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ABSTRACT

Existing reconstruction-based novel view synthesis methods for driving scenes
focus on synthesizing camera views along the recorded trajectory of the ego ve-
hicle. Their image rendering performance will severely degrade on viewpoints
falling out of the recorded trajectory, where camera rays are untrained. We pro-
pose FreeVS, a novel fully generative approach that can synthesize camera views
on free new trajectories in real driving scenes. To control the generation results
to be 3D consistent with the real scenes and accurate in viewpoint pose, we pro-
pose the pseudo-image representation of view priors to control the generation pro-
cess. Viewpoint transformation simulation is applied on pseudo-images to simu-
late camera movement in each direction. Once trained, FreeVS can be applied
to any validation sequences without reconstruction process and synthesis views
on novel trajectories. Moreover, we propose two new challenging benchmarks
tailored to driving scenes, which are novel camera synthesis and novel trajectory
synthesis, emphasizing the freedom of viewpoints. Given that no ground truth
images are available on novel trajectories, we also propose to evaluate the con-
sistency of images synthesized on novel trajectories with 3D perception models.
Experiments on the Waymo Open Dataset show that FreeVS has a strong image
synthesis performance on both the recorded trajectories and novel trajectories.
The code will be released.
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Figure 1: Synthesis results comparison on the Waymo Open Dataset(Sun et al., 2020). We show
the camera views synthesized by NVS methods on the original front view (first row), viewpoint 1.0
m to the right (second row), and viewpoint 1.0 m above (third tow). Our method significantly
outperforms previous NVS methods on viewpoint outside the existing ego trajectory.

1 INTRODUCTION

Scene reconstruction and novel view synthesis (NVS) have gained special attention in embodied AI
due to their potential to develop closed-loop simulations for embodied systems. Recent advances
have led to remarkable improvements in the reconstruction quality of general scenes using multi-
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pass and multi-view recordings. However, reconstructing driving scenes presents distinct challenges
due to the sparse observations inherent in their less controlled, real-world recording conditions.

Unlike general scene reconstruction settings, which typically leverage excessive views surrounding
the scene, driving scene reconstruction generally only has access to image views along the single-
pass ego driving trajectory. This limitation raises an important question: How well does driving
scene reconstruction perform for novel viewpoints outside the recorded trajectory?

Currently, existing driving scene NVS works(Guo et al., 2023; Wu et al., 2023c; Xie et al., 2023;
Turki et al., 2023; Yang et al., 2023a; Zhou et al., 2024b; Chen et al., 2023; Yan et al., 2024) only
evaluate their image rendering quality along the recorded trajectory, leaving this question largely
unanswered. As shown in Fig. 1, the quality of rendering results of existing representative NVS
methods degrades drastically when the rendering camera moves away from its recording trajectory.
This is because, in driving scenes, recorded camera viewpoints are sparse in 3D space and homoge-
neous in their positions along the recorded trajectories. The sparsity and homogeneity of recorded
camera views cause the camera rays shooting from the camera centers on novel trajectories largely
untrained.

We propose FreeVS to address this issue, which is a fully generative NVS method that can syn-
thesize high-quality camera views inside and beyond the recorded driving trajectory. We face two
core challenges when building the FreeVS . The first challenge is accurately controlling the camera
poses while maintaining the 3D geometry consistency of the generated views. Although previous
diffusion-based methods(Wang et al., 2023a; Lu et al., 2023b; Hu et al., 2023; Wang et al., 2024b;
Yang et al., 2024a) are capable of controlling the camera motion in a coarse trajectory, their control
precision is far from enough for safety-critical simulation purposes. The second challenge is the
ground truth images in the novel trajectories are unavailable, making it difficult to directly train a
model to synthesize novel views beyond recorded trajectories.

To tackle the two challenges, the proposed FreeVS leverages pseudo-image representation, a sparse
yet accurate representation of 3D scenes obtained through colored 3D points projection. Specifically,
for each existing view, we create its pseudo-image counterpart by projecting colored point clouds
into this view. Here the colored points can be easily obtained by projecting point clouds to any valid
images. In this way, we obtain training data pairs to train a generative model that can generate a real
image from its pseudo-image counterpart. Since we create the pseudo images using ground truth
camera models, they contain sparse but highly accurate appearance and geometry, sidestepping the
tough challenge of accurately controlling the camera poses. At inference time, we could create a
pseudo-image for a novel viewpoint beyond the recorded trajectory and then synthesize the novel
view using the trained generative model. This design greatly narrowed the gap between synthesizing
views inside and beyond the recorded trajectory.

To reveal the practicality of FreeVS, we propose two challenging benchmarks for evaluating the
performance of NVS methods in driving scenes, which is more practically meaningful than the
conventional evaluation on the recorded trajectories. (i) On the recorded trajectories, we propose the
novel camera synthesis benchmark. Instead of evaluating synthesis results on test frames sampled
at intervals from video sequences (i.e. novel frame synthesis), we propose to drop all images of a
certain camera view (e.g. the front-side view) in the whole trajectory and synthesize the images of
the dropped camera view. (ii) We further propose the novel trajectory synthesis benchmark. With no
ground truth images available on novel trajectories, we propose to evaluate the geometry consistency
of synthesized views through the performance of off-the-shelf 3D detectors. The experiments on the
Waymo Open Dataset (WOD) demonstrate that FreeVS outperforms previous NVS methods by a
large margin in the two more practical benchmarks as well as in the traditional novel frame synthesis
benchmark.

Our contributions are summarized as follows:

1. We propose FreeVS, a fully generative view synthesis method for driving scenes that gen-
erate high-quality 3D-coherent novel views both for recorded and novel trajectories without
time-cost reconstruction.

2. We devise two new benchmarks for evaluating driving NVS methods on novel trajectories
beyond recorded ones.
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3. Experiments on WOD show that FreeVS achieves leading performance on synthesizing
camera views inside and beyond the recorded trajectory.

2 RELATED WORK

2.1 NOVEL VIEW SYNTHESIS THROUGH RECONSTRUCTION

Recently, rapid progress has been achieved in novel view synthesis through 3D reconstruction and
radiance field rendering. Neural Radiance Fields (NeRF) (Mildenhall et al., 2020) utilizes multi-
layer perceptrons to represent continuous volumetric scenes and achieve a breakthrough in rendering
quality. Many works have extended NeRF to unbounded, dynamic urban scenes (Tancik et al., 2022;
Barron et al., 2022; Ost et al., 2022; Rematas et al., 2022; Turki et al., 2022; Lu et al., 2023a; Guo
et al., 2023; Liu et al., 2023a; Wu et al., 2023c; Xie et al., 2023; Turki et al., 2023; Yang et al., 2023b;
Wang et al., 2023b; Ost et al., 2021; Tonderski et al., 2024). Authors of MapNeRF (Wu et al., 2023a)
noticed the problem of NeRF in generating extrapolated views and proposed incorporating map
priors to guide the training of radiance fields. 3D Gaussian Splatting (Kerbl et al., 2023) (3D GS)
models scenes with numerous 3D Gaussians. Recently, some researchers have extended 3D GS to
dynamic scenes (Luiten et al., 2024; Wu et al., 2023b; Yang et al., 2023d;c) and driving scenes (Zhou
et al., 2024b; Chen et al., 2023; Yan et al., 2024). HUGS (Zhou et al., 2024a) further jointly model
the geometry, appearance, motion, and semantics in 3D scenes for better scene understanding.

Another line of work in NVS through reconstruction focuses on fast scene reconstruction or gener-
alizable feed-froward reconstruction(Flynn et al., 2019; Chen et al., 2021; Liu et al., 2022a; Johari
et al., 2022; Lin et al., 2022; Varma et al., 2022; Xu et al., 2024; Chen et al., 2025a; Charatan
et al., 2024; Wang et al., 2024a; Ren et al., 2024b;a; Zhang et al., 2025; Liu et al., 2025), which
are primarily applied to object-centric or small scenes with a few source observations. Recently,
SCube(Ren et al., 2024c) and DrivingRecon(Anonymous, 2024) achieved the feed-forward recon-
struction in driving scenes with generalizable models. However, the reconstruction accuracy and
rendering resolution of feed-forward reconstruction models in driving scenes still significantly fall
short compared to current per-scene reconstruction methods. G3R(Chen et al., 2025b) achieved the
fast reconstruction (in a few minutes) of large scenes by efficiently updating a 3D scene representa-
tion with generalizable modules that take gradient feedback signals from differentiable rendering as
input. Compared to G3R, FreeVS completely does not require a scene reconstruction process, but
its image synthesis efficiency is constrained by the efficiency of existing video generation models.

2.2 NOVEL VIEW SYNTHESIS THROUGH GENERATION

Novel view synthesis through image generation has greatly benefitted from the advancements in
image generation models(Ho et al., 2020; Song et al., 2020; Rombach et al., 2022; Blattmann et al.,
2023). Free View Synthesis(Riegler & Koltun, 2020) conditions the image generation process on
wrapped image features. Zero-1-to-3(Liu et al., 2023b) and ZeroNVS(Liu et al., 2023b) gener-
ate novel views with a diffusion process conditioned on the reference image and the target camera
pose embedded as a text embedding. GeNVS(Chan et al., 2023) condition the diffusion process
on volume-rendered feature images. Reconfusion(Wu et al., 2024) uses the diffusion model to re-
fine images rendered by the reconstruction model as extra supervision to the reconstruction process.
Similarly, RealFusion(Melas-Kyriazi et al., 2023) uses a diffusion model to provide an extra per-
spective view for object-centric reconstruction. Yu et al. (2024a) use the Stable Video Diffusion
model(Blattmann et al., 2023) to iteratively refine the rendered video along a novel camera trajec-
tory based on the partial image wrapped from the reference view to the target view. Most of the
previous novel view synthesis through generation works are designed for object-centric(Liu et al.,
2023b; Chan et al., 2023; Wu et al., 2024; Melas-Kyriazi et al., 2023; Yu et al., 2024a) or indoor(Liu
et al., 2023b; Chan et al., 2023; Wu et al., 2024; Yu et al., 2024a) scenes. MagicDrive3D(Gao et al.,
2024) places image generation(Gao et al., 2023) upstream of scene reconstruction to obtain the 3D
representation of an imagined scene. For driving scenes, Yu et al. (2024b) proposes SGD which
generates novel views with a diffusion process conditioned on reference images and depth maps in
the target view. However, SGD still only synthesizes camera views along the recorded trajectory
of the ego vehicle. Moreover, different from SGD which relies on the 3DGS model, FreeVS is a
fully generative model with performance comparable to reconstruction models even on recorded
trajectories.
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3 FREEVS

We introduce the detailed design of our proposed FreeVS in this section. We summarize the algo-
rithm pipeline of FreeVS in Fig. 2.

Overview of FreeVS. FreeVS is a fully generative model that synthesizes new camera views on
novel trajectories based on observations of 3D scenes from recorded trajectories. FreeVS is imple-
mented as a conditional video diffusion model. To ensure the model generates views from accurate
viewpoints with consistent appearance attributes and 3D geometries as the real 3D scene, we for-
mulate all essential priors regarding the 3D scene as pseudo-images to control the diffusion process.
Based on view prior conditions, FreeVS is learned by denoising noised target views at training time
and synthesizing target views from pure noise at inference time.

3.1 VIEW PRIORS FOR VIEW GENERATION

Unified view prior representation. One major challenge of generative novel view synthesis is to
ensure the generated images are consistent with the priors in the novel view. Here the view priors
include the observed colors, 3D geometry, and camera pose of this view. However, the different
types of priors are in totally different modalities, posing a significant challenge for diffusion models
to precisely encode them. For example, as discussed in Sec. 1, diffusion models cannot precisely
control the camera motions (i.e., poses). To tackle this challenge, we propose a pseudo-image
representation that unifies all types of view priors in one modality. Pseudo-images are obtained
through colored point cloud projection. Specifically, for each frame in a driving sequence, we first
merge LiDAR points across the nearby r frames. LiDAR points on moving objects will be merged
along the moving trajectory of the object based on their 3D bounding box annotations. Finally, we
project the merged and colored LiDAR point cloud into the target camera viewpoints as pseudo-
images. In this way, we encode color information, geometry information, and the view pose into a
unified pseudo-image, largely facilitating the learning of generative models.

Compared with directly providing reference images and viewpoint transformations to the diffusion
process, the pseudo-image representation greatly simplified the optimization objective of the gener-
ative model: With the former inputs, the model is required to have a correct understanding of the
3D scene geometry as well as the transformation of viewpoint to generate a correct view based on
the reference image. In contrast, with pseudo-image as input, FreeVS only needs to recover target
views based on sparse valid pixels, which is more akin to a basic image completion task. The sim-
plification of the training objective greatly enhances the model’s robustness to unfamiliar viewpoint
transformations, since the generated image is completed from sparse but geometrically accurate
pixel points.

Viewpoint transformation simulation. Another challenge of novel view generation on new trajec-
tories stems from the absence of ground truth views beyond recorded trajectories. We can only train
the generative model on recorded trajectories, where the diversity of viewpoint transformations is
extremely limited. For example, we have no access to the training sample where the frontal cam-
era is moved laterally. However, such viewpoint transformation is essential for synthesizing views
on novel trajectories at inference time. This brings a significant gap between training and infer-
ence for the generative model. Moreover, we propose the viewpoint transformation simulation with
pseudo-images. At training time, we sample color and LiDAR priors from frames mismatched with
the training image frames. That is to say, we force the generative model to recover current camera
views based on observations from nearby frames. Through this, we simulate the camera movement
in each direction as a strong data augmentation on pseudo-image priors. For example, as the ego ve-
hicle moves along its heading direction, the side cameras are actually moving to their front or right,
Therefore although we have no access to the training data where the front camera is moved laterally,
we can still simulate lateral camera movement by training FreeVS on side-views with mismatched
observation-supervision frames.

3.2 DIFFUSION MODEL FOR NVS

Training of FreeVS . In each training iteration of FreeVS , we randomly sample a colored LiDAR
point cloud sequence p = (p1, ...pn) from the driving scene dataset. p is a sequence of colored point
clouds, each point cloud frame pi ∈ RNi×6 contains a set of 6-dimension 3D points. 3D points are
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Figure 2: Method pipeline of FreeVS. We propose to encode the view priors in driving scenes
including appearance, 3D geometry, and pose of target viewpoints all in one modality as the pseudo-
images. Best viewed in color. The diffusion model is trained to synthesize target views solely based
on the unified pseudo-image priors.

recorded with their positions in the world reference frame and their visible colors. From the driving
sequence, we also sample a target camera viewpoint sequence v = ([v11 , ..., v

m
1 ], ..., [v1n, ..., v

m
n ])

of n frames and m surrounding cameras. Each camera parameter vi stands for the intrinsics and
extrinsics of a camera viewpoint. For a viewpoint in the target video with camera parameter vji , we
project the colored LiDAR point cloud pi into the viewpoint as pseudo-image sji = Proj(pi, v

j
i ).

The training target of FreeVS in each iteration is to recover the target images at sampled viewpoints
based on the pseudo-image sequence s = ([s11, ..., s

m
1 ], ..., [s1n, ..., s

m
n ]) ∈ Rn×m×3×H×W .

During the training process of FreeVS , the ground truth camera views x ∈ Rn×m×3×H×W is also
sampled along the viewpoint sequence v. The ground truth camera views are encoded as target
video latent representation EVAE(x) = y ∈ Rn×m×c×h×w through an frozen VAE encoder. Then
We have the diffused inputs yr = αγy+ σγϵ, ϵ ∼ N (0, I), here ατ and στ is noise schedule at the
diffusion time step τ . We also encode the pseudo-images into the latent representation Ep(s) = z ∈
Rn×m×c×h×w with a 2D encoder trained simultaneously with the diffusion model. We concatenate
yr and z as the input k ∈ Rn×m×2c×h×w to the diffusion model to predict the noise upon y. We
have a denoising model fθ with parameters θ that take yr,z as inputs and optimized by minimizing
the following denoising objective:

Ek,τ∼pτ ,ϵ∼(,)[∥ϵ− fθ(k; c, τ)∥22], (1)

Where c is the description conditions generated by encoding the reference camera views with an off-
the-shelf CLIP-vision model(Radford et al., 2021), following the convention of diffusion models. pτ
is a uniform distribution over the diffusion time τ .

Synthesizing views on novel trajectories with FreeVS . During the inference process of FreeVS
, we project the colored LiDAR points in each frame into the targeted camera poses to generate
pseudo-image sequence for image synthesis. The diffusion model is fed with pure noise latents
concatenated with pseudo-image latents. The diffused latent will be decoded as synthesized views
through an off-the-shelf VAE decoder DVAE.

3.3 EVALUATING NVS ON NOVEL CAMERA AND NOVEL TRAJECTORY SYNTHESIS

To thoroughly demonstrate the view generalization capability of our FreeVS , which can truly meet
the demands of closed-loop embodied simulation, we present a comprehensive discussion of eval-
uation benchmarks for novel view synthesis in driving scenes. Fig. 3 illustrates this: panels (a)
and (b) summarize existing evaluation benchmarks, while panels (c) and (d) introduce our two new
challenging NVS benchmarks.

Evaluating NVS on recorded trajectories. All current NVS works for driving scenes evaluate their
NVS performance on test frames sampled periodically along the recorded trajectory. Some previ-
ous driving scene NVS methods, such as Street Gaussians(Yan et al., 2024), NSG(Ost et al., 2021),
and Mars(Wu et al., 2023c), evaluate their performance with only front camera views considered,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Train Views

(b) Multi-view novel frame synthesis 

(a) Front-view novel frame synthesis 

(c) Multi-view novel camera synthesis 

Test Views Detection Targets

(d) Novel trajectory synthesis 

Ego Poses

Figure 3: Benchmarks for evaluating NVS methods in driving scenes. We conclude the previous
NVS evaluation benchmarks for driving scenes as (a) and (b). We propose two novel evaluation
benchmarks: the novel camera synthesis benchmark as in (c), and the novel trajectory synthesis
benchmark as in (d). Best viewed in color.

as illustrated in Fig. 3(a). Other NVS methods take the multi-view cameras into consideration as
illustrated in Fig. 3(b), such as DrivinGaussian(Zhou et al., 2024b), PVG(Chen et al., 2023), EmerN-
erf(Yang et al., 2023a), NeuRAD(Tonderski et al., 2024), S-Nerf(Xie et al., 2023), and SUDS(Turki
et al., 2023). All these two evaluation benchmarks sample test frames periodically along the trajec-
tory, i.e. novel frame synthesis. In such cases, camera views in test frames can be directly inferred
from the adjacent frames, especially for datasets with a high video frame rate (e.g. 10Hz for the
WOD dataset). To provide a more challenging evaluation setting for driving scene NVS methods,
we propose the novel camera synthesis benchmark as illustrated in Fig. 3(c). Instead of period-
ically sampling test frames, we drop images collected by certain multi-view cameras throughout a
driving sequence as test views. For example, for a driving sequence in the WOD dataset, we provide
NVS methods with the front, and side camera views as training views and evaluate the synthe-
sis results on front-left and front-right views. Under the novel camera synthesis benchmark, NVS
methods are required to synthesize views on unseen camera poses, which places higher demands
on accurately modeling the 3D scene. We ensure in the validation sequences, most 3D contents in
front-side cameras are observed in the front or side camera views along the ego trajectory.

Novel trajectory synthesis. On test views sampled from the recorded trajectories, the ground truth
camera images are available for evaluating the synthesized images with image similarity metrics
including SSIM, PSNR, and LPIPS(Zhang et al., 2018). Differently, in driving scenes, there are no
ground truth images available on novel trajectories. The Fréchet Inception Distance (FID)(Seitzer,
2020) metric can compare the overall image distribution between synthesized images on novel tra-
jectories and ground truth images on recorded trajectories, but it can not assess the fidelity of the
synthesized images to the 3D scenes at all. In addition to qualitative visualization comparisons, we
also propose the perceptual robustness evaluation to assess the geometry consistency performance
of NVS methods on new ego trajectories.

In driving scenes, modern image-based 3D perception models have achieved high robustness. As
shown in Fig. 3(d), assuming an NVS method can synthesize views on a novel trajectory with ideal
image quality, the perception model feed with synthesized views should still be able to produce
accurate predictions on the novel trajectory. With such an assumption, we believe that the perfor-
mance of an off-the-shelf perception model on novel trajectories can reflect the quality of images
synthesized by the NVS methods. Under the novel trajectory synthesis benchmark, we feed the
synthesized images and camera poses on the novel trajectory to an off-the-shelf 3D camera-based
detector. The detection results are evaluated with the longitudinal error tolerant mean average preci-
sion (LET-mAP)(Hung et al., 2022) metric on the WOD dataset. For all NVS methods, we modify
novel trajectories by laterally shifting the ego positions in each frames. We shift the trajectories by
1.0 m, 2.0 m, and 4.0 m and report the mean evaluated results as mAPLET

1.0m,mAPLET
2.0m, and mAPLET

4.0m.
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4 EXPERIMENTS

In this section, we first introduce our experimental setup including datasets, evaluation benchmarks,
method implementation details, and counterpart methods. Then we provide the quantitative and
qualitative experiment results.

Datasets. We perform experiments on the WOD dataset(Sun et al., 2020). We select 12 driving
sequences for evaluating NVS methods. We ensure that there is ample space on both sides of the
ego vehicle in most frames of the selected sequence to simulate novel trajectories by lateral moving
the ego vehicle. For each sequence, all 200 data frames in 10Hz are used.

Evaluation of NVS methods. We compare FreeVS with NVS counterparts under all the experiment
benchmarks shown in Fig. 3. For the front-view or multi-view novel frame synthesis benchmark
(Fig. 3(a) and (b)), we sample every fourth frame in driving sequences as test frames. All the
remaining frames are used for training NVS counterparts, or as input frames for FreeVS. On, we
report metrics including SSIM, PSNR, and LPIPS. Under the novel camera synthesis benchmark, we
reserve all the front-side camera views as test views and use the front and side camera views as train
views throughout each sequence. Note that for FreeVS which does not require scene reconstruction
on validation sequences, we only take information from the train views to generate test views.

Moreover, we also evaluate NVS methods on novel trajectories with the FID score and the proposed
perceptual robustness evaluation method. We take MV-FCOS3D++(Wang et al., 2022), a basic yet
strong multi-view camera-based 3D detector as our baseline detection model. We follow most of the
settings of the official open-sourced implementation of MV-FCOS3D++. We train MV-FCOS3D++
for 24 epochs on the WOD training set (except for the validation sequences in our experiments)
to obtain the baseline detector. Following (Wang et al., 2022), we initialize MV-FCOS3D++ from
an FCOS3D++ checkpoint, which is also trained on the above training sequences. We feed the
camera views synthesized on novel trajectories to the baseline detector. We report camera-based 3D
detection metrics LET-mAP(Hung et al., 2022) on the vehicle class as mAPLET.

Method details. We implement the proposed FreeVS pipeline based on Stable Video Diffusion
(SVD)(Blattmann et al., 2023). We initialize the diffusion model from a pre-trained Stable Diffu-
sion checkpoint(Rombach et al., 2022). FreeVS is trained on the WOD training set, except for the
selected validation sequences. To generate pseudo-images, we accumulate colored LiDAR points
across the adjacent ±2 frames of each frame. If a 3D LiDAR point has more than one projected
2D point in multi-view images, the mean color of its projected image points will be recorded. For
viewpoint transformation simulation, we randomly sample the target viewpoint sequence starting
from the adjacent ±4 frames of the first frame of the source point cloud sequence. We employ
a ConVNext-T(Liu et al., 2022b) backbone as the pseudo-image encoder. We train the model for
40,000 iterations with a batch size of 8 and video frame length n = 8. Please refer to the appendix
for more training details.

4.1 SOTA COMPARISON UNDER THE PROPOSED CHALLENGING NEW BENCHMARKS.

Novel camera synthesis. We first report the performance of NVS methods under the proposed
multi-view novel camera synthesis benchmark in Table 1. FreeVS achieves leading performance
on all metrics by a large margin. Previous NVS methods tend to render images with severe image
distortion or massive unnatural artifacts when facing severe scene information loss on the target
views, as shown in Fig. 4. Meanwhile, FreeVS can generate camera views close to ground truth
views based on limited 3D scene observations.

Novel trajectory synthesis. We also report the FID and perceptual robustness performance of NVS
methods on novel trajectories in Table 2. The proposed FreeVS outperforms previous NVS methods
on almost all metrics with different lateral offsets applied to the viewpoints. Compared to previous
NVS methods, the proposed FreeVS has a very strong performance on the FID metric. This is mainly
because the proposed FreeVS is nearly free from image degradation and artifacts when synthesizing
images on novel trajectories. FreeVS also has the strongest mAPLET performance among all NVS
methods, which indicates that as a generation-based method, FreeVS is of even higher fidelity to the
3D scene geometry compared with previous reconstruction-based methods when rendering views
on novel trajectories. We also provide a visualization comparison example in Fig. 5.
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Table 1: Comparison with NVS counterparts on novel camera synthesis. For all NVS methods,
we use all front and side camera views as source views to synthesize the front-side camera views.

Front-side camera syntheisingMethods SSIM↑ PSNR↑ LPIPS↓
3D-GS(Kerbl et al., 2023) 0.484 15.97 0.442

EmerNerf(Yang et al., 2023a) 0.603 19.61 0.330
StreetGaussian(Yan et al., 2024) 0.531 17.35 0.397

Ours 0.628 20.70 0.283

Table 2: Comparison with NVS counterparts on novel trajectories. The y axis is defined lateral
to the ego vehicle’s heading direction. †: performance of baseline detector on ground truth images.

y ± 0.0m y ± 1.0m y ± 2.0m y ± 4.0m
Methods FID↓ mAPLET↑ FID↓ mAPLET

1.0m↑ FID↓ mAPLET
2.0m↑ FID↓ mAPLET

4.0m↑
GT† - 0.895 - - - - - -

3D-GS 34.79 0.729 52.07 0.605 61.16 0.581 86.21 0.452
EmerNerf 53.88 0.600 58.26 0.510 69.50 0.478 84.81 0.464

StreetGaussian 21.62 0.826 41.17 0.738 55.71 0.682 80.44 0.544
Ours 11.18 0.816 13.45 0.786 16.60 0.724 22.08 0.612

While FreeVS relies on LiDAR point inputs, EmerNerf and Street Gaussians also rely on LiDAR
depth supervision during their training process. Therefore FreeVS did not gain any information
advantages in our experiments. Moreover, as a fully generative method, FreeVS does not require any
scene reconstruction process when applied to validation sequences. From this aspect, at inference
time, FreeVS costs less computational resources even compared with 3DGS-based methods, which
usually take 1-2 hours to model a validation sequence of 20s.

4.2 SOTA COMPARISON ON NOVEL FRAME SYNTHESIS

We also report the performance of NVS methods under the traditional front-view novel frame syn-
thesis or multi-view novel frame synthesis benchmark in Table 3. The performance of previous NVS
methods is strong when only the front-view camera is considered. However, when it comes to the
multi-view setting which is more aligned with the current autonomous driving scenes, the perfor-
mance of previous NVS methods is surpassed by the proposed FreeVS by a large margin. It is worth
mentioning that in Table 3, all previous reconstruction-based NVS methods exhibit a significant
performance drop when multi-view cameras are considered. We think this is due to the increased
number of training views, the expanded range of the visible 3D scene, and the rapidly changing
content in lateral views, all of which make the convergence of reconstruction models more difficult.

4.3 ABLATION STUDIES

Ablation on view prior condition. We first ablate on the representation of view prior as conditions
for the diffusion process, as shown in Table 4. We apply a breakdown experiment on the pseudo-
image representation. Models are trained for 20,000 iterations. We start by dropping the color
information in the pseudo-image representation, represented by Table 4(b). Dropping the color
nearly does not affect the geometric accuracy of rendered results, but has a considerable impact on
the image similarity metrics. Then we experiment with dropping the LiDAR inputs (c), where the
reference images and camera pose transformation matrix (from the reference view to the target view)
are independently encoded by a VAE or MLP encoder. Under this setting, we found the diffusion
model unable to accurately synthesize views on the target viewpoint. Most time, the model ignores
the pose condition and moves the camera viewpoint by its familiar viewpoint transformation. (e.g.
always move the frontal camera forward or backward, or move the side camera left or right.) Based
on (c), we experiment with preserving all view prior inputs but do not unify them as pseudo-images
(d). The LiDAR points are encoded as latents with a point cloud backbone(Yan et al., 2018). The
experiment result shows the model fails at utilizing LiDAR inputs due to its significant gap with 2D
images, the model trained under setting (d) has an identical performance as the mode trained under
setting (c). Due to the wrong viewpoint of most generated images, trained models under settings
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Table 3: Comparison with NVS counterparts on recorded trajectories. We report the perfor-
mance of NVS methods when only the front-view cameras are considered or when all multi-view
cameras are considered. Reconstruction time cost and FPS are measured under the multi-view set-
ting, with a single NVIDIA L20 GPU.

Front View Multi-viewMethods SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓
Reconstruction

time FPS

3D-GS(Kerbl et al., 2023) 0.799 26.31 0.143 0.586 19.21 0.366 2-3h† 61.2
EmerNerf(Yang et al., 2023a) 0.869 30.28 0.155 0.689 24.68 0.347 2-3h 0.2

StreetGaussian(Yan et al., 2024) 0.903 30.80 0.096 0.702 22.47 0.314 1-2h 52.6
Ours 0.787 25.30 0.139 0.730 24.96 0.179 - 0.9

Table 4: Ablation study on view prior condition. We conduct a breakdown ablation on the pro-
posed pseudo-image representation of view priors. The y axis is defined lateral to the ego vehicle’s
heading direction.

View priors Encoders Multi-view y ± 2.0m
SSIM↑ PSNR↑ LPIPS↓ FID↓ mAPLET

2.0m↑
(a) full priors 2D-Conv 0.704 23.28 0.203 21.27 0.690
(b) w/o. color 2D-Conv 0.701 23.05 0.231 23.13 0.687
(c) w/o. LiDAR 2D-Conv + MLP 0.613 19.86 0.288 21.25 0.013
(d) w/o. projection 2D-Conv + 3D + MLP 0.609 19.88 0.284 21.32 0.028
(e) full priors 2D-Attn 0.706 23.27 0.202 21.25 0.692

(c) and (d) have extremely poor perceptual robustness performance. Through this observation, we
can conclude that the pseudo-image representation greatly improved the overall quality and view-
point controllability of images generated by the diffusion model. Finally, we compare encoding the
pseudo-images with a 2D-Conv encoder or an attention-based encoder(Liu et al., 2021) with setting
(e). Although the pseudo-image consists of sparse valid pixels, the attention-based backbone shows
no advantage in encoding pseudo-images.

Ablation study on viewpoint transformation simulation. We report the results of ablation studies
on viewpoint transformation simulation with pseudo-images in Table 5. We report the performance
of FreeVS under the multi-view novel frame synthesis setting and on novel trajectories generated
by applying 2.0 m lateral offsets to the recorded trajectories. As shown in Table 5, sampling target
frames from adjacent ±2 or ±4 frames from the source frame can boost the view-synthesize per-
formance of FreeVS on novel trajectories. When the temporal sampling window size exceeds ±4
frames, the view-synthesize performance of FreeVS on the recorded trajectory will be negatively
affected. We believe this is due to the large timestamp mismatch between view priors and target
images hindering the model’s convergence. We also present a visualization illustration of the effect
of viewpoint transformation simulation in the appendix.

4.4 VISUALIZATION COMPARISON

We show visualization comparisons between NVS methods under the novel camera synthesis bench-
mark in Fig. 4, and under the novel trajectory synthesis benchmark in Fig. 5.

4.5 CONCLUSION

We present FreeVS, a novel fully generative method for synthesizing camera views on free driving
trajectory. We propose the pseudo-image representation of view priors, which conveys accurate 3D
scene geometry and viewpoint conditions through colored point projection. The diffusion model is
trained to synthesize target views solely based on pseudo-images. In this paper, we fully discuss the
evaluation benchmarks for driving scene NVS. We propose two novel evaluation benchmarks includ-
ing the novel camera synthesis benchmark and the novel trajectory synthesis benchmark. We also
propose the perceptual robustness evaluation method for assessing the performance of NVS meth-
ods on novel trajectories. Experiments across several experiment benchmarks show that FreeVS
achieves leading performance in synthesizing camera views inside or beyond recorded trajectories.
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Table 5: Ablation study on viewpoint translation simulation. The y axis is defined lateral to the
ego vehicle’s heading direction.

Multi-view y ± 2.0m
Temporal sampling window size SSIM↑ PSNR↑ LPIPS↓ FID↓ mAPLET

2.0m↑
- 0.733 25.04 0.180 16.93 0.707

±2 frames 0.734 25.04 0.179 16.77 0.713
±4 frames 0.730 24.96 0.179 16.60 0.724
±8 frames 0.717 24.82 0.188 16.53 0.721
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Figure 4: Visualization comparison on novel-camera synthesis benchmark. We show the front-
side camera views synthesized from front and side camera views with NVS methods.
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Figure 5: Visualization comparison on novel trajectories. We show the camera views synthesized
by NVS methods on the original training viewpoint, viewpoint 2.0 m left of the original viewpoint,
and viewpoint 2.0 m right of the original viewpoint.
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Figure A: Visualization comparison on moving objects. We compare the performance of NVS
methods where moving objects are visible in camera views. In the shown case, our proposed method
can generate more accurate images of vehicles driving in the opposite lane. Images are synthesized
on training views.

A APPENDIX

A.1 IMPLEMENTATION DETAILS

Implementation details of FreeVS. We employ a ConVNext-T(Liu et al., 2022b) encoder to en-
code pseudo-images. For training FreeVS, the diffusion model is initialized with Stable Diffusion
checkpoints (Rombach et al., 2022). We train the model for 40,000 iterations with a batch size of 8
and video frame length n = 8. We use the AdamW optimizer (Kingma & Ba, 2014) with a learning
rate 1× 10−4. During training time, we randomly drop the pseudo-image condition latent as well as
the CLIP text description latent with a probability of 20%. We enable the viewpoint transformation
simulation with a probability of 50%. During inference, we set the number of sampling steps as 25
and stochasticity η=1.0. When synthesizing images on the existing trajectory, we set the classifier-
free guidance (CFG)(Ho & Salimans, 2022) guidance scale to 1.0. For synthesizing images on novel
cameras and new trajectories, we enlarge the CFG guidance scale to 2.0 to strengthen the control of
3D prior conditions over the generated results.

Implementation details of NVS counterparts. We compare our novel view synthesis method with
the 3DGS(Kerbl et al., 2023), EmerNeRF(Yang et al., 2023a), and Street Gaussians(Yan et al., 2024).
All counterpart methods are implemented based on their official implementation. For 3DGS which
is not initially designed for unbounded driving scenes, we largely increase its max training iterations
for better convergence of the model. Please check the appendix for more implementation details
on NVS counterparts. For 3DGS which is not initially designed for unbounded driving scenes,
we optimize its performance by adjusting its hyperparameters, including setting the densification
interval to 500 iterations, setting the opacity reset interval to 10000, and training the 3DGS models
for 100000 iterations while densifying 3D Gaussians until 50000 iterations. We also noticed that
the Street Gaussians models have a convergence issue when training with all 200 frames of each
sequence. Therefore we split the validation sequences into two 100-frame sequences for training
the Street Gaussians models, following its official configuration(Yan et al., 2024). As 3DGS and
EmerNerf suffer from high memory costs when training with high-resolution images, we resize the
input images on WOD from a resolution of 1920 × 1280 to 1248 × 832 when training FreeVS and
all NVS counterparts. The pseudo-images are generated in the same resolution. All experiments are
conducted on NVIDIA L20 GPUs.
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(a) Training camera view
(b) Training pseudo-image w/o temporal 

augmentation

(c) Training pseudo-image w/ temporal 

augmentation

(d) Validation pseudo-image in original trajectory (e) Validation pseudo-image in shifted trajectory (f) Synthesized image in shifted trajectory

Figure B: Visualization of the viewpoint transformation simulation. For a training sample, we
show the (a) source camera view, (b) pseudo-image generated from current LiDAR observation, and
(c) pseudo-image generated from previous LiDAR observation to simulate viewpoint transforma-
tion. We also show a validation case of (d) pseudo-image on the original viewpoint, (e) pseudo-
image on the shifted viewpoint, and (f) generated image on the shifted viewpoint. Note the image
areas with missing or overlapped 3D observation circled by red boxes in (c) and (f). The proposed
viewpoint transformation simulation on pseudo-images can well-stimulate the insufficient 3D prior
observations brought by the shift in viewpoint.

A.2 VIDEO COMPARISON.

We present a video comparison of novel view sequences synthesized by NVS methods on the mod-
ified trajectory in a driving sequence. Please check the video file submitted as supplementary mate-
rial.

A.3 VISUALIATION COMPARISON ON DYNAMIC OBJECTS.

Without the scene reconstruction process, FreeVS is free from complex cross-frame optimization of
dynamic objects. FreeVS can synthesize images of dynamic objects in high accuracy, as shown in
Fig.A. In comparison, despite with specific design, current reconstruction-based NVS methods still
suffer from dynamic object modeling.

A.4 VISUALIZATION OF THE VIEWPOINT TRANSFORMATION SIMULATION.

Besides quantitatively ablating the impact of the proposed viewpoint transformation simulation with
pseudo-images, we also provide a visualization case in Fig.B to illustrate its effect.

When facing the translation of viewpoints, pseudo images generated from the existing viewpoints
cannot provide complete 3D priors, such as in areas circled by red boxes in Fig.B(e). To strengthen
the robustness of FreeVS towards those patterns in pseudo-images, we propose to employ viewpoint
transformation simulation with pseudo-images by generating pseudo-images in training views from
mismatched LiDAR observations. As shown in Fig.B(c), we can stimulate the pseudo-image areas
with insufficient 3D priors. The generative model trained with the proposed viewpoint transforma-
tion simulation with pseudo-images can render images of high quality when facing insufficient 3D
prior inputs, as shown in Fig.B(f).

A.5 VISUALIZATION RESULTS OF COMPONENT ABLATION EXPERIMENT ON PSEUDO-IMAGE
REPRESENTATION.

For the ablation setting (a) and (d) introduced in Sec.4.3, whose quantitative results are reported in
Table 4, we present a visualization comparison in Fig.C. Setting (a) is the baseline setting of feeding
diffusion models with pseudo-image scene representations for view synthesis. Under setting (d),
we feed the diffusion model with the reference image, LiDAR point cloud, and the transformation
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Figure C: Visualization comparison on the encoding of camera viewpoint condition. We qual-
itatively compare the image synthesis performance of the diffusion model with pseudo-image as
input (Table 4(a)), or with the reference image, LiDAR points, and viewpoint transformation matrix
as input (Table 4(d)). When feeding the model with pose transformation matrices, the diffusion
models often fail to generate views on the targeted viewpoint, as shown in the second column.

Table A: Comparison with UC-NeRF on recorded trajectories. We report the performance of
FreeVS, UC-NeRF, and EmerNerf when the three frontal view cameras are considered.

Methods SSIM↑ PSNR↑ LPIPS↓
EmerNerf(Yang et al., 2023a) 0.764 25.16 0.282
UC-NeRF(Cheng et al., 2023) 0.770 25.91 0.250

Ours 0.761 25.47 0.146

matrix from the reference view to the target view. As shown in Fig.C, model feed with pseudo-
image can precisely synthesize image on the target viewpoint, while model feed with raw camera
pose fails to follow the viewpoint condition. Given that the diffusion model can only be trained
on recorded trajectories, we found the diffusion model fed with reference images and viewpoint
pose tends to overfit to the specific camera movement pattern in each camera position. As shown in
Fig.C, the model fed with raw 3D prior inputs will only move the frontal camera view forward or
backward, ignoring the viewpoint pose condition. This is due to the absence of a training sample
where the frontal camera is moved laterally. By modifying the novel view synthesis task as an image
completion task based on the pseudo-image representation of 3D priors as well as applying the
proposed viewpoint transformation simulation with pseudo-images, we can overcome this training
data shortage.

A.6 COMPARE WITH METHODS WITH IMAGE WARPING

The baseline methods in the main paper, such as EmerNeRF and StreetGaussian, do not possess spe-
cial designs for rendering views out of the recorded trajectories. On the other hand, some previous
works including UC-NeRF(Cheng et al., 2023) and HO-Gaussian(Li et al., 2024b) use image wrap-
ping based on predicted depth maps to strengthen their reconstructed results. Such design might
alleviate the overfitting problem of reconstruction methods on recorded trajectories, although they
are not designed to strengthen the performance of those methods on new trajectories. Here we report
the performance of UC-NeRF on our validation segments as a supplement to the experiment results
in the main paper. We only consider the three frontal cameras in the following supplementary ex-
periments, due to UC-NeRF’s mostly hard-coded implementations and hyper-parameters optimized
for the 3-camera setting. We compare FreeVS with UC-NeRF under the novel-frame synthesis set-
ting on the recorded trajectories and under the novel-trajectory synthesis setting. Considering that
dropping the side cameras will have some impact on the overall performance of each method, we
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Table B: Comparison with UC-NeRF on new trajectories. We report the performance of FreeVS,
UC-NeRF, and EmerNerf when the three frontal view cameras are considered.

y ± 1.0m y ± 2.0m y ± 4.0m
Methods FID↓ mAPLET

1.0m↑ FID↓ mAPLET
2.0m↑ FID↓ mAPLET

4.0m↑
EmerNerf 50.58 0.541 62.86 0.506 79.61 0.418
UC-NeRF 42.08 0.592 75.56 0.447 88.47 0.370

Ours 15.17 0.781 18.49 0.761 24.07 0.696

Table C: Comparison with NVS counterparts on the XLD dataset. We report the performance
of previous NVS methods according to Li et al. (2024a).

y + 4.0m y + 2.0m y + 1.0m y + 0.0mMethods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
UC-NeRF 22.89 0.768 0.420 25.17 0.863 0.367 30.07 0.896 0.355 35.95 0.936 0.311

MARS 23.29 0.818 0.235 24.95 0.847 0.194 27.40 0.851 0.169 30.21 0.873 0.146
EmerNeRF 24.80 0.837 0.203 26.05 0.852 0.182 28.66 0.878 0.150 31.76 0.907 0.126

PVG 23.17 0.841 0.353 24.42 0.854 0.335 26.84 0.882 0.296 37.78 0.960 0.189
Ours 26.52 0.865 0.151 27.65 0.876 0.135 29.08 0.894 0.120 30.06 0.908 0.079

also provide the performance of EmerNerf under the 3-camera setting as a reference. We report
the performance of NVS methods on the recorded trajectories in Table A, and on new trajectories
in Table B. On the recorded trajectories, UC-NeRF and FreeVS have similar performance (UC-
NeRF has a slightly better SSIM/PSNR performance, while FreeVS has a significantly better LPIPS
performance.) On the new trajectories, FreeVS significantly outperforms UC-NeRF.

A.7 EXPERIMENT ON THE XLD DATASET

The XLD dataset(Li et al., 2024a) is a synthesized dataset with ground-truth camera views on tra-
jectories with 1.0m, 2.0m, or 4.0m offset from the training trajectories. On the XLD dataset, we
can evaluate the performance of FreeVS with image-recovering metrics including PSNR, SSIM,
and LPIPIS. Here we report the performance of FreeVS on XLD dataset on trajectories with 0.0m,
1.0m, 2.0m or 4.0m offsets from the training trajectories in Table C.

Experiments show that FreeVS outperforms all previous methods on all metrics on trajectories with
2m or 4m offsets. On trajectories with 1m offsets, the performance of FreeVS is still better than most
previous methods. On trajectories with no offset, reconstruction-based methods have better PSNR
and SSIM performance. Still, we think the high performance of reconstruction-based methods on
the original trajectories comes from their overfitting on the training views, considering the huge
performance gap between their performance on trajectories with no offset and trajectories with a
slight 1m offset (-5.88 PSNR for UC-NeRF,-10.94 PSNR for PVG).

It is also worth emphasizing that FreeVS has a significantly better LPIPS performance on all valida-
tion trajectories, even including trajectories with no offsets. As a perceptual metric, LPIPS is more
aligned with human perception compared with pixel-error metrics such as PSNR/SSIM. As the per-
formance degradation of the reconstruction-based methods mainly comes from artifacts in the image
when facing out-of-domain test views, the performance degradation of FreeVS mainly comes from
the loss of high-frequency details such as the brick patterns on a wall or the number of leaves on a
tree. We believe this is why FreeVS exhibits significantly better visual appeal in visualized results.

We also present a qualitative comparison between FreeVS and reconstruction-based methods in
Figure F. We compare the generation results of FreeVS with all visualization results shown in Figure
3 in the XLD dataset paper(Li et al., 2024a).

A.8 LIMITATION DISCUSSION

As discussed above, the pseudo-image representation of 3D priors can handle rigid dynamic objects
like vehicles well by accumulating their 3D points along their moving trajectory. On the other
hand, the pseudo-image representation cannot handle non-rigid dynamic objects (like pedestrians
and cyclists) as well as rigid objects since their 3D points are hard to be correctly accumulated
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(a) CFG scale = 0.1 (b)  CFG scale = 0.5 (c) CFG scale = 1.0

(d) CFG scale = 2.0 (e) CFG scale = 4.0 (f) CFG scale = 8.0

Figure D: Visualization of the effect of classifier-free guidance (CFG). We show generation
results with the same input pseudo-image and different CFG scales. The larger CFG scale is set, the
stronger the generation result is constrained by the 3D prior condition.

across frames. However, thanks to the generalization ability of video generation models, views of
pedestrians and cyclists synthesized by FreeVS are still satisfying as shown in Figure 5 in the paper.

As we use ground truth LiDAR points for the main experiments, we found the LiDAR inputs for
FreeVS can be replaced by pseudo-LiDAR points generated from estimated depths. We experi-
mented with applying an off-the-shelf Depth-Anything-V2(Yang et al., 2024b) model on reference
images and sample pseudo LiDAR points from the obtained depth map. Here we show a success
case as well as a failure case of generation with pseudo LiDAR points in Figure G. According to our
observation, the proposed FreeVS pipeline can be applied to pseudo LiDAR points and recover most
scene contents correctly. However, we found the depth prediction model sometime has problems in
predicting the depth of objects very near to the camera, as shown in the failure case, circled with
red. We believe this issue is caused by directly applying the Depth-Anything-V2 model to the WOD
dataset. A depth predictor that is fully converged on the WOD dataset should be able to avoid this
problem. As for FreeVS, the visualized results show that our method has satisfying performance on
most scene contents with about the right depth.

Note that we generate the above-provided results by directly applying the FreeVS model trained with
GT LiDAR points on the pseudo LiDAR points. The different valid pixel patterns and pixel density
of pseudo image generated from pseudo LiDAR points lead to some slight imaging style changes of
the generated result, which is totally avoidable by training FreeVS on pseudo image generated from
pseudo LiDAR points.

A.9 EFFECT OF CLASSIFIER-FREE GUIDANCE

As a diffusion model, FreeVS can use the classifier-free guidance (CFG) technique to adjust the
control effect of input 3D prior condtions. We show the impact of CFG with different CFG scales in
Fig. D.

A.10 VALIDATION SEQUENCES

We list the selected 12 validation sequences from the WOD dataset here with their official individual
file names:

• segment-10588771936253546636 2300 000 2320 000 with camera labels.tfrecord,

• segment-6242822583398487496 73 000 93 000 with camera labels.tfrecord,

• segment-16801666784196221098 2480 000 2500 000 with camera labels.tfrecord,

• segment-1191788760630624072 3880 000 3900 000 with camera labels.tfrecord,

• segment-10625026498155904401 200 000 220 000 with camera labels.tfrecord,

• segment-11846396154240966170 3540 000 3560 000 with camera labels.tfrecord,

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

• segment-18111897798871103675 320 000 340 000 with camera labels.tfrecord,
• segment-11017034898130016754 697 830 717 830 with camera labels.tfrecord,
• segment-10963653239323173269 1924 000 1944 000 with camera labels.tfrecord,
• segment-12161824480686739258 1813 380 1833 380 with camera labels.tfrecord,
• segment-11928449532664718059 1200 000 1220 000 with camera labels.tfrecord,
• segment-10444454289801298640 4360 000 4380 000 with camera labels.tfrecord.

A.11 EXPERIEMENTS WITH FREE VIEW SYNTHESIS.

Free View Synthesis(Riegler & Koltun, 2020)(FVS) is an early generation-based novel view synthe-
sis method specially designed for narrow, static scenes, which are mostly object-centric. We found
applying FVS on open, dynamic scenes in the WOD dataset usually can not generate high-quality
views, as shown in Figure E. We believe this is due to FVS’s optimization process relying on scene
structure modeling based on the COLMAP algorithm, which can not handle dynamic objects. FVS
also do not consider dynamic objects in its pipeline. Additionally, the significantly more dispersed
and sparse viewpoints in driving scenes also contribute to FVS’s poor performance.

(a) Ground truth image (b) Image generated by FVS

Figure E: Visualization example of a common failure case of Free View Synthesis on open,
dynamic scenes.

A.12 EFFICIENCY COMPARISON WITH GENERALIZABLE RECONSTRUCTION METHODS.

Here we provide an efficiency comparison between FreeVS and generalizable 3D reconstruction
methods in Table D. Note that we report the performance of generalizable 3D reconstruction meth-
ods in the PandaSet dataset according to (Chen et al., 2025b), and the performance of FreeVS in the
WOD dataset. The PandaSet dataset consists of video sequences in 80 frames (on average) and 6
cameras, while WOD dataset consists of video sequences in 200 frames and 5 cameras, therefore
the comparison experiment setting is not completely aligned. The 3D scale of scenes in PandaSet or
WOD seems similar. The training time cost, reconstruction time cost, and rendering FPS are mea-
sured on RTX 3090 GPU according to (Chen et al., 2025b), and the computational costs of FreeVS
are measured on a single NVIDIA L20 GPU.

Table D: Efficiency comparison with generalizable reconstruction methods. †: methods that
need to reconstruct the scene again with different source images when rendering each new view.
*: The training costs of generalizable reconstruction methods are measured on 2 RTX 3090 GPUs,
while the training cost of FreeVS is measured on 8 NVIDIA L20 GPUs. Samely, the inference
efficiency of previous methods / FreeVS is measured on 3090 / L20 GPU.

Methods Train Time Train mem Recon mem Recon time Render FPS

ENeRF(Lin et al., 2022) 108h*2 24GB 10GB 0.11s† 2.65
GNT(Varma et al., 2022) 49h*2 23GB 21GB 0.35s† 0.00249

PixelSplat(Charatan et al., 2024) 110h*2 48GB 11GB 1.14s † 176
G3R(Chen et al., 2025b) 60h*2 20GB 24GB 210s 97.0

FreeVS 40h*8 45GB 14GB 0s 0.9
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Figure F: Visualization comparison with NVS counterparts on the XLD dataset. We qualita-
tively compare the image synthesis performance of FreeVS with previous NVS methods on the XLD
dataset. Visualization results of previous NVS methods are referenced from Li et al. (2024a).
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(a)

(b)

Figure G: Visualization comparison of generation with GT LiDAR points or with pseudo Li-
DAR points.

23


	Introduction
	Related Work
	Novel View Synthesis through reconstruction
	Novel View Synthesis through Generation

	FreeVS 
	View priors for view generation
	Diffusion model for NVS
	Evaluating NVS on novel camera and novel trajectory synthesis

	Experiments
	SOTA comparison under the proposed challenging new benchmarks.
	SOTA comparison on novel frame synthesis
	Ablation Studies
	Visualization comparison
	Conclusion

	Appendix
	Implementation Details
	Video comparison.
	Visualiation comparison on dynamic objects.
	Visualization of the viewpoint transformation simulation.
	Visualization results of component ablation experiment on pseudo-image representation.
	Compare with methods with image warping
	Experiment on the XLD dataset
	Limitation discussion
	Effect of classifier-free guidance
	Validation Sequences
	Experiements with Free View Synthesis.
	Efficiency comparison with generalizable reconstruction methods.


