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Abstract

Reasoning is a key component of language un-
derstanding in Large Language Models. While
Chain-of-Thought prompting enhances perfor-
mance via explicit intermediate steps, it suf-
fers from sufficient token overhead and a fixed
reasoning trajectory, preventing step-wise re-
finement. Recent advances in latent reasoning
address these limitations by refining internal
reasoning processes directly in the model’s la-
tent space, without producing explicit outputs.
However, a key challenge remains: how to
effectively update reasoning embeddings dur-
ing post-training to guide the model toward
more accurate solutions. To overcome this chal-
lenge, we propose a lightweight post-training
framework that refines latent reasoning trajecto-
ries using two novel strategies: 1) Contrastive
reasoning feedback, which compares reason-
ing embeddings against strong and weak base-
lines to infer effective update directions via
embedding enhancement; 2) Residual embed-
ding refinement, which stabilizes updates by
progressively integrating current and historical
gradients, enabling fast yet controlled conver-
gence. Extensive experiments and case studies
are conducted on five reasoning benchmarks to
demonstrate the effectiveness of the proposed
framework. Notably, a +5% accuracy gain on
MathQA without additional training. Code and
data are publicly available at this link.

1 Introduction

Reasoning serves as a fundamental capability in
Large Language Models (LLMs), enabling them
to comprehend prompts and effectively solve com-
plex tasks. Existing approaches, such as Chain-of-
Thought (CoT) (Wei et al., 2022b) and ReAct (Yao
et al., 2023b), guide models toward correct answers
by explicitly generating intermediate textual rea-
soning steps. While these methods have shown ef-
fectiveness, they suffer from: 1) the explicit reason-
ing steps cause substantial token overhead, leading

to increased computational cost; 2) the reasoning
trajectory becomes fixed once the template is gen-
erated, preventing step-by-step refinement during
the generation process.

Recent advances have partially addressed them
by converting explicit reasoning steps into latent
embeddings, enabling latent reasoning in models,
such as Coconut (Hao et al., 2024). They repre-
sent the reasoning state using the LL.M’s hidden
state (i.e., “continuous thought”) and recursively
feed it back into the model in the latent space to
enable more effective reasoning. However, there
are two critical challenges: 1) the reasoning trajec-
tory in the latent space lacks explicit directional
guidance, making it difficult to ensure consistent
progression toward more accurate reasoning states;
2) the recursive embedding updates tend to be un-
stable, especially across multiple reasoning steps,
which may compromise both robustness and accu-
racy. These challenges motivate us to explore how
reasoning embeddings can be effectively and effi-
ciently updated during post-training to guide the
model toward more accurate solutions.

To this end, we draw inspiration from two com-
plementary lines of research. For the challenge
of providing directional guidance in reasoning em-
bedding updates, we are inspired by reinforcement
learning from human feedback (RLHF) (Ouyang
et al., 2022), where learning from relative perfor-
mance comparisons has demonstrated superior effi-
ciency and effectiveness compared to relying solely
on absolute supervision. For the challenge of stabi-
lizing recursive updates, we take inspiration from
the success of momentum-based optimization tech-
niques in deep learning (Qian, 1999), which demon-
strate the importance of adaptively integrating his-
torical and current information to achieve smoother
and more stable convergence.

Thus, we propose a lightweight post-training
framework to refine the latent reasoning embed-
dings, built upon two novel strategies:
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¢ Contrastive Reasoning Feedback Search.
To infer updated directions in the latent rea-
soning space, we pass the current reasoning
embedding through both a strong and a weak
LLM to obtain enhanced embeddings. We de-
rive a contrastive direction by comparing the
outputs of strong and weak models, and use its
gradient with respect to the current embedding
to guide the reasoning embedding update.

¢ Residual Embedding Refinement. To ensure

stable updates in the latent reasoning space,
we blend the current reasoning embedding
with its previous state using a residual weight-
ing parameter. This interpolation smooths the
transition between steps and prevents abrupt
shifts in the reasoning process. As a result, the
model achieves more consistent convergence
across multi-step latent reasoning.

We empirically evaluate our method through
comprehensive experiments and case studies, high-
lighting its effectiveness, efficiency, and scalability
across diverse settings. These experiments demon-
strate that our strategies significantly enhance rea-
soning performance compared to latent-only and
explicit token-based reasoning baselines. Notably,
on the MathQA task, our approach improves ac-
curacy by over 5% compared to the original latent
reasoning method. We further conduct case studies
to illustrate how the latent embedding evolves step
by step. The results show that the embedding pro-
gresses toward more accurate reasoning solutions.

These empirical findings not only validate the
effectiveness of our approach but also highlight its
practical value. Our framework offers three key
advantages: Efficiency and Cost-Effectiveness.
The proposed method enhances reasoning perfor-
mance via a lightweight post-training refinement
process. It does not require any modification to the
model architecture or parameters, enabling consis-
tent improvements with minimal cost. Dynamic
Post-Training Adaptation. Both components op-
erate after training to refine the reasoning process.
By preserving informative latent states and explor-
ing better latent representations, the model dynami-
cally adjusts its internal reasoning trajectories with-
out requiring additional training. Training-Free
Deployment. Our refinement procedure is entirely
training-free: it relies solely on forward computa-
tion in the latent space and avoids any backpropaga-
tion or parameter updates. This makes the method
easy to integrate into existing models as a plug-and-
play component at the post-training stage.

2 Preliminary

2.1 Problem Definition

We focus on complex reasoning tasks where a large
language model (LLM) generates a correct answer
y from an input question z, such as in math word
problems, multi-hop question answering, and com-
monsense reasoning. These tasks typically require
multiple inference steps, even if such steps are not
explicitly annotated. Formally, the objective is to
learn a function f : * — y, where intermediate
cognitive states are latent and only the final answer
is observed. While optional intermediate steps can
be included during training, they are often unavail-
able during inference. Building on the latent rea-
soning framework, we represent each reasoning
step as an embedding in a latent space. Our key
contribution is to model how to efficiently explore
transitions within the reasoning embedding space
that lead to accurate final answers. By capturing
these latent trajectories, our approach enables the
model to reason more effectively, even without ex-
plicit supervision over intermediate steps.

2.2 Chain-of-Thought Reasoning and Its
Limitations

Chain-of-Thought (CoT) prompting (Wei et al.,
2022b) and its variants (Wang et al., 2022; Yao
et al., 2023b) decompose reasoning into a sequence
of intermediate text steps, improving model accu-
racy and interpretability on complex tasks. How-
ever, CoT remains inherently limited:

* Token-level serialization: All reasoning steps
are expressed via natural language, leading to
low-dimensional, rigid representations.

* Static trajectory: Once the prompt is fixed,
the reasoning path is deterministic, with lim-
ited room for correction.

* Lack of feedback: CoT does not support in-
ternal error detection or trajectory revision
unless multiple sampled paths are compared
externally.

These limitations motivate our shift toward
latent-space reasoning. Rather than generating ex-
plicit token sequences at each step, we allow the
model to evolve its internal reasoning embedding
over multiple steps. This latent evolution enables
the model to retain richer intermediate information,
search for better latent embeddings, and adapt its
reasoning process more flexibly, particularly under
limited model capacity.
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Figure 1: Overview of our reasoning framework. The
bottom path shows how contrastive feedback first iden-
tifies the update direction for the reasoning embedding,
which is then integrated through residual refinement to
produce the current reasoning state.

Figure 1 shows the overview of our framework.
We introduce a general post-training latent refine-
ment framework that enhances latent reasoning
models such as Coconut (Hao et al., 2024). Our
goal is to improve reasoning stability and accuracy
by augmenting the latent reasoning process with
lightweight, training-free components.

In Coconut, reasoning is performed entirely in
latent space without generating token-level inter-
mediate steps, enabling compact and efficient in-
ference. However, the model conducts latent up-
dates in a fixed, feedforward manner, lacking the
ability to revise its reasoning path or retain contex-
tual memory across steps—Ilimiting its adaptability
when errors occur.

To address these problems, we propose a two-
part refinement strategy applied after training:

* Contrastive Reasoning Feedback Search:
This module compares reasoning outputs from
a weak and a strong model to identify a con-
trastive improvement direction in latent space.
This direction shows how the current reason-
ing should evolve toward stronger inference.

* Residual Embedding Refinement: This
module integrates the contrastive feedback
into the current reasoning using gated resid-
ual updates. By fusing prior context with the
new signal, it preserves useful information
and mitigates semantic drift across steps.

Both modules operate entirely in latent space
through forward passes only, requiring no gradi-
ent updates or parameter changes. Applied during
inference, they enable accurate and consistent rea-
soning with minimal computational overhead.

3.1 Latent Reasoning Backbone

We consider a latent reasoning framework in which
the model conducts multi-step inference entirely
in latent space, without producing token-level in-
termediate steps. As shown in the top path of Fig-
ure 1, the input question x is first encoded into a
latent vector kY, which is then iteratively updated
for T steps using a fixed model block f:

ht = f(h'7h), (D

where h! € R? is the latent embedding at step ¢.
After T steps, the final state h” is passed to a decod-
ing head to generate the final answer. This latent-
only formulation reduces token overhead and im-
proves inference efficiency, making it particularly
well-suited for small or resource-constrained mod-
els. This backbone structure forms the basis of our
reasoning framework. In our implementation, we
adopt Coconut (Hao et al., 2024) as the underlying
latent reasoning model, where the decoder block f
is derived from a pre-trained language model and
kept fixed during inference.

While this setup enables compact and efficient
reasoning, it still faces two key challenges:

1. Trajectory stability: Without memory-
preserving connections, the latent trajectory
may drift or collapse over time.

2. Error correction: There is no mechanism
to guide the model back when reasoning di-
verges, especially in the high-dimensional la-
tent space with many possible paths.

To address these challenges, we introduce two
lightweight post-training refinement modules, con-
trastive latent feedback and residual embedding
refinement, that operate entirely in latent space and
enhance reasoning stability and correctness without
any additional training.

3.2 Post-Training Latent Reasoning
Refinement

The latent reasoning process described in Coconut
produces a series of hidden states h', h?,...,hT
by iteratively applying the model function f to an
initial latent h°. This procedure is efficient and
does not generate text during reasoning. However,
it performs fixed forward updates at each step and
cannot revise or stabilize the reasoning trajectory.
We introduce two training-free modules that op-
erate at the post-training stage: residual refinement
and contrastive latent search. As shown in Figure 1,
these components are applied during inference and



operate on each latent state. Both modules build on
the latent-only structure of Coconut and require no
access to intermediate tokens. They apply directly
to the latent embeddings produced in each step.

Each step starts from the output of the Coconut-
style update h! = f(h'~!), and applies a residual
preservation update followed by a contrastive ad-
justment. These steps are designed to stabilize
and correct the latent trajectory based on human-
inspired memory and comparison mechanisms.

We summarize the full inference procedure in
Algorithm 1 in the Appendix A.

3.2.1 Contrastive Reasoning Feedback Search

The reasoning process can still go off track even
with stable latent updates due to initial uncertainty
or limited model capacity. To make the system
more robust, we introduce a contrastive search
mechanism that enables the model to correct its
latent state without any parameter updates.

As shown in Figure 2, we compare outputs from
two models of different quality at each reasoning
step t: A weaker model (“bad” model like ear-
lier checkpoint), producing latent output i, ; A
stronger model (“good” model like later check-
point), producing output hgood

These outputs are generated from the same input
latent h'. The current latent embedding h! is then
updated in a direction that reduces the distance to
the good model and increases the distance from the
bad model. This gives the gradient signal. Then the
updated latent embedding is obtained by adjusting
along the contrastive direction:

ht = h' 41 Ve [MSE(h', hoq)

— MSE(R!, ht,q)]-

updated —

2

Here, MSE(-) denotes mean squared error be-
tween embeddings, and 7 is a fixed step size. This
update is done through forward passes and gradi-
ent computation at the embedding level only. No
model parameters are changed. The adjustment
is lightweight and compatible with training-free
inference, and can be applied once or iteratively
depending on the step length.

This contrastive search provides a self-correction
mechanism during reasoning. It helps the model ad-
just its latent trajectory without relying on external
feedback or additional samples. This mimics the
role of conflict monitoring and adjustment of the
ACC in human reasoning (Botvinick et al., 2001).

J]
v OQO
)2

Vtroﬁn?ng—Free V/ latent-level update

X no token generation

Figure 2: Contrastive Reasoning Feedback Search. We
compare two models with various reasoning abilities:
one stronger (“good”) and one weaker (“bad”). The
direction from bad to good indicates the path to move.

Coconut does not have any correction mecha-
nism. If the reasoning goes off track, it cannot
adjust or recover. CoT (Wei et al., 2022b) and
Tree-of-Thoughts (Yao et al., 2023a) use exter-
nal sampling or search to fix errors, but they rely
on generating intermediate text. In contrast, our
method updates the latent state directly using inter-
nal feedback from stronger models. This allows for
efficient and flexible reasoning without relying on
token-level outputs or any training.

3.2.2 Residual Embedding Refinement

At each step, we update the latent state by pre-
serving useful information from the previous step.
Instead of directly replacing the latent with the new
output f(h'~1), we blend it with the previous state
hi~—1 using a fixed-weight residual connection:

At =a-h 4 (1—a)-f(R7Y), a€]0,1] (3)

where « is the memory rate. It controls how much
of the previous state is kept. We use a fixed value
and do not train this parameter due to the train-free
setting. This design is inspired by residual net-
works (He et al., 2016) and resembles the working
memory mechanism of the human brain (Koechlin
et al., 2003). It allows the model to accumulate
reasoning context over steps and prevents seman-
tic drift. Without this refinement, the latent state
may lose important early signals, which leads to an
unstable reasoning trajectory.

Compared to Coconut, which discards all prior
hidden states at each step, our refinement preserves
and integrates context, leading to more consistent
and accurate reasoning.



4 Experimental Results

We conduct experiments to evaluate whether our
latent reasoning framework improves reasoning ac-
curacy, supports training-free deployment, and op-
erates efficiently across diverse tasks and models.
Specifically, our experiments are structured to an-
swer the following key questions: Q1: Can our
method improve reasoning performance with mini-
mal cost, using only training-free post-processing?
Q2: Compared to full model retraining, can our
post-training refinement achieve similar improve-
ments with lower resource usage? Q3: How impor-
tant are the two components—residual refinement
and contrastive latent search—in contributing to
performance improvement? Q4: Can the latent
update mechanism consistently steer the model to-
ward more accurate predictions in specific reason-
ing instances? Q5: How robust is our method to
variations in key hyperparameters such as mem-
ory update rate and latent search step size? Q6:
Can our framework generalize well across diverse
language model architectures and parameter sizes?

4.1 Experimental Setup

Datasets. We evaluate our method on five rep-
resentative benchmarks covering math, common-
sense, and multi-hop reasoning: GSM8K (Cobbe
et al., 2021), MathQA (Amini et al., 2019), AQUA-
RAT (Ling et al., 2017), StrategyQA (Geva et al.,
2021), and ProsQA (Hao et al., 2024). Dataset
descriptions are provided in Appendix B.

Models. We exploit three well-recolonized open-
source language models: GPT-2 (117M), Qwen-
2.5 1.5B, and LLaMA-3.2 3B. For contrastive
search, we utilize checkpoints from different train-
ing stages as “good” or “bad” references.

Baselines. We compare our method with the fol-
lowing approaches: (1) No-CoT: directly trains
GPT-2 (Radford et al., 2019) to generate the final
answer without any intermediate reasoning steps;
(2)Chain-of-Thought (CoT) (Wei et al., 2022b):
standard step-by-step natural language reasoning
approach; (3) Coconut (Hao et al., 2024): latent
reasoning without search or refinement; (4) Ours:
latent reasoning with contrastive search and resid-
ual refinement.

Evaluation. We report exact-match accuracy, aver-
aged over 3 random seeds. No fine-tuning is used;
our method improves reasoning purely through for-
ward latent-space updates. Full implementation
details are provided in Appendix D.

4.2 Q1: Overall Reasoning Performance
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[ CoT —
3 Coconut
601 3 Ours
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Figure 3: Accuracy (%) of different reasoning methods
across five benchmarks.

To answer Q1, we compare our method with
the baseline algorithms on five benchmarks to test
whether our latent-space refinement strategy im-
proves accuracy with small costs (train-free). Fig-
ure 3 shows the reasoning accuracy (Y-axis) of our
method on five benchmark tasks (X-axis).

Figure 3 shows that our method consistently
outperforms latent-only reasoning (Coconut) and
explicit token-based reasoning (CoT) on four out
of five tasks. Notably, on the tasks of MathQA
and AQUA—both that involves multi-step numer-
ical and symbolic reasoning, our model achieves
+1.95% and +2.76% absolute gains (not relative
improvement ratio) over Coconut in terms of rea-
soning accuracy, respectively. On ProsQA and
StrategyQA, which focus more on structured logi-
cal reasoning and commonsense composition, we
observe absolute gains of +3.67% and +2.63% in
reasoning accuracy.

The results highlight that: (1) Although CoT
produces explicit thought steps, it suffers from ver-
bosity and error accumulation, especially in non-
math tasks. (2) Coconut improves reasoning by
operating in a compact latent space, but lacks error
correction and stable refinement. (3) Our method
combines both advantages through residual preser-
vation and feedback-driven search, thus, result into
more reliable and generalizable reasoning, espe-
cially in settings where intermediate steps are im-
plicit or hard to verbalize.

One exception is GSM8K, where CoT remains
the most effective method (42.76%). This is be-
cause GSMB8K contains complex arithmetic prob-
lems that require symbolic calculations. Humans
rely on written steps for such tasks rather than
purely mental computation. Without external tools
or explicit formulas, latent reasoning struggles to
handle long-chain numerical operations. In con-
trast, MathQA, although also math-focused, has



more structured and templated problems and is
multiple-choice, which makes the task easier com-
pared to GSM8K’s open-ended answers. Under
such settings, our method can benefit more from
embedding refinement and soft memory tracking.
This highlights the differences in cognitive de-
mands between math datasets and suggests that
combining latent reasoning with symbolic or tool-
augmented components may be a future direction.

4.3 Q2: Training vs. Inference Performance

To answer Q2, we compare our train-free method
with other training strategies to examine reasoning
accuracy and resource usages under the ProsQA
dataset. We train a base model using Coconut for
30 epochs, then evaluate four settings: (1) using
the original Coconut model, (2) applying our latent
reasoning only during inference, (3) continuing
training for 10 more epochs with our latent reason-
ing enabled, and (4) applying our latent reasoning
during both training and inference.

Figure 4 shows that our method achieves the
best accuracy (+4.47%) when applied only dur-
ing inference, with minimal overhead (24 seconds,
31.23GB memory). In contrast, continuing train-
ing with latent reasoning adds significant time (54+
minutes) and memory cost (39.04GB), yet leads
to smaller accuracy gains (+1.63%). Using the
method in both training and inference further in-
creases the cost but gives almost no improvement.
These results highlight the efficiency of our strat-
egy: without any backpropagation or weight up-
dates, our inference-only setup improves perfor-
mance while saving training time and GPU re-
sources and without the need of further training.

Insights. Our method avoids expensive re-
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Figure 4: Latent Reasoning in Training vs. Inference.

training, requires only forward computation, and
still brings accuracy improvement. It is lightweight
and improves the reasoning trajectory without
changing the model parameters. These computa-
tional benefits make it practical for deployments in
low-resource or frozen-model scenarios.

4.4 Q3: Study of Contrastive Search and
Residual Refinement

To answer Q3, we remove contrastive search and
residual refinement one by one to understand the
role of each technical component.

Table 1: Ablation study on MathQA. We show the im-
pact of each component in our method.

Variant Accuracy (%) Gain (%)
Latent only 38.25 -

+ Residual refinement 40.02 +4.63

+ Latent Search 39.79 +4.03

+ Residual + Search (ours) 40.20 +5.10

Table 1 highlights the importance of both resid-
ual refinement and contrastive search in our frame-
work. Compared with the baseline Coconut with
only latent thoughts, our method of incorporating
residual connections yields an +4.63% improve-
ment in accuracy. This observation demonstrates
that preserving and gradually refining previous la-
tent states help to stabilize reasoning trajectories.
It aligns with the working memory mechanism
in human prefrontal cortex, where ongoing cog-
nitive representations are maintained and adjusted
over time. Only incorporating contrastive search
leads to a gain of +4.03%. This observation shows
that self-correction based on improving directions,
which mimic the role of the anterior cingulate cor-
tex (ACC) in conflict detection, enables the model
to recover from suboptimal reasoning directions.
Finally, integrating both residential connections
and contrastive search can result in the best per-
formance (+5.10%). This observation shows that
stable memory evolution and dynamic search to-
gether form a lightweight and training-free latent
reasoning mechanism that maintains contexts, de-
tects errors, and refines internal representations
without relying on explicit intermediate language.

4.5 Q4: A Step-wise Case Study

To answer Q4, we visualize the impacts of latent
reasoning refinement on answer prediction to better
understand how our method improves reasoning
using the MathQA dataset.
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Figure 5: Case study: our method adjusts the latent
embedding to reach the correct answer.

Figure 5 shows the baseline Coconut produces a
latent state h; and predicts the wrong choice (“d”)
with the highest probability. After applying our
latent refinement, the updated embedding h; leads
to the correct prediction (“e”). One possible expla-
nation is: contrastive search adjusts the latent state
using information from reference models, while
residual refinement helps to preserve internal in-
formation across steps. Both are used in forward
steps only without additional training. The model
dynamically adjusts its internal representation to
align with the correct reasoning trajectory.

Insights. The case study illustrates how our
method enables internal latent correction before
decoding. Rather than relying on external tokens
or explicit logic, the model self-adjusts in latent
space, which reflects how humans reconsider their
thoughts before answering. We provide three more
examples in Appendix G.

4.6 QS: Study of Hyperparameter Sensitivity

To answer Q5, we examine the sensitivity of two
key parameters of contrastive search and residual
refinement using the MathQA and AQUA datasets:
(1) Search Step Length (7 in Equation (2)): the
step of each latent update in the contrastive search;
(2) Memory Rate (« in Equation (3)): how much
previous latent state is memorized across reason-
ing steps. For each query, we perform 3 rounds
of latent refinement, each of which includes one
residual update and one search update, and fix other
factors for fair comparisons.

Figure 6a shows the heatmap of accuracy on
MathQA over memory rates and search steps,
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Figure 6: Hyperparameter sensitivity on two datasets.
The colors measure reasoning accuracy.

where red indicates high accuracy and green indi-
cates low accuracy. Overall, the reasoning accuracy
increases when the memory rate increases, but is
less affected by the search step length. This sug-
gests that mathematical problem solving benefits
more from stable accumulation of prior steps and
residual refinement (i.e., memory rate). A stronger
memory allows the model to preserve intermediate
reasoning steps for better reasoning. Figure 6b
shows the opposite trend. AQUA is less sensitive
overall but is more affected by the search step size.
This suggests that commonsense QA relies more
on adaptive correction than long-term memory, so
flexible updates in latent space have a larger impact
than memory accumulation.

Insights. The results show that different reason-
ing tasks may rely on different cognitive mecha-
nisms. Math-heavy tasks need better memory. QA
tasks benefit more from flexible error correction.
Our framework allows both without extra training.

4.7 Q6: Generalization Across Backbones

To answer Q6, we evaluate the generalization of
our framework on different LLM backbones across
architectures and sizes: GPT-2 (117M), Qwen-2.5
1.5B, and LLaMA-3.2 1B models. Table 2 shows
that our method on top of the three backbone mod-
els reach over 40% accuracy on MathQA. This
suggests that our latent refinement strategy can be
applied to both small and medium-sized models
without any changes to model architecture. Our
method adds little overhead in terms of resource us-
age. Meanwhile, training time and memory usage
increase with model size as expected, but inference
remains efficient. All models finish complete in



under 7 minutes with less than 24 GB of mem-
ory. Our method is simple and general. It can be
used on top of any existing language model to im-
prove reasoning performance, even when training
resources are limited. It does not require retraining
or modification of model weights, which makes it
easy to adopt in different settings.

Table 2: Comparison across LLMs on MathQA.

GPT-2 Qwen LLaMA
Parameters 117M 1.5B 3B
Accuracy (%) 40.20 43.04 41.10
Train Time (min)  18.95 95.80 78.38
Train Mem (GB)  45.68 45.33 (LoRA) 45.74 (LoRA)
Infer Time (min) 4.27 6.31 5.83
Infer Mem (GB) 22.64 23.12 22.84

4.8 Study of Token Efficiency

Latent reasoning avoids generating intermediate
natural language steps (i.e., thoughts), thus, re-
duce output token number. We compare the av-
erage number of generated tokens between Chain-
of-Thought (CoT) prompting and our latent reason-
ing method on the MathQA and AQUA datasets.
Table 3 shows that latent method reduces token
usage by over 92% on both datasets. This is be-
cause latent steps are performed in a latent space
and don’t produce textual outputs at each reasoning
step. These results suggest that latent reasoning is
not only more compact but also more cost-efficient
during inference. This makes it particularly suit-
able for deployment in resource-constrained set-
tings or large-scale usage.

Table 3: Average generated tokens per query.

CoT Latent Reduction
MathQA 66.71 5.02 92.47%
AQUA 7273  5.31 92.65%

5 Related Work

5.1 Chain of Thought Reasoning

Chain-of-Thought (CoT) prompting enhances rea-
soning in LLMs by decomposing complex prob-
lems into step-by-step textual reasoning traces (Wei
et al., 2022b; Kojima et al., 2022). Later works
improve CoT with better aggregation (e.g., self-
consistency (Wang et al., 2022)), scalable prompt
generation (Zhang et al., 2022), and tree-structured
exploration like Tree-of-Thoughts (Yao et al.,

2023a). Prompting strategies have also been
optimized through complexity-aware design (Fu
et al.,, 2022) and iterative demonstration (Nye
et al., 2021). These techniques have been widely
applied to domains such as math (Zhou et al.,
2022), commonsense (Huang et al., 2022), and
symbolic logic (Liu et al., 2023), showing broad
improvements. Extensions such as Selection-
Inference (Creswell et al., 2022), Program-of-
Thoughts (Chen et al., 2022), and Multimodal-
CoT (Lu et al., 2022) further combine CoT with
selection mechanisms, symbolic programs, or vi-
sual reasoning inputs.

5.2 Latent-Space Reasoning in LL.Ms

Recent work proposes moving reasoning from
token-level generation to latent space updates, en-
abling more compact and abstract reasoning. Co-
conut (Hao et al., 2024) is a foundational method
that replaces intermediate token outputs with inter-
nal latent states that evolve step by step. Other ap-
proaches expand this idea through latent sampling
(LaTRO (Chen et al., 2024)), self-training to un-
cover latent reasoning (SERT (Zhang et al., 2025)),
or expectation-maximization loops for iterative rea-
soning (Ruan et al., 2025). Looped transform-
ers (Saunshi et al., 2025) reuse a smaller model
multiple times to simulate deep reasoning trajecto-
ries. In applied domains, ReaRec (Tang et al., 2025)
introduces latent multi-step reasoning into recom-
mender systems, demonstrating the broader utility
of latent-state methods beyond language tasks.

6 Conclusion Remarks

We present a latent reasoning framework for LLM
by introducing residual refinement and contrastive
latent search to improve stability and enable dy-
namic self-correction without retraining. The new
framework operates in a training-free, plug-and-
play manner. Experiments show that our method
improves accuracy by 2—-5% over latent-only rea-
soning across five benchmarks, with up to 7.7%
gain on ProsQA. The improvement demonstrates
the effectiveness of latent refinement with internal
information. We show that even without token-
level outputs or supervised feedback, LLMs can
adjust internal belief states using post-hoc represen-
tational updates, pointing toward a new direction
of self-corrective, embedding-level reasoning.



Limitations

While our framework improves reasoning perfor-
mance across multiple tasks and models, it still has
several limitations. (1) Even though the method
can be applied to almost all open-source LLMs, we
just test it on some relatively small LLMs. So the
results are not comparable to the latest model, like
ChatGPT-4.1 or DeepSeek-R1. In addition, we do
not compare with sampling-based or search-based
CoT variants (e.g., Tree-of-Thought (Yao et al.,
2023a), Self-Consistency (Wang et al., 2022)),
since our focus is on deterministic, internal la-
tent refinement without additional decoding or re-
ranking. (2) Latent reasoning may not be optimal
for all types of tasks. For example, human tend
to solve math problems with written-down logic,
which involves explicit reasoning processes. In the
future study, the routing method (Wang et al., 2025)
can be applied to dynamically reason the query. (3)
Latent reasoning lacks human-readable intermedi-
ate steps, making it harder to interpret or debug
compared to token-based methods. (4) Inspired by
LLM agent researches, the future work can intro-
duces tools to ensure stronger, more correct, and
more reasonable reasoning processes.
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A Algorithm Overview

Here is the Algorithm pseudo-code of our train-free
framework.

Algorithm 1 Latent Reasoning with Residual Re-
finement and Contrastive Search (Inference-Time)

Require: Question input x, reasoning steps 7, pre-
trained model f, residual weight «, search step
size 1), strong model foo04, weak model fiaq

1: Encode input z into initial latent state h"

2: fort =1toT do

3. Compute latent update: Ah? < f(h!™1)

4. Residual refinement: h <— o - h!=1 + (1 —

a) - Ah!

5. if Contrastive search is enabled then

6: Get strong model output: hf ., <
f good(ht)

7: Get weak model output: h{_4 < foaa(h')

8: Compute  gradient: gt —
Vi [MSE(R, hlgoq) — MSE(!, bt |

9: Contrastive update: ht < h! + 1 - g¢'

10:  end if

11: end for

12: Decode final latent A7 into answer y
13: return Answer y



https://aclanthology.org/2025.naacl-long.545/
https://aclanthology.org/2025.naacl-long.545/
https://aclanthology.org/2025.naacl-long.545/

B Dataset Descriptions

GSMSK (Cobbe et al., 2021)!: A dataset of 8.5K
high-quality grade school math word problems cre-
ated by human problem writers. It is divided into
7.5K training and 1K test examples. Each problem
requires 2—8 steps of basic arithmetic reasoning
(addition, subtraction, multiplication, division) and
includes a detailed natural language solution expla-
nation.

MathQA (Amini et al., 2019): A dataset contain-
ing approximately 37.2K math word problems de-
rived from AQuA. Each problem is annotated with
a programmatic solution template using a domain-
specific language comprising 58 operators. The
dataset covers various mathematical domains, in-
cluding percentages, geometry, and linear equa-
tions, and provides multiple-choice answers.
AQUA-RAT (Ling et al., 2017)%: A large-scale
dataset consisting of approximately 100K algebraic
word problems. Each question is accompanied by a
step-by-step natural language rationale explaining
the solution process. The dataset is designed to
train models capable of generating both the solution
and the explanatory rationale.

StrategyQA (Geva et al., 2021)*: A question-
answering benchmark comprising 2,780 examples.
Each question requires implicit multi-hop reason-
ing, where the necessary reasoning steps are not
explicitly stated and must be inferred. The dataset
includes decompositions and evidence paragraphs
for each question.

ProsQA (Hao et al., 2024): A diagnostic dataset
designed to evaluate models’ planning abilities. It
features examples that require multi-step reasoning
and the ability to handle distractors. Each question
is paired with a human-written rationale, facilitat-
ing the assessment of models’ reasoning processes.

C Chain-of-Thought Data Construction

To compare different reasoning paradigms, we con-
struct CoT-style training and evaluation data from
datasets that provide intermediate reasoning steps.
Each example contains three parts: a question z,
a list of steps s = {sy, s9, ..., s } describing the
reasoning trace, and a final answer y.

"https://huggingface.co/datasets/openai/gsm8k

2https://huggingface.co/datasets/allenai/math_
qa

3https://huggingface.co/datasets/deepmind/
aqua_rat

4https://huggingface.co/datasets/voidful/
StrategyQA

We format the data differently depending on the
method:

e No-CoT (Direct QA): The model is trained
to map the input question directly to the an-
swer. Only (z,y) pairs are used, without any
reasoning trace.

* CoT (Textual Supervision): The model is
trained to generate both the reasoning steps
and the final answer as a single sequence. The
input is x, and the output is join(sy, ..., s,) +
1. This helps the model learn to reason explic-
itly in text.

* Latent CoT (Latent Reasoning): We fol-
low the Coconut (Hao et al., 2024) setup. The
model is trained to generate the answer y from
input z, but the reasoning steps s are used as
supervision in the latent space. They are not
generated as tokens, but guide the intermedi-
ate hidden representations.

This unified setup allows us to study how dif-
ferent forms of reasoning supervision affect model
performance, and how latent-space reasoning com-
pares to explicit token-level chains.

D Implementation and Hyperparameters

Optimization. All models are trained with the
AdamW optimizer, using a learning rate of 3 X
1072, batch size 16, and weight decay 0.01. Train-
ing runs for 50 epochs unless specified otherwise.
When training is staged (e.g., for latent reasoning),
we use 30 epochs for initial training and 10 for op-
tional refinement. Gradients are accumulated every
step (no gradient accumulation).

Model Backbones. We primarily use GPT-2
(117M) as the language model. The pretrained
model is loaded from openai-community/gpt2.
For contrastive latent search, we define a “bad”
checkpoint (early-stage model) and a “good” check-
point (later-stage model), loaded separately and
used in forward-only search (no weight update).

Latent Reasoning Configuration.
happens in the latent space:
» Latent update steps: 3 iterations per query.
* Search step size (1): from 1 to 5000: controls
the gradient step in contrastive search.
* Residual memory rate («): from 0.01 to
1: controls how much information from the
previous latent state is retained.
Both residual update and contrastive search are
applied at each reasoning step without gradient

All reasoning
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backpropagation. The full process is training-free
and runs with forward computation only.

Tokenization and Decoding. We use the native
tokenizer of each backbone model. For latent rea-
soning, we add special tokens such as <|latent|>
to mark latent segments. The max token limit is set
to 64 for math tasks and 128 for QA tasks.

Reproducibility. All experiments are run with
seed 0. Our setup supports distributed training
and evaluation across 4 GPUs. Each configuration,
model path, and dataset split is version-controlled
and specified in the released code.

E Experimental Environment

All experiments were conducted on the Ubuntu
22.04.3 LTS operating system, with a 13th Gen
Intel(R) Core(TM) 19-13900KF CPU, 128GB of
system RAM, and four NVIDIA RTX A6000 GPUs
(each with 48GB of VRAM). The experiments
were implemented using Python 3.11.5 and Py-
Torch 2.0.1.

F Generalization to Unseen Tasks

In this section, we analyze whether latent reasoning
learned from one task can generalize to another
without re-training. This evaluates the portability
of internal latent-space dynamics across domains.

We conducted a controlled experiment where all
models were trained on GSM8K and directly tested
on MathQA. Both datasets involve multi-step math
word problems but differ in format, vocabulary, and
complexity. For reference, we also evaluate models
trained directly on MathQA.

Table 4: Generalization to MathQA: Accuracy of mod-
els trained on different datasets

Trained on Trained on .
Model MathQA GSMSK Difference
CoT 3542 0.00 -35.42
Coconut 38.25 0.00 -38.25
Ours 40.20 0.00 -40.20
Observation. As shown in Table 4, none of the

models generalize successfully from GSM8K to
MathQA. Accuracy drops to 0 across CoT, Co-
conut, and our latent reasoning framework.

Analysis. These results highlight the challenge
of cross-task generalization in small and medium-
sized LLMs. Despite using latent representations

and post-training refinement, our method—Iike
CoT and Coconut—fails to transfer reasoning skills
between datasets. We believe this is due to two
factors: (1) models like GPT-2 lack the scale and
capacity needed for emergent generalization (Wei
et al., 2022a); (2) our method is designed to refine
reasoning trajectories within a task, not to perform
domain adaptation. While effective in-distribution,
the framework does not substitute for task-specific
training when reasoning patterns differ across do-
mains.

G More Output Case Studies

We present additional examples to illustrate how
our latent reasoning refinement improves model
predictions. In each case, the base Coconut model
produces a suboptimal answer, while our method
adjusts the latent representation to arrive at the
correct one. These examples further demonstrate
the effectiveness of residual and contrastive updates
at inference time.

G.1 Example 1

Query: i x / & years ago roger was 21 years
old and x / 4 years €rom now he will be

o

4 x years old | how old will he be {
5 x years from now ? ] Correct \I
Choicei a) 32 1 Answer:
b) 35 | e 1

e) 30 ) P

4) 40
e) 70

“token_id"; 264,
“erob’: 0.2578,
% “token_str' "¢’

! “boken_id" 275,
e’ “orob’s 0.2427
¢ “token_str: " d"

Figure 7: Additional Case study 1: our method adjusts
the latent embedding to reach the correct answer.

In Figure 7, the input question requires multi-
hop reasoning. The base model (Coconut) assigns
the highest probability to the incorrect option “c”
(0.2603), with the correct answer “e” ranked third
(0.2486). After our latent refinement procedure,
the representation is updated, and the model now
predicts “e” with the highest confidence (0.2626),
correcting its earlier mistake. This case shows that
even small adjustments in the latent space can sig-
nificantly shift the model’s final decision.



G.2 Example 2 In Figure 9, the model is tasked with a multi-
step calculation problem involving percentages and
sales tax. The initial output ranks “b” highest

Query: patanjali walked for 3 days . she walked 18

miles on the first day | walking 3 miles per TP _
hour . on the second day she walked Far one (0.3696), but the correct answer “c” is only sec
less hour but she walked one wile per hour , R — 1 1

faster than on the first day . on the third "Correct \‘ Ond (03635) After applylng contrastive SearCh’
day she walked the same number of hours a: 1 1
onhe Ft doy 1 b ot the some spoed o5 | | Answer: | the updated latent embedding increases the score
Cotlomean oy b S R e ) of “c” to 0.3708, making it the new top choice. No-

Choice: a) 24 b) 44 c) 5% . . . ..
B o Sea tably, t'h.ls correctlon. occurs without any retraining
“roken s 257, or additional supervision.

‘prob: 03135,
"token_str's ' o’

! “token_id® 257, 1
 “prob 03541,

ken_str': " a1

"token_id"; 264,
i "prob’ 02354,
“token_str's * "

Coconut

“ w304, o\ )
‘prob”; 0,3203,
“token_str’: " e

“Coken_id': 269,

‘prob'; 0.2344,
“foken_str' " "

Upo!ateo(
ht

Figure 8: Additional Case study 2: our method adjusts
the latent embedding to reach the correct answer.

Figure 8 contains a more complex temporal and
numerical reasoning question. Initially, the model
incorrectly predicts option “a” (0.3541) as the an-
swer. After our latent-space update, the probability
of “e” rises to 0.3491, making it the top prediction.
The model successfully incorporates the revised la-
tent information to override its earlier bias toward
an incorrect answer. This example underscores the
ability of latent search to shift the model’s internal
belief in a non-disruptive and interpretable way.

G.3 Example 3

Query: a couple spent $ 198 in total while dining
out and paid this amount using o credit card
the $ 198 figure included o 20 percent tip
which was paid on top of the price which "C £
already included a sales tax of 10 percent |, “OFTEEL 1
on top of the price of the food . what was | 1 Answer: 1

-

the actual price of the Food before tax \ 2 )
and tip ? S’
Choice: ) 130 b) 140 c) 150
d) 160 e) 170
- “token_id"; 275,
...... ... lprob’ 03633,
+ “foken_id 275, 3 < s %, “token_str: ' b
i “prob’: 03696, ! ¢ "token_id': 264,
o ren_ e b L "probs 03 ! "token_id": 257,
Coconut 3 "ok ! "prob"i 0.2553,
.......... S e 0258
‘token_id" 269, Fokenstr
"orob"; 0.3635,

"token_strs &
"Yoken_id": 257,

‘prob": 0.2555,
“token_str’: " a"

Upo!ateo(
ht

Figure 9: Additional Case study 3: our method adjusts
the latent embedding to reach the correct answer.
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