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Abstract
Offline policy learning methods in batch learning aim to derive a policy from a
logged bandit feedback dataset, encompassing context, action, propensity score,
and feedback for each sample point. Inverse propensity score estimators are em-
ployed to minimize the cost to achieve this objective. However, this approach is
susceptible to high variance and poor performance under low-quality propensity
scores. In response to these limitations, we propose a novel estimator inspired
by the log-sum-exponential operator, mitigating variance. Furthermore, we offer
theoretical analysis, encompassing upper bounds on the bias, variance of our esti-
mator, and an upper bound on the generalization error of the log-sum-exponential
estimator—the difference between the empirical risk of the log-sum-exponential
estimators and the true risk- with a convergence rate of O(1/

√
n) where n is

the number of training samples. Additionally, we examine the performance of
our estimator under limited access to clean propensity scores and an imbalanced
logged bandit feedback dataset, where the number of samples per action is different.
The code for our experiments is available at https://github.com/Slifer-The-Sky-
Dragon/LSE_Code.

1 Introduction
Offline policy learning from logged data is an important problem in reinforcement learning theory and
practice. The logged dataset represents interaction logs of a system with its environment, recording
context, action, propensity score (i.e., the probability of action selection for a given context under
the logging policy), and feedback (cost). The literature has considered this setting in the context
of contextual bandits and partially labeled observations. It is used in many real applications, e.g.,
recommendation systems [Aggarwal, 2016, Li et al., 2011], personalized medical treatments [Kosorok
and Laber, 2019, Bertsimas et al., 2017], and personalized advertising campaigns [Tang et al., 2013,
Bottou et al., 2013]. However, there are two main obstacles to learning from this kind of logged
bandit feedback (LBF) dataset: first, the observed feedback (cost) is available for the chosen action
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only, and second, the LBF dataset is taken under the logging policy so that it could be biased. Batch
learning with LBF (a.k.a. Counterfactual Risk Minimization) is a strategy for off-policy learning
from LBF datasets, which has been proposed by Swaminathan and Joachims [2015a] to tackle these
challenges.

Due to the bias of logging policy in the LBF dataset, the inverse propensity score (IPS) estimator
is proposed [Thomas et al., 2015, Swaminathan and Joachims, 2015a]. However, this method
suffers from significant variance in many cases [Rosenbaum and Rubin, 1983]. To address this,
some truncated importance sampling methods have been proposed, such as the IPS estimator with
the truncated ratio of policy and logging policy [Ionides, 2008a], IPS estimator with truncated
propensity score [Strehl et al., 2010], self-normalizing estimator [Swaminathan and Joachims, 2015b],
exponential smoothing (ES) estimator [Aouali et al., 2023], implicit exploration (IX) estimator [Neu,
2015] and power-mean (PM) estimator [Metelli et al., 2021].

In addition to the significant variance issue of IPS estimators, there are two more challenges in real
problems: noisy propensity scores and imbalanced LBF dataset. In particular, in previous works such
as Swaminathan and Joachims [2015a], Metelli et al. [2021], Aouali et al. [2023], it is assumed that
the propensity scores in the LBF dataset are true values. However, access to the exact values of the
propensity scores may not be possible, for example, when the LBF dataset is annotated by human
agents. In this situation, one may settle for a qualitative estimation of the propensity score or train a
model to estimate the propensity scores. In either case, the propensity score stored in the LBF dataset
can be considered a noisy version of the true propensity score. In addition to noisy propensity scores,
we can encounter an imbalanced LBF dataset, particularly due to the logging policy’s tendency to
focus on specific actions more. For example, in recommendation systems, people may be biased
towards middle-range ratings and mostly avoid the highest and lowest scores in their ratings. This
introduces the concept of action imbalance in bandit learning from logged data, where there is no
opportunity to explore minority actions in offline policy learning. Therefore, there is a need for
an estimator that can effectively manage variance, noisy propensity scores, and imbalanced LBF
datasets.

In this work, we propose a novel estimator for batch learning from the LBF dataset, which is shown
to have better performance under the noisy propensity score and imbalance scenarios compared to
other estimators. The contributions of our work are as follows.

• We propose a novel (non-linear) estimator inspired by the Log-Sum-Exponential (LSE)
operator as an LSE estimator, which mitigates variance and can be applied to unbounded
cost functions.

• We provide a bias and variance analysis of our LSE estimator. We also propose bounds on
the generalization error, i.e. the absolute difference between the LSE estimation and the true
average cost. We provide generalization error bounds with a convergence rate of O(1/

√
n)

where n is the number of training samples under mild assumptions.
• Motivated by our theoretical analysis, we introduce a novel regularization based on α-Rényi

divergence. This regularization reduces the variance of the LSE estimator and demonstrates
superior performance compared to the LSE estimator without regularization.

• We introduce a set of experiments conducted on different datasets to show the performance
of the LSE and α-Rényi regularized LSE estimators in scenarios with clean and noisy
propensity scores and imbalance LBF datasets based on different numbers of samples per
action in comparison with other estimators.

Notation: We adopt the following convention for random variables and their distributions in the
sequel. A random variable is denoted by an upper-case letter (e.g., Z), an arbitrary value of this
variable is denoted with the lower-case letter (e.g., z), and its space of all possible values with the
corresponding calligraphic letter (e.g., Z). This way, we can describe generic events like {Z = z}
for any z ∈ Z , or events like {g(Z) ≤ 5} for functions g : Z → R. PZ denotes the probability
distribution of the random variable Z. The joint distribution of a pair of random variables (Z1, Z2) is
denoted by PZ1,Z2

. We denote the set of integer numbers from 1 to n by [n] ≜ {1, · · · , n}. In this
work, we consider the natural logarithm, i.e., log(x) := loge(x).

Divergences: Suppose p(x) and q(x) are arbitrary distributions defined on the same space, and
α > 0. If α ≥ 1, we should have q(x) > 0 if p(x) > 0. The α-Rényi Divergence [Van Erven and
Harremos, 2014], between p(x) and q(x) is defined as, Dα(p||q) = 1

α−1 log
∫
x
p(x)αq(x)1−αdx.
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For α → 1, Dα reduces to the KL divergence, i.e., DKL(p||q) =
∫
x
p(x) log(p(x)/q(x))dx. We also

define power divergence as Pα(p∥q) := exp(Dα(p∥q))α−1 is the power divergence with order α.

2 Problem formulation
Let X be the set of contexts and A the set of actions. We consider policies as conditional distributions
over actions, given contexts. For each pair of context and action (x, a) ∈ X ×A and policy π ∈ Π,
where Π is the set of policies, the value π(a|x) is defined as the conditional probability of choosing
action a given context x under the policy π.

Inspired by Swaminathan and Joachims [2015a], a cost (loss) function* c : X ×A → R−, which is
unknown, defines the cost (feedback) of each observed pair of context and action. However, in the
LBF setting, we only observe the cost (feedback) for the chosen action a in a given context x, under
the logging policy π0(a|x). We have access to the LBF dataset S = (xi, ai, pi, ci)

n
i=1 where each

‘data point’ (xi, ai, pi, ci) contains the context xi which is sampled from unknown distribution PX ,
the action ai which is sampled from the logging policy π0(·|xi), the propensity score pi ≜ π0(ai|xi),
and the observed feedback (cost) ci ≜ c(xi, ai) under logging policy π0(ai|xi).

The true risk of a learning policy πθ is,

R(πθ) = EPX
[Eπθ(A|X)[c(A,X)|X]]. (1)

Our objective is to find an optimal π⋆
θ , one which minimizes R(πθ), i.e., π⋆

θ = argminπθ∈Πθ
R(πθ),

where Πθ is the set of all policies parameterized by θ ∈ Θ. We denote the importance weighted cost
function as wθ(A,X)c(A,X), where

wθ(A,X) =
πθ(A|X)

π0(A|X)
.

As discussed by Swaminathan and Joachims [2015b], we can apply the IPS estimator over the LBF
dataset S [Rosenbaum and Rubin, 1983] to get an unbiased estimator of the risk (a linear empirical
risk) by considering the importance weighted cost function as,

R̂(πθ, S) =
1

n

n∑
i=1

ciwθ(ai, xi), (2)

where wθ(ai, xi) =
πθ(ai|xi)
π0(ai|xi)

. The IPS estimator is unbiased with bounded variance if the πθ(A|X)

is absolutely continuous with respect to π0(A|X) [Strehl et al., 2010, Langford et al., 2008].

To mitigate the problem of the large variance of the IPS estimator, many estimators have been
proposed [Strehl et al., 2010, Ionides, 2008a, Swaminathan and Joachims, 2015b, Aouali et al., 2023,
Metelli et al., 2021, Neu, 2015], including truncated IPS, exponential smoothing (ES) [Aouali et al.,
2023] and power-mean (PM) [Metelli et al., 2021] estimators. Note that we can represent the linear
empirical risk of these estimators as the weighted average of cost (feedback) where the weights are
defined by a transformation of wθ(ai, xi),

R̂(πθ, S) =
1

n

n∑
i=1

cig
(
wθ(ai, xi)

)
, (3)

where g : R → R is defined for different estimators. For example, we have g(x) = x in the IPS
estimator, g(x) = max(x,M) in the truncated IPS estimator, g(x) = ((1− λ)xs + λ)1/s in the PM
estimator and g(x) = xβ for β ∈ (0, 1) in the ES estimator. It is worth mentioning that another
version of the ES estimator is proposed as g(x) = πα

0 x for α ∈ (0, 1). For the IX-estimator with
parameter η, we have g(x) = x

1+η/π0
. The generalization error for an estimator is defined as the

difference between the true risk and the empirical risk.

In the next section, we propose the LSE estimator as a non-linear estimator to learn a policy with a
low variance that minimizes the true risk using the LBF dataset.

*The cost can be viewed as the opposite (negative) of the reward. Consequently, a low cost (equivalent to
maximum reward) signifies user (context) satisfaction with the given action, and conversely. For the reward
function, we have r(x, a) = −c(x, a).
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3 Log-Sum-Exponential estimator
Main idea: Inspired by the log-sum-exponential operator with applications in multinomial linear
regression and naive Bayes classifiers [Calafiore et al., 2019, Murphy, 2012, Williams and Barber,
1998], we define the LSE estimator with parameter λ,

LSEλ(Z) =
1

λ
log
( 1
n

n∑
i=1

eλzi
)
, (4)

where Z = {zi}ni=1 are samples from the random variable Z. The key property of the LSE operator
is its robustness to outliers and big errors in a limited number of data samples. Here an outlier, by
intuition, is a point with abnormally large negative zi. Such points vanish in the exponential sum as
limzi→−∞ eλzi = 0. Therefore the LSE operator ignores terms with large values.

Motivating example: We provide an example to investigate the behaviour of LSE as a general
estimator and its difference from Monte-Carlo estimator (a.k.a. simple average). Suppose that Z
is distributed as a Pareto distribution* with scale xm and shape ζ. Let ζ = 1.5 and xm be such
that E[Z] = − ζxm

ζ−1 = −1. The objective is to estimate E[Z] with independent samples drawn from
the Pareto distribution. We set n = 10, 50, 100, 1000, 10, 000 and compute the Monte-Carlo (a.k.a.
simple average) and LSE estimation of the expectation of Y . Table 1 shows that LSE effectively
keeps the variance low without significant side-effects on bias.

Table 1: Bias, variance, and MSE of LSE and Monte-Carlo estimators. We run the experiment 10,000
times and find the variance, bias, and MSE of the estimations.

Estimator n = 10 n = 50 n = 100 n = 1000 n = 10000

Bias Monte-Carlo 0.276 0.079 0.167 0.05 0
LSE 0.797 0.594 0.518 0.312 0.167

Variance Monte-Carlo 23.726 62.891 12.66 10.332 8.928
LSE 0.206 0.176 0.165 0.105 0.071

MSE Monte-Carlo 23.802 62.897 12.688 10.334 8.928
LSE 0.841 0.529 0.433 0.202 0.098

Risk functions: The LSE estimator has a tunable parameter λ which helps us to recover the IPS
estimator for λ → 0. Furthermore, the LSE estimator is an increasing function with respect to λ. We
study the LSE estimator properties in App.C. The LSE empirical risk (LSER) is defined as

R̂λ
LSE(S, πθ) := LSEλ(S) =

1

λ
log
( 1
n

n∑
i=1

eλciwθ(ai,xi)
)
, (5)

which is supposed to estimate the true risk. As previous works consider the deviation of the empirical
risk from the true risk, we also examine the deviation of the LSER from the true risk. For this purpose,
we define the generalization error, as the difference between the true risk and the LSER, i.e.,

genλ(πθ) := R(πθ)− R̂λ
LSE(S, πθ). (6)

Furthermore, we are interested in providing high probability upper and lower bounds on genλ(πθ),

P (genλ(πθ) > gu(δ, n, λ)) ≤ δ, and, P (genλ(πθ) < gl(δ, n, λ)) ≤ δ.

where 0 < δ < 1 and n is the number of samples. The derivative of the LSER can be represented as,

∇θR̂
λ
LSE(S, πθ) =

1

n

n∑
i=1

cie
λ(ciwθ(ai,xi)−R̂λ

LSE(S,πθ))∇θwθ(ai, xi). (7)

Note that, in (7), we have a weighted average of the gradient of the propensity-weighted cost samples.
In contrast to the linear empirical risk for which the gradient is a uniform mean of cost samples,
in the LSE estimator, the gradient for large values of ciwθ(ai, xi), ∀i ∈ [n] (small absolute value),
contributes more to the final gradient. It can be interpreted as the robustness of the LSE estimator
with respect to the very large absolute values of ciwθ(ai, xi) (i.e. high wθ(a, x)), ∀i ∈ [n].

*If Z ∼ Pareto(xm, ζ), we have fZ(z) =
ζxζ

m

zζ+1 .
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4 Related works
Direct method: The direct method for off-policy learning from the LBF datasets is based on the
estimation of the cost function, followed by the application of a supervised learning algorithm to
the problem [Dudík et al., 2014]. However, this approach does not generalize well, as shown by
Beygelzimer and Langford [2009]. A different approach based on policy optimization and boosted
base learner is proposed to improve the performance in direct methods [London et al., 2023]. Our
approach differs from this area, as we do not estimate the cost function.

Estimation of propensity scores: We can estimate the propensity score using different methods,
e.g., logistic regression [D’Agostino Jr, 1998, Weitzen et al., 2004], generalized boosted models
[McCaffrey et al., 2004], neural networks [Setoguchi et al., 2008], parametric modeling [Xie et al.,
2019a] or classification and regression trees [Lee et al., 2010, 2011]. Note that, as discussed in
[Tsiatis, 2006, Shi et al., 2016], under the estimated propensity scores (noisy propensity score), the
variance of the IPS estimator is reduced. In this work, we consider both clean and noisy propensity
scores.
Imbalanced batch learning: Dai et al. [2023] used an ensemble method to avoid the bias of the
model towards the minority classes. They train different resampled subsets of the training data
and classifier models and resampling techniques during training and validate each combination by
the samples that were left out of the sampled subset. Then they use the model with the highest
performance on the test data. [Hong et al., 2023] handle the imbalanced dataset in offline RL by
reweighting the samples during the training to fit to the high-return samples instead of many low-
return samples in the dataset. Although the notion of imbalance in this work is different from ours,
the same idea of reweighting samples from minority classes can be used with appropriate objectives
instead of simple return values. In addition, Zhu et al. [2024] incorporates the median-of-means
estimator to estimate the mean of the heavy-tailed distribution of cost (reward) in offline RL that
shares the same challenge of the high variance In our work, we model the imbalance LBF dataset as
non-equal samples per action.

5 Theoretical foundations of the LSE estimator
In this section, assuming the LSE estimator, we present the bias-variance, and generalization error
analyses. Based on our theoretical results, we propose the α-Rényi divergence as a regularization
for the LSE estimator. All the proof details are deferred to App.D. In this section, the following
assumptions are made.

Assumption 5.1 (Bounded true risk). The learning policy πθ(A|X), cost function c(A,X) and PX

are such that the expected true risk satisfies EPX⊗πθ(A|X)[c(A,X)] = Rθ < ∞.

Assumption 5.2 (Bounded Variance). The variance of the weighted cost function is bounded,

V(wθ(A,X)c(A,X)) ≤ M. (8)

In comparison with bounded cost function assumption in literature, [Metelli et al., 2021, Aouali et al.,
2023], our theoretical results can be applied to unbounded cost function satisfying Assumption 5.1
and Assumption 5.2. Moreover, our assumptions are weaker with respect to the uniform overlap
assumption *.
5.1 Bias-variance

One of the evaluation metrics for an estimator is the mean squared error (MSE) which is decomposed
into squared bias and the variance of the estimator. For the LSE estimator, we consider the following
MSE decomposition,

MSE(R̂λ
LSE(S, πθ)) = B(R̂λ

LSE(S, πθ))
2 + V(R̂λ

LSE(S, πθ)),

where,

B(R̂λ
LSE(S, πθ)) = E[wθ(A,X)c(A,X)]− E[R̂λ

LSE(S, πθ)],

V(R̂λ
LSE(S, πθ)) = E[(R̂λ

LSE(S, πθ)− E[R̂λ
LSE(S, πθ)])

2].

In this section, we will use the following helpful lemma to prove some results.

*In the uniform coverage (overlap) assumption, it is assumed that sup(a,x)∈A×X wθ(a, x) = Uc < ∞.
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Lemma 5.3. Given bounded variance on X < 0, V(X) < ∞, the following upper bound holds on
the variance of eλX for λ > 0,

V
(
eλX

)
≤ λ2V(X). (9)

In the following proposition, we provide a bias-variance analysis of the LSER.
Proposition 5.4 (Bias bound). Given Assumptions 5.1 and 5.2, the following bound holds on the bias
of the LSER,

n− 1

2nλ
V(eλc(A,X)wθ(A,X)) ≤ B(R̂λ

LSE(S, πθ)) ≤
λ

2
(M +R2

θ)−
1

2nλ
V(eλwθ(A,X)c(A,X)).

Remark 5.5 (Asymptotically Unbiased). By selecting λ as a function of n, which tends to zero as
n → ∞, e.g. λ(n) = 1√

n
, the aforementioned upper bound in Proposition 5.4 becomes asymptotically

zero. Since the lower bound is always positive, this forces both the upper and lower bounds to converge
to zero. Consequently, we can prove that the LSE is asymptotically unbiased.

For the variance of LSER, we can provide the following upper bound.
Proposition 5.6 (Variance Bound). Given Assumptions 5.1 and 5.2 and assuming that 0 < λ <
−2 Rθ

M+R2
θ

, the variance of the LSER satisfies,

V(R̂λ
LSE(S, πθ)) ≤

M

n
+

λ

2

(
−2Rθ −

λ

2
(M +R2

θ)

)
(M +R2

θ). (10)

Remark 5.7 (Convergence rate of the variance bound). Selecting λ = 1
n , the abovementioned

proposition gives an upper bound of O( 1n ) for the variance of LSE. Generally when λ → 0 we have,

lim
λ→0

V(R̂λ
LSE(S, πθ)) ≤

V(wθ(A,X)c(A,X))

n
. (11)

5.2 Generalization error bounds
In this section, we provide lower and upper bounds on the generalization error of the LSE estimator.
Note that genλ(πθ) is a non-linear estimator with respect to the weighted cost, i.e., wθ(A,X)c(A,X),
which is different from linear estimators. Therefore, the previous techniques for generalization error
analysis under linear estimators are not applicable. A Regret bound is also provided in the App. F.
Theorem 5.8 (Generalization Bound). Given Assumptions 5.1 and 5.2, then with probability at least
1− δ we have,

L(γ, n, λ,Rθ,M, δ) ≤ genλ(πθ) ≤ U(γ, nu, λ,Rθ,M, δ),

where 0 < γ < 1 and nu = n for nu ≥ (2λ2M+ 4
3γ) log

1
δ

γ2 exp(2λRθ)
,

L(γ, n, λ,Rθ,M, δ) :=
−λ

2
(M +R2

θ)−
2

3

log 2
δ

nλ exp(λRθ)
−

√
2M log 2

δ

n exp(2λRθ)
,

U(γ, nu, λ,Rθ,M, δ) :=
2

3(1− γ)

log 2
δ

nuλ exp(λRθ)
+

1

1− γ

√
2M log 2

δ

nu exp(2λRθ)
.

(12)

Remark 5.9 (Uniform Coverage Assumption). Theorem 5.8 does not require any assumption regarding
the coverage or overlap, such as the uniform coverage assumption*, of the learning policy with respect
to the logging policy.

The generalization bound depends on λ. With an appropriate selection of λ, we can have an upper
bound on generalization error with a convergence rate of 1√

n
.

Proposition 5.10 (Selection of λ). Given Assumptions 5.1 and 5.2 and assuming n ≥

max

(
8 log 2

δ

3(M+R2
θ) exp(Rθ)

,
(8M+ 8

3 ) log
2
δ

exp(2Rθ)

)
, and setting λ =

√
8 log 2

δ

3n(M+R2
θ) exp(Rθ)

, then with probability

of at least 1− δ (δ ∈ (0, 1)), the generalization error satisfies,∣∣genλ(πθ)
∣∣ ≤ 2

√
2(M +R2

θ) log
2
δ

n exp(Rθ)

(√
M

exp(Rθ)(M +R2
θ)

+
1√
3

)
.

The robustness of the LSE estimator with respect to noisy propensity scores is studied in App. G.
*In the uniform coverage (overlap) assumption, it is assumed that sup(a,x)∈A×X wθ(a, x) = Uc < ∞.
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5.3 Comparison with previous works

The comparison of our LSE estimator with other estimators, including, IPS, self-normalized
IPS [Swaminathan and Joachims, 2015b], truncated IPS with weight truncation parameter M , ES-
estimator with parameter α [Aouali et al., 2023], IX-estimator with parameter η and PM-estimator
with parameter λ [Metelli et al., 2021] is provided in Table 2.

Table 2: Comparison of estimators. We consider the bounded cost function, i.e., Rmax :=
sup(a,x)∈A×X r(a, x). BSN and VSN are the Bias and the Efron-Stein estimate of the variance of
self-normalized IPS. For the ES-estimator, we have TES = BES+(1/n)

(
DKL(πθ∥π0)+log(4/δ)

)
.

For the IX-estimator, Cη(π) is the smoothed policy coverage ratio. We compare the convergence rate
of the generalization error for estimators.

Estimator Max Abs Variance Bias Generalization Error Convergence
Rate Order

IPS Rmax esssup
πθ

π0

RmaxP2(πθ∥π0)
n 0 R2

max

√
P2(πθ∥π0)

δn O(n−1/2)

SN-IPS
[Swaminathan and Joachims, 2015b] Rmax R2

maxV
SN RmaxB

SN Rmax(B
SN +

√
V ES log 1

δ ) -

IPS-TR (M > 0)
[Ionides, 2008b] RmaxM R2

max
P2(πθ∥π0)

n Rmax
P2(πθ∥π0)

M Rmax

√
P2(πθ∥π0) log

1
δ

n O(n−1/2)

IX (η)
[Gabbianelli et al., 2023]

Rmax

η RmaxCη(πθ)/n RmaxηCη(πθ) Rmax(2ηCη(πθ) +
log(2/δ)

ηn ) O(n−1/2)

PM (λ ∈ [0, 1])
[Metelli et al., 2021]

Rmax

λ
R2

maxP2(πθ∥π0)
n RmaxλP2(πθ∥π0) Rmax

√
P2(πθ∥π0) log

1
6

n O(n−1/2)

ES (α ∈ [0, 1])
[Aouali et al., 2023] Rmax esssup

πθ

πα
0

R2
max

Eπθ
[πθ·π1−2α

0 ]

n Rmax(1− Eπθ
[π1−α

0 ]) Rmax

√
DKL(πθ∥π0)+log(4

√
n/δ)

n + TES O(n−1/2)

LSE (0 < λ < ∞)
(ours) Rmax esssup

πθ

π0
( 1n + λ)(M +R2

θ)
λ
2 (M +R2

θ)
log 2

δ

nλ +

√
M log 2

δ

n O(n−1/2)

From Table 2, we can observe that the upper bound on the generalization error of the LSE estimator
has the convergence rate of O(n−1/2). Moreover, theoretical results on generalization error, bias
and variance can be applied to unbounded weighted cost function under bounded expectation and
variance of the weighted cost function, Assumptions 5.1 and 5.2, compared to other estimators where
the bounded cost function or weighted cost function is needed.

6 LSE regularized Via αRényi divergence
In this section, we first provide an upper bound on the generalization error of the LSE estimator in
terms of α-Rényi divergence. For this purpose, the following assumptions are made.
Assumption 6.1 (Sub-Gaussianity). The weighted square cost function, i.e., wθ(A,X)c2(A,X), is
σ-sub-Gaussian* under PX ⊗ π0(A|X) and PX ⊗ πθ(A|X).
Assumption 6.2 (Finite Action Space). The action space A is a finite set, i.e. we have a finite set of
|A| = K actions.
Proposition 6.3 (Generalization Error Upper Bound based on α-Rényi Divergence). Given Assump-
tion 6.1 and assuming that the cost function has bounded range [−C, 0], then the generalization error
of the LSE estimator satisfies,

Lα(γ, n, λ,Rθ, δ) ≤ genλ(πθ) ≤ Uα(γ, nu, λ,Rθ, δ),

where Uα = C2 + σ
√

2Dα

min (α,1) , Dα := Dα(π0(A|X) ⊗ PX∥πθ ⊗ PX), nu = n for nu ≥
(2λ2M+ 4

3γ) log
1
δ

γ2 exp(2λRθ)
, and,

Lα(γ, n, λ,Rθ, δ) := −λ

2
Uα − 2

3

log 2
δ

nλ exp (λRθ)
− 1

exp (λRθ)

√
2(Uα +R2

θ) log
2
δ

n
,

Uα(γ, nu, λ,Rθ, δ) :=
4

3

log 2
δ

nλ exp (λRθ)
+

2

exp (λRθ)

√
2(Uα +R2

θ) log
2
δ

n
.

(13)

Inspired by Proposition 6.3, we suggest employing α-Rényi as a regularizer for the LSE estimator,
denoted as α-LSE, to reduce the upper bound (or increase the lower bound) on the generalization
error.

R̂λ
LSE(S, πθ) + βDα(π0(A|X)⊗ PX∥πθ ⊗ PX). (14)

*A random variable, X is σ-sub-Gaussian under distribution P ′
X if log(EX∼P ′

X
[exp(X −EX∼P ′

X
[X])]) ≤

η2σ2

2
for all η ∈ R.
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Table 3: Comparison of different algorithms LSE, PM, ES, IX, α-LSE, PM+SM, and IPS-KL accuracy
for EMNIST with different qualities of logging policy (τ ∈ {1, 10}) and clean/ noisy propensity
scores with b ∈ {5, 0.01} and imbalance scenarios with ν ∈ {3, 9, 20}. The best-performing result is
highlighted in bold text, while the second-best result is colored in red for each scenario.

Dataset τ b ν α-LSE LSE PM ES IX PM + SM IPS-KL Logging Policy

EMNIST

1

− − 91.72± 0.03 88.49± 0.04 89.19± 0.03 88.61± 0.06 88.33± 0.13 89.38± 0.02 90.42± 0.11 88.08
5 − 91.31± 0.01 89.16± 0.03 88.94± 0.05 88.48± 0.03 88.51± 0.23 88.83± 0.11 90.78± 0.08 88.08

0.01 − 91.39± 0.01 86.07± 0.01 85.62± 0.10 85.71± 0.04 81.39± 4.02 74.64± 3.67 91.65± 0.01 88.08
− 3 91.20± 0.03 87.83± 0.10 88.81± 0.11 63.64± 0.53 64.82± 7.29 89.20± 0.02 91.07± 0.06 88.08
− 9 91.80± 0.02 88.01± 0.05 88.29± 0.10 56.09± 0.03 56.08± 0.02 88.93± 0.04 90.44± 0.06 88.08
− 20 91.87± 0.01 88.00± 0.07 87.88± 0.07 56.26± 0.02 56.32± 0.01 88.61± 0.05 87.49± 0.11 88.08

10

− − 91.02± 0.03 88.59± 0.03 88.61± 0.04 88.38± 0.08 87.43± 0.19 89.77± 0.01 89.90± 0.11 79.43
5 − 90.20± 0.09 88.42± 0.07 88.43± 0.07 88.39± 0.10 88.39± 0.06 89.23± 0.03 89.91± 0.07 79.43

0.01 − 89.68± 0.07 82.15± 0.21 80.85± 0.29 81.07± 0.07 77.49± 2.77 75.38± 0.42 86.62± 0.13 79.43
− 3 89.66± 0.04 86.96± 0.01 87.30± 0.03 61.74± 0.07 58.76± 3.96 89.98± 0.07 84.84± 0.10 79.43
− 9 89.15± 0.03 86.13± 0.04 85.84± 0.05 55.99± 0.04 57.08± 3.72 88.73± 0.04 85.00± 0.04 79.43
− 20 89.12± 0.08 80.50± 2.47 83.36± 0.18 56.29± 0.08 56.25± 0.02 88.18± 0.04 80.74± 0.06 79.43

Table 4: MSE of LSE, PM, ES and IPS estimators. We run the experiment 1000 times and find the
MSE of the estimations.

µ Metric Estimator n = 10 n = 100 n = 1000 n = 10000

1.0 MSE

IPS 0.301 0.059 0.007 0.001
ES 0.150 0.056 0.043 0.042
PM 0.191 0.052 0.006 0.002
LSE 0.119 0.023 0.003 0.001

1.5 MSE

IPS 10.202 2.440 0.354 0.049
ES 2.202 0.857 0.375 0.304
PM 12.149 2.960 0.441 0.081
LSE 1.516 0.408 0.111 0.020

2.0 MSE

IPS 171.761 95.488 122.134 5.124
ES 34.261 24.194 16.584 5.794
PM 171.761 95.488 122.134 5.124
LSE 28.298 12.594 4.192 0.914

To estimate the α-Rényi Divergence in (14) using the LBF dataset, we use the propensity scores to
estimate α-Rényi Divergence between the logging policy and the learning policy,

D̂α,n :=
1

α− 1
log

(∑
ã∈A

1

m[ã]

∑
(xi,ai,pi)∈D,

ai=ã

pαi
πθ(ai|xi)α−1

)
,

where m[ã] is the number of samples in the LBF dataset that have ã as their action. The estimation
of α-Rényi Divergence, D̂α,n, is asymptotically (m[ã] → ∞,∀ã ∈ A) unbiased, which is shown in
App. E. Therefore, the α-LSE objective would be,

R̂λ
LSE(S, πθ) + βD̂α,n. (15)

We compared the α-Rényi regularization with the KL-regularization problem in App.E.1.

7 Experiments
We briefly present our experiments for synthetic and supervised-to-bandit datasets [Beygelzimer and
Langford, 2009]. An experiment on Open Bandit Dataset [Saito et al., 2020a] as a real-world dataset
is provided in App. J. More details can be found in App.H.
7.1 Synthetic dataset

Suppose that our bandit dataset has only a single context (state), denoted as x0, and π0(·|x0) ∼
N (2, 1) and πθ(·|x0) ∼ N (µ, 1). Also let the cost function be an exponential function c(a, x0) =
− exp( 14a

2). The objective is to estimate the expectation of the cost function under πθ, with
independent samples drawn from π0(·|x0). We set n = 10, 100, 1000, 10, 000, µ = 1.0, 1.5, 2.0, and
estimate the mean square error of IPS, PM estimator [Metelli et al., 2021], ES estimator [Aouali
et al., 2023] and LSE estimators of E[wθ(A, x0)c(A, x0)]. Note that for µ = 2, the learning policy
is fitted perfectly to the logging policy. However, due to the unbounded cost function, our LSE
estimator outperforms compared to other estimators. Table 4 shows that the LSE estimator achieves a
lower MSE compared to other estimators. More details and the results for variance and bias of the
estimators are provided in the App. K.

7.2 Supervised-to-bandit datasets
Baselines: For all of our experiments, we consider truncated IPS estimator [Swaminathan and
Joachims, 2015a], PM estimator [Metelli et al., 2021] and ES estimator [Aouali et al., 2023] IX
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estimator [Neu, 2015] as non-regularized baselines. Furthermore, we also compare α-LSE as
regularized LSE with KL-regularized IPS [Aminian et al., 2024], and PM estimator with Second
Moment regularization [Metelli et al., 2021].
Datasets: We apply the standard supervised to bandit transformation [Beygelzimer and Langford,
2009] on a classification dataset: Extended-MNIST (EMNIST) [Xiao et al., 2017]. We also run on
more datasets, including CIFAR-10, FMNIST and LETTER in App.I. This transformation assumes
that each of the classes in the datasets corresponds to an action. Then, a logging policy stochastically
selects an action for every sample in the dataset. For each data sample x, action a is sampled by
logging policy. For the selected action, propensity score p is determined by the softmax value of that
action. If the selected action matches the actual label assigned to the sample, then we have c = −1,
and c = 0 otherwise. So, the 4-tuple (x, a, p, c) makes up the LBF dataset. To generate a noisy
propensity score, we use 2 types of noise, log-gamma distribution noise and log-normal distribution
noise. The noisy LBF dataset is obtained by multiplying the propensity score, p, of each sample,
(x, a, p, c), by the noise term sampled from the specified noise distribution.
Noisy LBF Dataset: We consider noisy propensity scores. For this purpose, motivated by Halliwell
[2018] and the discussion in App.G.2, we assume a multiplicative inverse Gamma noise on π0 for
b ∈ R+, π̂0 = 1

U π0, where π̂(a|x) is the noisy propensity scores and U ∼ Gamma(b, b)*.
Imbalance LBF dataset: Let m[a] be the number of samples of each action in the dataset. Let m̄ = n

k
be the supposed number of actions if the dataset were balanced. Hence if the number of samples with
each action is m̄, the dataset is considered balanced. To create an imbalanced dataset, for each class,
we will generate a random variable Zi ∼ N (m̄, v2) and set m̂[i] = min(max(Zi,ml),mu) where v
is the parameter that determines the degree of imbalance of the dataset, ml = 0.4m̄, mu = 10m̄ are
the upper bound and lower bounds for the number of samples for each action.
Logging policy: To have logging policies with different performances, given inverse temperature*

τ ∈ {1, 10}, first, we train a linear softmax logging policy on the fully-labeled dataset. Then, when
we apply standard supervised-to-bandit transformation on the dataset, the results obtained from the
linear logging policy which are weights of each action according to the input, will be multiplied by
the inverse temperature τ and then passed to a softmax layer. Thus, as the inverse temperature τ
increases, we will have more uniform and less accurate logging policies.
Metric: We evaluate different algorithms based on the accuracy of the trained model. Inspired by
London and Sandler [2019], we calculate the accuracy for a deterministic policy where the accuracy
of the model based on the arg max of the softmax layer output for a given context is computed.

For each value of τ , we apply the LSE estimator and observe the accuracy over three runs on EMNIST.
Table 3 shows the deterministic accuracy of LSE, PM, ES, IX, α-Rényi-regularized LSE (α-LSE),
PM+KL, and IPS-KL for τ ∈ {1, 10}. Moreover, the experiments for noisy LBF dataset (with
b ∈ {5, 0.01}) and imbalance LBF dataset (with ν ∈ {3, 9, 20}) are provided in Table 3.

Discussion: We observe that α-LSE achieves maximum accuracy(with less variance) in most clean,
noisy and imbalance scenarios compared to all baselines. More discussion is provided in App. I.1.

8 Conclusion and future works
In this work, inspired by the log-sum-exponential operator, we proposed a novel estimator for off-
policy learning application. Subsequently, we conduct a comprehensive theoretical analysis of the
LSE estimator, including a study of bias and variance, along with an upper bound on generalization
error. Building on our theoretical insights, we advocate for a regularization approach for our log-sum-
exponential estimator based on α-Rényi divergence. Furthermore, we explore the performance of our
estimator in scenarios involving noisy and imbalanced logged bandit feedback datasets. Results from
our experimental evaluation demonstrate that our estimator, guided by our theoretical framework,
performs competitively compared to baseline methods.
In future work, we plan to combine our estimator with doubly robust estimators or augmented-inverse-
propensity-weighted estimators [Bang and Robins, 2005, Robins et al., 1994]. Moreover, we envision
extending the application of our estimator to more challenging reinforcement learning setups, [Chen
and Jiang, 2022, Zanette et al., 2021, Xie et al., 2019b].

*If Z ∼ Gamma(α, β), then we have fZ(z) =
βα

Γ(α)
zα−1e−βz .

*The inverse temperature τ is defined as π0(ai|x) = exp(h(x,ai)/τ)∑k
j=1 exp(h(x,aj)/τ)

where h(x, ai) is the i-th input to

the softmax layer for context x ∈ X and action ai ∈ A.
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A Other related works

Other methods: A balance-based weighting approach, which outperforms traditional estimators, was
proposed by Kallus [2018]. Other extensions of batch learning scenarios have been studied, Papini
et al. [2019] consider samples from different policies and Sugiyama et al. [2007] propose Direct
Importance Estimation, which estimates weights directly by sampling from contexts and actions.
Chen et al. [2019] introduced a convex surrogate for the regularized true risk based on the entropy of
the target policy.

Pessimism method and off-policy reinforcement learning: The pessimism concept originally,
introduced in offline reinforcement learning [Buckman et al., 2020, Jin et al., 2021], aims to derive
an optimal policy within Markov decision processes (MDPs) by utilizing pre-existing datasets
[Rashidinejad et al., 2022, 2021, Yin and Wang, 2021, Yan et al., 2023]. This concept has also been
adapted to contextual bandits, viewed as a specific MDP instance. Recently, a ‘design-based’ version
of the pessimism principle was proposed by Jin et al. [2022] who propose a data-dependent and policy-
dependent regularization inspired by a lower confidence bound (LCB) on the estimation uncertainty
of the augmented-inverse-propensity-weighted (AIPW)-type estimators which also includes IPS
estimators. Our work differs from that of Jin et al. [2022] as our estimator is a non-linear estimator.
Note that for our theoretical analysis, we consider bounded second-moment of weights. However,
[Jin et al., 2022] also considers third and fourth moments of weights bounded.

Action embedding and clustering: Due to the extreme bias and variance of IPS and doubly-robust
(DR) estimators in large action spaces, Saito and Joachims [2022] proposed using action embeddings
to leverage marginalized importance weights and address these issues. Subsequent studies, including
[Saito et al., 2023, Peng et al., 2023, Sachdeva et al., 2023], have introduced alternative methods
to tackle the challenge of large action spaces. Our work can be integrated with these approaches to
further mitigate the effects associated with large action spaces.

Individualized treatment effects: The individual treatment effect aims to estimate the expected
values of the squared difference between outcomes (cost or feedback) for control and treated contexts
[Shalit et al., 2017]. In the individual treatment effect scenario, the actions are limited to two actions
(treated/not treated) and the propensity scores are unknown [Shalit et al., 2017, Johansson et al., 2016,
Alaa and van der Schaar, 2017, Athey et al., 2019, Shi et al., 2019, Kennedy, 2020, Nie and Wager,
2021]. Our work differs from this line of works by considering larger action spaces and assuming the
access to propensity scores in the LBF dataset.

B Preliminaries

B.1 Definitions

We define the softmax function

softmax(x1, x2, · · · , xn) = (s1, s2, · · · , sn),

si =
exi∑n

j=1 x
xj
, 1 ≤ i ≤ n.

The diag function, diag(a1, a2, · · · , an) ∈ Rn×n, defines a diagonal matrix with a1, a2, · · · , an as
elements on its diagonal.
Definition B.1 (Asymptotic Value). We define the symbol O(f(n)) (order) and Ω(f(n)), for an
arbitrary function f : R → R+ as the upper and lower asymptotic behaviors, respectively. For a
function g : R → R, we call g to be of order f , or g(n) = O(f(n)), if there exists C0, N0, such that
for any n ≥ N0, we have,

g(n) ≤ C0f(n).

Similarly, we state that g(n) = Ω(f(n)), if there exists C ′
0, N

′
0 such that for any n ≥ N ′

0,

g(n) ≥ C ′
0f(n).

B.2 Theoretical tools

In this section, we provide the main lemmas which are used in our theoretical proofs.
Here are some popular lemmas that are used in our theoretical analysis.
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Lemma B.2 (Hoeffding Inequality, Boucheron et al., 2013). Suppose that Xi are sub-Gaussian
independent random variables, with means µi and sub-Gaussian parameter σ2

i , then we have:

P

(
n∑

i=1

(X1 − µi) ≥ t

)
≤ exp

(
−t2

2
∑n

i=1 σ
2
i

)
(16)

Lemma B.3 (One-sided Bernstein’s inequality [Wainwright, 2015]). Let X ≤ b1 and E[X] < ∞,
then the following holds for all λ ∈ [0, 3/b1),

E[eλ(X−E[X])] ≤ exp

(
(λ2/2)E[X2]

1− b1λ
3

)
.

Lemma B.4 (Variational representation of α-Rényi Divergence [Birrell et al., 2021]). Suppose that
P and Q are two probability measure over the set X , then the following variational representation
for α-Rényi holds,

Dα(P∥Q) := sup
g∈G

α

α− 1
log
[
EP [exp((α− 1)g(X))]

]
− log

[
EQ[exp(αg(X))]

]
, (17)

where G = {g : X → R|EQ[exp(αg(X))] < ∞, EP [exp((α− 1)g(X))] < ∞}.

The rest of the lemmas are provided with proofs.
Lemma B.5 (Change of variables). Assume that the following equation holds,

ϵ = exp

{
− Aδ2

B + Cδ

}
,

for A,B,C, ϵ ≥ 0 and 0 ≤ δ ≤ 1. Then, we have,

δ ≤
C log 1

ϵ

A
+

√
B log 1

ϵ

A
.

Also, for some D > 0, if

A ≥
B log 1

ϵ + 2DC log 1
ϵ

D2

we have,
δ ≤ D

Proof. We have,

ϵ = exp

{
− Aδ2

B + Cδ

}
↔ Aδ2 − C log

1

ϵ
δ −B log

1

ϵ
= 0

Given δ > 0 and solving the quadratic equation, we have,

δ =
1

2A

(
C log

1

ϵ
+

√
C2 log2

1

ϵ
+ 4AB log

1

ϵ

)
=

C

2

√
log 1

ϵ

A

√ log 1
ϵ

A
+

√
log 1

ϵ

A
+ 4

B

C2


≤ C

√
log 1

ϵ

A

√ log 1
ϵ

A
+

√
B

C2


=

C log 1
ϵ

A
+

√
B log 1

ϵ

A
,

where the inequality is derived from
√
a+ b ≤

√
a+

√
b.

For the second part, similar argument works for a =
√
A as the variable ,

C log 1
ϵ

A
+

√
B log 1

ϵ

A
≤ D ↔ Da2 −

√
B log

1

ϵ
a− C log

1

ϵ
≥ 0
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which is satisfied if a is greater than the bigger root,

a ≥

√
B log 1

ϵ +
√
B log 1

ϵ + 4DC log 1
ϵ

2D
So,

A ≥
B log 1

ϵ + 2DC log 1
ϵ

D2
≥


√

B log 1
ϵ +

√
B log 1

ϵ + 4DC log 1
ϵ

2D

2

where the last inequality comes from a2+b2

2 ≥
(
a+b
2

)2
. Hence if A ≥ B log 1

ϵ+2DC log 1
ϵ

D2 , a is bigger
than the largest root and the proposed inequality holds.

Lemma B.6. Assume A,B,C ∈ R+. For any x ∈ R+ such that,

x ≤ C2

2AC +B
,

we have,
Ax+

√
Bx ≤ C (18)

Proof. Given Ax ≤ C, equation (18) is equivalent to the following quadratic form.
A2x2 − (B + 2AC)x+ C2 ≥ 0

Let 0 < r1 < r2 be the roots of the abovementioned quadratic form. If X < r1, Ax ≤ C holds and
the quadratic form is positive. So we have the following condition on x to satisfy Equation 18,

x ≤
B + 2AC −

√
(B + 2AC)2 − 4A2C2

2A2
=

2C2

B + 2AC +
√

(B + 2AC)2 − 4A2C2
.

Since,
C2

2AC +B
≤ 2C2

B + 2AC +
√
(B + 2AC)2 − 4A2C2

,

the condition in the lemma is sufficient for (18) to hold.

Lemma B.7. Let us consider the functions hb(x) = log(x) + 1
2b2x

2 and ha(x) = log(x) + 1
2a2x

2

for a < x < b. Then hb(x) and ha(x) are concave and convex, respectively.

Proof. Taking the second derivative gives us the result:
d2

dx2

(
log(x) + βx2

)
= − 1

x2
+ 2β.

Lemma B.8. Suppose E[X2] < ∞. Then, following inequality for λ > 0 and X < 0 holds,

E[X] ≤ 1

λ
logE[eλX ] ≤ E[X] +

λ

2
E[X2].

Proof. The left side inequality follows from Jensen’s inequality on f(x) = log (x). For the right
side, we have for x < 0,

1 + x ≤ ex ≤ 1 + x+
1

2
x2.

Therefore, we have,
1

λ
logE[eλX ] ≤ 1

λ
logE[1 + λX +

1

2
λ2X2]

=
1

λ
log

(
1 + λE[X] +

1

2
λ2E[X2]

)
≤ 1

λ

(
λE[X] +

1

2
λ2E[X2]

)
= E[X] +

λ

2
E[X2].
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Lemma B.9. We have,

1

2nλ
V(eλwθ(A,X)c(A,X)) ≤ Rλ(πθ)− E

[
R̂λ

LSE(S, πθ)
]
,

Proof. For the sake of simplicity of notation, we consider yθ(ai, xi) = c(ai, xi)wθ(ai, xi). Note

that, an upper bound 1 on
∑n

i=1 eλciwθ(ai,xi)

n holds. Now, we have,

E[R̂λ
LSE(S, πθ)] =

1

λ
E
[
log

(∑n
i=1 e

λyθ(ai,xi)

n

)]
=

1

λ
E

[
log

(∑n
i=1 e

λyθ(ai,xi)

n

)
+

1

2

(∑n
i=1 e

λyθ(ai,xi)

n

)2

− 1

2

(∑n
i=1 e

λyθ(ai,xi)

n

)2
]

≤ 1

λ

(
log

(
E
[∑n

i=1 e
λyθ(ai,xi)

n

])
+

1

2
E
[∑n

i=1 e
λyθ(ai,xi)

n

]2
− 1

2
E

[(∑n
i=1 e

λyθ(ai,xi)

n

)2
])

=
1

λ
log
(
E
[
eλYθ(A,X)

])
− 1

2λ
V
(∑n

i=1 e
λyθ(ai,xi)

n

)
=

1

λ
log
(
E
[
eλYθ(A,X)

])
− 1

2nλ
V
(
eλYθ(A,X)

)
,

where the third line is derived by applying Jensen inequality on function

log

(∑n
i=1 e

λyθ(ai,xi)

n

)
+

1

2

(∑n
i=1 e

λyθ(ai,xi)

n

)2

,

which is concave based on Lemma B.7 for b = 1. Finally, we have,

1

λ
log
(
E
[
eλwθ(A,X)c(A,X)

])
− E[R̂λ

LSE(S, πθ)] ≥
1

2nλ
V
(
eλwθ(A,X)c(A,X)

)
.

Lemma B.10. We have,

E
[
R̂λ

LSE(S, πθ)
]
−R(πθ) ≥

n− 1

n
V
(
eλwθ(A,X)c(A,X)

)
Proof. Setting yθ(ai, xi) = c(ai, xi)wθ(ai, xi), according to Lemma B.7 for b = 1, f(x) = log (x)+
1
2x

2 is concave. So we have,

log

(∑n
i=1 e

λyθ(ai,xi)

n

)
+

1

2

(∑n
i=1 e

λyθ(ai,xi)

n

)2

≥ 1

n

(
n∑

i=1

log
(
eλyθ(ai,xi)

)
+

1

2
e2λyθ(ai,xi)

)

=
λ

n

n∑
i=1

yθ(ai, xi) +
1

2n

n∑
i=1

e2λyθ(ai,xi).

Hence,

E
[
1

λ
log

(∑n
i=1 e

λyθ(ai,xi)

n

)]
≥ E

[
1

n

n∑
i=1

yθ(ai, xi) +
1

2nλ

n∑
i=1

e2λyθ(ai,xi) − 1

2λ

(∑n
i=1 e

λyθ(ai,xi)

n

)2
]

= E[Yθ(A,X)] +
n− 1

2nλ
V
(
eλYθ(A,X)

)
.
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C Details of section 3

Proposition C.1 (LSE asymptotic properties). The following asymptotic properties of LSE holds
(w.r.t λ):

lim
λ→0

R̂λ
LSE(S) =

1

n

(
n∑

i=1

ciwθ(ai, xi)

)
,

lim
λ→−∞

R̂λ
LSE(S) = min

i
ciwθ(ai, xi),

lim
λ→∞

R̂λ
LSE(S) = max

i
ciwθ(ai, xi).

Proof. For the first limit, we use L’Hopital’s rule:

lim
λ→0

R̂λ
LSE(S) = lim

λ→0

log
(∑n

i=1 eλxi

n

)
λ

= lim
λ→0

(∑n
i=1 xie

λxi∑n
i=1 eλxi

)
1

=

∑n
i=1 xi

n
.

For the second limit for λ < 0 we have:

min
i

xi =
1

λ
log

(∑n
i=1 e

λmini xi

n

)
≤ 1

λ
log

(∑n
i=1 e

λxi

n

)
≤ 1

λ
log

(
eλmini xi

n

)
= min

i
xi −

1

λ
log n.

As both lower and upper tends to mini xi we conclude that:

lim
λ→−∞

1

λ
log

(∑n
i=1 e

λxi

n

)
= min

i
xi.

A similar argument proves the third limit.

Remark C.2. For λ → ∞, the LSE estimator only minimizes the sample with the maximum value.
In fact, due to wθ(An,X)c(A,X) < 0, the LSE estimator minimizes the sample with minimum
absolute value. In particular, it considers the sample with a very small importance weight, ignoring all
samples with high discrepancy between logging and learning policy, including the ones contributing
to the high variance of the IPS estimator. It can also be interpreted as the robustness of noisy samples,
where the variance of the IPS estimator.

It is interesting to study the sensitivity of the LSE estimator with respect to its values.
Lemma C.3. The gradient and hessian of the LSE estimator with respect to its values are as follows,

∇R̂λ
LSE(S, πθ) = softmax(λc1wθ(a1, x1), · · · , λcnwθ(an, xn)), (19)

∇2R̂λ
LSE(S) = λdiag(Sm)− λSmST

m, (20)

where Sm = softmax(λc1wθ(a1, x1), · · · , λcnwθ(an, xn)). Also, LSE is convex when λ > 0 and
concave otherwise.

Proof. The two equations can be derived with simple calculations. About the convexity and concavity
of R̂λ

LSE, we prove that for λ ≥ 0 Hessian matrix is positive semi-definite. The proof for concavity
for λ < 0 is similar.

xT∇2R̂λ
LSEx = λ

(
xTdiag(Sm)x− xTSmST

mx
)
= λ

 n∑
i=1

Sm(i)x2
i −

(
n∑

i=1

Sm(i)xi

)2


= λ

( n∑
i=1

Sm(i)x2
i

)(
n∑

i=1

Sm(i)

)
−

(
n∑

i=1

Sm(i)xi

)2
 ≥ 0.

Where the last inequality is derived from the Cauchy–Schwarz inequality.
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Using Lemma C.3, it can be shown that R̂λ
LSE is convex for λ ≥ 0 and concave for λ < 0. Applying

Lemma C.3, it can be shown that the derivative of the LSE estimator is positive and less than one, i.e.,

0 ≤ ∇R̂λ
LSE(S, πθ) ≤ 1. (21)

We can also prove Equation. (7) by applying Lemma C.3.

D Proofs and details of section 5

D.1 Proofs and details of bias-variance

Lemma 5.3 (restated). Suppose that X < 0 is a random variable. The following upper bound holds
on the variance of eλX for λ > 0,

V
(
eλX

)
≤ λmin

C1

E[|X − C1|] ≤ λE[−X], (22)

In addition, by assuming V(X) < ∞, we have,

V
(
eλX

)
≤ λ2V(X). (23)

Proof. We have,

|eλX − eλC1 | =

∣∣∣∣∣
∫ λx

λC1

eydy

∣∣∣∣∣ ≤ |λ(x− C1)|emax(λx,λC1) ≤ λ|x− C1|.

Then it holds that

V(eλX) = min
C1

E
[
(eλX − eλC1)2

]
= min

C1

E
[
|eλX − eλC1 |λ|X − C1|

]
≤ min

C1

E [λ|X − C1|] .

Replacing C1 with 0 gives the first inequality. Note that,

V(eλX) = min
C1

E
[
(eλX − eλC1)2

]
≤ min

C1

E
[
λ2(X − C1)

2
]
= λ2V(X),

where proves the second inequality.

Proposition 5.4 (restated). Under Assumption 5.2, we have the following bound on the bias,

n− 1

2nλ
V(eλwθ(A,X)c(A,X)) ≤ B ≤ λ

2
(M +R2

θ)−
1

2nλ
V(eλwθ(A,X)c(A,X)).

Proof. The lower bound is directly derived from Lemma B.10. For the upper bound, we combine
Lemma B.9 and the upper bound in Lemma B.8.

E[R̂λ
LSE(S, πθ)]−

1

λ
log
(
E
[
eλwθ(A,X)c(A,X)

])
≤ − 1

2nλ
V
(
eλwθ(A,X)c(A,X)

)
1

λ
log
(
E
[
eλwθ(A,X)c(A,X)

])
≤ E[wθ(A,X)c(A,X)] +

λ

2
E[c2(A,X)w2

θ(A,X)]

→ E[R̂λ
LSE(S, πθ)] ≤ E[wθ(A,X)c(A,X)] +

λ

2
E[c2(A,X)w2

θ(A,X)]

− 1

2nλ
V
(
eλwθ(A,X)c(A,X)

)
.

Which gives the proposed upper bound.

Proposition 5.6 (restated). Suppose Assumption 5.2 holds. Let µi = E[ci(A,X)wi
θ(A,X)] for

i ∈ {1, 2}. Also, suppose that λ < −2µ1

µ2
We have the following bound on the variance of the LSE

estimator,

V(R̂λ
LSE(S, πθ)) ≤

M

n
+

λ

2

(
−2Rθ −

λ

2
(M +R2

θ)

)
(M +R2

θ).
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Proof. Suppose that Z =
∑n

i=1 eλciwθ(ai,xi)

n . Also set yi,θ(ai, xi) = ci(ai, xi)wθ(ai, xi). According
to Lemma B.7 for b = 1, we have log(x) + 1

2x
2 is concave for x < 1. Using Jensen’s inequality we

have,

1

λ
logZ = R̂λ

LSE(S, πθ)

=
1

λ
logZ +

1

2λ
Z2 − 1

2λ
Z2

≥ 1

λ
log

(
e

∑n
i=1 λciwθ(ai,xi)

n

)
=

∑n
i=1 ciwθ(ai, xi)

n
.

Since logZ < 0 a.s., We have,

E
[
1

λ2
log2 Z

]
≤ E

[(∑n
i=1 ciwθ(ai, xi)

n

)2
]
.

Also due to the concavity of f(x) = log(x) we have,

E
[
1

λ
logZ

]
≤ 1

λ
logE [Z] =

1

λ
logE[eλc(A,X)wθ(A,X)]

≤ E[c(A,X)wθ(A,X)] +
λ

2
E[c2(A,X)w2

θ(A,X)].

where the last inequality is proposed by Lemma B.8. Hence we have,

V(R̂λ
LSE(S, πθ)) = E

[
1

λ2
log2 Z

]
−
(
E
[
1

λ
logZ

])2

≤ E

[(∑n
i=1 ciwθ(ai, xi)

n

)2
]

−
(
E[c(A,X)wθ(A,X)] +

λ

2
E[c2(A,X)w2

θ(A,X)]

)2

.

given λ ≤ −2E[c(A,X)wθ(A,X)]
E[c2(A,X)w2

θ(A,X)]
. Simplifying the right-hand side we have,

V(R̂λ
LSE(S, πθ)) ≤

M

n
+

λ

2

(
−2Rθ −

λ

2
(M +R2

θ)

)
(M +R2

θ).

D.2 Proofs and details of generalization error bounds

Theorem 5.8 (restated). Given Assumptions 5.1 and 5.2, and assuming 0 < γ < 1, then with
probability at least 1− δ we have,

L(γ, n, λ,Rθ,M) ≤ genλ(πθ) ≤ U(γ, nu, λ,Rθ,M),

where nu = n for nu ≥ (2λ2M+ 4
3γ) log

1
δ

γ2 exp(2λRθ)
, and,

L(γ, n, λ,Rθ,M, δ) :=
−λ

2
(M +R2

θ)−
2

3

log 1
δ

nλ exp(λRθ)
−

√
2M log 1

δ

n exp(2λRθ)
,

U(γ, nu, λ,Rθ,M, δ) :=
2

3(1− γ)

log 1
δ

nuλ exp(λRθ)
+

1

1− γ

√
2M log 1

δ

nu exp(2λRθ)
.

(24)
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Proof. To ease the notation, we consider yθ(ai, xi) = c(ai, xi)wθ(ai, xi). Using Bernstein’s inequal-
ity we have

P

(
1

n

n∑
i=1

exp(λyθ(ai, xi))− E[exp(λYθ(A,X))] ≥ t

)
≤ exp

(
−

1
2nt

2

V(exp(λYθ(A,X))) + 1
3 t

)
,

So we have,

P

(
1

n

n∑
i=1

exp(λyθ(ai, xi))− E[exp(λYθ(A,X))] ≤ t

)
≥ 1−exp

(
−

1
2nt

2

V(exp(λYθ(A,X))) + 1
3 t

)
.

As the log function is an increasing function, we have,

R̂λ
LSE(S, πθ) ≤

1

λ
log
(
E[eλYθ(A,X)] + t

)
.

where recall that R̂λ
LSE(S, πθ) =

1
λ log

(
1
n

∑n
i=1 exp(λyθ(ai, xi))

)
. Therefore, we have with proba-

bility at least 1− exp
(
−

1
2nt

2

V(eλYθ(A,X))+ 1
3 t

)
,

R̂λ
LSE(S, πθ) ≤

1

λ
log
(
E[eλYθ(A,X)] + t

)
≤ 1

λ
log
(
E[eλYθ(A,X)]

)
+

t

λE[eλYθ(A,X)]

≤ E[Yθ(A,X)] +
λ

2
E[c2(A,X)w2

θ(A,X)] +
t

λE[eλYθ(A,X)]
.

Using Lemma B.5, we have with probability at least 1− δ,

R̂λ
LSE(S, πθ) ≤ E[Yθ(A,X)] +

λ

2
E[c2(A,X)w2

θ(A,X)] +

1
3 log 1

δ
n
2

+

√
V(eλYθ(A,X)) log 1

δ
n
2

λE[eλYθ(A,X)]

= E[Yθ(A,X)] +
λ

2
E[c2(A,X)w2

θ(A,X)]

+
2

3

log 1
δ

nλE[eλYθ(A,X)]
+

√
2V(eλYθ(A,X)) log 1

δ

nλ2E[eλYθ(A,X)]2
.

Similarly, we have,

R̂λ
LSE(S, πθ) ≥

1

λ
log
(
E[eλYθ(A,X)]− t

)
,

and,

R̂λ
LSE(S, πθ) ≥

1

λ
log
(
E[eλYθ(A,X)]− t

)
≥ 1

λ
log
(
E[eλYθ(A,X)]

)
− t

λ(E[eλYθ(A,X)]− t)

≥ E[Yθ(A,X)]− t

λ(E[eλYθ(A,X)]− t)
.

So for t ≤ γE[eλYθ(A,X)], with probability at least 1− δ,

R̂λ
LSE(S, πθ) ≥ E[Yθ(A,X)]− 2

3(1− γ)

log 1
δ

nλE[eλYθ(A,X)]
− 1

(1− γ)

√
2V(eλYθ(A,X)) log 1

δ

nλ2E[eλYθ(A,X)]2
.

We can replace V(eλYθ(A,X)) with λ2M according to Lemma 5.3 and Assumption 5.2, which gives
the proposed upper and lower bounds on the generalization.
In order for t to be less than γE[eλYθ(A,X)], according to the second part of Lemma B.5, it is sufficient
to have,

n ≥
(
2V(eλYθ(A,X)) + 4

3γE[e
λYθ(A,X)]

)
log 2

δ

γ2E[eλYθ(A,X)]2
.

The final result holds by using exp(λRθ) ≤ E[eλYθ(A,X)] ≤ 1 and V(eλYθ(A,X)) ≤ λ2M
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Proposition 5.10 (restated). Given Assumptions 5.1 and 5.2 and assuming n ≥

max

(
8 log 2

δ

3(M+R2
θ) exp(Rθ)

,
(8M+ 8

3 ) log
2
δ

exp(2Rθ)

)
and setting

λ =

√
8 log 2

δ

3n(M +R2
θ) exp(Rθ)

,

then with a probability of at least 1− δ (δ ∈ (0, 1)), the generalization error satisfies,∣∣genλ(πθ)
∣∣ ≤ 2

√
2(M +R2

θ) log
2
δ

n exp(Rθ)

(√
M

exp(Rθ)(M +R2
θ)

+
1√
3

)
.

Proof. n ≥ 8 log 2
δ

3(M+R2
θ) exp(Rθ)

, concludes that λ ≤ 1. Hence, n ≥ (8M+ 8
3 ) log

2
δ

exp(2Rθ)
≥ (8λ2M+ 8

3 ) log
2
δ

exp(2λRθ)

and using Theorem 5.8 with γ = 1
2 and applying union bound, we have with probability at least

1− δ, ∣∣genλ(πθ)
∣∣

≤ max

(
λ

2
(M +R2

θ) +
2

3

log 2
δ

nλ exp(λRθ)
+

1

exp(λRθ)

√
2V(eλwθ(A,X)c(A,X)) log 2

δ

nλ2

,
4

3

log 2
δ

nλµ(λ)
+

2

exp(λRθ)

√
2V(eλwθ(A,X)c(A,X)) log 2

δ

nλ2

)

≤ λ

2
(M +R2

θ) +
4

3

log 2
δ

nλ exp(λRθ)
+

2

exp(λRθ)

√
2V(eλwθ(A,X)c(A,X)) log 2

δ

nλ2
.

According to Lemma 5.3, we have

V(eλwθ(A,X)c(A,X)) ≤ λ2V(wθ(A,X)c(A,X)) ≤ λ2M.

Hence we have,∣∣genλ(πθ)
∣∣ ≤ λ

2
(M +R2

θ) +
4

3

log 2
δ

nλ exp(λRθ)
+

2

exp(λRθ)

√
2M log 2

δ

n
. (25)

Since λ ≤ 1 and exp(λRθ) ≥ exp(Rθ). Replacing λ in RHS of (25),

|LSEλ⋆(S, πθ)− E[wθ(A,X)c(A,X)]| ≤ 2

√
2

3

(M +R2
θ) log

2
δ

n exp(Rθ)
+

2

exp(Rθ)

√
2M log 2

δ

n

= 2

√
2(M +R2

θ) log
2
δ

n exp(Rθ)

(√
M

exp(Rθ)(M +R2
θ)

+
1√
3

)
.

with a probability of at least 1− δ.

E Proofs and details of αLSE

Proposition E.1. Suppose that for each action, the number of samples of that action in the LBF
dataset goes to infinity, (m[ã] → ∞,∀ã ∈ A). Then we have,

lim
m[ã]→∞,
∀ã∈A

D̂α,n = Dα.

Proof. Set Za =
πα
θ (a|X)

πα−1
0 (a|X)

and Z
(i)
a =

πα
θ (a|X=xi)

πα−1
0 (a|X=xi)

, where X ∼ PX , and a ∈ A is an arbitrary
action. According to the strong law of large numbers,

1

m[ã]

∑
(xi,ai,pi)

ai=a

pαi
πα−1
θ (a|xi)

=
1

m[ã]

m[ã]∑
i=1

Z(i)
a → E[Za] = EX

[
πα
0 (a|X)

πα−1
θ (a|X)

]
,
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with probability one. This statement is true for all a ∈ A. Therefore, for all actions it holds. Hence
with probability one,∑

a∈A

1

m[ã]

∑
(xi,ai,pi)

ai=a

pαi
πα−1
θ (a|xi)

∑
a∈A

1

m[ã]

m[ã]∑
i=1

Z(i)
a →

∑
a∈A

E[Za] =
∑
a∈A

EX

[
πα
0 (a|X)

πα−1
θ (a|X)

]
.

The proof is complete by the continuity of 1
α−1 log(x) function.

Proposition E.2 (Upper bound via α-Rényi Divergence for α ∈ (0, 1)). Given Assumption 6.1 and
assuming that the cost function has bounded range [−C, 0], then the following upper bound holds on
the second moment of the weighted cost function,

E[w2
θ(A,X)c2(A,X)] ≤ C2 +

√
2σ2

α
Dα(π0(A|X)⊗ PX∥πθ(A|X)⊗ PX).

Proof. Note that,

Eπ0⊗PX
[w2

θ(A,X)c2(A,X)] = Eπθ⊗PX
[wθ(A,X)c2(A,X)]. (26)

Using the sub-Gaussian assumption, for all λ ∈ R, we have,

log
(
Eπθ⊗PX

[exp(αλwθ(A,X)c2(A,X))]
)
≤ αλEπθ⊗PX

[wθ(A,X)c2(A,X))] +
λ2α2σ2

2
. (27)

Similarly, we have,

log
(
Eπ0⊗PX

[exp((α− 1)λwθ(A,X)c2(A,X))]
)

≤ −(1− α)λEπ0⊗PX
[wθ(A,X)c2(A,X))] +

λ2(1− α)2σ2

2
.

(28)

Combining (27), (28) with Lemma B.4 for α ∈ (0, 1), we have,

Dα(π0 ⊗ PX∥πθ ⊗ PX)

≥ α

α− 1
log
[
Eπ0⊗PX

[exp(λ(α− 1)wθ(A,X)c2(A,X))]
]

− log
[
Eπθ⊗PX

[exp(λαwθ(A,X)c2(A,X))]
]

≥ αλ
(
Eπ0⊗PX

[wθ(A,X)c2(A,X)]− Eπθ⊗PX
[wθ(A,X)c2(A,X)]

)
− λ2ασ2

2
,

(29)

Note that, we have a non-negative parabola in λ,

Dα(π0 ⊗ PX∥πθ ⊗ PX)− αλA+
λ2ασ2

2
≥ 0, (30)

where A =
(
Eπ0⊗PX

[wθ(A,X)c2(A,X)]− Eπθ⊗PX
[wθ(A,X)c2(A,X)]

)
and the parabola’s dis-

criminant has to be non-positive, and we have,∣∣∣Eπθ⊗PX
[wθ(A,X)c2(A,X)]− Eπ0⊗PX

[wθ(A,X)c2(A,X)]
∣∣∣ ≤√2σ2Dα(π0 ⊗ PX∥πθ ⊗ PX)

α
.

(31)
Therefore, we have,

Eπθ⊗PX
[wθ(A,X)c2(A,X)] ≤ Eπθ⊗PX

[c2(A,X)] +

√
2σ2Dα(π0 ⊗ PX∥πθ ⊗ PX)

α

≤ C2 +

√
2σ2Dα(π0 ⊗ PX∥πθ ⊗ PX)

α
.

(32)

We can also discuss the connection of sub-Gaussian assumption with uniform coverage assumption
[Wang et al., 2023, Gabbianelli et al., 2023].

The result in Proposition E.2 holds for α ∈ (0, 1). For α > 1, we provide the following proposition.
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Proposition E.3 (Upper bound via α-Rényi Divergence for α ≥ 1). Under the same Assumptions in
Proposition E.2, for α ≥ 1, we have,

E[w2
θ(A,X)c2(A,X)] ≤ C2 +

√
2σ2Dα(π0(A|X)⊗ PX∥πθ(A|X)⊗ PX).

Proof. The proof is similar to Proposition E.2 by replacing (28) with the following inequality, derived
by applying Jensen inequality,

log
(
Eπ0⊗PX

[exp((α− 1)λwθ(A,X)c2(A,X))]
)
≥ −(1− α)λEπ0⊗PX

[wθ(A,X)c2(A,X))].
(33)

Proposition 6.3 (restated). Given Assumption 6.1 and assuming that the cost function has bounded
range [−C, 0], then the generalization error of the LSE estimator satisfies,

Lα(γ, n, λ,Rθ, δ) ≤ genλ(πθ) ≤ Uα(γ, nu, λ,Rθ, δ),

where Uα = 1 + σ
√

2Dα

min (α,1) , Dα := Dα(π0(A|X) ⊗ PX∥πθ ⊗ PX), nu = n for nu ≥
(2λ2M+ 4

3γ) log
1
δ

γ2 exp(2λRθ)
, and,

Lα(γ, n, λ,Rθ, δ) := −λ

2
Uα − 2

3

log 2
δ

nλ exp (λRθ)
− 1

exp (λRθ)

√
2(Uα +R2

θ) log
2
δ

n
,

Uα(γ, nu, λ,Rθ, δ) :=
4

3

log 2
δ

nλ exp (λRθ)
+

2

exp (λRθ)

√
2(Uα +R2

θ) log
2
δ

n
.

(34)

Proof. The proofs follows directly from combining Proposition E.2 with Theorem 5.8.

Remark E.4 (Uniform Coverage Assumption). In the uniform coverage (overlap) assumption, it is
assumed that

sup
(a,x)∈A×X

πθ(a|x)
π0(a|x)

= Uc < ∞. (35)

In Proposition 6.3, we assume that the importance weighted of the squared cost function, i.e.,
wθ(A,X)c2(A,X), is σ-sub-Gaussian under PX ⊗ π0(A|X) and PX ⊗ πθ(A|X). Given the con-
straint of a bounded cost function, the uniform coverage assumption (35) implies σ = Uc

2 , leading
to the validity of the result in Proposition E.2. It’s important to highlight that the sub-Gaussian
assumption is a weaker assumption compared to the uniform coverage assumption.

E.1 Comparison with KL-regularized risk

For KL divergence KL(πθ(A|X)⊗PX∥π0(A|X)⊗PX), it is required that πθ(A|X)⊗PX would be
absolute continuous * with respect to π0(A|X)⊗PX . However, in α-Rényi divergence for α ∈ (0, 1),
it is required that πθ(A|X)⊗ PX would not be mutually singular* with respect to π0(A|X)⊗ PX .

Hence, the conditions imposed by α-Rényi divergence on the logging policy and the learning
policy are comparatively more weaker than those dictated by KL divergence. This distinction
can also be interpreted as an implicit exploration effect [Kocák et al., 2014, Strehl et al., 2010].
Consequently, in KL-regularized risks [Aminian et al., 2024, London and Sandler, 2019], the
assumptions regarding π0(A|X)⊗ PX and πθ(A|X)⊗ PX are more rigorous than those associated
with α-Rényi regularization.

*p(x) is absolutely continuous with respect to q(x), if p(A) = 0 whenever q(A) = 0, for measurable
A ⊂ X .

*p(x) is mutually singular with respect to q(x), if there is an measurable event A ⊂ X such that q(A) = 0
and p(X\A) = 0.
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F Regret bound

In this section, we provide an upper bound on the regret under LSE estimator.
Proposition F.1 (Regret Bound). Let θ∗ be the optimal parameter that minimizes the true risk,

πθ∗ = arg inf
πθ∈Πθ

R(πθ),

and θ̂ be the minimizer of the LSE estimator for a given dataset S,

πθ̂ = arg min
πθ∈ΠΘ

R̂λ
LSE(S, πθ).

Given the assumptions of Theorem 5.8, we have the following regret bound with a probability of at
least 1− δ,

0 ≤ R(πθ̂)−R(πθ∗) ≤ U− L,

where U and L are defined in (12).

Proof. We have,

R(πθ̂)−R(πθ∗) = R(πθ̂)− R̂λ
LSE(S, πθ̂)︸ ︷︷ ︸

≤U2δ

+R̂λ
LSE(S, πθ̂)− R̂λ

LSE(S, πθ∗)︸ ︷︷ ︸
≤0

+R̂λ
LSE(S, πθ∗)−R(πθ∗)︸ ︷︷ ︸

≤−L2δ

where U2δ = U(γ, nu, λ,Rθ,M, 2δ),L2δ = L(γ, nu, λ,Rθ,M, 2δ). The first and third bounds each
are true with a probability of at least 1 − δ, according to the proof of the 5.8 before applying the
final union bound. Also the second inequality is a.s. true because πθ̂ is the minimizer of R̂λ

LSE(S, πθ).
Putting together, using union bound, we have with a probability of at least 1− 2δ,

R(πθ̂)−R(πθ∗) ≤ U2δ − L2δ,

where replacing 2δ with δ proves the proposition.

Remark F.2. Setting λ = λ(n) = O( 1√
n
), the abovementioned proposition provides a regret bound

of O( 1√
n
).

G Noisy propensity scores

To model the noisy propensity scores, we consider π̂0(a|x) as the noisy version of the logging policy
π0(a|x). Similarly, we define R̂λ

LSE(Ŝ, πθ) for the LSER on the noisy data samples Ŝ, with noisy
propensity scores.
Definition G.1. The log-sum error of the noisy (or estimated) propensity score π̂0(a|x) is defined as

∆(π̂0, π0) =
1

λ
logE[exp(λŵθ(A,X)c(A,X))]− 1

λ
logE[exp(λwθ(A,X)c(A,X))]. (36)

where ŵθ(A,X) = πθ(A|X)
π̂0(A|X) .

Definition G.1 captures a notion of bias in the noise that is applied to the propensity score. It indicates
the change in the population form of the LSE estimator. Analogously, for the Monte Carlo estimator,
the change in the expected value shows the bias of the noise, and for additive noise, the zero-mean
assumption ensures that in expectation, the noisy value is the same as the original value. For the
LSE estimator instead, we require the exponential forms to be close to each other. It is also inspired
by influence function definition and robust statistic [Ronchetti and Huber, 2009, Christmann and
Steinwart, 2004].

Let us assume the following assumption for noisy propensity scores.
Assumption G.2 (Bounded true risk under noise). The learning policy πθ(A|X), cost
function c(A,X) and PX are such that the expected true risk under noise is bounded,
EPX⊗π0(A|X)[ŵθ(A,X)c(A,X)] ≤ Rθ̂.

In the following proposition, we study the robustness of the LSE estimator with respect to noisy
propensity scores.
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Proposition G.3. Given Assumption 5.1 and Assumption G.2, and assuming n >
4
3µmin+4

µ2
min

log 4
δ

where µmin = min
(
eλRθ , eλRθ̂

)
, then with probability at least 1− δ, it holds that,

∣∣R̂λ
LSE(Ŝ, πθ)− R̂λ

LSE(S, πθ)−∆(π̂0, π0)
∣∣ ≤ 2ϵ

λ

( 1

eλRθ̂
+

1

eλRθ

)
,

where, ϵ = log 4
δ

3n +

√
log 4

δ

n .

Proof. Set Yθ(A,X) = wθ(A,X)c(A,X), Ŷθ(A,X) = ŵθ(A,X)c(A,X), ui =
1
λ

(
eŷi − eλ∆(π̂0,π0)µ

)
and vi = 1

λ (e
yθ(ai,xi) − µ), where µ = E[eλYθ(A,X)]. We have −µ

λ ≤
vi ≤ 1

λ − µ
λ and − eλ∆(π̂0,π0)µ

λ ≤ ui ≤ 1
λ − eλ∆(π̂0,π0)µ

λ . Then, using the one-sided Bernstein’s
inequality (Lemma B.3), and changing variables (Lemma B.5), we have:

P

 1

n

n∑
i=1

eλyθ(ai,xi) − E[eλYθ(A,X)] >
(1− µ) log 1

δ

3n
+

√
V
(
eλYθ(A,X)

)
log 1

δ

n

 ≤ δ,

P

 1

n

n∑
i=1

eλyθ(ai,xi) − E[eλYθ(A,X)] < −
µ log 1

δ

3n
−

√
V
(
eλYθ(A,X)

)
log 1

δ

n

 ≤ δ,

P

 1

n

n∑
i=1

eλŷi − eλ∆(π̂0,π0)E[eλYθ(A,X)] >
(1− eλ∆(π̂0,π0)µ) log 1

δ

3n
+

√√√√V
(
eλŶθ(A,X)

)
log 1

δ

n

 ≤ δ,

P

 1

n

n∑
i=1

eλŷi − eλ∆(π̂0,π0)E[eλYθ(A,X)] < −
eλ∆(π̂0,π0)µ log 1

δ

3n
−

√√√√V
(
eλŶθ(A,X)

)
log 1

δ

n

 ≤ δ.

Therefore, with probability at least 1− 2δ, for ϵ2 < 1
2E[e

λYθ(A,X)], we have,

R̂λ
LSE(Ŝ, πθ)− R̂λ

LSE(S, πθ)

=
1

λ
log

( ∑n
i=1 e

λŷi∑n
i=1 e

λyθ(ai,xi)

)
≤ 1

λ
log

(
eλ∆(π̂0,π0)E[eλYθ(A,X)] + ϵ1

E[eλYθ(A,X)]− ϵ2

)
=

1

λ

(
log
(
eλ∆(π̂0,π0)E[eλYθ(A,X)] + ϵ1

)
− log

(
E[eλYθ(A,X)]− ϵ2

))
≤ 1

λ

(
log
(
eλ∆(π̂0,π0)E[eλYθ(A,X)]

)
+

ϵ1
eλ∆(π̂0,π0)E[eλYθ(A,X)]

−
(
log
(
E[eλYθ(A,X)]

)
− ϵ2

E[eλYθ(A,X)]− ϵ2

))

≤ ∆(π̂0, π0) +
1

λ

(
ϵ1

E[eλŶθ(A,X)]
+

2ϵ2
E[eλYθ(A,X)]

)

≤ ∆(π̂0, π0) +
2

λ

(
ϵ1

E[eλŶθ(A,X)]
+

ϵ2
E[eλYθ(A,X)]

)
.
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where

ϵ1 =
(1− E[eλŶθ(A,X)]) log 1

δ

3n
+

√√√√V
(
eλŶθ(A,X)

)
log 1

δ

n
,

ϵ2 =
E[eλYθ(A,X)] log 1

δ

3n
+

√
V
(
eλYθ(A,X)

)
log 1

δ

n
.

Similarly, with probability at least 1− 2δ we have, given ϵ3 < 1
2E[e

λŶθ(A,X)],

R̂λ
LSE(Ŝ, πθ)− R̂λ

LSE(S, πθ) ≥ ∆(π̂0, π0)−
2

λ

(
ϵ3

E[eλŶθ(A,X)]
+

ϵ4
E[eλYθ(A,X)]

)
,

where,

ϵ3 =
E[eλŶθ(A,X)] log 1

δ

3n
+

√√√√V
(
eλŶθ(A,X)

)
log 1

δ

n
,

ϵ4 =
(1− E[eλYθ(A,X))] log 1

δ

3n
+

√
V
(
eλYθ(A,X)

)
log 1

δ

n
.

Therefore, with probability at least 1− 4δ we have,

∆(π̂0, π0)−
2

λ

(
ϵ3

E[eλŶθ(A,X)]
+

ϵ4
E[eλYθ(A,X)]

)
≤ R̂λ

LSE(Ŝ, πθ)− R̂λ
LSE(S, πθ)

≤ ∆(π̂0, π0) +
2

λ

(
ϵ1

E[eλŶθ(A,X)]
+

ϵ2
E[eλYθ(A,X)]

)
.

We have for i ∈ [4],

ϵi ≤
log 1

δ

3n
+

√
log 1

δ

n
.

So, replacing δ with δ/4, we have with probability at least 1− δ,∣∣∣R̂λ
LSE(Ŝ, πθ)− R̂λ

LSE(S, πθ)−∆(π̂0, π0)
∣∣∣

≤ 2

λ

 log 4
δ

3n
+

√
log 4

δ

n

( 1

E[eλŶθ(A,X)]
+

1

E[eλYθ(A,X)]

)

≤ 2

λ

 log 4
δ

3n
+

√
log 4

δ

n

 2ϵ

λ

( 1

eλRθ̂
+

1

eλRθ

)
,

which is true given log 4
δ

3n +

√
log 4

δ

n < 1
2 min

(
E[eλYθ(A,X)],E[eλŶθ(A,X)]

)
. According to

Lemma B.6, this is satisfied when,

n >
4
3µmin + 4

µ2
min

log
4

δ
.

According to Proposition G.3, we can derive an upper bound on the range of LSER when the logging
policy is noisy, with probability 1− δ, δ ∈ (0, 1).

R̂λ
LSE(S, πθ) + ∆(π̂0, π0)−Bϵ ≤ R̂λ

LSE(Ŝ, πθ) ≤ R̂λ
LSE(S, πθ) + ∆(π̂0, π0) +Bϵ, (37)
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where ϵ = 2
λ

(
log 4

δ

3n +

√
log 4

δ

n

)
, and B = 1

E[eλŶθ(A,X)]
+ 1

E[eλYθ(A,X)]
. Hence, the range of change

of LSER is an interval of size 2Bϵ which is O( 1√
n
). Hence as the number of samples increases,

independent of the type and intensity of the noise, the variation of LSER goes to zero with a rate of
n−1/2. This can be interpreted as the robustness of LSER to noise.

As discussed in the following Corollary, the small range of variation of the noise gives an upper
bound on the variance of the noisy version of the LSER.
Corollary G.4. Under the same assumptions in Proposition G.3, then the following upper bound
holds on the variance of the LSE estimator under noisy propensity scores with probability at least
1− δ, δ ∈ (0, 1),

V(R̂λ
LSE(Ŝ, πθ)) ≤ 2V(R̂λ

LSE(S, πθ)) + 2B2ϵ2,

where ϵ = 2
λ

(
log 1

δ

3n +

√
log 1

δ

n

)
, and B =

(
1

e
λR

θ̂
+ 1

eλRθ

)
.

Proof. As ∆(π̂0, π0) is a constant with respect to R̂λ
LSE(Ŝ, πθ) and R̂λ

LSE(S, πθ), then we have,

V(R̂λ
LSE(Ŝ, πθ)− R̂λ

LSE(S, πθ)) ≤
(
2Bϵ

2

)2

= B2ϵ2.

Therefore,
V(R̂λ

LSE(Ŝ, πθ)) = V(R̂λ
LSE(Ŝ, πθ)− R̂λ

LSE(S, πθ) + R̂λ
LSE(S, πθ))

= V(R̂λ
LSE(Ŝ, πθ)− R̂λ

LSE(S, πθ)) + V(R̂λ
LSE(S, πθ))

+ 2Cov(R̂λ
LSE(Ŝ, πθ)− R̂λ

LSE(S, πθ), R̂
λ
LSE(S, πθ))

≤ V(R̂λ
LSE(Ŝ, πθ)− R̂λ

LSE(S, πθ)) + V(R̂λ
LSE(S, πθ))

+ 2

√
V(R̂λ

LSE(S, πθ))V(R̂λ
LSE(Ŝ, πθ)− R̂λ

LSE(S, πθ))

=

(√
V(R̂λ

LSE(S, πθ)) +

√
V(R̂λ

LSE(Ŝ, πθ)− R̂λ
LSE(S, πθ))

)2

≤
(√

V(R̂λ
LSE(S, πθ)) +Bϵ

)2

≤ 2V(R̂λ
LSE(S, πθ)) + 2B2ϵ2.

From Corollary G.4, we have an upper bound on the variance of the LSER under noisy propen-
sity scores, in terms of the variance of the LSER under clean propensity scores. Therefore, if
V(R̂λ

LSE(S, πθ)) is bounded, then we can expect bounded V(R̂λ
LSE(Ŝ, πθ)).

G.1 Robustness to outliers

In this section, we provide a lower bound on LSE under outlier samples, where the absolute value of
the importance-weighted cost is large.
Proposition G.5. Let p proportion of the importance-weighted costs be set to a large negative value
−C. Set the newly obtained dataset as Sp. Under Assumption 5.2 and Assumption 5.1, for any

t < exp(λRθ) with a probability at least 1− exp
(

−n(exp(λRθ)−t)2

M+ 1
3 (exp(λRθ)−t)

)
we have,

R̂λ
LSE(Sp)− R̂λ

LSE(S) ≥ − p

λ(1− p)t
.

Proof. Let Z ′ =
∑np

i=1 e
λyi,θ , Yθ(A,X) = c(A,X)wθ(A,X), and Z = 1

n(1−p)

∑n
i=np+1 e

λyi,θ ,
where yi,θ = c(ai, xi)wθ(ai, xi) .

R̂λ
LSE(Sp)− R̂λ

LSE(S) =
1

λ
log

(
np exp(−λC) + n(1− p)Z

Z ′ + n(1− p)Z

)
≥ 1

λ
log

(
np exp(−λC) + n(1− p)Z

np+ n(1− p)Z

)
.
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where the last inequality holds because Z ′ ≤ np. Using Bernstein’s inequality, for any t′ <
E[eλc(A,X)wθ(A,X)], if we set ϵ = E[eλc(A,X)wθ(A,X)] − t′, we have with probability at least 1 −
exp

(
−n

2 ϵ2

V+ 1
3 ϵ

)
,

Z − E[Z] ≥ −ϵ ↔ Z ≥ E[eλc(A,X)wθ(A,X)]− ϵ = t′.

where V = V(eλYθ(A,X)). Hence we have,

R̂λ
LSE(Sp)− R̂λ

LSE(S) ≥
1

λ
log

(
np exp(−λC) + n(1− p)Z

np+ n(1− p)Z

)
≥ 1

λ
log

(
np exp(−λC) + n(1− p)t′

np+ n(1− p)t′

)
≥ 1

λ
log

(
(1− p)t′

p+ (1− p)t′

)
= − 1

λ
log

(
p

(1− p)t′
+ 1

)
≥ − p

λ(1− p)t′
.

Now if t < exp(λRθ) ≤ E[eλc(A,X)wθ(A,X)], we have with probability at least 1 −
exp

(
−n(exp(λRθ)−t)2

M+ 1
3 (exp(λRθ)−t)

)
≤ 1− exp

(
−n(exp(λRθ)−t)2

V+ 1
3 (exp(λRθ)−t)

)
≤ 1− exp

(
−n(E[eλc(A,X)wθ(A,X)]−t)2

M+ 1
3 (E[e

λc(A,X)wθ(A,X)]−t)

)
,

R̂λ
LSE(Sp)− R̂λ

LSE(S) ≥ − p

λ(1− p)t
.

The Proposition G.5 provides a lower bound on the LSE estimator when some proportion of the data
is corrupted by being set to a large value. Although the LSE is not a bounded estimator, the provided
bound is independent of C, the scale of the corrupted value.

G.2 Gamma noise discussion

For statistical modeling of the noisy propensity scores, as discussed in [Zhang et al., 2023], suppose
that the logging policy is a softmax policy with respect to a.

π0(a|x) = softmax(fϕ∗(x, a)). (38)

Where fϕ is a function parameterized by ϕ that indicates the policy’s function output before softmax
operation and ϕ∗ is the parameter of this function for the true logging policy.

We have an estimation of the function fϕ∗(x, a), as fϕ̂(x, a) and we can model the error in the
estimation of fϕ∗(x, a) as a random variable Z.

fϕ̂(X,A) = fϕ∗(X,A) + Z(X,A).

Then we have,
π̂0 = softmax(fϕ∗ + Z) ∝ eZπ0.

One straightforward choice for the distribution of Z is normal distribution, which results in a log-
normal noise for propensity scores. Motivated by Halliwell [2018], we use a negative log-gamma
distribution for Z, which results in an inverse Gamma multiplicative noise on the propensity scores.
Negative log-gamma distribution is skewed towards negative values, resulting in inverse gamma
noise on the logging policy which is skewed towards values less than one. This pushes the propensity
scores πθ

π0
towards the higher variance, i.e., the logging policy is near zero and the importance weight

becomes large.

G.3 Robustness

To study our method for noise robustness, we define two different scenarios based on the definition in
G.2.
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G.3.1 Model-based propensity scores

First, we consider a model-based setting in which the noise is modeled with an inverse Gamma
distribution. We use inverse gamma distribution 1/U as a multiplicative noise, so we have,

π̂0 =
1

U
π0 → ŵθ(A,X) = Uwθ(A,X).

which results in a multiplicative gamma noise on the importance-weighted cost. We choose U ∼
Gamma(b, b), so E[U ] = 1. Hence, the expected value of the noisy version is the same as the original
noiseless variable.

E[Uwθ(A,X)c(A,X)] = E[U ]E[wθ(A,X)c(A,X)] = E[wθ(A,X)c(A,X)].

Note that we have

E
[
eλwθ(A,X)c(A,X)U

]
= E

[(
1

1− λwθ(A,X)c(A,X)/b

)b
]
,

Therefore, E[eλUwθ(A,X)c(A,X)] converges to E[eλwθ(A,X)c(A,X)] for b → ∞. Furthermore, we can
assume that for a large value b, ∆(π̂0, π0) ≈ 0 and using Proposition G.3, with a probability of at
least 1− δ, we have,∣∣∣R̂λ

LSE(Ŝ, πθ)− R̂λ
LSE(S, πθ)

∣∣∣ ≤ ϵ
( 1

E[eλŵθ(A,X)c(A,X)]
+

1

E[eλwθ(A,X)c(A,X)]

)
. (39)

Therefore, if the domain of the inverse Gamma noise is small enough, then the amount of change in
the LSE is small. In addition, we can arbitrarily decrease the deviation from the original noiseless
LSER by increasing the size of the LBF dataset.

G.3.2 Estimated propensity scores

We also consider another setting in which we empirically test the robustness of our estimator in a
more realistic and applicable setting. Suppose that the propensity scores are completely missing from
the dataset. In this situation, one trivial solution is to estimate the propensity as a function of state and
action. The estimated propensity score is then a noisy version of the true propensity score. Moreover,
complying with the setting mentioned in G.2, if we model the error Z of the estimated logit values as
an additive negative Log-Gamma distribution, we would have the same model as in the model-based
setting.

In order to estimate the propensity scores computed by the logging policy, we consider the same
model as the logging policy,

π̃(A|X) = softmax(fϕ̃(X,A)).

This model is trained to act similarly to the logging policy, hence it is trained with cross-entropy loss,
CE(., .), with respect to the actions that are logged in the datasets by the logging policy.

L(ϕ̃, S) =

n∑
i=1

CE(π̃(·|xi), ai).

where, CE(â, a) = − log (âa).

The intuition with such a training procedure becomes more clear with a simple example. Suppose
that we have a single state x0, and two different actions, a1, a2. Now suppose that the logging policy
selects actions with probabilities p, (1− p) respectively. Hence, p proportion of the dataset is created
with action a1. Hence the final objective for the propensity estimator would become,

L(ϕ̃, S) = −p log (π̃(·|x0)1)−(1−p) log (π̃(·|x0)2) = −(pf1+(1−p)f2)+log (exp(f1) + exp(f2))

where f1 = fϕ̃(s, a1), f2 = fϕ̃(s, a2). The abovementioned objective is minimized when,

ef1

ef1 + ef2
= p,

which means that the propensity estimator should give exactly the same scores as the logging policy.
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Table 5: Statistics of the datasets used in our experiments. For image datasets the 2048-dimensional
features from pretrained ResNet-50 are used.

DATA SET TRAINING SAMPLES TEST SAMPLES NUMBER OF ACTIONS DIMENSION

FMNIST 60, 000 10000 10 2048
EMNIST 60, 000 10000 10 2048
CIFAR-10 50, 000 10000 10 2048
LETTER 20, 000 − 26 16
OPEN BANDIT DATASET 12, 357, 200 - 80 27

H Experiment details

Datasets: In addition to two datasets EMNIST and CIFAR-10, we also run our estimator over
Fashion-MNIST (FMNIST) [Xiao et al., 2017], UCI Letter Recognition [Slate, 1991], and Open
Bandit Dataset [Saito et al., 2020b]. In CIFAR-10, EMNIST, and FMNIST datasets we have separate
validation and test sets. For Letter and Open Bandit Dataset (OPD) we split them into training,
validation, and test sets with a ratio of 0.8, 0.1, 0.1, respectively. The details of these datasets are
demonstrated in Table 5. More details on the OPD dataset is discussed in section J.

Setup details: We use mini-batch SGD as an optimizer for all experiments. The learning learning
used for EMNIST and FMNIST datasets is 0.001, for CIFAR-10 and OPD it is 0.01 and for Letter
it’s 1.0 with cosine annealing scheduler. Also, we use early stopping in our training phase and the
maximum number of epochs is 300. For the image datasets, EMNIST, FMNIST, and CIFAR-10, we
use the last layer features from ResNet-50 model pretrained on the ImageNet dataset [Deng et al.,
2009].

Imbalance LBF dataset details: As discussed in Section 7, we aim to create an imbalanced dataset
with m̂[i] samples for action i, for each 1 ≤ i ≤ k. Hence, we will (over-)sample each data
sample such that the expected number of samples of i-th action would be m̂[i]. To achieve this, let
p[i] = m̂[i]

m[i] = li + αi, li ∈ Z, αi ∈ [0, 1). We repeat each sample li times and with probability αi,
add another instance of the sample.

H.1 Hyper-parameter tuning

In order to find the value for each hyper-parameter, we put aside a part of the training dataset as a
validation set and find the parameter that results in the highest accuracy on the validation set, and
then we report the method’s performance on the test set.

There are two main hyper-parameters in our setup. First, λ in the LSE estimator, and second β as
regularization multiplier for α-Rényi regularizer. Note that, the parameter α for α-Rényi belongs to
(0, 1). Therefore, for simplifying the hyper-parameter tuning process, we set α = 1

1+λ , and the final
objective for regularized LSE estimator via α-Rényi divergence is,

R̂λ
LSE(S, πθ) + βD̂ 1

1+λ ,n. (40)

In order to tune λ we use grid search over the values in {0.01, 0.1, 1, 10, 100} and to tune β parameter,
we use Optuna, a hyper-parameter optimization Python-based library, over the range [0.01, 10] with 3
trials and 3 runs for each trial. The reason for using Optuna is to reduce the number of trials and find
reasonable values for hyper-parameters more efficiently.

Hyper-parameter tuning for PM, ES, IPS-KL, and IX estimators: For the PM, ES, and IX
estimators, grid search will be used for hyper-parameter tuning. To tune the PM parameter λ, we will
use λ ∈ {0, 0.1, 0.3, 0.5, 0.8} values. For the ES estimator, the parameter α will be varied across
α ∈ {0.1, 0.4, 0.7, 1}. For the IX estimator, the γ parameter will be tested with values in the set
γ ∈ {0.01, 0.1, 1, 10, 100}.

To tune the β parameter of the IPS-KL estimator (the regularization coefficient), we use Optuna over
the range [0.01, 5] with 6 trials and 3 runs for each trial.
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α-Rényi regularization parameter: For the α parameter in the α-Rényi regularization component,
we establish the α value as 1

1+λ . This approach ensures that α remains within the range 0 < α < 1,
making the regularization term Dα(P |Q) convex with respect to both P and Q.

As a result, if we set λ to 0, the α-LSE estimator will have the following modifications: the LSE
component of the estimator will transform into an IPS estimator, and the α-Rényi component will
convert to KL Divergence. Therefore, the IPS-KL estimator can be considered a special case of the
α-LSE estimator.

Approximation for λ value: Although we use grid search to tune the λ in our algorithm, inspired by
Proposition 5.10, we can select the following value,

λ∗ =
1

n1/2
, (41)

where n is the batch size. For example, we have tested λ∗ on EMNIST dataset with n ∈
{512, 256, 128, 64, 16} with corresponding values λ∗ ∈ {0.044, 0.0625, 0.088, 0.125, 0.25} which
its results are presented in the Table 6. We can observe that the suggested value of λ∗ = 1√

n
does

not only have a theoretical generalization bound of O( 1√
n
) (according to 5.10), but also achieves

reasonable performance in experiments. Hence, we can choose λ∗ to avoid the overhead of grid
search.

Table 6: Performance of λ∗ with n ∈ {16, 64, 128, 256, 512} on EMNIST dataset and τ = 1.
HH

HHHλ
n 16 64 128 256 512

0.01 92.83± 0.10 91.52± 0.01 90.26± 0.02 88.71± 0.26 85.43± 0.44
0.1 92.83± 0.01 91.45± 0.01 90.37± 0.02 88.93± 0.10 85.50± 0.58
1 92.66± 0.01 91.66± 0.02 90.76± 0.02 89.54± 0.01 87.79± 0.01

10 91.33± 0.01 89.48± 0.09 88.86± 0.05 88.03± 0.03 86.73± 0.03
λ∗ 92.78± 0.01 91.52± 0.05 90.38± 0.05 88.83± 0.02 85.09± 0.51

H.2 Code

The code for this study is written in Python. We use Pytorch for the training of our model. The
supplementary material includes a zip file named rl_without_reward.zip with the following files:

• preprocess_raw_dataset_from_model.py: The code to generate the base pre-processed
version of the datasets with raw input values.

• preprocess_feature_dataset_from_model.py: The code to generate the base pre-processed
version of the datasets with pre-trained features.

• The data folder consists of any potentially generated bandit dataset (which can be generated
by running the scripts in code).

• The code folder contains the scripts and codes written for the experiments.

– requirements.txt contains the Python libraries required to reproduce our results.
– readme.md includes the syntax of different commands in the code.
– accs: A folder containing the result reports of different experiments.
– saved_logs: Training log for different experiments.
– data.py code to load data for image datasets.
– eval.py & eval_rec2.py code to evaluate estimators for image datasets and open bandit

dataset.
– config: Contains different configuration files for different setups.
– runs: Folder containing different batch running scripts.
– loss.py: Script of our loss functions including LSE and α-LSE.
– train_logging_policy.py: Script to train the logging policy.
– create_bandit_dataset.py: Code for the generation of the bandit dataset using the

logging policy.
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– main_semi_ot.py: Main training code which implements different methods proposed
by our paper.

– main_semi_rec2.py: Main training code for Open Bandit dataset.
• The prepare_real_data folder contains the scripts and codes written for open bandit dataset.

– create.ipynb: The notebook for preparing open bandit dataset.
– data: A folder containing open bandit dataest data.

To use this code, the user needs to download and store the dataset using prepro-
cess_raw_dataset_from_model.py script. All downloaded data will be stored in data directory.
Then, to train the logging policy, the code/train_logging_policy.py should be run. Then, by using
code/create_bandit_dataset.py, the LBF dataset corresponding to the experiment setup, will be
created. Finally, to train the desired estimator, the user should use code/main_semi_ot.py script. To
prepare and utilize the Open Bandit dataset, users should follow the same procedure as outlined,
using scripts that have a ’rec2’ suffix.

Computational resources: We have taken all our experiments using 3 servers, one with a nvidia
1080 Ti and one with two nvidia GTX 4090, and one with three nvidia 2070-Super GPUs.

I Additional experiments

We present the results of our experiments for EMNIST and FMNIST in Table 7, for CIFAR-10 and
LETTER in Table 9, and for Open Bandit Dataset in Table 12.

I.1 Experiment discussion

As we can observe in the results for different scenarios and datasets, our estimator, equipped with
our proposed regularization, shows dominant performance among other baselines. The details of the
number of best-performing estimator is provided in Table 11.

In the noisy scenario, where noise robustness is critical, increasing the noise on the propensity scores
by reducing the b value results in a marked decrease in the performance of all estimators, with the
notable exception of α-LSE, which exhibits superior noise robustness.

One of the key advantages of the α-LSE estimator is its consistent performance across various
scenarios. Even in the rare instances where it does not outperform other methods, the performance
gap is minimal. In contrast, other estimators either maintain lower performance in most settings (e.g.,
PM and ES) or demonstrate significantly poor performance in specific settings and datasets (e.g.,
PM+SM).

In all four datasets, without noise, increasing τ has a negligible impact on the estimators. However, in
noisy scenarios, a higher τ leads to decreased performance. This happens because as τ increases, the
logging policy distribution approaches a uniform distribution, making it easier for noise to affect the
argmax value, thereby reducing the estimators’ performance. Notably, the α-LSE estimator demon-
strates better robustness compared to other estimators, consistently showing superior performance in
all noisy setups when b = 0.01. (Note that IPS-KL is a special case of α-LSE.)

Moreover, the impact of α-R’enyi regularization is clearly evident in the observed outcomes. For the
EMNIST, FMNIST, and Letter datasets, this regularization significantly enhances the overall accuracy
and generalization capabilities of the α-LSE estimator. In contrast, for the CIFAR-10 dataset, the
effectiveness of regularization is limited, primarily because the linear model has reached its maximum
capacity. As a result, regularization has a minimal effect on improving accuracy. However, it greatly
strengthens the α-LSE estimator’s resilience to noise in propensity score true values, showing a
marked improvement in noise robustness. This same observation holds true for scenarios with data
imbalance.
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Table 7: Comparison of different base algorithms LSE, PM, ES, IX accuracy for EMNIST and
FMNIST with different qualities of logging policy (τ ∈ {1, 2, 5, 10, 20}) and clean/ noisy propensity
scores with b ∈ {5, 0.01} and imbalance scenario (ν ∈ {3, 9, 20}). The best-performing result is
highlighted in bold text, while the second-best result is colored in red for each scenario.

Dataset τ b ν LSE PM ES IX Logging Policy

EMNIST

1

− − 88.49± 0.04 89.19± 0.03 88.61± 0.06 88.33± 0.13 88.08
5 − 89.16± 0.03 88.94± 0.05 88.48± 0.03 88.51± 0.23 88.08

0.01 − 86.07± 0.01 85.62± 0.10 85.71± 0.04 81.39± 4.02 88.08
− 3 87.83± 0.10 88.81± 0.11 63.64± 0.53 64.82± 7.29 88.08
− 9 88.01± 0.05 88.29± 0.10 56.09± 0.03 56.08± 0.02 88.08
− 20 88.00± 0.07 87.88± 0.07 56.26± 0.02 56.32± 0.01 88.08

2
− − 89.00± 0.01 88.75± 0.03 88.28± 0.11 88.20± 0.05 74.33
5 − 89.01± 0.03 88.82± 0.07 88.43± 0.20 88.50± 0.07 74.33

0.01 − 86.83± 0.06 83.60± 0.12 76.74± 3.52 73.73± 7.40 74.33

5
− − 88.70± 0.01 88.69± 0.05 88.60± 0.15 87.58± 0.24 39.16
5 − 88.63± 0.04 88.43± 0.03 90.51± 0.13 88.30± 0.07 39.16

0.01 − 84.08± 0.02 83.00± 0.06 83.09± 0.03 81.11± 3.17 39.16

10

− − 88.59± 0.03 88.61± 0.04 88.38± 0.08 87.43± 0.19 79.43
5 − 88.42± 0.07 88.43± 0.07 88.39± 0.10 88.39± 0.06 79.43

0.01 − 82.15± 0.21 80.85± 0.29 81.07± 0.07 77.49± 2.77 79.43
− 3 86.96± 0.01 87.30± 0.03 61.74± 0.07 58.76± 3.96 79.43
− 9 86.13± 0.04 85.84± 0.05 55.99± 0.04 57.08± 3.72 79.43
− 20 80.50± 2.47 83.36± 0.18 56.29± 0.08 56.25± 0.02 79.43

FMNIST

1

− − 76.38± 0.03 78.54± 0.01 72.90± 2.35 69.12± 0.26 78.38
5 − 73.20± 2.43 78.43± 0.03 70.38± 2.59 70.80± 2.38 78.38

0.01 − 74.08± 1.64 70.74± 0.16 57.93± 2.66 63.34± 3.64 78.38
− 3 76.52± 0.15 78.56± 0.09 64.89± 2.72 61.55± 0.96 78.38
− 9 76.73± 0.20 78.71± 0.07 51.23± 1.59 51.35± 1.35 78.38
− 20 76.71± 0.16 73.37± 3.92 45.27± 0.04 45.26± 0.01 78.38

2
− − 78.55± 0.17 78.40± 0.09 69.33± 2.40 70.62± 2.40 66.94
5 − 77.97± 0.09 78.20± 0.04 70.49± 2.43 69.25± 0.11 66.94

0.01 − 73.17± 1.93 69.26± 0.28 60.87± 2.48 60.18± 3.52 66.94

5
− − 77.32± 0.03 77.40± 0.06 69.19± 0.32 69.08± 0.15 37.76
5 − 77.16± 0.09 77.29± 0.04 69.54± 3.70 68.80± 0.46 37.76

0.01 − 71.22± 0.07 65.83± 0.09 56.49± 2.08 54.76± 7.66 37.76

10

− − 76.14± 0.11 76.80± 0.27 69.25± 0.10 70.69± 2.39 21.43
5 − 75.42± 0.16 76.73± 0.06 71.42± 2.53 69.21± 0.25 21.43

0.01 − 74.04± 0.15 65.90± 0.14 53.69± 1.37 63.57± 3.91 21.43
− 3 76.83± 0.14 77.56± 0.03 58.93± 4.80 61.16± 5.11 21.43
− 9 76.35± 0.04 76.06± 0.11 49.22± 4.22 50.12± 0.02 21.43
− 20 70.86± 2.13 73.82± 0.07 44.90± 0.20 42.70± 0.04 21.43
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Table 8: Comparison of regularized algorithms α-LSE, PM + SM, and IPS-KL accuracy for EMNIST
and FMNIST with different qualities of logging policy τ ∈ {1, 2, 5, 10, 20} and clean/ noisy propen-
sity scores with b ∈ {5, 0.01} and imbalance scenario (ν ∈ {3, 9, 20}). The best-performing result is
highlighted in bold text, while the second-best result is colored in red for each scenario.

Dataset τ b ν α-LSE PM + SM IPS-KL Logging Policy

EMNIST

1

− − 91.72± 0.03 89.38± 0.02 90.42± 0.11 88.08
5 − 91.31± 0.01 88.83± 0.11 90.78± 0.08 88.08

0.01 − 91.39± 0.01 74.64± 3.67 91.65± 0.01 88.08
− 3 91.20± 0.03 89.20± 0.02 91.07± 0.06 88.08
− 9 91.80± 0.02 88.93± 0.04 90.44± 0.06 88.08
− 20 91.87± 0.01 88.61± 0.05 87.49± 0.11 88.08

2
− − 90.76± 0.03 89.16± 0.05 90.90± 0.04 74.33
5 − 91.43± 0.04 88.89± 0.07 90.94± 0.10 74.33

0.01 − 91.13± 0.02 66.75± 3.20 90.80± 0.01 74.33

5
− − 91.47± 0.02 89.51± 0.04 90.04± 0.06 39.16
5 − 91.13± 0.11 90.25± 0.06 90.51± 0.13 39.16

0.01 − 91.05± 0.02 83.40± 0.06 89.08± 0.04 39.16

10

− − 91.02± 0.03 89.77± 0.01 89.90± 0.11 79.43
5 − 90.20± 0.09 89.23± 0.03 89.91± 0.07 79.43

0.01 − 89.68± 0.07 75.38± 0.42 86.62± 0.13 79.43
− 3 89.66± 0.04 89.98± 0.07 84.84± 0.10 79.43
− 9 89.15± 0.03 88.73± 0.04 85.00± 0.04 79.43
− 20 89.12± 0.08 88.18± 0.04 80.74± 0.06 79.43

FMNIST

1

− − 81.05± 0.01 78.69± 0.11 81.31± 0.13 78.38
5 − 82.05± 0.04 49.64± 3.16 80.49± 0.05 78.38

0.01 − 81.89± 0.05 10.00± 0.01 82.26± 0.02 78.38
− 3 81.74± 0.13 78.79± 0.05 79.97± 0.09 78.38
− 9 81.99± 0.04 78.91± 0.04 79.91± 0.18 78.38
− 20 82.16± 0.02 77.46± 0.06 79.62± 0.16 78.38

2
− − 80.85± 0.04 78.61± 0.09 80.17± 0.11 66.94
5 − 81.79± 0.02 75.23± 4.10 80.37± 0.04 66.94

0.01 − 79.85± 0.07 59.13± 4.16 81.54± 0.01 66.94

5
− − 81.56± 0.03 78.57± 0.14 80.41± 0.16 37.76
5 − 82.12± 0.10 79.98± 0.06 81.02± 0.07 37.76

0.01 − 82.14± 0.05 33.42± 3.84 78.12± 2.54 37.76

10

− − 81.63± 0.06 79.73± 0.17 79.81± 0.10 21.43
5 − 81.64± 0.10 80.04± 0.12 80.10± 0.07 21.43

0.01 − 81.02± 0.04 73.10± 1.94 77.92± 0.08 21.43
− 3 80.93± 0.01 80.18± 0.07 78.66± 0.16 21.43
− 9 80.77± 0.03 78.34± 0.12 77.43± 0.06 21.43
− 20 80.14± 0.05 81.18± 0.08 76.12± 0.02 21.43
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Table 9: Comparison of different base algorithms LSE, PM, ES, and IX accuracy for CIFAR-10,
and Letter with different qualities of logging policy τ ∈ {1, 2, 5, 10, 20} and clean/ noisy propensity
scores with b ∈ {5, 0.01} and imbalance scenarios (ν ∈ {3, 9, 20}). The best-performing result is
highlighted in bold text, while the second-best result is colored in red for each scenario.

Dataset τ b ν LSE PM ES IX Logging Policy

CIFAR-10

1

− − 65.02± 0.03 65.13± 0.10 64.03± 1.38 64.58± 0.26 64.42
5 − 65.28± 0.12 65.39± 0.08 64.61± 0.15 64.61± 0.21 64.42

0.01 − 59.11± 0.07 59.79± 0.11 63.24± 0.11 57.11± 2.09 64.42
− 3 63.74± 0.07 64.56± 0.08 44.54± 0.01 44.47± 0.11 64.42
− 9 64.14± 0.05 64.62± 0.07 49.56± 0.05 49.28± 0.02 64.42
− 20 64.28± 0.20 64.71± 0.12 46.15± 0.04 46.15± 0.01 64.42

2
− − 65.42± 0.14 65.60± 0.16 64.63± 0.13 64.31± 0.25 59.95
5 − 65.44± 0.06 65.26± 0.02 64.87± 0.02 63.93± 0.21 59.95

0.01 − 58.96± 0.18 59.30± 0.04 60.05± 0.02 58.63± 0.08 59.95

5
− − 64.99± 0.08 64.93± 0.10 64.04± 0.43 63.32± 0.09 42.61
5 − 65.22± 0.08 65.19± 0.34 63.73± 0.33 63.45± 0.05 42.61

0.01 − 57.29± 0.32 57.72± 0.13 59.20± 0.26 56.18± 0.19 42.61

10

− − 64.18± 0.05 64.14± 0.08 63.04± 0.08 61.54± 1.14 27.12
5 − 63.98± 0.24 63.98± 0.13 61.07± 1.42 62.85± 0.15 27.12

0.01 − 53.83± 0.13 54.67± 0.04 58.11± 0.04 53.31± 0.14 27.12
− 3 61.97± 0.13 62.12± 0.05 43.37± 0.02 43.43± 0.04 27.12
− 9 62.12± 0.18 61.83± 0.06 40.12± 1.67 44.24± 3.79 27.12
− 20 62.75± 0.06 62.76± 0.12 45.39± 0.06 45.44± 0.15 27.12

Letter

1
− − 42.67± 0.01 43.65± 0.03 29.97± 1.56 34.21± 4.53 41.46
5 − 32.85± 0.21 32.98± 0.04 28.46± 3.02 26.23± 5.68 41.46

0.01 − 31.88± 0.04 32.08± 0.02 28.83± 6.98 33.41± 0.51 41.96
− 3 42.49± 0.04 43.18± 0.22 10.59± 2.56 17.37± 2.95 41.46
− 9 42.99± 0.05 43.81± 0.01 23.11± 1.51 25.64± 4.31 41.46
− 20 43.11± 0.07 44.33± 0.01 34.31± 2.53 29.20± 1.47 41.46

2
− − 42.29± 0.08 43.53± 0.01 31.22± 4.60 29.06± 2.91 34.64
5 − 33.11± 0.02 33.22± 0.02 33.55± 0.41 33.63± 0.52 34.64

0.01 − 32.36± 0.02 31.60± 3.55 26.76± 5.42 18.73± 6.19 34.64

5
− − 43.64± 0.01 46.60± 0.04 30.24± 0.08 31.09± 0.14 15.07
5 − 38.01± 0.84 37.16± 0.02 32.81± 1.68 32.10± 3.22 15.07

0.01 − 23.56± 0.02 26.45± 0.26 13.45± 5.64 12.03± 10.04 15.07

10

− − 49.22± 1.81 57.98± 0.12 31.63± 4.90 33.61± 2.83 7.91
5 − 36.36± 0.20 48.10± 0.10 34.11± 0.23 29.46± 3.48 7.91

0.01 − 17.55± 4.27 23.55± 0.14 20.28± 0.14 16.78± 4.56 7.91
− 3 46.96± 0.01 53.36± 0.01 15.74± 1.26 21.59± 0.48 7.91
− 9 47.05± 0.03 57.22± 1.40 27.83± 3.07 26.98± 1.98 7.91
− 20 47.99± 0.03 58.55± 0.01 32.03± 1.67 31.95± 1.29 7.91
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Table 10: Comparison of different regularized algorithms α-LSE, PM + SM, IPS-KL for CIFAR-10,
and Letter with different qualities of logging policy τ ∈ {1, 2, 5, 10, 20} and clean/ noisy propensity
scores with b ∈ {5, 0.01} and imbalance scenarios (ν ∈ {3, 9, 20}). The best-performing result is
highlighted in bold text, while the second-best result is colored in red for each scenario.

Dataset τ b ν α-LSE PM + SM IPS-KL Logging Policy

CIFAR-10

1

− − 65.38± 0.05 64.47± 0.17 60.00± 0.18 64.42
5 − 65.41± 0.05 62.17± 4.31 64.70± 0.04 64.42

0.01 − 65.24± 0.01 59.20± 0.18 64.43± 0.05 64.42
− 3 65.15± 0.20 64.63± 0.14 58.10± 5.40 64.42
− 9 65.22± 0.09 64.76± 0.09 58.73± 0.14 64.42
− 20 65.30± 0.01 64.78± 0.16 60.89± 2.85 64.42

2
− − 65.64± 0.10 65.60± 0.16 64.25± 0.42 59.95
5 − 65.37± 0.03 65.10± 0.24 64.20± 0.18 59.95

0.01 − 65.34± 0.04 58.08± 1.51 64.20± 0.18 59.95

5
− − 64.89± 0.13 65.23± 0.03 63.57± 0.25 42.61
5 − 65.24± 0.10 65.34± 0.07 63.23± 0.43 42.61

0.01 − 63.90± 0.13 45.20± 6.86 61.16± 0.02 42.61

10

− − 64.28± 0.09 65.21± 0.06 63.37± 0.10 27.12
5 − 63.77± 0.17 64.01± 0.10 61.90± 0.11 27.12

0.01 − 62.53± 0.03 54.29± 0.12 55.69± 2.19 27.12
− 3 62.33± 0.09 63.49± 0.33 57.04± 0.16 27.12
− 9 62.46± 0.02 62.59± 0.22 56.79± 0.13 27.12
− 20 62.95± 0.06 63.98± 0.08 58.50± 0.41 27.12

Letter

1

− − 44.15± 0.01 33.41± 3.16 40.79± 0.56 41.46
5 − 33.40± 0.01 11.04± 10.74 32.03± 0.14 41.46

0.01 − 33.45± 0.02 32.00± 0.21 30.68± 2.81 41.96
− 3 43.81± 0.01 29.11± 11.31 37.94± 0.76 41.46
− 9 44.16± 0.01 44.04± 0.01 43.05± 0.05 41.46
− 20 44.60± 0.08 42.66± 1.60 41.38± 0.18 41.46

2
− − 43.85± 0.02 43.53± 0.01 41.04± 0.22 34.64
5 − 38.51± 0.10 32.25± 0.17 32.16± 1.07 34.64

0.01 − 33.36± 0.02 13.56± 0.41 28.90± 3.28 34.64

5
− − 50.76± 0.06 43.79± 0.01 57.60± 1.42 15.07
5 − 45.41± 0.29 37.23± 2.06 60.05± 0.10 15.07

0.01 − 33.63± 0.06 7.58± 0.04 26.11± 5.79 15.07

10

− − 61.76± 0.07 57.18± 0.16 67.28± 0.09 7.91
5 − 52.41± 0.67 32.53± 0.02 60.83± 4.72 7.91

0.01 − 38.15± 0.01 7.61± 0.15 13.66± 0.37 7.91
− 3 60.51± 0.06 53.62± 0.03 61.85± 0.13 7.91
− 9 59.11± 0.01 53.77± 1.42 67.63± 0.02 7.91
− 20 62.85± 0.01 57.58± 0.72 34.15± 2.75 7.91

Table 11: Comparison of different algorithms in terms of the number of best performance over all
clean (normal), noisy and imbalance experiment setups.

Estimator Clean (Normal) Noisy Imbalance Total

α-LSE 10 25 17 52

IPS-KL 4 5 2 11

PM+SM 2 1 5 8

LSE 0 1 0 1
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J Real-world dataset

We applied our method to the Open Bandit Dataset, a public real-world logged bandit dataset, which
is provided by a Japanese e-commerce company, ZOZO, Inc( [Saito et al., 2020a]). The logging
policy, provided by the company, suggests items to users in their e-commerce platform and each user
can click on each of the suggested items. If an item is clicked, a cost equal to −1 and otherwise a
cost of 0 is assigned. Hence, the context is the user features and actions(arms) are the items and the
cost (reward) for this pair of context and action is defined as stated. The propensity score is also
reported in the dataset. In order to have logging policy with different performances, for p = 0.4, 0.6
we sample zero-cost samples such that the number of samples with the cost of −1 is 40% and 60%
of the dataset, respectively. This way we would have LBF datasets of sizes 153, 019 and 102, 013
respectively, both with 61208 samples with −1 cost.

For the evaluation metric, as Open Bandit Dataset is a recommendation system dataset and multiple
actions for each context can lead to 0 cost, accuracy is not a suitable evaluation metric. We use IPS
[Swaminathan and Joachims, 2015b] as our main evaluation metric. We also report SNIPS, which is
a biased, but low variance estimation of the expected cost over the distribution induced by learning
policy. Hence it shows the average cost of each method. Lower values of IPS and SNIPS indicate
better performance. The comparison of different methods is presented in Table 12.

Table 12: Comparison of different algorithms LSE, α-LSE, PM, PM+SM, ES, and IPS with different
performances of logging policy. The best-performing result is highlighted in bold text, while the
second-best result is colored in red for each scenario.

Dataset Logging Policy Metric α-LSE LSE PM+SM PM ES IPS

Open Bandit Dataset
40%

IPS −0.99± 0.01 −0.82± 0.03 −0.60± 0.34 −0.81± 0.02 −0.69± 0.01 −0.69± 0.01
SNIPS −0.73± 0.00 −0.68± 0.02 −0.65± 0.05 −0.67± 0.10 −0.65± 0.05 −0.65± 0.05

60%
IPS −0.70± 0.03 −0.55± 0.00 −0.41± 0.00 −0.52± 0.02 −0.51± 0.03 −0.36± 0.07

SNIPS −0.52± 0.01 −0.49± 0.00 −0.42± 0.00 −0.47± 0.01 −0.43± 0.03 −0.37± 0.06

As we observe, in both settings and according to both metrics α-LSE significantly performs better than
other methods. Also, we see that the second best estimator is LSE estimator without regularization.
Hence, not only LSE outperforms other methods, but adding α-Rényi regularization has a significant
effect on its performance.

K Synthetic experiment

The synthetic experiments results for Bias, variance and MSE of LSE, ES, PM, and IPS are shown
in Table 13. Here we also report the bias and variance of each estimator in each setting. As we can
observe LSE effectively keeps the variance low without significant side-effects on bias, making it a
viable choice with general unbounded cost functions. Note that even in the case when the learning
policy is perfectly fitted to the logging policy (i.e. when µ = 2), because of the unboundedness of
the cost (reward) function, estimation of the average cost is not easy, leading to very high variances
in other methods, while LSE can control the variance in this case. We also observe that even with
significant data (n = 10, 000), the unbiased IPS estimator still doesn’t outperform LSE, and its
performance decays as µ increases. This phenomenon also holds for other methods compared to LSE.
In order to find the parameter for each method, we use grid search and find the parameter that archives
the highest MSE.

L Limitation

In our theoretical results (Section 5), we assumed that the expected value and variance of the weighted
cost function are bounded. Although these assumptions are weaker compared to previous assumptions
in the literature, they cannot be applied to heavy-tailed costs where the variance is unbounded. As
future work, we plan to provide new theoretical results which hold under heavy-tailed weighted cost
functions assumption.
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Table 13: Bias, variance and MSE of LSE, ES, PM, and IPS estimators. We run the experiment 1000
times and find the variance, bias, and MSE of the estimations.

µ1 Metric Estimator n = 10 n = 100 n = 1000 n = 10000

1.0

Bias

IPS 0.031 −0.002 −0.000 0.001
ES 0.220 0.202 0.203 0.204
PM 0.063 0.029 0.038 0.038
LSE 0.118 0.107 0.021 0.003

Variance

IPS 0.300 0.059 0.007 0.001
ES 0.101 0.015 0.002 0.000
PM 0.187 0.051 0.005 0.000
LSE 0.105 0.011 0.003 0.000

MSE

IPS 0.301 0.059 0.007 0.001
ES 0.150 0.056 0.043 0.042
PM 0.191 0.052 0.006 0.002
LSE 0.119 0.023 0.003 0.001

1.5

Bias

IPS 0.095 −0.024 0.025 0.006
ES 1.237 0.514 0.556 0.544
PM −0.050 −0.180 −0.126 −0.147
LSE 0.988 0.321 0.117 0.100

Variance

IPS 10.193 2.440 0.353 0.049
ES 0.672 0.592 0.066 0.008
PM 12.147 2.927 0.425 0.059
LSE 0.540 0.306 0.098 0.010

MSE

IPS 10.202 2.440 0.354 0.049
ES 2.202 0.857 0.375 0.304
PM 12.149 2.960 0.441 0.081
LSE 1.516 0.408 0.111 0.020

2.0

Bias

IPS 1.624 0.645 −0.487 −0.037
ES 4.835 4.748 2.132 2.280
PM 1.624 0.645 −0.487 −0.037
LSE 3.726 1.941 1.759 0.650

Variance

IPS 169.123 95.072 121.897 5.123
ES 10.885 1.647 12.036 0.595
PM 169.123 95.072 121.897 5.123
LSE 14.413 8.828 1.099 0.491

MSE

IPS 171.761 95.488 122.134 5.124
ES 34.261 24.194 16.584 5.794
PM 171.761 95.488 122.134 5.124
LSE 28.298 12.594 4.192 0.914

2.5

Bias

IPS 4.173 3.423 −0.842 −0.654
ES 23.746 20.450 20.197 11.039
PM 20.555 20.699 18.753 13.605
LSE 22.093 16.231 9.842 9.934

Variance

IPS 11540.778 6809.889 6644.712 2814.923
ES 43.215 50.898 9.144 165.695
PM 535.469 169.391 128.223 139.309
LSE 37.125 35.887 36.814 3.100

MSE

IPS 11558.191 6821.605 6645.421 2815.350
ES 607.074 469.117 417.063 287.543
PM 957.980 597.851 479.882 324.417
LSE 525.231 299.346 133.688 101.787
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