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Abstract001

Reasoning is a key component of language un-002
derstanding in Large Language Models. While003
Chain-of-Thought prompting enhances perfor-004
mance via explicit intermediate steps, it suf-005
fers from sufficient token overhead and a fixed006
reasoning trajectory, preventing step-wise re-007
finement. Recent advances in latent reasoning008
address these limitations by refining internal009
reasoning processes directly in the model’s la-010
tent space, without producing explicit outputs.011
However, a key challenge remains: how to012
effectively update reasoning embeddings dur-013
ing post-training to guide the model toward014
more accurate solutions. To overcome this chal-015
lenge, we propose a lightweight post-training016
framework that refines latent reasoning trajecto-017
ries using two novel strategies: 1) Contrastive018
reasoning feedback, which compares reason-019
ing embeddings against strong and weak base-020
lines to infer effective update directions via021
embedding enhancement; 2) Residual embed-022
ding refinement, which stabilizes updates by023
progressively integrating current and historical024
gradients, enabling fast yet controlled conver-025
gence. Extensive experiments and case studies026
are conducted on five reasoning benchmarks to027
demonstrate the effectiveness of the proposed028
framework. Notably, a +5% accuracy gain on029
MathQA without additional training. Code and030
data are publicly available at this link.031

1 Introduction032

Reasoning serves as a fundamental capability in033

Large Language Models (LLMs), enabling them034

to comprehend prompts and effectively solve com-035

plex tasks. Existing approaches, such as Chain-of-036

Thought (CoT) (Wei et al., 2022b) and ReAct (Yao037

et al., 2023b), guide models toward correct answers038

by explicitly generating intermediate textual rea-039

soning steps. While these methods have shown ef-040

fectiveness, they suffer from: 1) the explicit reason-041

ing steps cause substantial token overhead, leading042

to increased computational cost; 2) the reasoning 043

trajectory becomes fixed once the template is gen- 044

erated, preventing step-by-step refinement during 045

the generation process. 046

Recent advances have partially addressed them 047

by converting explicit reasoning steps into latent 048

embeddings, enabling latent reasoning in models, 049

such as Coconut (Hao et al., 2024). They repre- 050

sent the reasoning state using the LLM’s hidden 051

state (i.e., “continuous thought”) and recursively 052

feed it back into the model in the latent space to 053

enable more effective reasoning. However, there 054

are two critical challenges: 1) the reasoning trajec- 055

tory in the latent space lacks explicit directional 056

guidance, making it difficult to ensure consistent 057

progression toward more accurate reasoning states; 058

2) the recursive embedding updates tend to be un- 059

stable, especially across multiple reasoning steps, 060

which may compromise both robustness and accu- 061

racy. These challenges motivate us to explore how 062

reasoning embeddings can be effectively and effi- 063

ciently updated during post-training to guide the 064

model toward more accurate solutions. 065

To this end, we draw inspiration from two com- 066

plementary lines of research. For the challenge 067

of providing directional guidance in reasoning em- 068

bedding updates, we are inspired by reinforcement 069

learning from human feedback (RLHF) (Ouyang 070

et al., 2022), where learning from relative perfor- 071

mance comparisons has demonstrated superior effi- 072

ciency and effectiveness compared to relying solely 073

on absolute supervision. For the challenge of stabi- 074

lizing recursive updates, we take inspiration from 075

the success of momentum-based optimization tech- 076

niques in deep learning (Qian, 1999), which demon- 077

strate the importance of adaptively integrating his- 078

torical and current information to achieve smoother 079

and more stable convergence. 080

Thus, we propose a lightweight post-training 081

framework to refine the latent reasoning embed- 082

dings, built upon two novel strategies: 083
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• Contrastive Reasoning Feedback Search.084

To infer updated directions in the latent rea-085

soning space, we pass the current reasoning086

embedding through both a strong and a weak087

LLM to obtain enhanced embeddings. We de-088

rive a contrastive direction by comparing the089

outputs of strong and weak models, and use its090

gradient with respect to the current embedding091

to guide the reasoning embedding update.092

• Residual Embedding Refinement. To ensure093

stable updates in the latent reasoning space,094

we blend the current reasoning embedding095

with its previous state using a residual weight-096

ing parameter. This interpolation smooths the097

transition between steps and prevents abrupt098

shifts in the reasoning process. As a result, the099

model achieves more consistent convergence100

across multi-step latent reasoning.101

We empirically evaluate our method through102

comprehensive experiments and case studies, high-103

lighting its effectiveness, efficiency, and scalability104

across diverse settings. These experiments demon-105

strate that our strategies significantly enhance rea-106

soning performance compared to latent-only and107

explicit token-based reasoning baselines. Notably,108

on the MathQA task, our approach improves ac-109

curacy by over 5% compared to the original latent110

reasoning method. We further conduct case studies111

to illustrate how the latent embedding evolves step112

by step. The results show that the embedding pro-113

gresses toward more accurate reasoning solutions.114

These empirical findings not only validate the115

effectiveness of our approach but also highlight its116

practical value. Our framework offers three key117

advantages: Efficiency and Cost-Effectiveness.118

The proposed method enhances reasoning perfor-119

mance via a lightweight post-training refinement120

process. It does not require any modification to the121

model architecture or parameters, enabling consis-122

tent improvements with minimal cost. Dynamic123

Post-Training Adaptation. Both components op-124

erate after training to refine the reasoning process.125

By preserving informative latent states and explor-126

ing better latent representations, the model dynami-127

cally adjusts its internal reasoning trajectories with-128

out requiring additional training. Training-Free129

Deployment. Our refinement procedure is entirely130

training-free: it relies solely on forward computa-131

tion in the latent space and avoids any backpropaga-132

tion or parameter updates. This makes the method133

easy to integrate into existing models as a plug-and-134

play component at the post-training stage.135

2 Preliminary 136

2.1 Problem Definition 137

We focus on complex reasoning tasks where a large 138

language model (LLM) generates a correct answer 139

y from an input question x, such as in math word 140

problems, multi-hop question answering, and com- 141

monsense reasoning. These tasks typically require 142

multiple inference steps, even if such steps are not 143

explicitly annotated. Formally, the objective is to 144

learn a function f : x → y, where intermediate 145

cognitive states are latent and only the final answer 146

is observed. While optional intermediate steps can 147

be included during training, they are often unavail- 148

able during inference. Building on the latent rea- 149

soning framework, we represent each reasoning 150

step as an embedding in a latent space. Our key 151

contribution is to model how to efficiently explore 152

transitions within the reasoning embedding space 153

that lead to accurate final answers. By capturing 154

these latent trajectories, our approach enables the 155

model to reason more effectively, even without ex- 156

plicit supervision over intermediate steps. 157

2.2 Chain-of-Thought Reasoning and Its 158

Limitations 159

Chain-of-Thought (CoT) prompting (Wei et al., 160

2022b) and its variants (Wang et al., 2022; Yao 161

et al., 2023b) decompose reasoning into a sequence 162

of intermediate text steps, improving model accu- 163

racy and interpretability on complex tasks. How- 164

ever, CoT remains inherently limited: 165

• Token-level serialization: All reasoning steps 166

are expressed via natural language, leading to 167

low-dimensional, rigid representations. 168

• Static trajectory: Once the prompt is fixed, 169

the reasoning path is deterministic, with lim- 170

ited room for correction. 171

• Lack of feedback: CoT does not support in- 172

ternal error detection or trajectory revision 173

unless multiple sampled paths are compared 174

externally. 175

These limitations motivate our shift toward 176

latent-space reasoning. Rather than generating ex- 177

plicit token sequences at each step, we allow the 178

model to evolve its internal reasoning embedding 179

over multiple steps. This latent evolution enables 180

the model to retain richer intermediate information, 181

search for better latent embeddings, and adapt its 182

reasoning process more flexibly, particularly under 183

limited model capacity. 184
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3 Method185

Figure 1: Overview of our reasoning framework. The
bottom path shows how contrastive feedback first iden-
tifies the update direction for the reasoning embedding,
which is then integrated through residual refinement to
produce the current reasoning state.

Figure 1 shows the overview of our framework.186

We introduce a general post-training latent refine-187

ment framework that enhances latent reasoning188

models such as Coconut (Hao et al., 2024). Our189

goal is to improve reasoning stability and accuracy190

by augmenting the latent reasoning process with191

lightweight, training-free components.192

In Coconut, reasoning is performed entirely in193

latent space without generating token-level inter-194

mediate steps, enabling compact and efficient in-195

ference. However, the model conducts latent up-196

dates in a fixed, feedforward manner, lacking the197

ability to revise its reasoning path or retain contex-198

tual memory across steps—limiting its adaptability199

when errors occur.200

To address these problems, we propose a two-201

part refinement strategy applied after training:202

• Contrastive Reasoning Feedback Search:203

This module compares reasoning outputs from204

a weak and a strong model to identify a con-205

trastive improvement direction in latent space.206

This direction shows how the current reason-207

ing should evolve toward stronger inference.208

• Residual Embedding Refinement: This209

module integrates the contrastive feedback210

into the current reasoning using gated resid-211

ual updates. By fusing prior context with the212

new signal, it preserves useful information213

and mitigates semantic drift across steps.214

Both modules operate entirely in latent space215

through forward passes only, requiring no gradi-216

ent updates or parameter changes. Applied during217

inference, they enable accurate and consistent rea-218

soning with minimal computational overhead.219

3.1 Latent Reasoning Backbone 220

We consider a latent reasoning framework in which 221

the model conducts multi-step inference entirely 222

in latent space, without producing token-level in- 223

termediate steps. As shown in the top path of Fig- 224

ure 1, the input question x is first encoded into a 225

latent vector h0, which is then iteratively updated 226

for T steps using a fixed model block f : 227

ht = f(ht−1), (1) 228

where ht ∈ Rd is the latent embedding at step t. 229

After T steps, the final state hT is passed to a decod- 230

ing head to generate the final answer. This latent- 231

only formulation reduces token overhead and im- 232

proves inference efficiency, making it particularly 233

well-suited for small or resource-constrained mod- 234

els. This backbone structure forms the basis of our 235

reasoning framework. In our implementation, we 236

adopt Coconut (Hao et al., 2024) as the underlying 237

latent reasoning model, where the decoder block f 238

is derived from a pre-trained language model and 239

kept fixed during inference. 240

While this setup enables compact and efficient 241

reasoning, it still faces two key challenges: 242

1. Trajectory stability: Without memory- 243

preserving connections, the latent trajectory 244

may drift or collapse over time. 245

2. Error correction: There is no mechanism 246

to guide the model back when reasoning di- 247

verges, especially in the high-dimensional la- 248

tent space with many possible paths. 249

To address these challenges, we introduce two 250

lightweight post-training refinement modules, con- 251

trastive latent feedback and residual embedding 252

refinement, that operate entirely in latent space and 253

enhance reasoning stability and correctness without 254

any additional training. 255

3.2 Post-Training Latent Reasoning 256

Refinement 257

The latent reasoning process described in Coconut 258

produces a series of hidden states h1, h2, ..., hT 259

by iteratively applying the model function f to an 260

initial latent h0. This procedure is efficient and 261

does not generate text during reasoning. However, 262

it performs fixed forward updates at each step and 263

cannot revise or stabilize the reasoning trajectory. 264

We introduce two training-free modules that op- 265

erate at the post-training stage: residual refinement 266

and contrastive latent search. As shown in Figure 1, 267

these components are applied during inference and 268
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operate on each latent state. Both modules build on269

the latent-only structure of Coconut and require no270

access to intermediate tokens. They apply directly271

to the latent embeddings produced in each step.272

Each step starts from the output of the Coconut-273

style update ht = f(ht−1), and applies a residual274

preservation update followed by a contrastive ad-275

justment. These steps are designed to stabilize276

and correct the latent trajectory based on human-277

inspired memory and comparison mechanisms.278

We summarize the full inference procedure in279

Algorithm 1 in the Appendix A.280

3.2.1 Contrastive Reasoning Feedback Search281

The reasoning process can still go off track even282

with stable latent updates due to initial uncertainty283

or limited model capacity. To make the system284

more robust, we introduce a contrastive search285

mechanism that enables the model to correct its286

latent state without any parameter updates.287

As shown in Figure 2, we compare outputs from288

two models of different quality at each reasoning289

step t: A weaker model (“bad” model like ear-290

lier checkpoint), producing latent output htbad; A291

stronger model (“good” model like later check-292

point), producing output htgood.293

These outputs are generated from the same input294

latent ht. The current latent embedding ht is then295

updated in a direction that reduces the distance to296

the good model and increases the distance from the297

bad model. This gives the gradient signal. Then the298

updated latent embedding is obtained by adjusting299

along the contrastive direction:300

htupdated = ht + η · ∇ht

[
MSE(ht, htgood)

−MSE(ht, htbad)
]
.

(2)301

Here, MSE(·) denotes mean squared error be-302

tween embeddings, and η is a fixed step size. This303

update is done through forward passes and gradi-304

ent computation at the embedding level only. No305

model parameters are changed. The adjustment306

is lightweight and compatible with training-free307

inference, and can be applied once or iteratively308

depending on the step length.309

This contrastive search provides a self-correction310

mechanism during reasoning. It helps the model ad-311

just its latent trajectory without relying on external312

feedback or additional samples. This mimics the313

role of conflict monitoring and adjustment of the314

ACC in human reasoning (Botvinick et al., 2001).315

Figure 2: Contrastive Reasoning Feedback Search. We
compare two models with various reasoning abilities:
one stronger (“good”) and one weaker (“bad”). The
direction from bad to good indicates the path to move.

Coconut does not have any correction mecha- 316

nism. If the reasoning goes off track, it cannot 317

adjust or recover. CoT (Wei et al., 2022b) and 318

Tree-of-Thoughts (Yao et al., 2023a) use exter- 319

nal sampling or search to fix errors, but they rely 320

on generating intermediate text. In contrast, our 321

method updates the latent state directly using inter- 322

nal feedback from stronger models. This allows for 323

efficient and flexible reasoning without relying on 324

token-level outputs or any training. 325

3.2.2 Residual Embedding Refinement 326

At each step, we update the latent state by pre- 327

serving useful information from the previous step. 328

Instead of directly replacing the latent with the new 329

output f(ht−1), we blend it with the previous state 330

ht−1 using a fixed-weight residual connection: 331

ht = α·ht−1+(1−α)·f(ht−1), α ∈ [0, 1] (3) 332

where α is the memory rate. It controls how much 333

of the previous state is kept. We use a fixed value 334

and do not train this parameter due to the train-free 335

setting. This design is inspired by residual net- 336

works (He et al., 2016) and resembles the working 337

memory mechanism of the human brain (Koechlin 338

et al., 2003). It allows the model to accumulate 339

reasoning context over steps and prevents seman- 340

tic drift. Without this refinement, the latent state 341

may lose important early signals, which leads to an 342

unstable reasoning trajectory. 343

Compared to Coconut, which discards all prior 344

hidden states at each step, our refinement preserves 345

and integrates context, leading to more consistent 346

and accurate reasoning. 347
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4 Experimental Results348

We conduct experiments to evaluate whether our349

latent reasoning framework improves reasoning ac-350

curacy, supports training-free deployment, and op-351

erates efficiently across diverse tasks and models.352

Specifically, our experiments are structured to an-353

swer the following key questions: Q1: Can our354

method improve reasoning performance with mini-355

mal cost, using only training-free post-processing?356

Q2: Compared to full model retraining, can our357

post-training refinement achieve similar improve-358

ments with lower resource usage? Q3: How impor-359

tant are the two components—residual refinement360

and contrastive latent search—in contributing to361

performance improvement? Q4: Can the latent362

update mechanism consistently steer the model to-363

ward more accurate predictions in specific reason-364

ing instances? Q5: How robust is our method to365

variations in key hyperparameters such as mem-366

ory update rate and latent search step size? Q6:367

Can our framework generalize well across diverse368

language model architectures and parameter sizes?369

4.1 Experimental Setup370

Datasets. We evaluate our method on five rep-371

resentative benchmarks covering math, common-372

sense, and multi-hop reasoning: GSM8K (Cobbe373

et al., 2021), MathQA (Amini et al., 2019), AQUA-374

RAT (Ling et al., 2017), StrategyQA (Geva et al.,375

2021), and ProsQA (Hao et al., 2024). Dataset376

descriptions are provided in Appendix B.377

Models. We exploit three well-recolonized open-378

source language models: GPT-2 (117M), Qwen-379

2.5 1.5B, and LLaMA-3.2 3B. For contrastive380

search, we utilize checkpoints from different train-381

ing stages as “good” or “bad” references.382

Baselines. We compare our method with the fol-383

lowing approaches: (1) No-CoT: directly trains384

GPT-2 (Radford et al., 2019) to generate the final385

answer without any intermediate reasoning steps;386

(2)Chain-of-Thought (CoT) (Wei et al., 2022b):387

standard step-by-step natural language reasoning388

approach; (3) Coconut (Hao et al., 2024): latent389

reasoning without search or refinement; (4) Ours:390

latent reasoning with contrastive search and resid-391

ual refinement.392

Evaluation. We report exact-match accuracy, aver-393

aged over 3 random seeds. No fine-tuning is used;394

our method improves reasoning purely through for-395

ward latent-space updates. Full implementation396

details are provided in Appendix D.397

4.2 Q1: Overall Reasoning Performance 398

Figure 3: Accuracy (%) of different reasoning methods
across five benchmarks.

To answer Q1, we compare our method with 399

the baseline algorithms on five benchmarks to test 400

whether our latent-space refinement strategy im- 401

proves accuracy with small costs (train-free). Fig- 402

ure 3 shows the reasoning accuracy (Y-axis) of our 403

method on five benchmark tasks (X-axis). 404

Figure 3 shows that our method consistently 405

outperforms latent-only reasoning (Coconut) and 406

explicit token-based reasoning (CoT) on four out 407

of five tasks. Notably, on the tasks of MathQA 408

and AQUA—both that involves multi-step numer- 409

ical and symbolic reasoning, our model achieves 410

+1.95% and +2.76% absolute gains (not relative 411

improvement ratio) over Coconut in terms of rea- 412

soning accuracy, respectively. On ProsQA and 413

StrategyQA, which focus more on structured logi- 414

cal reasoning and commonsense composition, we 415

observe absolute gains of +3.67% and +2.63% in 416

reasoning accuracy. 417

The results highlight that: (1) Although CoT 418

produces explicit thought steps, it suffers from ver- 419

bosity and error accumulation, especially in non- 420

math tasks. (2) Coconut improves reasoning by 421

operating in a compact latent space, but lacks error 422

correction and stable refinement. (3) Our method 423

combines both advantages through residual preser- 424

vation and feedback-driven search, thus, result into 425

more reliable and generalizable reasoning, espe- 426

cially in settings where intermediate steps are im- 427

plicit or hard to verbalize. 428

One exception is GSM8K, where CoT remains 429

the most effective method (42.76%). This is be- 430

cause GSM8K contains complex arithmetic prob- 431

lems that require symbolic calculations. Humans 432

rely on written steps for such tasks rather than 433

purely mental computation. Without external tools 434

or explicit formulas, latent reasoning struggles to 435

handle long-chain numerical operations. In con- 436

trast, MathQA, although also math-focused, has 437
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more structured and templated problems and is438

multiple-choice, which makes the task easier com-439

pared to GSM8K’s open-ended answers. Under440

such settings, our method can benefit more from441

embedding refinement and soft memory tracking.442

This highlights the differences in cognitive de-443

mands between math datasets and suggests that444

combining latent reasoning with symbolic or tool-445

augmented components may be a future direction.446

4.3 Q2: Training vs. Inference Performance447

To answer Q2, we compare our train-free method448

with other training strategies to examine reasoning449

accuracy and resource usages under the ProsQA450

dataset. We train a base model using Coconut for451

30 epochs, then evaluate four settings: (1) using452

the original Coconut model, (2) applying our latent453

reasoning only during inference, (3) continuing454

training for 10 more epochs with our latent reason-455

ing enabled, and (4) applying our latent reasoning456

during both training and inference.457

Figure 4 shows that our method achieves the458

best accuracy (+4.47%) when applied only dur-459

ing inference, with minimal overhead (24 seconds,460

31.23GB memory). In contrast, continuing train-461

ing with latent reasoning adds significant time (54+462

minutes) and memory cost (39.04GB), yet leads463

to smaller accuracy gains (+1.63%). Using the464

method in both training and inference further in-465

creases the cost but gives almost no improvement.466

These results highlight the efficiency of our strat-467

egy: without any backpropagation or weight up-468

dates, our inference-only setup improves perfor-469

mance while saving training time and GPU re-470

sources and without the need of further training.471

Insights. Our method avoids expensive re-472

Figure 4: Latent Reasoning in Training vs. Inference.

training, requires only forward computation, and 473

still brings accuracy improvement. It is lightweight 474

and improves the reasoning trajectory without 475

changing the model parameters. These computa- 476

tional benefits make it practical for deployments in 477

low-resource or frozen-model scenarios. 478

4.4 Q3: Study of Contrastive Search and 479

Residual Refinement 480

To answer Q3, we remove contrastive search and 481

residual refinement one by one to understand the 482

role of each technical component. 483

Table 1: Ablation study on MathQA. We show the im-
pact of each component in our method.

Variant Accuracy (%) Gain (%)

Latent only 38.25 -
+ Residual refinement 40.02 +4.63
+ Latent Search 39.79 +4.03
+ Residual + Search (ours) 40.20 +5.10

Table 1 highlights the importance of both resid- 484

ual refinement and contrastive search in our frame- 485

work. Compared with the baseline Coconut with 486

only latent thoughts, our method of incorporating 487

residual connections yields an +4.63% improve- 488

ment in accuracy. This observation demonstrates 489

that preserving and gradually refining previous la- 490

tent states help to stabilize reasoning trajectories. 491

It aligns with the working memory mechanism 492

in human prefrontal cortex, where ongoing cog- 493

nitive representations are maintained and adjusted 494

over time. Only incorporating contrastive search 495

leads to a gain of +4.03%. This observation shows 496

that self-correction based on improving directions, 497

which mimic the role of the anterior cingulate cor- 498

tex (ACC) in conflict detection, enables the model 499

to recover from suboptimal reasoning directions. 500

Finally, integrating both residential connections 501

and contrastive search can result in the best per- 502

formance (+5.10%). This observation shows that 503

stable memory evolution and dynamic search to- 504

gether form a lightweight and training-free latent 505

reasoning mechanism that maintains contexts, de- 506

tects errors, and refines internal representations 507

without relying on explicit intermediate language. 508

4.5 Q4: A Step-wise Case Study 509

To answer Q4, we visualize the impacts of latent 510

reasoning refinement on answer prediction to better 511

understand how our method improves reasoning 512

using the MathQA dataset. 513
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Figure 5: Case study: our method adjusts the latent
embedding to reach the correct answer.

Figure 5 shows the baseline Coconut produces a514

latent state ht and predicts the wrong choice (“d”)515

with the highest probability. After applying our516

latent refinement, the updated embedding h′t leads517

to the correct prediction (“e”). One possible expla-518

nation is: contrastive search adjusts the latent state519

using information from reference models, while520

residual refinement helps to preserve internal in-521

formation across steps. Both are used in forward522

steps only without additional training. The model523

dynamically adjusts its internal representation to524

align with the correct reasoning trajectory.525

Insights. The case study illustrates how our526

method enables internal latent correction before527

decoding. Rather than relying on external tokens528

or explicit logic, the model self-adjusts in latent529

space, which reflects how humans reconsider their530

thoughts before answering. We provide three more531

examples in Appendix G.532

4.6 Q5: Study of Hyperparameter Sensitivity533

To answer Q5, we examine the sensitivity of two534

key parameters of contrastive search and residual535

refinement using the MathQA and AQUA datasets:536

(1) Search Step Length (η in Equation (2)): the537

step of each latent update in the contrastive search;538

(2) Memory Rate (α in Equation (3)): how much539

previous latent state is memorized across reason-540

ing steps. For each query, we perform 3 rounds541

of latent refinement, each of which includes one542

residual update and one search update, and fix other543

factors for fair comparisons.544

Figure 6a shows the heatmap of accuracy on545

MathQA over memory rates and search steps,546

(a) Sensitivity on MathQA (b) Sensitivity on AQUA

Figure 6: Hyperparameter sensitivity on two datasets.
The colors measure reasoning accuracy.

where red indicates high accuracy and green indi- 547

cates low accuracy. Overall, the reasoning accuracy 548

increases when the memory rate increases, but is 549

less affected by the search step length. This sug- 550

gests that mathematical problem solving benefits 551

more from stable accumulation of prior steps and 552

residual refinement (i.e., memory rate). A stronger 553

memory allows the model to preserve intermediate 554

reasoning steps for better reasoning. Figure 6b 555

shows the opposite trend. AQUA is less sensitive 556

overall but is more affected by the search step size. 557

This suggests that commonsense QA relies more 558

on adaptive correction than long-term memory, so 559

flexible updates in latent space have a larger impact 560

than memory accumulation. 561

Insights. The results show that different reason- 562

ing tasks may rely on different cognitive mecha- 563

nisms. Math-heavy tasks need better memory. QA 564

tasks benefit more from flexible error correction. 565

Our framework allows both without extra training. 566

4.7 Q6: Generalization Across Backbones 567

To answer Q6, we evaluate the generalization of 568

our framework on different LLM backbones across 569

architectures and sizes: GPT-2 (117M), Qwen-2.5 570

1.5B, and LLaMA-3.2 1B models. Table 2 shows 571

that our method on top of the three backbone mod- 572

els reach over 40% accuracy on MathQA. This 573

suggests that our latent refinement strategy can be 574

applied to both small and medium-sized models 575

without any changes to model architecture. Our 576

method adds little overhead in terms of resource us- 577

age. Meanwhile, training time and memory usage 578

increase with model size as expected, but inference 579

remains efficient. All models finish complete in 580
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under 7 minutes with less than 24 GB of mem-581

ory. Our method is simple and general. It can be582

used on top of any existing language model to im-583

prove reasoning performance, even when training584

resources are limited. It does not require retraining585

or modification of model weights, which makes it586

easy to adopt in different settings.587

Table 2: Comparison across LLMs on MathQA.

GPT-2 Qwen LLaMA

Parameters 117M 1.5B 3B
Accuracy (%) 40.20 43.04 41.10
Train Time (min) 18.95 95.80 78.38
Train Mem (GB) 45.68 45.33 (LoRA) 45.74 (LoRA)
Infer Time (min) 4.27 6.31 5.83
Infer Mem (GB) 22.64 23.12 22.84

4.8 Study of Token Efficiency588

Latent reasoning avoids generating intermediate589

natural language steps (i.e., thoughts), thus, re-590

duce output token number. We compare the av-591

erage number of generated tokens between Chain-592

of-Thought (CoT) prompting and our latent reason-593

ing method on the MathQA and AQUA datasets.594

Table 3 shows that latent method reduces token595

usage by over 92% on both datasets. This is be-596

cause latent steps are performed in a latent space597

and don’t produce textual outputs at each reasoning598

step. These results suggest that latent reasoning is599

not only more compact but also more cost-efficient600

during inference. This makes it particularly suit-601

able for deployment in resource-constrained set-602

tings or large-scale usage.603

Table 3: Average generated tokens per query.

CoT Latent Reduction

MathQA 66.71 5.02 92.47%
AQUA 72.73 5.31 92.65%

5 Related Work604

5.1 Chain of Thought Reasoning605

Chain-of-Thought (CoT) prompting enhances rea-606

soning in LLMs by decomposing complex prob-607

lems into step-by-step textual reasoning traces (Wei608

et al., 2022b; Kojima et al., 2022). Later works609

improve CoT with better aggregation (e.g., self-610

consistency (Wang et al., 2022)), scalable prompt611

generation (Zhang et al., 2022), and tree-structured612

exploration like Tree-of-Thoughts (Yao et al.,613

2023a). Prompting strategies have also been 614

optimized through complexity-aware design (Fu 615

et al., 2022) and iterative demonstration (Nye 616

et al., 2021). These techniques have been widely 617

applied to domains such as math (Zhou et al., 618

2022), commonsense (Huang et al., 2022), and 619

symbolic logic (Liu et al., 2023), showing broad 620

improvements. Extensions such as Selection- 621

Inference (Creswell et al., 2022), Program-of- 622

Thoughts (Chen et al., 2022), and Multimodal- 623

CoT (Lu et al., 2022) further combine CoT with 624

selection mechanisms, symbolic programs, or vi- 625

sual reasoning inputs. 626

5.2 Latent-Space Reasoning in LLMs 627

Recent work proposes moving reasoning from 628

token-level generation to latent space updates, en- 629

abling more compact and abstract reasoning. Co- 630

conut (Hao et al., 2024) is a foundational method 631

that replaces intermediate token outputs with inter- 632

nal latent states that evolve step by step. Other ap- 633

proaches expand this idea through latent sampling 634

(LaTRO (Chen et al., 2024)), self-training to un- 635

cover latent reasoning (SERT (Zhang et al., 2025)), 636

or expectation-maximization loops for iterative rea- 637

soning (Ruan et al., 2025). Looped transform- 638

ers (Saunshi et al., 2025) reuse a smaller model 639

multiple times to simulate deep reasoning trajecto- 640

ries. In applied domains, ReaRec (Tang et al., 2025) 641

introduces latent multi-step reasoning into recom- 642

mender systems, demonstrating the broader utility 643

of latent-state methods beyond language tasks. 644

6 Conclusion Remarks 645

We present a latent reasoning framework for LLM 646

by introducing residual refinement and contrastive 647

latent search to improve stability and enable dy- 648

namic self-correction without retraining. The new 649

framework operates in a training-free, plug-and- 650

play manner. Experiments show that our method 651

improves accuracy by 2–5% over latent-only rea- 652

soning across five benchmarks, with up to 7.7% 653

gain on ProsQA. The improvement demonstrates 654

the effectiveness of latent refinement with internal 655

information. We show that even without token- 656

level outputs or supervised feedback, LLMs can 657

adjust internal belief states using post-hoc represen- 658

tational updates, pointing toward a new direction 659

of self-corrective, embedding-level reasoning. 660
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Limitations661

While our framework improves reasoning perfor-662

mance across multiple tasks and models, it still has663

several limitations. (1) Even though the method664

can be applied to almost all open-source LLMs, we665

just test it on some relatively small LLMs. So the666

results are not comparable to the latest model, like667

ChatGPT-4.1 or DeepSeek-R1. In addition, we do668

not compare with sampling-based or search-based669

CoT variants (e.g., Tree-of-Thought (Yao et al.,670

2023a), Self-Consistency (Wang et al., 2022)),671

since our focus is on deterministic, internal la-672

tent refinement without additional decoding or re-673

ranking. (2) Latent reasoning may not be optimal674

for all types of tasks. For example, human tend675

to solve math problems with written-down logic,676

which involves explicit reasoning processes. In the677

future study, the routing method (Wang et al., 2025)678

can be applied to dynamically reason the query. (3)679

Latent reasoning lacks human-readable intermedi-680

ate steps, making it harder to interpret or debug681

compared to token-based methods. (4) Inspired by682

LLM agent researches, the future work can intro-683

duces tools to ensure stronger, more correct, and684

more reasonable reasoning processes.685
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A Algorithm Overview 848

Here is the Algorithm pseudo-code of our train-free 849

framework. 850

Algorithm 1 Latent Reasoning with Residual Re-
finement and Contrastive Search (Inference-Time)
Require: Question input x, reasoning steps T , pre-

trained model f , residual weight α, search step
size η, strong model fgood, weak model fbad

1: Encode input x into initial latent state h0

2: for t = 1 to T do
3: Compute latent update: ∆ht ← f(ht−1)
4: Residual refinement: ht ← α · ht−1 + (1−

α) ·∆ht

5: if Contrastive search is enabled then
6: Get strong model output: htgood ←

fgood(h
t)

7: Get weak model output: htbad ← fbad(h
t)

8: Compute gradient: gt ←
∇ht

[
MSE(ht, htgood)−MSE(ht, htbad)

]
9: Contrastive update: ht ← ht + η · gt

10: end if
11: end for
12: Decode final latent hT into answer y
13: return Answer y
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B Dataset Descriptions851

GSM8K (Cobbe et al., 2021)1: A dataset of 8.5K852

high-quality grade school math word problems cre-853

ated by human problem writers. It is divided into854

7.5K training and 1K test examples. Each problem855

requires 2–8 steps of basic arithmetic reasoning856

(addition, subtraction, multiplication, division) and857

includes a detailed natural language solution expla-858

nation.859

MathQA (Amini et al., 2019)2: A dataset contain-860

ing approximately 37.2K math word problems de-861

rived from AQuA. Each problem is annotated with862

a programmatic solution template using a domain-863

specific language comprising 58 operators. The864

dataset covers various mathematical domains, in-865

cluding percentages, geometry, and linear equa-866

tions, and provides multiple-choice answers.867

AQUA-RAT (Ling et al., 2017)3: A large-scale868

dataset consisting of approximately 100K algebraic869

word problems. Each question is accompanied by a870

step-by-step natural language rationale explaining871

the solution process. The dataset is designed to872

train models capable of generating both the solution873

and the explanatory rationale.874

StrategyQA (Geva et al., 2021)4: A question-875

answering benchmark comprising 2,780 examples.876

Each question requires implicit multi-hop reason-877

ing, where the necessary reasoning steps are not878

explicitly stated and must be inferred. The dataset879

includes decompositions and evidence paragraphs880

for each question.881

ProsQA (Hao et al., 2024): A diagnostic dataset882

designed to evaluate models’ planning abilities. It883

features examples that require multi-step reasoning884

and the ability to handle distractors. Each question885

is paired with a human-written rationale, facilitat-886

ing the assessment of models’ reasoning processes.887

C Chain-of-Thought Data Construction888

To compare different reasoning paradigms, we con-889

struct CoT-style training and evaluation data from890

datasets that provide intermediate reasoning steps.891

Each example contains three parts: a question x,892

a list of steps s = {s1, s2, ..., sn} describing the893

reasoning trace, and a final answer y.894

1https://huggingface.co/datasets/openai/gsm8k
2https://huggingface.co/datasets/allenai/math_

qa
3https://huggingface.co/datasets/deepmind/

aqua_rat
4https://huggingface.co/datasets/voidful/

StrategyQA

We format the data differently depending on the 895

method: 896

• No-CoT (Direct QA): The model is trained 897

to map the input question directly to the an- 898

swer. Only (x, y) pairs are used, without any 899

reasoning trace. 900

• CoT (Textual Supervision): The model is 901

trained to generate both the reasoning steps 902

and the final answer as a single sequence. The 903

input is x, and the output is join(s1, ..., sn)+ 904

y. This helps the model learn to reason explic- 905

itly in text. 906

• Latent CoT (Latent Reasoning): We fol- 907

low the Coconut (Hao et al., 2024) setup. The 908

model is trained to generate the answer y from 909

input x, but the reasoning steps s are used as 910

supervision in the latent space. They are not 911

generated as tokens, but guide the intermedi- 912

ate hidden representations. 913

This unified setup allows us to study how dif- 914

ferent forms of reasoning supervision affect model 915

performance, and how latent-space reasoning com- 916

pares to explicit token-level chains. 917

D Implementation and Hyperparameters 918

Optimization. All models are trained with the 919

AdamW optimizer, using a learning rate of 3 × 920

10−5, batch size 16, and weight decay 0.01. Train- 921

ing runs for 50 epochs unless specified otherwise. 922

When training is staged (e.g., for latent reasoning), 923

we use 30 epochs for initial training and 10 for op- 924

tional refinement. Gradients are accumulated every 925

step (no gradient accumulation). 926

Model Backbones. We primarily use GPT-2 927

(117M) as the language model. The pretrained 928

model is loaded from openai-community/gpt2. 929

For contrastive latent search, we define a “bad” 930

checkpoint (early-stage model) and a “good” check- 931

point (later-stage model), loaded separately and 932

used in forward-only search (no weight update). 933

Latent Reasoning Configuration. All reasoning 934

happens in the latent space: 935

• Latent update steps: 3 iterations per query. 936

• Search step size (η): from 1 to 5000: controls 937

the gradient step in contrastive search. 938

• Residual memory rate (α): from 0.01 to 939

1: controls how much information from the 940

previous latent state is retained. 941

Both residual update and contrastive search are 942

applied at each reasoning step without gradient 943
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backpropagation. The full process is training-free944

and runs with forward computation only.945

Tokenization and Decoding. We use the native946

tokenizer of each backbone model. For latent rea-947

soning, we add special tokens such as <|latent|>948

to mark latent segments. The max token limit is set949

to 64 for math tasks and 128 for QA tasks.950

Reproducibility. All experiments are run with951

seed 0. Our setup supports distributed training952

and evaluation across 4 GPUs. Each configuration,953

model path, and dataset split is version-controlled954

and specified in the released code.955

E Experimental Environment956

All experiments were conducted on the Ubuntu957

22.04.3 LTS operating system, with a 13th Gen958

Intel(R) Core(TM) i9-13900KF CPU, 128GB of959

system RAM, and four NVIDIA RTX A6000 GPUs960

(each with 48GB of VRAM). The experiments961

were implemented using Python 3.11.5 and Py-962

Torch 2.0.1.963

F Generalization to Unseen Tasks964

In this section, we analyze whether latent reasoning965

learned from one task can generalize to another966

without re-training. This evaluates the portability967

of internal latent-space dynamics across domains.968

We conducted a controlled experiment where all969

models were trained on GSM8K and directly tested970

on MathQA. Both datasets involve multi-step math971

word problems but differ in format, vocabulary, and972

complexity. For reference, we also evaluate models973

trained directly on MathQA.974

Table 4: Generalization to MathQA: Accuracy of mod-
els trained on different datasets

Model Trained on
MathQA

Trained on
GSM8K

Difference

CoT 35.42 0.00 -35.42
Coconut 38.25 0.00 -38.25
Ours 40.20 0.00 -40.20

Observation. As shown in Table 4, none of the975

models generalize successfully from GSM8K to976

MathQA. Accuracy drops to 0 across CoT, Co-977

conut, and our latent reasoning framework.978

Analysis. These results highlight the challenge979

of cross-task generalization in small and medium-980

sized LLMs. Despite using latent representations981

and post-training refinement, our method—like 982

CoT and Coconut—fails to transfer reasoning skills 983

between datasets. We believe this is due to two 984

factors: (1) models like GPT-2 lack the scale and 985

capacity needed for emergent generalization (Wei 986

et al., 2022a); (2) our method is designed to refine 987

reasoning trajectories within a task, not to perform 988

domain adaptation. While effective in-distribution, 989

the framework does not substitute for task-specific 990

training when reasoning patterns differ across do- 991

mains. 992

G More Output Case Studies 993

We present additional examples to illustrate how 994

our latent reasoning refinement improves model 995

predictions. In each case, the base Coconut model 996

produces a suboptimal answer, while our method 997

adjusts the latent representation to arrive at the 998

correct one. These examples further demonstrate 999

the effectiveness of residual and contrastive updates 1000

at inference time. 1001

G.1 Example 1 1002

Figure 7: Additional Case study 1: our method adjusts
the latent embedding to reach the correct answer.

In Figure 7, the input question requires multi- 1003

hop reasoning. The base model (Coconut) assigns 1004

the highest probability to the incorrect option “c” 1005

(0.2603), with the correct answer “e” ranked third 1006

(0.2486). After our latent refinement procedure, 1007

the representation is updated, and the model now 1008

predicts “e” with the highest confidence (0.2626), 1009

correcting its earlier mistake. This case shows that 1010

even small adjustments in the latent space can sig- 1011

nificantly shift the model’s final decision. 1012
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G.2 Example 21013

Figure 8: Additional Case study 2: our method adjusts
the latent embedding to reach the correct answer.

Figure 8 contains a more complex temporal and1014

numerical reasoning question. Initially, the model1015

incorrectly predicts option “a” (0.3541) as the an-1016

swer. After our latent-space update, the probability1017

of “e” rises to 0.3491, making it the top prediction.1018

The model successfully incorporates the revised la-1019

tent information to override its earlier bias toward1020

an incorrect answer. This example underscores the1021

ability of latent search to shift the model’s internal1022

belief in a non-disruptive and interpretable way.1023

G.3 Example 31024

Figure 9: Additional Case study 3: our method adjusts
the latent embedding to reach the correct answer.

In Figure 9, the model is tasked with a multi- 1025

step calculation problem involving percentages and 1026

sales tax. The initial output ranks “b” highest 1027

(0.3696), but the correct answer “c” is only sec- 1028

ond (0.3635). After applying contrastive search, 1029

the updated latent embedding increases the score 1030

of “c” to 0.3708, making it the new top choice. No- 1031

tably, this correction occurs without any retraining 1032

or additional supervision. 1033
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