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Abstract

Vision Language Models (VLMs) are rapidly advancing in
multimodal understanding, largely due to increases in train-
ing data and model size. However, the computational de-
mands of VLMs are also increasing, presenting challenges
for their deployment in resource-constrained environments
like smart televisions (TVs). VLMs are particularly useful in
smart TVs for applications such as Al summarization, con-
tent question-and-answer (QnA), and user interface (UI) un-
derstanding and navigation. Previous research has focused
on leveraging layer redundancy to accelerate VLM inference,
but these methods often depend on extensive training, which
requires significant computational resources and time. Re-
cently, some inference-based solutions for layer skipping in
Large Language Models (LLMs) have been proposed. In this
paper, we demonstrate that the metrics used for layer skipping
in LLMs do not always yield favorable results when applied
to VLMs. We introduce an inference-only layer skipping
strategy for VLMs based on attention to image tokens. Our
approach increases overall throughput by up to 21% while
maintaining close to baseline performance.

Introduction

Vision-Language Models (VLMs) have recently achieved
remarkable performance across a wide range of multi-
modal understanding tasks, enabling applications such as
Al-powered content summarization, interactive Ul navi-
gation, and voice-driven search. These capabilities are in-
creasingly being integrated into edge devices such as smart
TVs, set-top boxes, and home assistants, bringing advanced
Al functionality directly into consumer products. However,
as VLM architectures advance, model sizes and computa-
tional demands continue to grow, making it infeasible to de-
ploy state-of-the-art (S0TA) models on such devices. Edge
environments are inherently resource-constrained in terms
of processing power, memory, and energy budget, and thus
cannot directly support the inference costs of large-scale
VLMs without specialized efficiency strategies.

To facilitate the deployment of large-scale models on edge
devices, researchers have explored a variety of efficiency
techniques, including pruning (Ma, Fang, and Wang 2023;
Sun et al. 2024), quantization (Frantar et al. 2022; Lin et al.
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2024), efficient attention (Wang et al. 2020; Zhang et al.
2025a), and input sparsification methods. Token-dropping
(Arif et al. 2025; Sarkar et al. 2025b), or selectively re-
moving less informative input tokens, has been widely in-
vestigated to exploit the redundancy in images and videos.
More recently, studies have revealed that layer redundancy
also exists across transformer layers in these models (El-
houshi et al. 2024; Gromov et al. 2025), presenting an op-
portunity for substantial inference-time reduction. Existing
layer skipping approaches are predominantly training-based,
requiring expensive retraining or fine-tuning of the base
model, which is impractical under limited GPU resources.
Recently, inference-time solutions based on similarity met-
rics have shown promising results in Large Language Mod-
els (LLMs). While efficiency strategies from LLMs are often
adapted to VLMs, we find that similarity metrics effective
for LLMs do not yield favorable results when applied di-
rectly to VLMs, underscoring the need for VLM-specific,
training-free layer skipping methods.

VLMs have been observed to sometimes overlook the vi-
sual context, producing incorrect outputs due to reduced at-
tention to image tokens. Building on this insight, we propose
a training-free layer skipping strategy that uses reduced vi-
sual attention to identify unimportant layers in the model.
In transformer-based LLMs and VLMs, inference consists
of two distinct stages: prefill, where the model processes the
entire input sequence once to populate the key—value (KV)
caches, and decode, where tokens are generated autoregres-
sively, one at a time, using these cached states. While pre-
fill cost scales with the prompt length, decode cost scales
linearly with the number of generated tokens. As shown
in Figure 1, for our target vision—language workloads, de-
code latency overtakes prefill latency once the number of
generated tokens per image exceeds 10. Many downstream
applications — such as image captioning, content sum-
marization, and conversational assistants — naturally in-
volve longer outputs, placing them firmly in this decode-
dominated regime. We therefore focus on accelerating de-
code to improve end-to-end throughput. To this end, we in-
troduce FlashVLM, a visual attention—guided layer skip-
ping strategy that dynamically removes redundant compu-
tation during decoding, yielding substantial speedups with-
out degrading output quality. Notably, our method is orthog-
onal to other efficiency techniques such as quantization and
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Figure 1: Prefill and decode latency per input sample averaged across 100 samples from different VLM benchmarks encom-
passing image captioning and visual QnA tasks. Latency values are measured on a single NVIDIA L40S GPU.

token dropping, and can be seamlessly combined with them
for further performance improvements.

Our Contributions Firstly, we observe that unlike
LLMs, deeper layers in VLMs significantly impact
model performance. We conduct a detailed analysis of ex-
isting similarity metrics used for determining layer impor-
tance. We demonstrate that the metrics used for layer skip-
ping in LLMs do not always yield favorable results when
applied to VLMs. We introduce FlashVLM, an inference-
only layer skipping strategy for VLMs based on atten-
tion to image tokens. Secondly, we perform a latency break-
down for the two stages of generation: prefill and decode.
Our analysis reveals that the decode stage is the primary la-
tency bottleneck for generation tasks, and we aim to per-
form layer skipping during decoding to maximize overall
throughput. Finally, we demonstrate results across a wide
range of visual question answering (QnA) and image cap-
tioning benchmarks, demonstrating the effectiveness of our
proposed method. FlashVLM improves overall throughput
by up to 21% with performance degradation of 1.7%.

Related Works

Recent advancements in optimizing large-scale models have
focused on diverse strategies like pruning, quantization, lin-
ear attention, and activation sparsification. This section will
specifically focus on methods that address layer redundancy,
discussing both training-based and training-free solutions.

Training-based Methods: Training-based methods re-
quire training or fine-tuning the model to correctly interpret
and make predictions with skipped computations. Early-
exit frameworks allow for bypassing later layers in a model,
based on the observation that models often reach the cor-
rect answer well before the final layer (Elhoushi et al. 2024).
Early-exit methods have been extensively explored for lan-
guage modeling for encoder-only transformers like BERT
(Xin et al. 2020; Zhou et al.) and encoder-decoder archi-
tectures like TS5 (Schuster et al. 2022; Elbayad et al. 2020).
They rely either on confidence measures (Schuster et al.
2022) or train additional modules or classification heads (EI-
bayad et al. 2020; Schuster et al. 2022) to interpret the out-
put of intermediate layers. Layerskip (Elhoushi et al. 2024)
introduces an early-exit strategy for LLMs combined with
speculative decoding to correct potential errors from exit-
ing early. (Raposo et al. 2024) introduced Mixture-of-depth

(MoD), which dynamically routes only a fraction of tokens
through each layer instead of fully skipping layers. This
facilitates that different tokens can require different levels
of processing, reducing compute without affecting perfor-
mance. For VLM models, layer skipping approaches can be
applied either in the vision encoder or the language decoder.
Videollm-MoD (Wu et al. 2024) applies MoD to the vision
encoder, whereas Gamma-MoD (Luo et al. 2025) applied
MoD to the language decoder. Unlike previous MoD meth-
ods, Gamma-MoD introduces a shared router across all lay-
ers for token selection and avoids skipping the question to-
kens. Notably, both early-exit frameworks and MoD meth-
ods involving fine-tuning routers and model parameters in-
volve substantial GPU resources.

Training-free Methods: Token-dropping methods have
been widely adopted to accelerate VLM inference by remov-
ing redundant tokens either at the output of the vision en-
coder (Arif et al. 2025) or a few layers into the LLM decoder
(Chen et al. 2024; Zhang et al. 2025b). While inference-
based strategies have been explored for addressing layer
redundancy in language modeling, similar approaches for
VLMs are still lacking. For instance, (Dalvi et al. 2020) an-
alyzes the neuron-level redundancy in BERT (Devlin et al.
2019) models. ShortGPT (Men et al. 2025) identifies layers
of interest in LLMs by measuring the cosine similarity be-
tween the input and the output of the layer, and skips layers
during the prefilling stage for generative tasks. UIDL (Gro-
mov et al. 2025) conducts a search to identify blocks of lay-
ers in LLMs that show the least deviation in angular dis-
tance between their input and output, ultimately eliminating
the least important block. Notably, both these approaches
demonstrate that deeper layers in LLMs are highly ineffec-
tive and redundant.

Our Approach
VLM Preliminaries

VLMs typically comprise four key components: a text tok-
enizer, a vision encoder, a projector, and a language decoder.
The text tokenizer processes the language input by segment-
ing it into discrete tokens and converting them into text em-
beddings, referred to as text tokens. Similarly, the vision en-
coder partitions the input image into patches and transforms
them into corresponding visual embeddings. These visual
embeddings are then mapped into the text embedding space
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Figure 2: Layerwise visual attention averaged across all query tokens for 500 sample images from OCRBench.

through the projector, producing vision tokens. Finally, the
vision and text tokens are concatenated and fed into the lan-
guage decoder. The majority of the computation in a VLM
is concentrated in the vision encoder and the language de-
coder. However, the vision encoder processes each image
only once, whereas the language decoder iteratively pro-
cesses tokens for every generated output token. Therefore,
our efficiency strategy focuses on skipping layers in the lan-
guage decoder.

The language decoder consists of a stack of transformer
layers, each consisting of a multi-head attention (MHA)
block followed by a feed-forward network (FFN). The MHA
takes as input N tokens, consisting of both text and vi-
sion tokens, each represented as an embedding of dimen-
sion d, X € RN*? These are mapped into Query, Key
and Value matrices (Q, K,V) € RV*4 MHA then com-
putes low-dimensional projections of (Q, K, V) given by
(Q%, Kt V) € RNV*dk for each head i where dy, = d/H,
H denoting the number of attention heads. The scaled dot
product attention for each head is then computed using

QiKiT>
vy,

Here, A € RV denotes the attention of query tokens Q°
to key tokens for the i* attention head.

A* = Softmax ( (D

Layer Skipping using Visual Attention

Visual attention denotes the fraction of the total attention
that the model pays to the input context provided by the
image to generate the next token. Previous research (Liu,
Zheng, and Chen 2024; Sarkar et al. 2025a) has shown
that low visual attention causes the model to ignore the in-
put context and generate incorrect or hallucinated outputs.
Based on this insight, we hypothesize that layers with low
visual attention do not significantly contribute to generat-
ing the correct output, and can be skipped to reduce com-
putations without compromising performance.

We define visual attention as the attention between the
current text query token ¢* € R'*9* and the vision tokens,
given by Equation 2. I,y and I.,q denote the start and end
indices of vision tokens. The visual attention is averaged
across all heads. We define layer importance score as the
sum of attention scores for that layer across all vision to-
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We demonstrate the visual attention scores across differ-
ent layers for the LLaVA models in Figure 2. We observe
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Algorithm 1: Layer Selection based on Visual Attention

Input: Sample set S, total number of decoder layers L, skip
ratio r € [0, 1]
Output: Selected layer indices to skip
1: Initialize list of layerwise attention sums:
Lattn,sum — [0} x L
: Initialize total number of tokens: niokens < 0
3: for each sample s € S do
4:  for each generated token ¢ for s do
S Ntokens < Ntokens T+ 1
6
7

[\

for each layer [ in range(L) do
A, = attention score of current query token g;
to image tokens for layer [ based on Equation 2

8: Lattn,sum [l] — Lattn,sum [l] + Av,l
9: end for

10:  end for

11: end for

12: for each layer [ in range(L) do

13: Lattn,avg[l] — Lattn,sum [l]/ntokens

14: end for

15: Sort La¢tn_avg in increasing order

16: k «+ |r x L]

17: return first £ layer indices from sorted Lqttn_qvg

that despite vision tokens constituting 99% of the input, they
receive <10% of the overall attention for most layers in
LLaMA, and <20% in Qwen, with some layers exhibiting
particularly low visual attention scores. We propose to iden-
tify and skip layers with the lowest A, scores. The detailed
algorithm for our layer skipping is given in Algorithm 1.

Comparing with other Layer Skipping Metrics

We compare layer importance based on visual attention with
layer importance metrics proposed in literature based on
magnitude, direction of vectors and depth-wise approaches.

L2 Norm: The L2 norm difference gives a notion of the
difference in magnitude between a layer’s input and output.
This difference between the layer’s input X;,, and output
X,ut can be calculated using Equation 3.

norm_diff(X;,, Xout) = abs(|| Xinll2 — | Xoull2)  (3)

Cosine Similarity: LLM models utilize pre-normalization
before processing each layer. Prior research (Men et al.
2025) suggests that the magnitude of the output becomes
less significant in this context. As a result, they advocate for
the use of magnitude-agnostic metrics, such as cosine sim-
ilarity (Men et al. 2025) or angular distance (Gromov et al.
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Figure 3: Accuracy on OCRBench for different layer skip ratios using different skip metrics.

2025), which focus on measuring the direction between vec-
tors. The cosine similarity or angular distance between a
layer’s input and output can be calculated using Equations
4 and 5.
Xin - X t
cosine _similarity (X, Xoy) = —— 4)
T X X ou
. 1 Xin . Xout >

angular_dist(Xi,, Xou) = —arccos | ———— ] (5)
o4 Yo) = Larceos (e

Early-exit: In early-exit frameworks, layer importance is es-
timated based on depth, with deeper layers being less impor-
tant. Previous research on layer skipping in LLMs has found
that deeper layers are often insignificant or redundant (EI-
houshi et al. 2024; Gromov et al. 2025).

Experimental Results
Experimental Setup

Models and Datasets: We demonstrate results for LLaVA
Onevision (Li et al. 2024) and LLaVA-Next (Liu et al.
2024a) with two different LLMs LLaMA-8B (Touvron et al.
2023) and Qwen-7B (Bai et al. 2023). We use 500 samples
from OCRBench as our calibration set to determine layer
importance based on visual attention as described in the pre-
vious section. We demonstrate results across 7 benchmarks,
including image captioning tasks like NoCaps (Agrawal
et al. 2019), CocoCaps (Chen et al. 2015), Flickr30k (Young
et al. 2014), and DetailCaps (Dong et al. 2024), and vi-
sual QnA benchmarks like OCRBench (Liu et al. 2024b),
ChartQA (Masry et al. 2022) and TextVQA (Singh et al.
2019). For throughput estimation, we use 100 samples from
each benchmark. Evaluation is performed on NVIDIA L40S
GPUs.

Evaluation Metrics: For throughput measurement, we re-
port the following metrics:

- Prefill time/sample: The average time required to process
the entire input sequence and generate the first output to-
ken for a single input sample.

- Decode time/sample: The average time required to gen-
erate all subsequent output tokens (after the first token)
for a single input sample.

- Decode time/token: The total decoding time divided by
the total number of output tokens generated (excluding
the first token).

- Overall throughput (tokens/s): The total number of out-
put tokens generated (including the first token) divided
by the total time for both prefill and decode stages.

Baselines: We compare FlashVLM with two SoTA
inference-only layer skipping methods, ShortGPT (Men
et al. 2025) and UIDL (Gromov et al. 2025). ShortGPT uses
cosine similarity as described in Equation 4 to determine
layer importance, and proposes skipping only during prefill
stage for generative tasks. UIDL skips a block of consecutive
layers instead of individual layers. It conducts a search with
a block size that matches the skip ratio, identifying the block
with the least deviation in angular distance (as described in
Equation 5) between its input and output.

Evaluating different layer skipping metrics

We compare different layer skipping metrics in Figure 3. We
skip layers during the decode phase and plot the accuracy vs
skip ratio on OCRBench for LLaMA and Qwen backbones.
We observe that early-exit or skipping deeper layers leads
to a sharp drop in accuracy even when only 10% of the lay-
ers are skipped, equating to 2 layers for Qwen and 3 lay-
ers for LLaMA. This is a key difference with LLM models
where deeper layers have been found to highly ineffective
(Gromov et al. 2025). Interestingly, using cosine similarity
or L2 norm difference to determine layer importance yields
promising performance for Qwen, but leads to a decline in
accuracy for LLaMA, suggesting these are not consistent
metrics across LLMs. We find that cosine similarity iden-
tifies deeper layers for LLaMA, whereas L2 norm difference
skips the first layer, which likely contributes to the observed
accuracy drop. On the other hand, our proposed visual at-
tention approach shows promising results for both models,
with no significant decrease in accuracy when skipping up to
20% of the layers. We will demonstrate results from several
other benchmarks in the following sections.

Results and Analysis

Evaluation on Image Captioning: We present results for
image captioning tasks in Table 1. For our proposed strategy,
prefill latency remains unchanged since we do not skip lay-
ers during the prefill stage. We obtain latency improvements
in decoding proportional to the number of skipped layers.
For example, for a skip ratio of ~20% for LLaMA decoder,
we observe a reduction in decode time/token by 15% for
Flickr30k to 18% for NoCaps and CocoCaps. Similarly, for
Qwen-7B backbone, we obtain a decoding latency reduc-
tion, ranging from from 17% to 21%.

Overall throughput is strongly affected by the length of
the generated output. In our measurements, prefill latency
is typically 4 to 5 times higher than the per-token decode



Skip | Rouge_ L s
Model Dataset | Method Ratio RS Throughput Estimation
Prefill time/ | Decode time/ | Avg Throughput
sample (ms) ({) | token (ms) (J) | length | (tokens/s)(T)
NoCaps | Baseline | 0.0 | 0.6146 50.7 12.9 12.5 |22.09
ShortGPT | 0.20 | 0.0503 14.8 13.0 64 |34.17
UIDL 0.20 | 0.2527 14.8 10.8 29.5 |34.88
Ours 0.20 | 0.6005 49.9 10.6 (-17.8%) | 13.6 |25.58 (+15.8%)
Flickr30k | Baseline | 0.0 | 0.5317 40.3 12.8 12.8 |24.55
ShortGPT | 0.20 | 0.0354 134 12.7 64 [35.12
LLaVA-Next UIDL 0.20 | 0.2446 13.6 10.8 23.3 |34.78
(LLaMA3-8B) Ours 0.20 | 0.5301 40.7 10.9 (-14.8%) | 13.4 |27.71 (+12.9%)
CocoCaps | Baseline | 0.0 0.6067 48.9 129 12.4 |22.63
ShortGPT | 0.20 | 0.0365 15.0 13.1 64 |34.32
UIDL 0.20 | 0.2282 14.7 10.7 27.6 |34.77
Ours 0.20 | 0.5898 473 10.6 (-17.8%) | 12.8 |25.78 (+13.9%)
NoCaps | Baseline | 0.0 | 0.5526 68.3 12.0 154 |15.276
ShortGPT | 0.20 | 0.1742 11.7 12.0 5.21 |8.05
UIDL 0.20 | 0.5958 11.7 10.0 11.2 |14.86
Ours 0.20 | 0.528 67.7 9.8 (-18.3%) | 16.7 |17.47 (+14.4%)
Flickr30k | Baseline | 0.0 | 0.5363 26.9 12.0 11.7 |23.98
ShortGPT | 0.20 | 0.1542 11.6 12.0 7.98 |21.82
LLaVA UIDL 0.20 | 0.5361 11.7 10.0 11.3 |27.65
Onevision Ours 0.20 | 0.5375 26.9 10.0 (-16.7%) | 11.9 |26.51 (+10.6%)
(Qwen2-7B) " coCaps | Bascline | 0.0 | 0611 372 123 11.8 |20.06
ShortGPT | 0.20 | 0.1491 11.9 10.0 8.7 |21.97
UIDL 0.20 | 0.5754 11.7 9.9 11 |22.79
Ours 0.20 | 0.6024 36.7 9.7 (-21.14%) | 11.9 |22.11 (+10.22%)
DetailCaps | Baseline | 0.0 0.3024 37.6 11.6 185.5 | 38.34
ShortGPT | 0.20 | 0.0467 114 11.5 43.6 |33.08
UIDL 0.20 | 0.2885 114 9.6 149.5 | 44.83
Ours 0.20 | 0.2864 38.0 9.6 (-20%) 147.7 | 44.32 (+15.6%)

Table 1: Image Caption Evaluation on LLaVA with two different backbones. The best values for each column are highlighted
in bold. If the average length of the generated output tokens is approximately double or more than the average length of the
ground truth captions, it is marked in red, indicating the presence of repetitions or nonsensical tokens.

latency, though the exact ratio depends on the input image
size. When the generation is long, decode latency dominates
the total time, making it the primary factor for improving
tokens-per-second. In contrast, for shorter outputs with only
a few tokens, prefill latency forms a large share of the total
latency, which limits overall throughput.

We also find that skipping layers can unintentionally in-
crease generation length by producing repetitive or unnec-
essary tokens. This artificially inflates throughput for that
task, but at the cost of correctness. Such behavior is par-
ticularly pronounced in LLaMA when using methods like
ShortGPT and UIDL, where the higher throughput numbers
do not reflect usable outputs. Hence, we mark these numbers
with red in Tables 1 and 2. We suspect that this occurs since
deeper layers in LLaMA are deemed less critical by these
approaches, based on cosine similarity and angular distance
metrics, and skipped, leading to degraded output quality.

Our approach achieves an overall throughput improve-
ment of up to 15.8% for LLaMA-3 and 15.6% for Qwen-2
backbones. UIDL achieves the best throughput performance
trade-off for captioning tasks for Qwen. However, it suffers

a significant accuracy drop for LLaMA. ShortGPT is ob-
served to perform poorly for both models. Even though it
skips layers only during prefill and not during decoding, this
appears to negatively impact performance, as those layers
cannot leverage the image context since the necessary input
token representations were never cached.

Evaluation on Visual QnA: We present evaluation results
for visual QnA tasks in Table 2. We observe that both Short-
GPT and UIDL suffer a substantial drop in accuracy for
both model backbones as the task complexity increases, with
ShortGPT attaining close to zero accuracy in many cases.
On the contrary, our approach shows promising results on
these tasks with performance drops of 1.7%, 0.44% and
1.01% for OCRBench, ChartQA and TextVQA on Qwen.
For LLaMA, FlashVLM degrades performance by 3.2%,
4.3% and 1.4% for OCRBench, ChartQA and TextVQA
respectively. We obtain throughput improvements of up to
20.8% for OCRBench with a performance degradation of
1.7%. The throughput gains for TextVQA and ChartQA are
limited due to their very short generation lengths. However,
most real-world tasks like content summarization and Ul



Skip | Accuracy S
Model Dataset Method Ratio R Throughput Estimation
Prefill time/ Decode time/ Avg Throughput
sample (ms) () | token (ms) () | length | (tokens/s)(T)
OCRBench | Baseline | 0.0 0.56 214 12.8 33.7 |35.89
ShortGPT | 0.20 0.002 12.2 13.2 128 | 38.85
UIDL 0.20 0.073 12.0 10.6 95.3 | 45.88
Ours 0.20 0.528 214 11.0 (-14.1%) 16.9 | 38.01 (+5.9%)
ChartQA | Baseline | 0.0 0.6872 421 13.4 4.1 |14.11
ShortGPT | 0.20 0.0 14.4 13.3 16 | 2791
LLaVA-Next UIDL 0.20 0.1268 14.2 10.7 124 |28.99
(LLaMA3-$B) Ours 0.20 0.644 41.8 10.8 (-19.4%) 44 |15.29 (+8.4%)
TextVQA | Baseline | 0.0 0.6202 49.6 13.2 50 | 14.08
ShortGPT | 0.20 0.0 15.1 13.2 1024 | 36.97
UIDL 0.20 0.1292 14.9 10.8 2452 | 42.71
Ours 0.20 0.6064 50.2 10.9 (-17.4%) 4.8 |14.26 (+1.3%)
OCRBench | Baseline | 0.0 0.623 17.0 12.0 23.8 | 3542
ShortGPT | 0.20 0.049 11.5 12.0 46.4 | 22.45
UIDL 0.20 0.445 11.7 10.0 474 | 45.86
Ours 0.20 0.606 17.0 9.9 (-17.5%) 32.0 | 42.8 (+20.8%)
ChartQA | Baseline | 0.0 0.8004 45.0 12.3 4.1 |8.96
ShortGPT | 0.20 0.0084 12.0 11.9 9.1 17.25
LLaVA UIDL 0.20 0.3868 12.0 10.0 35 |9.03
Onevision Ours 0.20 0.796 44.0 10.0 (-18.67%) | 4.0 |9.24 (+3.13%)
(Qwen2-7B) | "1 tVQA | Baseline | 0.0 | 0.7593 81.0 125 37 532
ShortGPT | 0.20 0.0005 20.0 11.6 59.1 | 27.78
UIDL 0.20 0.59 20.0 10.0 39 |6.36
Ours 0.20 0.7492 79.0 10.0 (-20%) 3.6 | 542 +1.9%)

Table 2: Visual QnA evaluation on LLaVA with two different backbones. The best values are bolded. The average length of the
generated output, substantially exceeding the ground truth, is marked in red, indicating repetitive or nonsensical tokens.
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Figure 4: Accuracy vs skip ratio on OCRBench for LLaVA
Onevision with Qwen-7B and Qwen-0.5B.

navigation require substantially longer output, in which case
our approach offers greater benefits.

Layer skipping for different model sizes: We present ac-
curacy vs skip ratios using FlashVLM for LLaVA Onevision
with Qwen-7B and Qwen-0.5B in Figure 4. This shows that
bigger models are more resilient to layer skipping, suggest-
ing higher layer redundancy in bigger models.

Layer Importance Score Visualization: We visualize the
layerwise scores based on different metrics like L2 norm dif-
ference, cosine similarity and visual attention for LLaVA-
Next (LLaMA3-8B) and LLaVA Onevision (Qwen2-7B)
based on 500 samples from OCRBench (Liu et al. 2024b)
in Figure 5a and 5b respectively. We observe that later lay-
ers exhibit high values for L2 norm difference for both mod-

els, with the middle layers having the lowest scores. How-
ever, for LLaMA, the first layer also has one of the lowest
values of L2 norm difference, which leads to the first layer
being skipped early on when L2 norm difference is the cho-
sen metric. Cosine similarity is high for the initial and last
three layers for Qwen, with middle layers having low val-
ues. However, for LLaMA, it shows the lowest values for the
later layers except the last layer. This probably leads to the
observed accuracy drop on LLaMA using cosine similarity,
since we find that layer layers play a key role in maintaining
VLM performance. For visual attention, lowest scores are
observed for layer ids 2 to 6 for LLaMA and for layer ids 4
to 7 and 10 for Qwen.

To further verify if the attention patterns are consistent
across benchmarks, we plot the layerwise visual attention
scores for LLaMA3-8B on different benchmarks in Figure
5c. We observe that for the same model, similar attention
patterns are observed across benchmarks. This suggests that
our attention-based layer identification strategy, based on a
subset of data samples for a particular task, can generalize
effectively across different benchmarks.

Comparison with token merging methods: For token
merging approaches, we compare our method against ToMe
(Token Merging) (Bolya et al. 2022) and PiToMe (Pro-
tect Informative Tokens before Merging) (Tran et al.
2024), which exploit token redundancy to increase through-
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(c) Layer scores for LLaVA-Next (LLaMA3-8B) based on visual attention for different benchmarks: OCRBench (left), Flickr30k (middle),
and NoCaps (right). We observe similar trends in layer scores across all benchmarks.

Figure 5: Layer score visualization for different layer skipping metrics on two different models, across three benchmarks.

put without requiring additional training. ToMe progres-
sively merges similar tokens within a transformer using a
lightweight matching algorithm, whereas PiToMe extends
ToMe by prioritizing the preservation of informative tokens
through an additional graph-energy—based metric. r controls
the number of tokens merged per layer in ToMe, while in
PiToMe, r denotes the fraction of tokens preserved in each
layer. Notably, both ToMe and PiToMe were originally de-
veloped for Vision Transformers (ViTs). We extend these
techniques to reduce the number of vision tokens in VLMs,
and present the results in Table 3. Generally, we drop to-
kens both in the base image and sub-images, whereas, for
”w/o base” we drop tokens only in the sub-images. While
these methods yield throughput improvements, they suffer
significant accuracy degradation, making them unusable for
complex tasks like OCRBench and ChartQA.

Conclusions and Future Work

This paper addresses the critical need for inference effi-
ciency in VLMs by proposing an innovative, inference-only
layer skipping strategy. Previous research has demonstrated
that large foundation models exhibit significant layer redun-
dancy, which can be leveraged to speed up inference. No-
tably, deeper layers have been found to be ineffective for
LLMs. Our findings reveal that, unlike LLMs, deeper lay-
ers play a crucial role in the VLMs. Moreover, traditional
layer skipping strategies are usually training-based, requir-
ing substantial GPU resources. To address this, we pro-

Dataset Method Accuracy Thr&ughput
ain
| Baseline | 623 | 1x
OCR- ToMe (r=10) 36.4 1.11x
ToMe w/o base (r=10) 57.5 1.08 x
Bench
PiToMe (r=0.95) 32.7 1.6x
PiToMe w/o base (r=0.95) 554 1.4x
| Ours | 606 | 121x
| Baseline | 80.04 | 1x
ToMe (r=10) 40.2 1.3x
ChartQA | ToMe w/o base (r=10) 64.6 1.5%
PiToMe (r=0.95) 35.36 2.2x
PiToMe w/o base (r=0.95) | 62.28 1.8x
| Ours | 796 | 1.03x

Table 3: Comparison of our approach with token merging
methods on LLaVA Onevision (Qwen2-7B)

pose an inference-only approach based on visual attention
for layer skipping in VLMs. The proposed strategy exhibits
promising results, achieving notable inference speedups
while maintaining high performance across a diverse range
of tasks. In future, we aim to extend this attention-based ap-
proach to the prefilling stage of VLM inference, which holds
the potential for even greater throughput gains. Additionally,
future work will focus on investigating why deeper VLM
layers are more critical than their LLM counterparts.
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