduces a hybrid data synthesis pipeline that incorporates tactile information into
the manipulation process. In Sec. 3.1, we present an optimization procedure that generates multi-
finger motion trajectories across diverse grasp poses and force levels to guide objects toward target
poses. In Sec. 3.2, we complement this with human demonstrations to capture how contact forces
are modulated during manipulation. Both datasets support policy training in Sec. 4.

3.1 TRAJECTORY SYNTHESIS

3.1.1 HAND-OBJECT CONTACT ESTABLISHMENT
Non-prehensile manipulation begins by establishing an initial hand–object contact. To generate di-
verse contact poses, we uniformly sample candidate wrist poses, each defined by rotation Rwrist

0 ∈
R3×3 and translation Twrist

0 ∈R3. Following Yang et al. (2021) where subscript 0 indicates the initial
frame of the entire manipulation sequence. Then, a displacement vector d from each fingertip to its
nearest surface point is computed, and the fingertip is translated along d until contact. To promote
diversity, Gaussian noise ε perturbs the direction, yielding d̂=d+ε. Given the fingertips’ positions
PTIP

0 ∈R3×4, the finger joints’ angles Âhand
0 ∈RJ ( J denotes the number of joints) is synthesized

by solving:
Âhand

0 =argmin
Ahand

0

∥FK(Ahand
0 ,Rwrist

0 ,Twrist
0 )−PTIP

0 ∥2+wpinchLregion, (1)

Lregion = ||dTIP− d̂||2,where dTIP =(PTIP
0 −PDIP

0 ) (2)

where FK is the forward kinematic function, which can output positions of fingertips, and Lregion

encourages contacts within the tactile sensor’s effective region. dTIP denotes the orientation vector
of fingertip from the DIP joint position PDIP

0 to the fingertip joint position PTIP
0 .
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Figure 2: Trajectory data verification and force augmentation. (a,b) After generating initial grasp poses, the
set of target directions along which the object can be manipulated is pruned using physics simulation, and the
fingertips’ trajectories are computed by sampling target object poses. (c) The contact force is synthesized as a
surrogate for the finger’s penetration depth into the object, and we augment the trajectories with diverse forces.

To build a diverse dataset of hand–object contacts, we use 88 objects from the YCB dataset (Calli
et al., 2015), which are then randomly scaled and rotated to produce 352 object layout instances. For
each instance, we generate 1,024–2,048 candidate poses. After discarding poses with self-collisions
or penetrations, a total of 412k valid configurations remain.

3.1.2 SYNTHESIZE FORCE-CONDITIONED TRAJECTORIES

After establishing initial contacts, the object is manipulated toward a target pose through coordinated
wrist and finger motions which are parameterized by Ahand, Rwrist, and Twrist. These motions induce
object movement with 3 DoFs: x/y axis, and yaw rotation. While such variables could be optimized
using shooting methods (e.g., iLQR (Li & Todorov, 2004)), these approaches are computationally
expensive and often yield uncertain trajectories due to unmodeled physical effects. To address these
challenges, we employ a rejection-sampling strategy for trajectory synthesis.
We simulate the repositioning process in MuJoCo (Todorov et al., 2012) by incrementally translating
the hand along random directions. If all fingertips maintain stable contact after a displacement of 50
cm, the direction is accepted as feasible. From the resulting admissible set, we generate data by
uniformly sampling a target object position Pobj

target ∈R3 and yaw ωobj
target ∈R as the target pose.

Under the non-slip assumption, each fingertip’s trajectory is computed by rigidly transforming its
initial relative contact offset with respect to the object reference point:

Ptip
t =Pobj

t +Rz(ω
obj
t )

(
PTIP

0 −Pobj
0

)
, t=0, . . . , T, (3)

where T is the length of the manipulation sequence, Pobj
0 denotes the initial position of object, ωobj

t

denotes the interpolated yaw angle from zero to ωobj
target at step t, Rz(ω

obj
t ) is the rotation matrix

representing the object’s yaw at step t, and Pobj
t denotes the interpolated object translation from the

initial origin to the target pose at step t.

To model the contact forces along these trajectories, we approximate the fingertip–object normal
force G using the indentation depth measured by the vision-based tactile sensor:

G≈Dsensor = r−distance(PTIP
t, surface), (4)

where r is the fingertip radius and distance(·) denotes the Euclidean distance between the fingertip
joint position and the contact object surface. Dsensor is the indentation depth of tactile sensor. As
shown in Fig. 2, we further sample multiple force profiles by displacing each fingertip along its
contact normal n⃗:

P̂TIP
t =PTIP

t + n⃗ ·N (0, σ), (5)
which produces augmented fingertip trajectories with varying force magnitudes. The contact normal
n⃗ is computed as the direction vector from the contact point to the fingertip PTIP

t . Given these
updated fingertip positions, the corresponding joint and wrist configurations are recovered by solving
an inverse kinematics (IK) problem with additional wrist-motion regularization.

Given these force-augmented fingertip trajectories, the joint and wrist configurations are recovered
by solving an optimization-based inverse kinematics problem:

4
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Figure 3: A wearable device for collecting real tactile-force data. The collected force during manipulation is
characterized by the displacement of markers within the vision-based tactile sensor.

Xhand =(Ahand,Rwrist,Twrist)0:T (6)

X̂hand =argminXhand ||FK(Xhand)−P̂TIP
0:T ||2+wwristLwrist, (7)

Lwrist =MSE0:T (R
wrist, R̂wrist)+MSE0:T (L

wrist, L̂wrist), (8)

where MSE denotes the mean squared error. To bias the solution toward finger-driven manipulation,
we add Lwrist, a penalty on wrist motion that reduces the likelihood of moving the arm outside its
workspace. Finally, a filtering step further constrains the robot arm: in simulation, any trajectory that
leaves the feasible workspace is discarded. We totally collected 2M sequences.

3.2 TACTILE FORCE FROM HUMAN DEMONSTRATIONS

The contact forces exerted by individual fingers are important in contact-rich tasks but challenging
to estimate in simulation due to two main challenges. First, high-fidelity object dynamics are diffi-
cult to model accurately. Second, our rigid-body simulation framework is unable to generate tactile
outputs, as it lacks realistic soft-body contact modeling. To address these limitations, we adopt a
demonstration-based strategy that infers contact force from historical tactile observations. We de-
veloped a wearable device with tactile sensors mounted on human fingers (Fig. 3). The vision-based
tactile sensor used here is an R-Tac sensor (Lin et al., 2025), augmented with additional visual
markers that enable direct representation of interaction forces. The exoskeleton design allows easy
mounting on human fingertips for data collection and subsequent attachment to the robot hand. Its
isomorphic design to the robot hand helps minimize the domain gap caused by hardware differences,
following the intuition in Fang et al. (2025). Further hardware details are provided in Appx. A.1.

During each trial, we recorded the tactile information as well as the object’s target pose and real-time
pose throughout the manipulation. The tactile data include the normal force magnitude G, estimated
from the inferred indentation depth, and tangential (shear) forces derived from 2-D displacement
of surface markers (represented as a normalized direction together with a scalar magnitude). This
results in a tactile vector field V∈Rv×4, where v=33 is the number of markers (Fig. 3). Data were
captured at 30 FPS, yielding approximately 300k frames across 20 objects.

4 POLICIES FOR NON-PREHENSILE DEXTEROUS MANIPULATION

Next, we present our method for integrating kinematic trajectories with contact force planning
learned from human demonstrations. Specifically, we introduce three components of our framework:
a policy for establishing contact, the DexMove policy for jointly controlling the wrist and fingers
to manipulate objects, and TaFo-Net for coordinating finger forces. Each component is described in
detail below.

4.1 ESTABLISH CONTACT

A Flowing Matching (FM) (Lipman et al., 2023; Liu et al., 2022) policy is utilized to infer an
initial contact hand pose with the object (Fig. 4 (left)). Compared to diffusion policy (Chi et al.,
2024), we found FM offers faster training and inference speed. FM aims to generate the hand state

5
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Figure 4: Pipeline for Manipulation. Establish Contact: a flow-matching model to predict contact hand pose
by fusing the conditions. DexMove-Policy: a transformer-based flow-matching network predicts future hand
trajectory and states conditioned on force, past states, and global target. TaFo-Net: a transformer decoder
predicts tactile vector fields (i.e., forces) for DexMove-Policy.

(Ahand
0 ,Rwrist

0 ,Twrist
0 ) conditioned on the object point cloud D and target object pose (Pobj

target, ω
obj
target).

Using the target object pose as a conditioning input, its goal is to generate hand poses capable of
moving the object to the desired target. The FM policy learns a time-dependent velocity field u(·)
from intermediate samples:

Xt =(1− t)X0+ tX1,

where t∼U [0, 1], X0 ∼N (0, I), and X1 is drawn from the distribution of ground-truth samples.
The objective is:

Lcontact =E
∥∥(X1−X0)−u(Xt, t, condition)

∥∥2,
so that the velocity field learns to generate feasible contact configurations by integrating the ODE
from a randomly sampled X0 to X1. To allow for the acquisition of conditioned features, Point-
Net++ (Qi et al., 2017) is used to extract features from the point cloud. These conditional features
are incorporated into the latent representation of Xt via FiLM (Perez et al., 2017). These details are
illustrated in Fig. 4 (left) and further discussed in Appx. A.3.2.

4.2 TRAJECTORY LEARNING: DEXMOVE-POLICY

After establishing initial contact, the repositioning process is controlled by DexMove-Policy, a goal-
conditioned flow-matching model. Conditioned on the observed state history, the target object pose,
and a desired force schedule, the model generates a rollout of future hand states for execution.
Specifically, the system state history is represented as:{

Phand,Ahand,Rwrist,Twrist,Pobj, ωobj,C,G
}
−Tp:0

, (9)

where Phand ∈RJ×3 denotes joint positions, C∈RF×3 denotes contact positions (each expressed
in the fingertip’s local frame), and G∈RF denotes the pressing force of each finger, inferred from
sensor indentation during execution. Here, F is the number of fingers and −Tp : 0 is the past Tp steps
until now. In addition to historical observations, the network also receives desired finger forces from
Sec. 4.3, denoted as G1:Tf

∈RTf×F , where Tf is the number of future frames to predict.

The network structure is illustrated in Fig. 4 (top-right). Historical states and the target object pose
are fused via cross-attention. The fused data and force commands are passed to a Transformer de-
coder that predicts the flow-matching velocity field. The predictive sample X1 consists of Tf frames
of future hand states:

X1 =
{
Phand, Ahand, Rwrist, Twrist}

1:Tf
. (10)
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4.3 FORCE PLANNING: TAFO-NET

The trajectories discussed above are conditioned on the desired finger forces G1:Tf
∈RTf×F . In this

section, we introduce TaFo-Net (Fig. 4 (bottom-right)), a network designed to predict desired forces.

Given the target object pose (Pobj
target, ω

obj
target), the past Tp frames of object states

(
Pobj

−Tp:0
,ωobj

−Tp:0

)
,

and per-finger tactile vector fields V−Tp:0 ∈RTp×F×v×C , TaFo-Net predicts the tactile vector fields
for the next Tf frames, V1:Tf

∈RTf×F×v×C . Here, v is the number of markers per finger, F is the
number of fingers and C is the number of channels per marker. The predicted tactile vector fields
are used to extract the per-finger pressing forces G1:Tf

, which serve as targets for the trajectory
policy described earlier. Our key insight is that historical tactile vector fields encode environmental
properties implicitly, such as surface friction and contact state. The history of object poses together
with the target pose provides a distance-to-go signal, from which future actions can be inferred.

To capture spatial-temporal inter-finger interactions, TaFo-Net has three stages:

(i) Per-finger spatial encoding. For each time t and finger f , the tactile vector field Vt,f ∈Rv×C

is encoded into a finger token Ut,f via a lightweight transformer, enriched with learnable and
geometry-informed marker positional embeddings.

(ii) Cross-finger attention. At each frame i, we form the set {Ui,1, . . . ,Ui,F } and apply multi-
head self-attention across fingers (CF), augmented with finger-type embeddings {gf ∈RD}. This
produces cross-finger enhanced tokens Ũt,f ∈RD, denoted as: Ũi,1:F =CF(Ui,1:F +g1:F ).

(iii) Finger-wise causal temporal attention. After merging the tactile vector fields with the target
and past states, we apply a finger-wise causal mask to the queries so that a query at i can attend
only to tokens from times ≤ i (across all fingers), preventing information leakage from the future
and enabling goal-conditioned, temporally consistent, and cross-finger consistent reasoning.

To enhance robustness, we randomly drop out time steps, fingers, and tactile markers during training.
Finally, the model is trained by minimizing a reconstruction loss:

Lrec =

Tf∑
t=1

F∑
f=1

∥∥V̂t,f −Vt,f

∥∥2. (11)

5 EXPERIMENT

In this section, we present comprehensive experiments to evaluate the proposed DexMove pipeline.
First, we compare our system with other non-prehensile manipulation methods in terms of task per-
formance. Next, we conduct ablation studies to examine the contribution of each technical module
as well as system robustness. Finally, we demonstrate downstream applications enabled by our ap-
proach. Our hardware settings and implementation details can be found at Appx. A.3.

5.1 PERFORMANCE BENCHMARK

To the best of our knowledge, non-prehensile manipulation with a tactile dexterous hand remains
under-explored, and no publicly available baselines exist. We therefore benchmark our approach
against the following baselines: (i) an open-loop replay policy, and (ii) two gripper-based learning
methods, CORN from Cho et al. (2024) and DyWA from Lyu et al. (2025). All evaluations are
conducted on a desktop under two friction conditions: a clean tabletop and with tape strips. We
benchmarked six objects: a randomly assembled LEGO (Fig. 5 (a)), a keyboard, a mouse, a book,
a large cylindrical can, and a small cylindrical can. The selected objects span diverse masses, sizes,
and geometries, as shown in Fig. 12. Other implementation details are illustrated in Appx. A.5.

We evaluate all baselines using the following metrics: (i) Success rate: a trial is successful if the
terminal state relative to the target pose is within 10% error in both yaw angle and position, and
no accidental self-collision occurs; (ii) Efficiency: the time taken to reach the terminal state. Each
object is tested in 30 trials, and each trial has identical initial and target poses for different methods.

5.1.1 COMPARISON ON SUCCESS RATE
The benchmarked success rates are reported in Tab. 1. First, the Open-Loop baseline simply replays
a previously successful DexMove trajectory, yielding the lowest success rate among all policies;
without feedback, it cannot handle movement errors that arise during manipulation. Second, the
DyWA and CORN baselines, which employ grippers for discrete-contact non-prehensile manipula-
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Figure 5: Demonstrations of non-prehensile manipulation. Our learned policy robustly adapts to (a) objects with
challenging geometries and (b) varying surface friction. In addition, the learned skill supports reasoning tasks
such as (c) object sorting, and language-guided repositioning tasks, including (d) non-prehensile handover and
(e) tidying up objects on a desktop, (f) deformable objects (rag dolls and a packet of tissues).

tion, also achieve lower success rates than our policy. Both DyWA and CORN predominantly fail
by not achieving the desired rotations, particularly for cylindrical objects. We believe this is due to
dependence on a single contact point for repositioning. In contrast, the dexterous hand establishes
stable, continuous, multi-surface contacts, enabling accurate rotation of everyday objects.

Furthermore, DexMove demonstrates robustness against non-uniform surface friction (Fric. A vs.
Fric. B, where Fric. B is unseen during data collection (Fig. 5 (b))). The performance gap between
the two surface conditions is only marginal. By contrast, DyWA and CORN exhibit pronounced
performance degradation, reflecting their sensitivity to unmodeled spatial friction variability.

Table 1: Success rate (%) of DexMove under different initial yaw angle errors ωobj
target (degrees).

0<ωobj
target < 30 30<ωobj

target < 60 60<ωobj
target < 90

Method Fric. A Fric. B Fric. A Fric. B Fric. A Fric. B

Open-loop 36.7 10.0 23.3 0.0 3.3 0.0
DyWA (Lyu et al., 2025) 50.0 36.7 46.7 30.0 50.0 33.3
CORN (Cho et al., 2024) 43.3 36.7 46.7 40.0 43.3 43.3
DexMove (Ours) 86.7 86.7 80.0 83.3 70.0 60.0

5.1.2 COMPARISON ON EXECUTION EFFICIENCY

In addition to the success rate, we evaluate efficiency using the average completion time. Timing
is measured from the moment the hand or gripper first contacts the object until the object reaches
the target pose within the defined success threshold. The results are reported in Tab. 2. Among all
comparison groups, DexMove achieves an average completion time less than half that of DyWA and
CORN, owing to its use of multi-finger contact and the reduced number of action primitives to reach
the target pose. These findings highlight DexMove as a highly efficient manipulation policy.
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Table 2: Average execution time (s) across different pushing distances, highlighting the efficiency of DexMove.

Method 0<P < 15 cm 15<P < 30 cm 30<P < 45 cm

DyWA (Lyu et al., 2025) 36.1 52.2 60.6
CORN (Cho et al., 2024) 41.4 54.5 62.1
DexMove (Ours) 8.3 10.9 12.4

5.2 ABLATION STUDY

We perform ablation studies to quantify the contribution of each module. The environmental setting
is the same as Sec. 5.1. The baselines we compared include: (1) Wrist-Only: using the robot wrist to
automatically move objects via a policy, with all finger joints locked after initial contact. (2) Wrist-
only∗ denotes the same setting, but with the wrist controlled through teleoperation. (3) w/o Cross-
Finger: the cross-finger attention blocks in TaFo-Net are removed. (4) w/o Shear Force: the tactile
vector field excludes shear components, retaining only the normal component. (5) w Heuristic Force:
we disable TaFo-Net and replace it with a hand-crafted strategy (if slip is detected, incrementally
increase the force by a fixed increment following Lin et al. (2025)). The implementation details are
illustrated in Appx. A.5.

From the results in Tab. 3, we observed that DexMove achieved the highest success rate in most
cases, underscoring the necessity of using a tactile dexterous hand with active finger control. In
the Wrist-Only configuration, flat or planar objects (book and keyboard) can be manipulated with a
high success rate. But it rarely succeeds when object shape induces non-coplanar fingertip contacts
where finger adjustments become necessary. Without the Cross-Finger module, TaFo-Net can no
longer capture coordinated inter-finger constraints and therefore performs well only on flat, planar
objects. When the Shear-Force module is ablated, the model collapses toward predicting smoothed
(averaged) states; this remains workable for light objects (Lego and mouse) but fails on heavier
objects because shear feedback (critical for slip detection) is absent. Without human’s heuristic
force from TaFo-Net, the hand-crafted strategy did not perform well on most of these tasks.

Table 3: Success rate (%) of ablated baselines across different objects.

Method Lego Mouse Book Keyboard Large Can Small Can

Wrist-Only 13.3 0.0 33.3 20.0 0.0 0.0
Wrist-Only* 0.0 73.3 100.0 100.0 6.7 10.0
w/o Cross-Finger 13.3 3.3 63.3 50.0 0.0 3.3
w/o Shear-Force 70.0 66.7 33.3 13.3 0.0 0.0
w Heuristic Force 36.7 43.3 66.7 0.0 0.0 0.0
DexMove (Ours) 66.7 86.7 90.0 90.0 63.3 70.0

5.3 DISCUSSIONS ON ROBUSTNESS OF DEXMOVE

To further assess the robustness of DEXMOVE, we examine its performance under more diverse con-
ditions, including deformable objects, uneven surface and using markerless method to track objects.

Deformable Objects. We evaluated a rag doll and a tissue packet. Across 30 trials per object, the
success rates were 96.7% and 100%, respectively. Qualitative results are shown in Fig. 5. These
experiments suggest that the compliant nature of deformable objects can help stabilize contact for-
mation and consequently achieving higher performance than previous rigid objects tested.

Uneven Surfaces. In everyday scenarios, support sur-
faces may be uneven or non-continuous. To emulate
such settings, we created an uneven surface by ran-
domly stacking additional objects beneath the manip-
ulated items. We conducted 30 trials each with three
objects: a book, a large can, and a LEGO brick. The
scene and reported performances are shown in Fig. 6.
We evaluate under two conditions. (1) w/o finetune: the
original policy weights are used without any retraining.
(2) w/ finetune: we collect 15 minutes of tactile data on Figure 6: Evaluation on uneven surface.
uneven surface to finetune TaFo-Net. Additionally, to simulate cases where the fingers momentarily
lose contact with the object during manipulation, we mask intervals of the contact positions in the
force-aware trajectory data when finetuning the DexMove policy.
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Table 4: Effect of tactile noise on force prediction error (Err) and success rate of DexMove (SR).

Noise σ Err-MSE (book) SR-% (book) Err-MSE (large can) SR-% (large can)
0 0.0112 90.0% 0.0351 63.3%
0.05 0.0108 86.7% 0.0615 56.7%
0.1 0.0415 80.0% 0.1239 43.3%
0.2 0.1721 53.3% 0.3005 20.0%
0.4 0.3219 13.3% 0.5312 3.3%

Markerless object pose estimation. Our ap-
proach does not necessarily require ArUco
markers. To demonstrate this, we integrate
FoundationPose (Wen et al., 2024) as pose
estimator, under a single-camera setting with
markerless objects. Qualitative results are
shown in Fig. 7. Our system achieves success

Figure 7: Visualization of markerless object pose estima-
tion.

rates of 16.7%, 13.3%, 93.3%, 96.7%, 60.0%, and 76.6% to manipulate the six objects evaluated in
Table 3, indicating that it remains effective under a single-camera and markerless setup. However,
hand–object occlusions can degrade pose estimation accuracy especially for small objects. This
limitation is widely recognized in the vision community and is not specific to our system.

5.4 SENSITIVITY OF SYSTEM TO TACTILE NOISE
We also evaluate the influence of tactile noise and the prediction errors of predicted force, which
may arise when the tactile sensor is poorly calibrated or when TaFo-Net introduces prediction in-
accuracies. To emulate such cases, we add Gaussian noise ϵ∼N (0, σ2) of varying magnitudes into
each channel of the tactile vector field, which is normalized to [−1, 1]. We then measure the force
prediction error of TaFo-Net and evaluate its influence on the DexMove policy by comparing the
resulting task success rates. Each setting is tested over 30 trials using both the book and the large
can. The results are summarized in Tab. 4. Our system maintains strong performance even when the
noise standard deviation reaches 0.1, demonstrating strong tolerance to tactile noise. This robust-
ness likely comes from two factors: the tactile signals in the training data are already noisy, enabling
TaFo-Net to learn denoising, and the random dropout of time steps, fingers, and markers (in Sec. 4.3)
during training further enhances the robustness of the DexMove policy.

5.5 APPLICATIONS
The application scope of DexMove is broad. We highlight three representative scenarios: (i) Struc-
tured sorting. As shown in Fig. 5 (c), the system follows language instructions such as “move box
A to region 1” and reliably transports the box to the designated zone. (ii) Language-driven hu-
man–machine collaboration. By leveraging a vision–language model (SoFar from Qi et al. (2025)),
natural language commands (e.g., “put the grip of the electric drill into a person’s hand”) are con-
verted into a 3-DoF target pose that serves as the goal for our policy, as shown in Fig. 5 (d). (iii)
Tidying up a Desk. Given a predefined desktop layout, the system automatically relocates each item
to its assigned position, as shown in Fig. 5 (e). Across these scenarios, DexMove demonstrates robust
manipulation capabilities applicable to diverse real-world settings.

6 CONCLUSION AND LIMITATIONS

We presented DexMove, a data-driven framework for dexterous non-prehensile manipulation. Our
approach utilizes a hybrid data synthesis pipeline that combines the scalability of simulation for gen-
erating diverse trajectories with the realism of human demonstrations for multi-finger force control.
The core of our method is the data collection methods and a set of policies that handle establish-
ing contact, predicting future tactile force profiles with TaFo-Net, and generating goal-conditioned
trajectories via DexMove-Policy. Experiments show that DexMove achieves higher success rates
and efficiency than single-contact and ablated baselines, and generalizes to long-horizon, language-
conditioned tasks.

Several limitations were observed in our framework. (1) Objects with articulated parts, such as a
telephone with a movable handset, can shift during manipulation and destabilize contact. (2) Spher-
ical objects tend to roll, making stable initial contact difficult and increasing the risk of slippage. (3)
Certain hand poses may also cause failure, for example, pushing a tall can while grasping only its lid
can cause the object to topple and restrict its rotational motion. In future work, we plan to address
these issues and further explore skills that integrate both prehensile and non-prehensile techniques.
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. Upon acceptance, we will release
all hardware designs (including the vision-based tactile sensors and the dexterous hand used in this
paper), software implementations (including data generation scripts, training and inference code,
and control scripts for the hand and the Franka arm). Furthermore, even without access to the same
hardware setup, researchers will be able to reproduce our results by leveraging our data genera-
tion pipeline to synthesize task-relevant datasets and train models that can be adapted to their own
hardware settings. Our submitted supplementary video presents an extensive suite of real-robot ex-
periments that bolsters the reproducibility and credibility of the paper’s findings.
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A APPENDIX

A.1 TACTILE SENSOR

Our system employs vision-based tactile sensors on both the manipulator (fingertips of the Allegro
Hand (Robotics, 2025)) and the wearable data collection device (Fig. 8). In this section, we describe
the design of the proposed tactile sensors. The overall design is inspired by the open-sourced R-
Tac Lin et al. (2025), which maps light intensity to physical depth. Each sensor consists of four
main components: a monochrome camera module, white illuminations, a black-coated elastomer
with white marker arrays, and the sensor shell.

Camera Module. The camera module is positioned at the base of the sensor. We use a CMOS
OV9281 global shutter camera with a 160° FoV lens to capture the deformation of the curved elas-
tomer surface under LED illumination. The camera exposure is manually fixed to ensure consistent
readings. The module connects to a desktop computer via USB and outputs single-channel MJPG
data at a resolution of 640×480 pixels and a frame rate of 120 fps.

Illumination. Illumination is provided by a white LED ring embedded in the black sensor shell.
Light passes through dedicated pathways and is diffused by a frosted semi-transparent plate to
achieve uniform illumination of the elastomer surface. The annular PCB hosts 8 evenly spaced 2835
4000K white surface-mounted LEDs and 470 Ω resistors, powered at 5 V.

Coated Elastomer. The elastomer comprises multiple silicone layers: a transparent PDMS base
(Dow Corning Sylgard 184) and a semi-transparent layer (Smooth-On Ecoflex 00-10). All parts are
fabricated using gel-casting techniques. The resulting curved elastomer provides a relatively uniform
optical background when viewed from the camera. A black coating (Smooth-On Psycho Paint) is
applied to block stray light. Compared to Lin et al. (2025), one improvement is the addition of visual
marker arrays on the elastomer surface, enabling shear force detection. The white marker arrays are
painted manually with a marker pen.

Sensor Shell. The sensor shell houses all components while forming internal light pathways. It is
3D printed in black PLA material.

Figure 8: Monochrome vision-based tactile sensors integrated into a dexterous robotic hand and a wearable
device. The sensors estimate normal forces from reconstructed depth maps and shear forces from marker dis-
placements.

A.2 PROCESSING TACTILE SENSOR DATA

The sensor data processing pipeline consists of two components: marker motion tracking and depth
reconstruction.
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Marker Motion Tracking. Grayscale video frames are first acquired from the camera. Adaptive
thresholding is applied to segment the markers from the background. To estimate marker displace-
ments over time, we employ the Farneback optical flow algorithm (Farnebäck, 2003), which com-
pares the reference frame with the deformed frame to compute the flow field.

Depth Reconstruction. Prior to reconstruction, marker regions are inpainted in both the reference
and deformed images. Then, we map grayscale values to indentation depth, a calibration procedure
is performed. Following Lin et al. (2023), a 2 mm diameter spherical indenter is used to press the
elastomer surface, producing a look-up table between grayscale differences and externally measured
indentation depths. The final depth map is obtained by combining the relative indentation depth with
the reference curved surface.

A.3 ADDITIONAL IMPLEMENTATION DETAILS OF SYSTEM DEPLOYMENT

A.3.1 SYSTEM SETUP

Figure 9: System Setting: Overview of the experimental scene,
showing the relative positions of the three cameras, the desk, the
Franka arm, and the hand.

Camera Setup. The flow matching
policy for establishing contact is con-
ditioned on the object point cloud. To
obtain this point cloud, we use three
depth cameras (Realsense D435i).
The system setting is shown in Fig. 9.
One camera is mounted near the el-
bow of the robotic arm, while the
other two are positioned on oppo-
site sides of the experimental plat-
form to reduce occlusions and pro-
vide broader point cloud coverage.
The side-mounted cameras are also
used for object pose tracking. All
cameras are calibrated with respect
to the robot base frame. An identi-
cal configuration is applied in sim-
ulation, where virtual cameras are
placed with the same extrinsic param-
eters to ensure geometric consistency
between real and simulated environ-
ments.

Control of the Robotic Arm and Dexterous Hand. Both the robotic arm and the dexterous hand
are controlled using position control through ROS. The robotic arm operates in Cartesian space,
controlling the end-effector’s position, while the hand is controlled in joint space. Joint-wise position
control is implemented using PID controllers.

Algorithm Deployment. The policy is deployed on an NVIDIA RTX 4090 GPU, with an average
inference time of approximately 22ms for each action chunk during manipulation (DexMove-Policy
+ TaFo-Net). At each inference step, the algorithm processes the latest Tp =5 frames of sensor data
to predict Tf =5 consecutive actions, which are executed at 30 Hz to control both the Franka FR3
robot arm and the hand.

A.3.2 DETAIL OF ESTABLISH CONTACT

At the start of each trial, the robotic arm was moved to a collision-free configuration with an un-
obstructed field of view. The hand was returned to a flattened neutral “zero” pose, and the arm was
positioned at a resting location to prevent fingertip occlusion of the central camera, ensuring a clear
view of the workspace. We then captured synchronized depth images from three calibrated cameras
and reconstructed the scene point cloud using the known intrinsics and extrinsics. A target object
mask was obtained in each RGB view using SAM2 (Ravi et al., 2024), and the intersection (log-
ical AND) of these multi-view masks was applied to the fused point cloud to remove points not
belonging to the target object, effectively performing shape-from-silhouette filtering.
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Figure 10: Pipeline Detail: the whole pipeline consists of establishing contact, DexMove-Policy, and TaFo-Net.
We use yellow arrows to show the data flow.

This object point cloud, together with the target object pose, was used to compute a feasible con-
tact pose. The outputs of this computation included Ahand,Rwrist,Twrist, where Ahand controlled the
hand, while Rwrist and Twrist specified the arm’s end-effector pose in Cartesian space. In this part,
all of the objects’ positions and finger joints’ positions are given in the arm base coordinate frame.

To minimize the risk of collision during contact establishment, the end-effector trajectory was ad-
justed. Instead of moving directly from the initial configuration to the contact pose, the arm was first
guided to a waypoint located above the target contact pose, and then descended to the final contact
configuration.

Flow matching is parameterized by a five-layer MLP with layer widths of 128, 128, 512, 1024, and
1024. The PointNet++ backbone outputs a 1024-dimensional point-cloud feature. We train with a
batch size of 128 using AdamW with a learning rate of 1×10−4 for 1.3M optimization steps.

A.3.3 DETAIL OF DEXMOVE-POLICY

As shown in Fig. 10, we project the Tp past frames into a sequence of past tokens, and map the global
target (Ptarget, θtarget) into a single target token (global token) using a linear layer. Concatenating these
yields (Tp+1) tokens. We then append a continuous time embedding (Fourier features followed by
an MLP) as an additional token, resulting in a total of (Tp+2) tokens. A Transformer encoder
processes this sequence to produce a memory M∈R(Tp+2)×d.

We sample an interpolation time t∼U(0, 1) and construct a noised hand state Xt = tX1+(1−
t)X0. We linearly project both Xt and the planned future target force G1:Tf

to d-dimensional
embeddings and fuse them via FiLM (Perez et al., 2017) as query tokens. Each query token is
element-wise enriched by adding a learnable positional embedding and a learnable time (t) embed-
ding before being fed into the Transformer decoder, which outputs the velocity field.

During object manipulation, the two side-mounted cameras continuously tracked the object pose.
Once the object reached the target pose, the inference process was terminated, and the task transi-
tioned to the repositioning stage.

We first train the model for 200,000 iterations with a batch size of 2,048. We then perform an
additional 20,000 iterations of ReFlow-based(Liu et al., 2022) fine-tuning, which compresses the
sampler to a 10-step inference scheme.

A.4 OBJECT POSE TRACKING

Since the primary focus of this work is manipulation rather than perception, the object pose is ob-
tained using a marker-based tracking scheme. Multiple ArUco markers of known size are affixed to
the object’s surface, ensuring that at least one marker remains visible to the cameras at all times and
enabling continuous pose estimation throughout the manipulation task. Using calibrated cameras,
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we directly reconstruct each marker’s world-space coordinates. Before starting, the object coordi-
nate frame is defined by setting the origin at the centroid of all markers and aligning the orientation
with the world frame. During operation, the object origin is computed from any detected marker by
applying the stored marker-to-origin offset corresponding to its ID.

A.5 IMPLEMENTATION OF BASELINES

A.5.1 DYWA & CORN

We acknowledge the DyWA (Lyu et al., 2025) and CORN Cho et al. (2024) projects for publicly
releasing their code bases, which we can run and compare. The DyWA framework first optimizes
a teacher network under full privileged information (object point cloud, task state, and associated
physical parameters), and subsequently distills this policy into a student restricted to obtainable
robot observations. For fair comparison, we expose the object pose to the student during distillation,
which simplifies and stabilizes the learning process.

CORN shares the same simulation environment as DyWA and also needs to track the object pose.
To ensure a fair comparison, we further enhanced CORN by replacing its shallow MLP-based point
cloud encoder with the same vision backbone as ours (PointNet++ Qi et al. (2017)). During training,
we utilize 323 objects from DyWA, plus the 264 objects (88 objects already existed in YCB and
were excluded) from DexMove.

A.5.2 TELEOPERATION

Figure 11: The exoskeleton designed at half
scale (1:2) with the same kinematic structure
as the Franka arm.

In our ablation study, we conducted an experiment to con-
trol the hand wrist (with all fingers locked) via teleoper-
ation. This was achieved using an exoskeleton (Fig. 11)
with the same kinematic structure as the Franka robotic
arm, scaled to half size (1:2). Each joint of the exoskele-
ton is equipped with a Dynamixel actuator that directly
measures joint angles. These measurements are mapped
to the corresponding joints of the Franka arm for execu-
tion. Experimental evaluation shows that the teleopera-
tion system can operate at frequencies exceeding 60 Hz.
For consistency with the experimental settings in this pa-
per, we conducted teleoperation at a control frequency of
30 Hz.

A.5.3 ABLATION STUDY: WRIST-ONLY

In the ablation study, we evaluate a wrist-only controller
by locking all finger joints. Concretely, during trajectory
data generation, once the force-aware trajectory is ob-
tained, we exclude the finger joint angles from the op-
timization variables and optimize only the wrist state
(Rwrist,Twrist). Although, for many trajectories, wrist-
only motion cannot attain the optimal solution, we nevertheless use the resulting trajectories to
retrain the DexMove-Policy and report the corresponding execution performance.

A.6 OTHER SETTINGS AND RESULTS

Fig. 12 shows the six objects used in our experiments and the four tape types with distinct coefficients
of friction used to construct the Friction–B tabletop. We show a more detailed execution sequence
in Fig. 13 and in the supplementary video.

A.7 DATASET

We provide additional details of the dataset through illustrative examples shown in Fig. 14 and in
the supplementary video.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 12: Experimental Objects and Surface Friction: The left panel shows the six objects used in the
experiments, while the right panel illustrates the four types of tapes we used to construct friction B.

Figure 13: Gallery of Non-Prehensile Manipulation: Illustration of the experimental scenarios, including (a)
relocating different boxes to designated regions; (b) controlling the DexMove via a large language model; (c)
tidying up objects on a desk; and (d) evaluating the DexMove on objects with random geometries.
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Figure 14: Illustration of the two datasets collected in this work. Top shows the non-prehensile trajectory
dataset, bottom depicts the human-demonstrated tactile-force dataset.
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Table 5: Summary of notations used in this paper.

Notation Description

Ptip
0 ∈R3 Initial fingertip contact position in the world frame

Ptip
0:T ∈RT×3 Fingertip trajectory sequence under no-slip assumption

Pobj
t ∈R3 Object reference point (e.g., centroid) at time t

Pobj
0:T Object translation trajectory from start to goal

ωobj
target ∈R Target yaw angle of the object

Rz(ω)∈SO(3) Rotation matrix around z-axis with angle ω
Rwrist ∈SO(3) Wrist rotation matrix
Twrist ∈R3 Wrist translation
Ahand ∈RJ Joint angles of the dexterous hand with J joints
d Displacement vector from fingertip to nearest object surface point
d̂ Perturbed displacement vector with Gaussian noise
dtip DIP–tip displacement vector
Lregion Loss encouraging contact within sensor effective region
G Fingertip normal force magnitude
Dsensor Indentation depth measured by tactile sensor
n⃗ Surface normal at the contact point
V∈Rv×4 Tactile vector field (v=33 markers, encoding shear + normal)
F Number of fingers (4 in Allegro Hand)
Tp Number of history frames used as input
Tf Number of future frames to predict
C∈RF×3 Contact point positions in fingertip local frames
G∈RF Normal force for each finger
V−Tp:0 Historical tactile vector fields
V1:Tf

Predicted future tactile vector fields
Xt System state token at time t (for flow matching)
u(·) Velocity field learned by flow matching
Lcontact Contact policy loss
Lrec Reconstruction loss of TaFo-Net

B NOTATION

The summary of notions used in this paper is illustrated in Tab. 5.

C DECLARATION OF LLM USAGE

During the preparation of this paper, large language models (LLMs) were employed to assist with
language polishing and improving the clarity of the manuscript. The models were not used for gen-
erating novel research ideas, designing experiments, analyzing results, or drawing conclusions. All
scientific contributions, including the formulation of methods, implementation of algorithms, exper-
imental design, and analysis of results, were carried out entirely by the authors.

D DECLARATION OF OPEN SOURCE

All codes developed in this work will be released as open source under a permissive license. The
release will include the DexMove framework, the simulation-based data generation pipeline, and
the vision-based tactile device interface. We provide these resources to ensure transparency and
reproducibility, and to support future research in tactile-guided dexterous manipulation.
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