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Abstract: Recently, 2D vision-language-action (VLA) models have made signifi-
cant strides in multi-task manipulation. However, these models struggle to reason
about 3D spatial relationships from 2D image inputs. Although an increasing
number of 3D imitation learning approaches explicitly integrate 3D information,
they face challenges such as the lack of generalized 3D pretrained models due to
the limited availability of large-scale 3D datasets. Meanwhile, existing policies
typically focus on the perception-to-action learning paradigm, lacking an explicit
understanding of the spatial and temporal relationships between the robot and its
environment. To address this, we propose 3DS-VLA, which enhances pretrained
2D vision-language models (VLMs) with comprehensive 3D awareness, enabling
the prediction of robust end-effector poses. Specifically, we enable the 2D vision
encoder of the VLMs to encode both 2D images and 3D spatial observation by
introducing a 2D-to-3D positional alignment mechanism. This allows 3DS-VLA
to leverage the large-scale pre-trained knowledge of the VLM for effective rea-
soning in complex 3D robotic environments. Furthermore, to better understand
the spatiotemporal relationship between 3D observations and robot behavior, we
guide the model to learn the introduced sequential 3D spatial constraints, which
describe the relationship between affordance-relevant objects and robotic actions.
Experiments in simulation and real world demonstrate that 3DS-VLA outper-
forms previous state-of-the-art policies and showcase its generalizable capabilities
across multi-task, multi-embodiment, and diverse environmental settings.
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1 Introduction

The main objective of vision-language imitation learning policies is to execute actions by taking into
account visual observations and language conditions. Recently, driven by the rapid advancement of
2D vision-language models (VLMs) [1, 2, 3, 4] in general scenes, a range of 2D vision-language-
action (VLA) methods have been introduced for action generation [5, 6, 7, 8, 9, 10, 11]. However,
since robots operate in a complex 3D world, they face challenges in perceiving 3D geometry and
reasoning about spatial context solely from 2D image observations [12, 13, 14].

In contrast, 3D imitation learning approaches integrate 3D geometric information for policy learn-
ing. Some methods [15, 16, 17, 18, 19, 14, 20, 21, 22] train 3D vision-language models (e.g.,
PointNet [23] and BERT [24])from scratch or by fine-tuning them for action prediction. However,
unlike 2D policy models that have access to large-scale datasets, the scarcity of large-scale 3D
data limits these methods’ scalability in complex robotic environments. Other methods attempt to
leverage 2D pre-trained models for 3D imitation learning, either by using 2D models to encoder
multi-view images that are projected from 3D data [25, 26, 27], which inevitably leads to spatial
information loss during the 3D-to-2D transformation, or by lifting 2D image features extracted by
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Figure 1: 3DS-VLA achieves comprehensive 3D spatial awareness by encoding 3D spatial observations with
a pretrained 2D vision-language model and establishing 3D spatial constraints to facilitate spatial-temporal
reasoning. It demonstrates generalizable capabilities across tasks, embodiments, and environmental settings.

2D models into 3D latent spaces with depth map [28, 29, 30, 31], which are incapable of captur-
ing the rich geometric information embedded in raw point clouds. Moreover, most methods learn
a direct mapping from perception-to-action [14], predicting end-effector poses only conditioned on
vision and language inputs. Yet, robotic manipulation requires intricate environmental interactions,
and such methods [32, 33, 34, 35, 36] often lack a broader understanding of the robot’s action with
its surroundings in terms of spatial and temporal. All these limitations lead us to consider: “How
can we build a robust VLA model that incorporates comprehensive 3D spatial awareness?”

To address the above challenges, as shown in Fig. 1 (left), we propose 3DS-VLA, which equips
pretrained 2D vision-language models (2D VLMs) with 3D spatial awareness for robust action gen-
eration. Firstly, to enhance the model’s understanding of 3D spatial observations, we process both
point clouds and images using a shared 2D visual encoder. The image processing pipeline remains
unchanged, while we introduce a non-parametric 3D tokenizer before the vision encoder to directly
convert point cloud data into 3D tokens without introducing additional computational overhead. In
addition, we design a 2D-to-3D positional alignment mechanism that geometrically aligns each 3D
token with the pretrained 2D positional embedding (PE) pointing to the same spatial region. Through
this alignment, the 3D tokens are spatially encoded using pretrained 2D PEs with corresponding spa-
tial and semantic knowledge, enabling them to be interpreted by the VLMs and thereby enhancing
the model’s ability to reason about 3D spatial context. Additionally, to improve the understanding
of the relationship between the environment and robot action, we introduce 3D spatial constraints,
represented as sequential 3D keypoints in Cartesian coordinates. These keypoints correspond to
entities like end effector and objects. The constraints construct dynamic affordance conditions from
sequential keypoints, explicitly encoding “where” and “when” the robot should interact with the
environment. We then propose a text-based keypoint formulation for training, enabling 3DS-VLA
to reason about these constraints and predict actions robustly.

3DS-VLA surpasses state-of-the-art VLA methods and 3D imitation policies across 26 single- and
dual-arm tasks in RLBench [37, 38] and 10 real world tasks. Our contributions are as follows:
1) We propose 3DS-VLA, equipping pretrained 2D VLMs with comprehensive 3D awareness for
robust end-effector pose prediction. 2) We introduce a 2D-to-3D positional alignment mechanism
to process 3D spatial observation, enabling 3DS-VLA to leverage pretrained 2D VLM knowledge
for 3D spatial understanding. 3) We establish 3D spatial constraints for policy learning, enabling
3DS-VLA to reason about the spatial-temporal relationships between robot and environment.

2 Related work

Vision Language Action Models. Vision-Language-Action (VLA) models have advanced rapidly
to enable VLMs to predict actions. Methods like RT2 [8, 39, 10, 40, 41, 42, 43, 44] discretize 7D
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Figure 2: Model Architecture. Given the current observation, task instruction, and keypoint con-
straints, 3DS-VLA predicts the next-frame pose. It incorporates 3D spatial observations and 3D
spatial constraints to enhance 3D spatial awareness. The first component uses a 2D visual encoder
to encode both the 2D image and the 3D point cloud. The second component guides the model to
follow 3D constraint priors between the robot and the environment.

actions into tokens, while others treat action prediction as continuous regression, using MLPs [9,
11] or diffusion transformers [45, 46, 47]. We adopt autoregressive generation for its flexibility
and scalability to both single- and dual-arm tasks within a single model. Moreover, most VLA
models [9, 45, 48, 7, 49, 50, 51] rely solely on 2D images, ignoring 3D geometric information.
To address this, we enable the 2D visual encoder to process both 2D images and 3D point clouds,
enhancing the model’s 3D spatial awareness.

3D Imitation Learning. One category of works [52, 53, 54, 16, 55, 56, 15, 29, 57, 29, 58, 18]
encodes 3D information using 3D visual encoders to predict end-effector poses. However, lacking
sufficient 3D data, these methods struggle to fully utilize pretrained vision-language models for
3D robotic scene reasoning. Alternatively, some methods leverage 2D pre-trained models for 3D
understanding. Works like [28, 25, 26] project 3D point clouds into multi-view images which are
then encoded by 2D model, resulting in spatial information loss during 3D-to-2D transformation.
Others [29, 30, 59] process 2D images via 2D visual encoders and lift features into a 3D latent space
with depth map, which still fails to directly perceive raw 3D geometric information. Moreover, these
approaches map scenes directly to actions, overlooking robot-environment relationships. To address
this, we propose 3DS-VLA, a framework that enables 2D pre-trained VLMs to explicitly integrate
2D and 3D observation and reason about 3D spatial constraints.

3 Method

3.1 Task Formulation and Model Architecture

Given a dataset D = {τ1, . . . , τN} of N expert demonstrations, each demonstration τ is paired
with a task description l and consists of visual observations O = {o1, . . . , oT }, robot state R =
{r1, . . . , rT }, and actions A = {a1, . . . , aT } over T frames. The robot state r and action a are
defined by the end-effector position x ∈ R3, rotation quaternion θ ∈ R4, and gripper status g ∈ R1.
Following Rekep [60, 7, 61], we extract 3D keypoints K = {k1, . . . , kT } using external models. The
objective of policy model π is to learn action generation in SE(3) space: π : (ot, l, kt, rt) → ât+1.
It takes visual inputs ot = {it, pt}, where it is the image and pt is the point cloud, while language
l, keypoints kt, and robot state rt are provided as structured textual inputs. The model supports
the output of 7 or 14-DoF end-effector pose for single or dual arms and generates the predicted
action ât+1 autoregressively, supervised by the ground-truth action at+1 under cross-entropy loss.
Following previous autoregressive-based VLA methods [39, 10, 41], the output of the end-effector
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position x and rotation quaternion θ is discretized into 200 bins as integer values. For the open status
g, we use a binary representation, with 0 for closed and 1 for open.

As shown in Fig. 2, we enable parameter-efficient fine-tuning (PEFT) to adapt a pretrained vision-
language model (e.g., LLaMA-Adapter [62]) into a policy model. The model π consists of a
2D visual encoder, LLM (LLaMA) [63], a cross-modality projection module [62], and LoRA
adapters [64]. LoRA adapters are inserted into multiple linear layers of the vision encoder and LLM.
During imitation learning, we fine-tune only the LoRA adapters and projection module, freezing all
other pretrained 2D VLM parameters. To enhance 3D spatial observation (see Sec. 3.2), 2D images
and 3D point clouds are first tokenized and encoded using pretrained 2D positional embeddings
(PEa), then fused and processed by the shared visual encoder, CLIP[65]. A cross-modality projec-
tion module then maps visual tokens into LLaMA’s word embedding space. To facilitate spatial-
temporal reasoning (see Sec. 3.3), we formulate them as language condition to LLaMA, which then
generates SE(3) actions conditioned on both visual and language input. As shown in Appendix. 7.1,
with flexible autoregressive prediction, our model supports both single- and dual-arm tasks without
architectural modifications.

3.2 3D Spatial Observation

Motivation. Current 3D imitation learning policies fall into two categories. Some [15, 16, 17, 18,
19, 14] use 3D visual encoders to encode 3D information but struggle to generalize due to limited
large-scale 3D training data. Others leverage 2D pretrained models, either by projecting 3D data
into multi-view images [25, 26, 27], causing spatial information loss, or by lifting 2D features into
3D latent spaces [28, 29, 57, 30], which cannot directly process 3D point clouds. To address these
limitations, we aim to leverage the pretrained 2D visual encoder of the VLM to directly encode 3D
point clouds, harnessing large-scale pretrained knowledge to enhance robotic 3D spatial reasoning.

2D and 3D Tokenizer. For 2D image, we follow CLIP and use its pretrained 2D tokenizer, which
partitions the image into patches, flattens them, and projects them into 2D tokens {T j

2D}nj=1, where
n is the number of tokens and each token has 1024 channels. For 3D input, we generate a single-
view point cloud with P points (e.g., P = 2048) using the depth map and camera parameters. To
avoid introducing computational overhead, we introduce a non-parametric 3D tokenizer to trans-
form the low-dimensional point cloud into high-dimensional 3D tokens. Specifically, we first apply
Farthest Point Sampling (FPS) [23] to downsample points, then use k-Nearest Neighbors (kNN) to
group k nearest neighbors (e.g., k = 16) for each center point. Each center and its neighbors are
concatenated and max-pooled for local aggregation [66, 67]. After three iterations of this process,
we obtain high-dimensional 3D tokens {T i

3D}ni=1, matching the number and channels of 2D tokens.

2D-to-3D Positional Alignment. For 2D tokens, we follow CLIP and use its original 2D positional
embeddings (PEs) {PEj

2D}nj=1 to encode, preserving pretrained model’s spatial reasoning ability.
For 3D tokens, naive solutions are to either introduce newly initialized 3D PEs or directly reuse the
pretrained 2D PEs {PEj

2D}nj=1 to encode. However, the former lacks CLIP’s pretrained knowledge,
hindering its spatial understanding, while the latter leads to semantic misalignment, as the 3D token
and the 2D positional embedding at the same index refer to different spatial regions. Therefore,
we propose a 2D-to-3D positional alignment mechanism that allows the original 2D PEs, which are
interpretable to pretrained models, to encode semantically aligned 2D and 3D tokens. This design
is motivated by the fact that PEs serve as the only positional indicators in Transformer models due
to the permutation-invariant nature of self-attention, which treats tokens identically regardless of
order [68]. Specifically, since each 3D token T i

3D is aggregated from a set of 3D points, we first
unproject its center point to 2D image coordinates using the camera parameters. We then identify
the corresponding 2D image patch onto which it projects and align it with the associated 2D token
T j
2D. As CLIP uses PEj

2D to encode T j
2D, we assign the same PEj

2D to encode 3D token T i
3D,

as both tokens originate from the same image region and thus share consistent spatial and semantic
context. The 2D PEs eocoded 2D tokens and 3D tokens are concatenated and then processed by
the 2D vision encoder. By fine-tuning CLIP with LoRA on such spatially aligned representations,
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3DS-VLA enables leveraging large-scale pretrained 2D VLM knowledge for reasoning both 2D and
3D information effectively without introducing additional computational costs.

3.3 3D Spatial Constraint

Motivation. Previous VLA models [11, 41, 10, 47] map observations to end-effector poses, but
often overlook the understanding of constraints that govern the interaction between the robot and its
environment. These relationships are shaped by both spatial and temporal constraints [60, 14, 69].
For instance, in Fig. 2, for “pouring from the bottle into the cup”, after grasping the bottle, the
agent must determine where to pour (near the cup) and when to pour (when slightly above the cup).
Therefore, we aim to incorporate these constraints during imitation learning, facilitating spatial-
temporal reasoning for pose prediction.

3D Keypoint Extraction. Keypoint-based representations for object affordances enable adaptation
to various robots and tasks, including single- and dual-arm configurations [60]. To model spatial
constraints, we use task-specific 3D keypoints corresponding to scene entities. Following Rekep [7,
70], we extract keypoints by inputting an RGB image and object phrase described in task description
into a vision foundation model (Grounded SAM [71]) to obtain object masks. We select the center
point on object mask and project it into 3D world coordinates as object-level affordance information.
Keypoint sequences follow their order in the language instruction. As shown in Fig. 2, we obtain
keypoint1-bottle and keypoint2-cup, while keypoint0 represents the current end-effector position.

3D Constraints Formulation. After generating 3D keypoints, instead of directly using them as
task goals [60], we propose a text-based formulation to integrate these constraints into the VLA
model as input conditions. We sequentially input the next keypoint to guide the model on where
to act. For instance, in Fig. 2, at the initial state, the robot follows keypoint1-bottle as the spatial
constraint. Once within a sufficient proximity (e.g., 5cm) of keypoint1-bottle, it automatically re-
ceives keypoint2-cup as next target. To understand when to act, we define temporal constraints as
the relationship between the current robot state (e.g., keypoint0) and the keypoint spatial constraint
(e.g., keypoint1), incorporating them into the language input. Therefore, by introducing spatial and
temporal constraints as dynamic affordance conditions, 3DS-VLA integrates spatiotemporal context
into the imitation learning process and leverages the reasoning capability of large language models
(LLMs) to determine where and when to interact. Furthermore, to ensure that 3DS-VLA is robust
to noises in 3D keypoint positions, we randomly add noise to the selected keypoints in each training
sample, encouraging the model to tolerate keypoint perturbations. In Sec. 4.3, We empirically show
how well the model can handle keypoint noise during inference.

4 Experiment

4.1 Training and Inference

Following previous settings [25, 15], we assume that the model should predict an action specified by
a target end-effector pose and gripper state in the next keyframe. The keyframes represent important
or bottleneck steps of the gripper during task execution, such as a pre-pick, grasp, or place pose.
We simultaneously train on demonstrations from the single-arm simulator RLBench [37, 72] and
the dual-arm simulator RLBench2 [38]. The fine-tuning stage trains on 2,400 demonstrations and
runs for 10 epochs, taking approximately 8 hours on an NVIDIA RTX A100 GPU, achieving a 5Hz
inference speed (similar to VLA baselines), excluding the keypoint extraction pre-processing since
it is performed prior to execution.

4.2 Evaluation on RLBench and Dual-arm RLBench

Setup. We adopt 21 tasks from single-arm RLBench [37, 72] and 5 tasks of the same coordinate
type from dual-arm RLBench [38], featuring variations such as different colors or object pose. The
input RGB-D images, with a resolution of 336 × 336, are captured by a single camera mounted at
the front of the robot. To ensure that objects are visible from this fixed front-view camera, we adjust
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Table 1: Single-Arm Multi-Task Performance on RLBench of 21 tasks.

Stack Open USB out Rubbish Close Toilet Beat Water Wine at Sweep
Models Avg. ↑ Blocks Microwave Computer in Bin Laptop Down Buzz Plant Rack Dustpan

RVT2 0.62±0.47 0.52 0.84 0.96 0.80 0.92 0.92 0.58 0.24 0.72 0.20
3DA 0.60±0.35 0.56 0.84 0.96 0.82 0.23 0.96 0.50 0.42 0.54 0.35
3D-L 0.64±0.14 0.56 0.60 0.88 0.96 0.96 0.96 0.32 0.16 0.44 0.28
DP3 0.64±0.22 0.56 0.72 0.90 0.88 0.96 0.88 0.44 0.39 0.56 0.32

OpenVLA 0.43±0.41 0.12 0.04 0.32 0.52 0.88 0.96 0.08 0.12 0.32 0.36
CogACT 0.55±0.36 0.28 0.20 0.54 0.82 0.92 0.88 0.24 0.32 0.56 0.60

Ours 0.66±0.32 0.60 0.68 0.88 0.88 0.96 0.96 0.52 0.36 0.88 0.16

Close Lamp Unplug Close Press Phone Umbralla Change Frame off Knife on Weighing
Models Box On Charger Fridge Switch on Base Out Clock Hanger Board Scales

RVT2 0.84 0.92 0.00 1.0 0.52 0.48 0.56 0.08 0.68 0.56 0.64
3DA 0.62 0.65 0.33 0.92 0.62 0.96 0.71 0.22 0.35 0.69 0.60
3D-L 0.92 0.92 0.56 0.96 0.60 0.96 0.78 0.40 0.76 0.60 0.04
DP3 0.92 0.84 0.56 0.92 0.56 0.52 0.72 0.32 0.62 0.52 0.42

OpenVLA 0.44 0.26 0.08 0.88 0.56 0.48 0.56 0.24 0.56 0.08 0.32
CogACT 0.60 0.56 0.12 0.88 0.64 0.80 0.56 0.48 0.60 0.52 0.44

Ours 0.88 0.96 0.56 0.92 0.56 0.60 0.80 0.32 0.52 0.63 0.84

the workspace bounding box accordingly. We train and test our methods using the same dataset as
the baselines, with 100 demonstrations per task for training and 25 demonstrations for testing.

Baselines. In the single-arm setting, we compare our method against two types of baselines: 3D
imitation learning and VLA methods, both using only the single front view. The first category in-
cludes: 1) RVT2 (RSS 2024) [26]: A transformer-based model on RLBench that encodes virtually
projected images for 3D object manipulation. 2) 3D Diffusion Policy (DP3) (RSS 2024) [18]: A
visual imitation learning method leveraging diffusion-based policies for expressive 3D representa-
tions. 3) 3D Diffuser Actor (3DA) (CoRL 2024) [29]: A model that processes 2D images through a
visual encoder, lifts extracted features into a 3D latent space, and integrates diffusion-based 3D scene
representations for action prediction. 4) 3D-Lotus (3D-L) (ICRA 2025) [73]: The latest accepted
SOTA on RLBench before the submission deadline, utilizing foundation models for task planning
and object grounding. The second category includes: 5) OpenVLA [11]: A VLA model that takes
an image and task description as input, using an MLP head for action generation. 6) CogAct [47]:
A SOTA 7B VLA model that separates cognitive and action capabilities while employing diffusion
transformers for action generation. In the dual-arm setting, as the above baselines do not support
dual-arm manipulation, we follow PerAct2 [38] and compare against: 1) RVT-LF: Two Robotic
View Transformer (RVT) [25] models in a leader-follower architecture. 2) PerAct-LF: Two Per-
ceiver Actor networks [15] in a leader-follower architecture. 3) PerAct2 [38]: A single bimanual
Perceiver Actor network. Following the leader-follower architecture implementation [38], the output
of one network serves as input to the other, with both actions executed sequentially.

Table 2: Dual-Arm Multi-Task Performance on RL-
Bench2 of 5 tasks
Bimanual Task RVT-LF Peract-LF Peract2 Ours

Lift ball 0.17 0.40 0.50 0.71
Lift tray 0.06 0.14 0.01 0.22
Straightn rope 0.03 0.21 0.24 0.52
Pick laptop 0.03 0.11 0.12 0.14
Push box 0.52 0.57 0.07 0.70
AVG. 0.18 0.29 0.22 0.46 ±0.30

Table 3: The effectiveness of each pro-
posed component.
Row 3D Spatial 3D Aligned AVG.
ID Constraint Tokens PEs Score

1 ✗ ✗ ✗ 0.41
2 ✓ ✗ ✗ 0.62
3 ✓ ✓ ✗ 0.60
4 ✓ ✓ ✓ 0.66

Analysis. As shown in Tab. 1, in the single-arm setting, our method surpasses all baselines by at
least 4% average success rate. Compared with 3D imitation learning methods, 3DS-VLA leverages
the pretrained knowledge from 2D VLMs and boosts its 3D awareness, enabling effective multi-task
learning. Compared with 2D VLA methods, we observe frequent failures during the critical final
stage of 3D contact. This stems from their reliance on single-view 2D images without explicit 3D
geometric understanding, which is essential for precise action prediction. In contrast, our approach
improves the robot’s spatial understanding by enhancing 3D observation and incorporating 3D spa-
tial constraints. Furthermore, as shown in Tab. 2, in the dual-arm setting, our method outperforms
all baselines by a significant margin. This demonstrates our model’s robustness and potential for
generalization across different control modalities, enabling strong spatial reasoning for dual-arm
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collaboration and coordinated actions. Additionally, we perform an extra experiment where we first
fine-tune the pretrained VLM on the OXE dataset [74], which only takes 2D images as input, and
then continue finetuning on single-arm simulated dataset, achieving 68% success rate. Since our
method introduces 3D observations in a non-parametric manner, it can fully leverage existing 2D
datasets for pretraining.

4.3 Ablation Study

Does each component work? Starting with Row1 in Tab. 3, we use a model with the same architec-
ture as ours but only take the image, robot state, and task description as input, directly outputting
actions. In Row2 (w/ 3D spatial constraint), incorporating keypoint constraints as structured lan-
guage input establishes spatial-temporal associations, improving performance by 19%. In Row3
(w/o Aligned PEs), 3D tokens are extracted from the point cloud but encoded using the original
order of 2D PEs instead of the proposed aligned PEs, leading to a 2% drop. This demonstrates that
misaligned positional embeddings disrupt spatial reasoning due to inconsistencies in 3D spatial rep-
resentation. In Row4 (3DS-VLA), using aligned 2D PEs to encode 3D tokens enhances performance
to 0.66, validating the effectiveness of our 2D-to-3D positional alignment mechanism.

The robustness of 3DS-VLA when handling noise. During inference, we randomly add noise to the
input keypoint constraints, with a maximum deviation of 10 cm in x, y, and z directions, including
the circumstance that the keypoints are on the cup, instead of the handle that the robot should grasp,
or on the table near the target object. This results in an average success score of 0.63, showing our
model can tolerate noise to some extent.

The effectiveness of 3DS-VLA when handling both single- and dual-arm tasks. We compare Ours
with Ours-s, where Ours is trained on multi-embodiment tasks (single-arm and dual-arm), while
Ours-s are trained exclusively on single-arm tasks. Both Ours and Ours-s achieve the same average
success rate of 0.66 on single-arm tasks, demonstrating that our model can effectively handle differ-
ent embodiments within a unified training pipeline, without requiring architectural modifications.

4.4 Evaluation in Real-world

Setup. Our method is evaluated across 10 tasks on the Franka Research 3 (FR3) robot with a 3D-
printed UMI gripper [75]. We use a RealSense L515 camera to obtain real-world visual observations
from the front view. Expert demonstrations are collected via human teleoperation. For each task,
50 demonstrations are collected in diverse object poses. We fine-tune the model with 10 epochs
using pretrained weights obtained from simulation training. For each task, we train an agent and
evaluate it over 10 trials with diverse object poses. The success rate is used as the evaluation metric.
The green light on the Franka Research 3 indicates that the robot is in execution mode with Franka
Control Interface (FCI) enabled.

a. Instance Variation b. Position Variation d. View Variationc. Background Variation

Pi
ck

 a
nd

 P
la

ce

Execution Progress

Train
Test

Figure 3: Demonstrations of execution process and four types of generalization settings.
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Table 4: We compare 3DS-VLA with baselines on 10 real-world tasks and evaluate its robustness
across test settings that vary from the training dataset domain. * denotes long-horizon tasks.

Avg. Stack Pour Pick Stack Water Bottle at Slide Unplug Wipe Open
Models Success ↑ Cup Water Place* Block* Plants Rack Box Charger Table Drawer

DP3 0.49 0.70 0.50 0.50 0.30 0.40 0.50 0.50 0.40 0.50 0.60
CogAct 0.50 0.30 0.40 0.35 0.30 0.60 0.40 0.60 0.70 0.60 0.50
Rekep 0.41 0.40 0.50 0.30 0.10 0.60 0.60 0.50 0.40 0.55 0.10
Ours 0.54 0.40 0.50 0.40 0.40 0.70 0.80 0.60 0.40 0.60 0.60

Ablation a.Instance Var. b.Position Var. c.Background Var. d.View Var.
Ours - 0.30 0.40 0.40 0.30 0.40 0.50 0.60 0.40 0.50 0.60

Quantitative results. We compare our method with the two best-performing methods in simula-
tor experiments: the 3D imitation learning method 3D Diffusion Policy (DP3) and the VLA-based
method CogAct. Additionally, we include the baseline Rekep [60], which leverages constraints
on semantic keypoints to specify desired relationships between robot arms, object parts, and other
agents in a training-free manner. Since Rekep’s open-source implementation is not well-suited for
RLBench, we compare it with only in real-world experiments. As shown in Table 4, our method
outperforms all baselines, demonstrating superior interaction in 3D environments. Although both
our method and Rekep use external visual models for keypoint extraction, Rekep treats semantic
keypoints as subgoal objective for trajectory planning. This makes the pipeline prone to failure if
the underlying models are inaccurate—for example, if GroundingDINO [71] misses critical key-
points on the cup handle that needs to be grasped, or if GPT-4 overlooks essential sub-steps, such as
forgetting to lift a block before placing it, resulting in collisions.

Generalization. 3DS-VLA demonstrates strong generalization abilities in real world. We categorize
these generalization abilities into 4 aspects in Fig. 3 and present quantitative results in Tab. 4: 1)
Instance variation: We evaluate across a diverse set of unseen instances that differ in color, size,
and appearance compared to the training data. We demonstrate that 3DS-VLA effectively handles a
wide range of everyday objects across the tasks listed in Group-A of Tab. 4, which we attribute to the
inherent geometric richness and spatial continuity provided by point clouds. 2) Position Variation:
We shift the relative position of objects to evaluate the model’s ability to handle positional changes,
thereby testing its capability in trajectory prediction. For example, during training, the model learns
to stack the block on the left onto the block on the right, while in testing, the task is to stack the
block on the right onto the block on the left. As shown in group-b of Tab. 4, thanks to the spatial
constraints that encode the relationship between the robot and its environment, our model is capable
of adapting to such variations despite the change in relative positions. 3) Background Variation:
We demonstrate that 3DS-VLA is capable of handling tasks in complex and cluttered environments
in Tab. 4 group-c. To illustrate this, we test the “slide box” and “unplug charger” tasks with randomly
set backgrounds, without additional training. Remarkably, the model achieves similar accuracy as
it does in clean background settings. Since we establish associations between the robot and its
environment through structured text input, our model learns to focus on task-relevant objects while
disregarding irrelevant background disturbances. 4) View Variation: In group-d of Tab. 4, we test
our model from different camera view angles and observe that it is capable of handling significant
changes in view variation.

Please refer to Appendix for more details: Section 7.2 for visualization of tasks in RLBench and
real world and Section 7.3 for discussion of failure cases.

5 Conclusion

We propose 3DS-VLA, which enhances pretrained 2D vision-language models (VLMs) with com-
prehensive 3D awareness and the ability to predict end-effector poses. Our approach involves en-
riching 3D spatial observations to enable a shared 2D visual encoder to process both 3D and 2D data
while establishing 3D spatial constraints that encode the spatial-temporal relationships between the
robot and its environment for reliable policy learning. Extensive experiments, both in simulation
and in the real world, demonstrate the promising performance of 3DS-VLA.
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6 Limitations

First, 3DS-VLA requires camera calibration and depth information, as is the case with all 3D poli-
cies. Secondly, similar to most VLA methods, it tends to be slower in inference on average com-
pared to policies that do not utilize large language model. However, this can be mitigated by recent
techniques that increase the output action chunks, or applying mechanisms like KV-cache [76] to
speed up transformer-based models. In addition, the current keypoint sequence is determined using
a heuristic approach. For more complex tasks in the future, planning models such as GPT [77] can
be leveraged to determine the task-specific order of keypoints.
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7 Appendix

7.1 Input and Output Pairs

We illustrate the input language prompt and answer format in Fig. 4. Single-arm and dual-arm tasks
share the same format, with the latter including additional information for the second arm. This
allows a single model to handle both tasks without any architectural modifications.

Determine the action for task water plants. The current position is    , rotation is   , open states is    . 
The target is close to   

Q: Determine the action for task: 𝑙!.The current robot state is 𝑟". The target is close to 𝑘"

The A: The position is       , rotation is      , open states is       .

Q: Determine the action for task: 𝑙!. The current left robot state is 𝑟"# . The current right robot state is 
𝑟"$ . The target is close to 𝑘"

A: The left arm position is      , rotation is      , open states is      . The right arm position is      , 
rotation is      , open states is  

Si
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rm
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𝑥!"# 𝜃!"# 𝑔!"#

𝑥!"#$ 𝜃!"#$ 𝑔!"#$ 𝑥!"#%

𝜃!"#% 𝑔!"#%

Figure 4: Question-Answer Pair. We encode the current robot pose and target keypoint constraints
as 3D spatio-temporal constraints in the model’s language input. Both single-arm and dual-arm
settings share this formulation, differing only in prompt and supervision.

7.2 RLBench and Real-world Tasks Overview

The simulation tasks in Fig.5 follow previous works, while we provide a more detailed explanation
of the real-world tasks and their success conditions.

Qualitative results. As shown in Fig.6, we visualize the manipulation process of our method on
real-world tasks. Whether the task demands precise positioning, complex rotation, or semantic
understanding, 3DS-VLA can accurately predict the sequence of 7-DoF end-effector poses. For
example, in the Stack Cup task, our method first ensures an exact grasping position at the edge of
the cup, then precisely lifts and moves it above the target cup, eliminating any positional deviation.
The real-world execution video can be found in the supplementary material.

1. Pour water: This task requires the robot to first grasp the bottle, then rotate it to a position slightly
above the cup, and tilt it to perform the pouring action.

2. Slide box: The robot needs to slide the box using the side of the end-effector, moving it to the
designated white space area.

3. Unplug charger: The robot needs to grasp the charger and then pull it out to a certain height
without slipping.
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Close box Close fridge Close laptop Lamp on Open microwave Toilet seat down

Wine at rack Umbrella out Stack block Sweep dustpan USB out Unplug charger

Water plants Beat buzz Change clock Phone on base Press switch Frame off hanger

Weighing off Bi-Lift ball Bi-Lift tray Bi-Pick laptop Bi-Push box Bi- straighten rope

Figure 5: Visualization of simulation tasks. We conduct on both single-arm and dual-arm simula-
tion tasks.

4. Bottle at rack: The robot needs to grasp the bottle, ensuring that the grasp pose is not a simple
top-down approach, as this would hinder the completion of subsequent tasks. Considering joint
limitations, the first grasp must be in a backward direction, followed by rotation to place the bottle
on the rack.

5. Stack cup: The robot needs to grasp a cup and place it on top of another one. Since the cup fits
inside the other, this task requires higher precision in rotation prediction compared to the previous
one.

6. Water plant: The robot needs to grasp the handle of the object, a specific part, and then pour
water into the plant.

7. Wipe desk: The robot needs to pick up a tissue and use it to wipe the stain on the table, ensuring
the stain is completely covered.

8. Open drawer: The robot needs to open the top drawer by rotating the end-effector, rather than
using a top-down pose. Due to the position of the robot’s base and the front camera’s field of view,
the drawer is placed at a sharp angle, requiring more accurate rotation prediction to open it.

9. Stack Block: The robot is required to stack a total of three blocks. It grasps one block at a time
and places it on top of the previously stacked block.

10. Pick and place: The robot needs to open the drawer, sequentially pick up the charger, macaron,
and tomato, place them into the drawer, and then close it.

7.3 Failure Cases

We categorize the failure cases into two types: 1) Pose precision, where the predicted end-effector
poses are too imprecise to meet the success criteria. 2) Keypoint generation, where the external
model fails to detect the object.
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Figure 6: Visualization of real-world tasks. The tasks are shown in key-frame flow.

The primary failure mode is the imprecise prediction of end-effector poses. This is especially com-
mon in tasks that require high precision, such as stacking blocks, where the blocks must be placed
stably on top of one another.

Incorrect keypoint generation is another significant failure mode, particularly in simulations. For
instance, Grounding SAM [78] may fail to detect objects due to unrealistic rendering in the simu-
lator. Additionally, the grounding results can be influenced by the presence of the robot arm under
the front-view camera, as it is not a typical object encountered during the pretraining of Grounding
SAM. Although the model can tolerate a certain degree of keypoint noise, severe errors—such as
providing a keypoint on a banana when the intended target is an apple—can still lead to task failure.

Another common failure occurs in dual-arm setting, where collaboration between the two arms is
required. Since the model predicts the actions of both arms based on the current object state and
if one arm makes contact with the object, the object’s state changes. As a result, the previously
predicted action for the other arm may no longer be valid.
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