
Published as a conference paper at ICLR 2025

OFFLINE HIERARCHICAL REINFORCEMENT LEARNING
VIA INVERSE OPTIMIZATION

Carolin Schmidt1, Daniele Gammelli2, James Harrison3, Marco Pavone2, Filipe Rodrigues1
1Technical University of Denmark, 2Stanford University,3Google DeepMind
{csasc,rodr}@dtu.dk, {gammelli,pavone}@stanford.edu, jamesharrison@google.com

ABSTRACT

Hierarchical policies enable strong performance in many sequential decision-making
problems, such as those with high-dimensional action spaces, those requiring
long-horizon planning, and settings with sparse rewards. However, learning
hierarchical policies from static offline datasets presents a significant challenge.
Crucially, actions taken by higher-level policies may not be directly observable
within hierarchical controllers, and the offline dataset might have been generated
using a different policy structure, hindering the use of standard offline learning
algorithms. In this work, we propose OHIO: a framework for offline reinforcement
learning (RL) of hierarchical policies. Our framework leverages knowledge of the
policy structure to solve the inverse problem, recovering the unobservable high-level
actions that likely generated the observed data under our hierarchical policy. This
approach constructs a dataset suitable for off-the-shelf offline training. We demon-
strate our framework on robotic and network optimization problems and show that
it substantially outperforms end-to-end RL methods and improves robustness. We
investigate a variety of instantiations of our framework, both in direct deployment of
policies trained offline and when online fine-tuning is performed. Code and data are
available at https://ohio-offline-hierarchical-rl.github.io

1 INTRODUCTION

Deep reinforcement learning (RL) and optimal control (OC) have made significant progress within
a broad range of continuous control tasks, such as locomotion skills (Lillicrap et al., 2015), dexterous
manipulation (Zhu et al., 2019), and robotic navigation (Long et al., 2018). However, most of these
tasks are inherently atomic, as they can be completed by performing basic skills episodically rather than
through complex multi-level reasoning. Hierarchical policy decompositions, in which multiple sub-
policies are composed to perform control at successively higher levels of temporal and representational
abstraction, have long held the promise to help solve such complex tasks (Barto & Mahadevan, 2003;
Nachum et al., 2018). Specifically, by defining a hierarchy of policies where higher levels influence
the behavior of the lower levels, it becomes easier to train high-level policies to plan over longer
time scales. Moreover, approaches for OC often leverage problem-specific structure by constructing
hierarchical policies over convenient state representations, e.g., planning in operational space as
opposed to direct joint space control for robot manipulation (Khatib, 1987; Peters & Schaal, 2008).

Similarly, sequential decision-making systems operating in the real world—such as vehicle routing and
traffic control (Rasheed et al., 2020; Zardini et al., 2022), supply chain management (Rolf et al., 2023),
and power grid optimization (Duan et al., 2019), among many others—have historically benefited
from hierarchical abstractions. Hierarchically structured policies are commonly used to (i) decompose
a large optimization problem into smaller, tractable ones (Fluri et al., 2019), and (ii) combine the
benefits of differently-structured sub-policies, such as integrating learning-based methods with direct
optimization (Delarue et al., 2020; Gammelli et al., 2023).

Nevertheless, there remains a significant gap between the theoretical promise of hierarchically
structured policies and their practical application to complex, real-world decision-making problems:
previous work often relies on costly online data collection, which is impractical for real-world,
safety-critical systems. To address this issue, offline RL has gained attention for its ability to train
policies from static offline datasets, thus avoiding the need for expensive or unsafe online exploration.

1

https://ohio-offline-hierarchical-rl.github.io

Published as a conference paper at ICLR 2025

Figure 1: We propose OHIO, a framework to learn hierarchical policies from offline data. By exploiting
structural knowledge of the low-level policy, we solve an inverse problem (top center) to transform
low-level trajectory data (top left) into a dataset amenable to offline RL (top right), regardless of the
nature of the policy used for data collection. At inference time, the RL-trained policy provides inputs
to the low-level policy (bottom).

However, offline policy learning has had a limited impact within hierarchical formulations due to two
fundamental issues. First, unless we assume that offline data collection is performed using the same
hierarchical policy that we intend to learn, actions across hierarchy levels may not be observable, thus
hindering the direct application of standard offline RL algorithms. Second, even if the offline dataset is
collected using a hierarchical policy, any modifications to the hierarchical controller or its components
can lead to ill-posed offline RL formulations.

In this work, we propose a framework to learn hierarchical behavior policies from offline data, OHIO:
Offline Hierarchical reinforcement learning via Inverse Optimization. Specifically, we solve the
inverse problem, mapping state transitions (and, optionally, low-level actions) to the high-level actions
that likely generated those transitions. This approach allows us to create a dataset that can be used
by standard offline RL algorithms within any hierarchical policy scheme, regardless of the nature of
the policy used for data collection (Figure 1).

Contributions. Concretely, the contributions of this work are:

• We present a novel framework for hierarchical offline RL that leverages structural knowledge of
the hierarchical policy to construct a dataset amenable to off-the-shelf offline RL algorithms.

• We derive principled inverse optimization objectives to solve the inverse problem both analytically
and numerically, thus making our method amenable to generic policy structures and behavior
policies used for data collection.

• We investigate design decisions and learning strategies within our framework, such as the impact
of model learning, the choice of inverse optimization algorithm, dataset characteristics, and their
impact on system performance and fine-tuning capabilities.

• Through experiments on robotic tasks, supply chain inventory control, and dynamic vehicle routing,
we show how our framework substantially improves the performance of off-the-shelf offline
learning algorithms across a diverse set of embodiments and policy structures, while providing
the safety guarantees needed for safe, real-world deployment.

2 PROBLEM STATEMENT

We consider a discounted infinite horizon Markovian problem setting in which an agent interacts with
a Markov decision processM=(S,A,P,r,γ). We denote the state and action at time t as st, and at,
and S,A are the state and action spaces, respectively. Additionally, P (st+1 |st,at) denotes the (prob-
abilistic) state transition dynamics, r(st,at) denotes the reward function, and γ is the discount factor.
For brevity, we will also refer to single state transitions using s and s′ for st and st+1, respectively.

2

Published as a conference paper at ICLR 2025

We will consider learning a hierarchical policy consisting of two components,
u∼πu(· |s), a∼πl(· |s,u), (1)

where πu denotes a learned upper policy, and πl denotes a fixed lower-level policy, and u is the output
of the upper policy that is an input to the lower-level policy. Our approach is generally agnostic to the
form of the lower-level policy, although we will identify important example cases in the next section.

We focus on the case where the dataset comprises state-only trajectories, specifically considering
τi = (s0,s1,...,sT) or τi = (s0,r0,s1,r1,...,sT). In this context, we assume access to approximate
dynamics P̃ and reward models. These assumptions are reasonable, as our work targets common
scenarios where certain elements of domain knowledge are inherently available. For instance, in robotic
manipulation, having access to a robot arm’s dynamics model is not only standard practice but essential
for operating any low-level controller. Similarly, in network decision systems, real-world algorithms
often depend on deterministic approximations of system dynamics. For example, the analysis of
transportation systems frequently employs simple macroscopic models derived from traffic flow theory.

3 METHODOLOGY

In this section, we provide a comprehensive overview of the OHIO framework. We begin by presenting
each component in a general setting, followed by specific examples of their implementations. The
section begins with a discussion of the lower-level policies used and then moves on to address the inverse
optimization problem and its corresponding solution methods. Lastly, we present the overall framework.

3.1 LOWER-LEVEL POLICIES

We will broadly consider two classes of lower-level policies: explicit and implicit policies. We distin-
guish between these two classes of policies, which are necessarily treated differently in policy inversion.

Explicit policies. (Stochastic) explicit policies require only a single function evaluation, or
a=f(s,u,ε), (2)

where ε is a generic random variable (enabling policy stochasticity through reparameterization) and
f is a generic function. This class of policies is broad. It includes policies that range from simple
feedback controllers—such as PID, or linear state-space controllers such as those computed via
LQR—to more complex policies such as those parameterized by neural networks and learned by RL
or imitation learning (IL).

Implicit policies. Implicit policies, on the other hand, are defined as
arg min
a∈A

f(s,a,u), (3)

or approximate solutions thereof. This class includes optimization-based policies such as Model
Predictive Control (MPC) (Rawlings & Mayne, 2013), and implicit learning-based policies such as
diffusion-based or other implicit methods (Chi et al., 2023; Florence et al., 2022).
Example 3.1 (Linear-quadratic-Gaussian). Let us consider a quadratic cost (negative reward) function
with linearized Gaussian dynamics, where we assume the output of the upper policy, denoted as πu,
is a goal post-transition state. Specifically, by Taylor-expanding the reward function (yielding terms m
and M) and approximate dynamics around the current state and zero action, the optimization problem
becomes:

arg max
a∈A

− 1

2
Es′

[
∥a−m∥2M+∥s′−u∥2V

]
s.t. s′∼N (As+Ba+c,Σ),

(4)

where u is the goal state, V is an arbitrary matrix that weighs satisfaction of achieving this goal state ver-
sus satisfying other reward terms1, andA,B,c are the terms resulting from Taylor-expanding the known
dynamics. The solution to this problem is computationally tractable. In particular, if the action is uncon-
strained, this corresponds to a variant of the linear quadratic regulator (LQR) problem, where the optimal
action is a∗=Ku+k with policy parameters K,k depending on the reward function and dynamics. 2

1As has been noted by Gammelli et al. (2023), this term may be learned alongside the RL policy.
2We include the detailed derivation in Appendix A.3

3

Published as a conference paper at ICLR 2025

3.2 POLICY INVERSION

Our framework aims to map available data to high-level action representations. In particular, we aim
to compute high-level trajectories τ̂i=(s0,u0,r0,...,sT) given a dataset of lower-level trajectories τi.

Lower-level policy inversion. The core of our approach is to exploit the known optimization
structure of the inner problem to approximately compute the most likely high-level action inducing
each state transition and use these for offline training. We treat this problem as a probabilistic inference
problem and aim to solve the regularized maximum likelihood estimation problem:

û0:T−1= arg max
u0:T−1

log P̃ (s1:T |a0:T−1,s0:T−1)+
∑
t

L(ut)

s.t. at=πl(st,ut) ∀t,
(5)

which is constructed jointly across each trajectory, and where L denotes a regularization term. We
require an approximate dynamics model P̃ . In many applications, a simple approximate dynamics
model, which only needs to be reasonably accurate for one timestep, is already known. This is often the
case in robotics, where approximate models of the robot’s dynamics are used for trajectory planning
and motion control. In other scenarios, a dynamics model can be learned from the dataset. The use of
an approximate dynamics model makes OHIO a novel combination of model-based and model-free RL.
It leverages model information locally in time, while long-horizon performance is achieved through
the RL-based component. This ensures the overall framework is not susceptible to compounding errors
from multi-step prediction. When low-level actions are observed, as in the classical offline RL setting,
we can bypass the need for an approximate dynamics model, as discussed in Appendix A.1.

In practice, we will decompose this joint likelihood across time and, assuming that the policy is
stochastic, solve the one-timestep problem:

ût= arg max
ut

log P̃ (st+1 |at,st)+L(ut)

s.t. at=πl(st,ut).
(6)

In cases where the policy is deterministic and the likelihood under the policy is not well-defined, a simple
alternative loss function (e.g., MSE loss) is used instead. This decomposition across time is sub-optimal,
and the original joint-across-time problem has strong similarities to classical filtering and smoothing in
partially-observed systems. However, we find that it is effective for our experiments due to the structure
of many decision-making problems, leaving the consideration of the full joint likelihood for future work.

Solving the policy inversion problem analytically. How is this inverse problem solved? We will
first illustrate one possible approach by building on the previous example.
Example 3.2 (Analytical inverse: solving the inverse linear-quadratic problem). Here, we will
continue Example 3.1, and discuss the solution of the inverse problem. Specifically, given the
linearized Gaussian dynamics derived in Example 3.1:

P̃ (s′ |s,a∗)=N (As+Ba∗+c,Σ), for a∗=πl(s,u), (7)
whereby a∗=Ku+k. The goal of the inverse problem is to compute the most likely high-level actions
u by solving Problem 6. By substituting a∗ into P̃ (s′ | s, a∗), we obtain the following likelihood
function describing the objective function for our inverse problem:

N (As+BKu+Bk+c,Σ). (8)
By expressing the likelihood in log terms and leveraging the fact that the log-likelihood is concave
in u, we can easily derive its maximum value as:

û=(BK)†(s′−(As+c+Bk)), (9)
where (·)† denotes the Moore-Penrose inverse. We can then use û, a∗, and s to compute the reward
r̂t. Ultimately, this leads to an analytical solution to the inverse problem via Equation 9.

This unconstrained linear-quadratic setting is one of the few that can be solved exactly. However, we
emphasize an important distinction with work on differentiable optimization (Agrawal et al., 2019)
and prior work on structured policies (Amos et al., 2018): our RL-based outer policy training does
not require gradient propagation through the optimization problem, and thus any method may be used
to solve the inverse problem. Indeed, because the inverse problem only needs to be solved to construct
a dataset for offline training, comparatively expensive methods can be used.

4

Published as a conference paper at ICLR 2025

Algorithm 1 OHIO: Offline Hierarchical Reinforcement Learning via Inverse Optimization

Require: State transition datasetD; Optionally: approximate dynamics P̃ , reward function r.
D̃←{} ▷ Initialize high-level dataset
for τ ∈D do

Compute τ̂ via (6) ▷ Low-level policy inversion
D̃←D̃∪{τ̂} ▷ If reward information is available, include in τ̂ , otherwise compute r̂t=r(st,ât)

end for
Solve offline RL problem using D̃ to yield high-level policy πu

Solving the policy inversion problem numerically. Several methods exist beyond analytical
solutions, and our framework is agnostic to the method used. For discrete high-level actions, the inverse
problem can be solved by exhaustive search over u. Similarly, we can employ sampling techniques
for u or zeroth-order optimization such as CEM (Rubinstein, 1997; De Boer et al., 2005). In certain
cases, exact gradients may be computed through the inner problem, enabling the use of gradient-based
optimization -such as gradient descent– to solve Problem 6. Thus, the numerical solution of the inverse
problem is a considerably more general approach. More details are provided in Appendix A.4

3.3 FULL METHODOLOGY

Algorithm 1 highlights the relative simplicity of our approach: it focuses on leveraging approximate
knowledge of the system dynamics and reward function to derive likely high-level actions and rewards.
Subsequently, we apply off-the-shelf offline RL algorithms—including behavior cloning as a special
case—on this dataset.

4 RELATED WORK

Our work is closely related to previous approaches to learning control within hierarchical poli-
cies (Ichter et al., 2018; Bansal et al., 2020; Xia et al., 2021; Lew et al., 2023) and offline RL within
these settings (Le et al., 2018; Gupta et al., 2019; Zhou et al., 2021; Ajay et al., 2021; Rosete-Beas
et al., 2023), providing a way to train general-purpose hierarchical policies from offline data.

Hierarchical and Bi-Level RL. Hierarchical IL jointly learns high-level policies and low-level con-
trollers from optimal demonstrations (Le et al., 2018; Gupta et al., 2019). These methods have two main
drawbacks: (i) they typically learn high-level actions in the form of sub-goals, thus, in the raw observa-
tion space, and (ii) they require oracle trajectory data. Our method alleviates both of these drawbacks by
(i) learning high-level policies in an intermediate (potentially lower-dimensional) representation space,
and (ii) leveraging offline RL methods to learn from sub-optimal data. Another class of methods uses
offline RL to train the high-level policy in learned latent spaces (Zhou et al., 2021; Ajay et al., 2021).
However, the policy used to generate the offline datasets may not match the hierarchical structure that
we are interested in learning. Therefore, prior work typically formulates potentially complex, multi-step
training schemes for the individual policy components, e.g., unsupervised trajectory autoencoders
combined with hindsight relabeling to collect a dataset with the inferred high-level latent action and
the respective reward (Rosete-Beas et al., 2023). To address these limitations, in our framework, we
leverage approximate knowledge of the system dynamics to compute the most likely high-level action
from raw trajectory data, thus avoiding the misalignment caused by intermediate objectives that do not
necessarily correlate with the downstream task (e.g., reconstruction losses within generative models).

In robotics, numerous strategies have been developed for learning control with bi-level formulations
that leverage traditional planning methods as inner components. For instance, prior work focuses on
decomposing the overall policy into a high-level learned policy that generates waypoint-like represen-
tations for a low-level motion planner, e.g., based on sampling-based search (Ichter et al., 2018; Xia
et al., 2021), model-based planning (Bansal et al., 2020), or trajectory optimization (Lew et al., 2023).
Within this context, the high-level policy is typically learned through either imitation of oracle waypoint
selection strategies or online RL. Analogously to previous methods, our approach uses the output of a
higher-level, learned policy in a hierarchical structure. Crucially, however, we focus on solving complex
control tasks from offline data by constructing datasets amenable to off-the-shelf offline RL algorithms.

5

Published as a conference paper at ICLR 2025

Offline RL and Learning from State-Only Demonstrations. Lastly, our work is closely related
to methods for learning from observations (LfO), by introducing a framework for offline RL from
(potentially) state-only demonstrations. Distribution matching methods represent a principled
approach to LfO (Boborzi et al., 2022), (Kim et al., 2022) by interactively estimating and minimizing
the discrepancy between two stationary distributions: one generated by the expert and another by
the learning agent. However, traditional approaches based on distribution matching typically require
online interactions with the environment, with limited applications to tasks where exploration is
expensive or unsafe. Moreover, methods that focus on learning from offline data typically cast LfO as
an imitation learning problem, whereby the goal is to imitate the behavior of an expert policy and, thus,
the overall performance can be limited by the quality of the data collection policy (Zhu et al., 2020b),
(Qin et al., 2023), (Bewley et al., 2001). To address these limitations, our work introduces a new offline
LfO approach to recover optimal policies from (potentially sub-optimal) state-only demonstrations.

5 EXPERIMENTS

In this section, we demonstrate the performance and broad applicability of our framework, OHIO, on
two robotics scenarios (Section 5.1) and two real-world network optimization problems (Section 5.2).
In particular, in the robotics scenarios, we evaluate a practical application of OHIO, where the high-level
policy is learned through RL, and the low-level policy is an explicit policy, i.e. traditional, non-learned
controller. In the network optimization scenarios, we demonstrate the performance of a particularly
relevant instantiation of our framework, in which the low-level policy is optimization-based.

The goal of our experiments is to address the following key questions: (1) Can OHIO successfully
recover hierarchical policies from datasets collected by arbitrary (i.e., non-hierarchical) behavior
policies? (5.1, 5.2) (2) How do different inverse methods compare in performance? (5.1.1) (3) Does
OHIO enable effective offline RL even when the dataset is collected with different or unknown
low-level configurations? (5.1.2) (4) How does OHIO compare to traditional hierarchical RL? (5.1.2)
(5) Does OHIO improve scalability and robustness relative to end-to-end approaches? (5.2)

Benchmarking. To isolate the contributions of OHIO, our analyses include the following
comparisons: (i) OHIO with a known low-level policy, (ii) a traditional hierarchical RL approach with
a known low-level policy but without the dataset reconstruction provided by OHIO (i.e., “Observed
State” baseline, which selects the next observed state as the high-level action), (iii) a hierarchical RL
formulation (i.e., “HRL”) in which both high-level and low-level policies are learned, and (iv) “flat”
end-to-end approaches (i.e., “End-to-End”) with minimal architectural differences in the RL policy.

Experimental design. The learning algorithms used in this section include both off-the-shelf offline
RL approaches (e.g., IQL (Kostrikov et al., 2021), CQL (Kumar et al., 2020)) and behavioral cloning
(BC) algorithms. Dataset collection follows standard practices specific to each environment, such
as (pre-trained) RL policies in robotics scenarios and domain-driven optimization or heuristic-based
policies in network optimization. For consistent comparisons across datasets, we normalize scores
to a range of 0 to 100, calculated as normalized score = 100∗ score

online RL performance (robotics)
and normalized score = 100∗ score

oracle performance (network-optimization).

5.1 ROBOTICS

In this section, we focus on two distinct robotics scenarios: the first, traditionally solved using an
end-to-end approach, is detailed in Section 5.1.1; the second scenario is typically addressed with a
hierarchical reinforcement learning framework that includes non-learned lower-level controllers (i.e.,
RL policies guiding operational-space controllers for manipulation tasks), as discussed in Section 5.1.2.

5.1.1 GOAL-DIRECTED CONTROL

We evaluate OHIO in a non-linear system using the Reacher task (Tunyasuvunakool et al., 2020),
where the objective is to control a two-jointed robotic arm to move its end-effector to a randomly
positioned target. This task is particularly suitable because it allows us to derive low-level policies
with an analytical solution to the inverse problem, facilitating the comparison of different inverse
methods—specifically, numerical approaches like gradient-based optimization versus analytical
methods. Additionally, since this task is typically solved using end-to-end approaches, it serves as

6

Published as a conference paper at ICLR 2025

Table 1: Normalized score on the reacher task comparing BC performance within End-to-End,
”Observed State” and OHIO formulations, including the choice of algorithm for the inverse problem

OHIO OBSERVED
DATASET NUMERICAL ANALYTICAL REG. ANALYTICAL STATE END-TO-END

HR DATASET 97.1±10.2 98.2± 3.2 97.1±10.2 0.05±0.0 95.4±14.2
E2E DATASET 99.2±15.0 94.8±22.0 95.4±23.4 0.04±0.0 99.3±16.0

E2E-10C DATASET 95.3±24.5 91.8±27.1 94.6±25.3 - -
E2E-10S DATASET 98.4±17.8 93.5±23.5 93.3±26.9 - -

an effective demonstration of OHIO’s capability to transform a “flat” (non-hierarchical) offline dataset
into one suitable for offline hierarchical reinforcement learning.

Datasets. Our objective is to learn a policy from a dataset of non-hierarchical demonstrations (i.e.
collected by an expert RL policy) using behavioral cloning (BC).

The inverse problem. We formulate the low-level policy as a linear feedback policy, specifically
a finite-horizon LQR, where the high-level action is a goal state (position and velocity of robot joints).
The detailed derivation of the inverse problem is provided in Appendix B.1.1.

Choice of inverse algorithm. We first evaluate OHIO under ideal conditions, on low-level demonstra-
tion data collected within the same hierarchical framework, i.e. a trained higher-level RL policy coupled
with a lower-level LQR controller, and by assuming access to approximate dynamics for the inverse
method. We refer to this case as “HR Dataset”. Results in Table 1 demonstrate that OHIO can learn
a policy closely matching the performance of the dataset. On the other hand, the baseline that selects
the observed next state as the high-level action (i.e., “Observed State”) results in an ineffective policy.

Access to the approximate (linearized) dynamics of the robotic arm is common practice and essential for
operating the lower-level controller. However, we also investigate a more challenging scenario involving
a dataset derived from demonstrations by an end-to-end agent (i.e., “E2E Dataset”). In this setting, we
do not assume access to a dynamics model for policy inversion; instead, we learn an approximate model
directly from the dataset. The results demonstrate that, despite the data being sourced from a different
(i.e. flat) policy structure, OHIO achieves performance comparable to that of the end-to-end policy.

To evaluate OHIO’s robustness to model misspecifications in the lower-level controller, we perturb
the LQR parameters by increasing either the state or control cost by a factor of 10, resulting in datasets
“E2E-10S” and “E2E-10C”, respectively. The results in Table 1 reveal that while the analytical inverse
is fast and exact, it is more susceptible to model misspecifications. Conversely, the numerical inverse
maintains consistent performance across scenarios.

5.1.2 ROBOTIC MANIPULATION

Robotic manipulation tasks often benefit from integrating learning-based and non-learning-based
components, making them an ideal domain for evaluating our proposed method. RoboSuite (Zhu et al.,
2020a) is a widely used robotic manipulation environment that closely aligns with standard practices
in real-world robotic implementations. In this setup, an RL agent interacts with a lower-level controller,
abstracting away the direct control of joint torques.

Datasets. We generate datasets for two tasks within the RoboSuite environment:Block Lifting (i.e.,
“Lift”) and Door Opening (i.e., “Door”). We follow a popular approach for offline RL data collection
and utilize the replay buffers collected during online RL training. The default RoboSuite environment
operates within a hierarchical framework, allowing for the collection of both high-level and low-level
actions. This configuration enables us to evaluate OHIO’s performance in reconstructing high-level
actions in comparison to training on the original actions. Furthermore, we can assess OHIO’s potential
to facilitate effective offline RL under modified controller settings.

The inverse problem. We utilize the operational space controller of RoboSuite as our low-level policy,
which computes the joint torques required to minimize the error between the current and goal pose (both
position and orientation) of the end-effector. In this experiment, we use numerical inversion, showcasing
the broad applicability of OHIO even in the absence of a closed-form solution for policy inversion.

Robustness to low-level controller configurations. The results presented in Table 2 highlight a
fundamental advantage of OHIO over standard offline RL implementations (IQL). Traditional offline

7

Published as a conference paper at ICLR 2025

Table 2: Normalized score comparing offline RL (IQL) to OHIO on robotic manipulation scenarios.

LIFT DOOR
DATASET IQL OHIO IQL OHIO

ORIGINAL CONTROLLER 88.5±20.7 89.6±19.4 91.4±16.8 94.1±14.1
MODIFIED STIFFNESS 86.8±16.4 98.9± 4.4 18.6±14.3 92.7±15.8
MODIFIED DAMPING 24.1±11.1 75.8±30.5 2.9± 2.2 76.7±28.2

Table 3: Normalized score comparing OHIO to offline hierarchical RL (HRL) with high-level goal in
either (i) directly on the joint space, or (ii) same representation used by OHIO on robotic manipulation
scenarios.

TASK OHIO OBSERVED STATE HRL - JOINT SPACE HRL - REDUCED GOAL

LIFT 89.6±19.4 0.1±0.0 77.4±25.4 0.02±0.0
DOOR 94.1±14.1 0.4±0.1 84.3±25.8 0.07±0.1

DOOR - RED. DATA 88.2±25.4 - 72.7±34.8 -

RL tends to perform well when paired with the original controller used for data collection; however,
its performance deteriorates significantly when the lower-level controller is configured with different
parameters (IQL performance with modified stiffness and damping). In contrast, OHIO demonstrates
strong performance across a wide range of parameters and tasks. Importantly, these findings demon-
strate OHIO’s potential to facilitate effective offline RL, even when data is collected using varied or
unknown low-level configurations—a challenge that is exceedingly common in practical applications.

Moreover, results in Table 3 indicate that despite utilizing the same subgoal representation and
lower-level policy as OHIO, the “Observed State” baseline struggles to learn the task effectively. This
outcome clearly highlights the importance of the policy inversion method in enhancing performance.

Choice of low-level policy. Additionally, the results in Table 3 indicate that OHIO can improve
the performance over HRL while allowing RL-based policies to be combined with standard low-level
controllers. Decreasing the dataset size (“Door - Red. Data”) reveals another advantage of OHIO:
the performance of low-level action reconstruction is independent of dataset quality and coverage,
whereas HRL shows a clear performance drop when not provided with an extensive dataset.

5.2 NETWORK OPTIMIZATION

In this section, we examine two real-world examples of societally-critical systems: vehicle routing and
supply chain management. These problems represent real-world systems characterized by key features:
(i) high-dimensional action spaces, such as nodes and edges in a large transportation network, (ii)
complex system-level constraints that need to be strictly satisfied at all times (e.g., capacity limitations
in warehouses), and (iii) readily available offline datasets of state transitions from system operators.

Problem settings. Vehicle routing problems are central to a wide range of mobility and logistics
applications. The primary objective is to identify the least-cost routes for a fleet of vehicles while
meeting the demands of geographically dispersed customers. In a similar vein, supply chain
inventory management involves the strategic ordering and distribution of products within a network
of interconnected warehouses and stores. The goal is to satisfy customer demand while minimizing
system costs, which may include storage, transportation, and out-of-stock penalties, all while adhering
to operational constraints like storage capacities. Comprehensive descriptions of the environments
can be found in Appendices B.3 and B.4.

Datasets. To generate offline datasets, we simulate the operation of mobility-on-demand services
and supply chains using both optimization and heuristic-based policies. In the vehicle routing scenario,
we collect eight datasets across two real-world urban settings—NYC and Shenzhen—utilizing four
different behavior policies: informed rebalancing (“INF”) (Wallar et al., 2018), dynamic trip-vehicle
assignment (DTV) (Alonso-Mora et al., 2017), a demand-proportional heuristic (“PROP”), and a
random dispersion heuristic (“DISP”). For the supply chain scenario, we collect four datasets across
two systems: one warehouse with three (“1W3S”) and ten stores (“1W10S”), respectively. These
datasets are generated using an optimization-based policy (“MPC”) and a heuristic (“HEU”) policy.
We record the low-level actions, which represent the flows of vehicles or goods across the network.

8

Published as a conference paper at ICLR 2025

Table 4: Normalized score comparing online (SAC) and offline (BC, IQL, CQL) algorithms within
both End-to-End and OHIO formulations on the dynamic vehicle routing scenario.

END-TO-END OHIO
DATASET BEH. POL. SAC BC IQL CQL SAC BC IQL CQL

NYC-INF 98.5 ±1.7 -35.2 ±8.3 88.7 ±1.5 48.2 ±1.3 48.1 ±1.5 98.0 ±1.9 97.6 ±2.3 98.1 ±2.8 93.0 ±1.7
NYC-DTV 89.4 ±2.1 -35.2 ±8.3 67.0 ±1.6 48.9 ±1.5 69.2 ±2.3 98.0 ±1.9 89.2 ±2.3 91.1 ±2.8 83.5 ±2.3
NYC-PROP 85.7 ±1.5 -35.2 ±8.3 83.1 ±1.7 42.2 ±1.6 68.3 ±1.8 98.0 ±1.9 85.7 ±2.5 85.8 ±2.2 88.0 ±2.4
NYC-DISP 45.8 ±0.7 -35.2 ±8.3 44.1 ±2.7 57.4 ±2.1 32.5 ±2.9 98.0 ±1.9 86.5 ±1.6 82.8 ±2.2 94.1 ±1.7

SHZ-INF 90.9 ±0.7 -7.7 ±3.3 90.1 ±1.5 90.4 ±1.4 42.2 ±1.4 95.5 ±1.0 87.0 ±1.0 90.4 ±1.4 88.8 ±1.6
SHZ-DTV 92.8 ±1.3 -7.7 ±3.3 89.7 ±1.4 84.9 ±1.4 60.5 ±2.0 95.5 ±1.0 92.5 ±1.3 90.7 ±1.7 90.8 ±1.2
SHZ-PROP 84.5 ±1.0 -7.7 ±3.3 85.5 ±1.4 86.5 ±1.2 59.8±1.6 95.5 ±1.0 83.3 ±1.0 83.6 ±1.1 87.4 ±2.3
SHZ-DISP 73.5 ±2.6 -7.7 ±3.3 83.2 ±1.4 92.5 ±1.0 89.3 ±1.9 98.0 ±1.0 89.0 ±1.4 92.5 ±1.2 91.8 ±1.3

Table 5: Normalized score comparing online (SAC) and offline (BC, IQL, CQL) algorithms within E2E
and OHIO formulations on the supply chain management scenario. ↓ refers to transfer performance be-
tween two environments (in this case, policies trained on 1W10S-MPC, tested on 1W10S-MPC-CAP).

END-TO-END OHIO
DATASET BEH. POL. SAC BC IQL CQL SAC BC IQL CQL

1W3S-HEUR 81.7 ± 1.8 95.9 ± 2.4 80.3 ± 1.5 80.8 ± 1.7 -203.6 ± 5.9 96.1 ± 2.0 79.4 ± 1.6 81.5 ± 1.5 79.0 ± 1.9
1W3S-MPC 98.4 ± 1.8 95.9 ± 2.3 97.1 ± 2.4 97.6 ± 1.6 -145.9 ± 2.6 96.1 ± 2.0 95.4 ± 2.0 96.0 ± 1.6 78.2 ± 1.9
1W10S-HEUR 15.3 ± 3.0 87.5 ± 1.7 -199.1 ± 146.7 4.54 ± 4.8 -1220.3 ± 4.8 90.7 ± 1.1 10.9 ± 2.8 11.2 ± 4.1 13.4 ± 2.8
1W10S-MPC 96.1 ± 1.4 87.5 ± 1.7 94.8 ± 1.0 95.1 ± 1.4 -1677.8 ± 257.1 90.7 ± 1.1 91.8 ± 1.7 91.8 ± 1.8 6.0 ± 3.3

↓ ↓ ↓ ↓ ↓ ↓
1W10S-MPC-CAP 95.8 ± 1.3 39.9 ± 33.3 45.8 ± 13.6 -2110 ± 2.5 86.7 ± 0.9 89.9 ± 1.4 32.2 ± 1.8

The inverse problem. We formulate the low-level optimization policies as linear programs (LPs),
which allows us to exploit the fact that the inverse optimization problem of an LP can itself be
formulated as an LP (Chan C. Y. et al., 2022). In practice, this results in an L1-norm minimization
problem, thus projecting the low-level action onto the space of high-level actions within a feasible
set of solutions. Specifically, the higher-level action commands a goal state representing a distribution
of the commodities to be controlled (i.e. vehicles or goods). Please refer to Appendices B.3.5 and
B.4.5 for a detailed derivation of the inverse.

Scalability and robustness in direct deployment. Results in Table 4 highlight a significant
advantage of OHIO, which consistently outperforms E2E approaches. As observed in previous
studies(Fluri et al., 2019; Gammelli et al., 2021; Skordilis et al., 2022; Singhal et al., 2024) E2E
policies struggle with the high-dimensional action space inherent in large networks. Specifically,
real-world transportation networks exhibit dense graph structures that result in an exponential growth
of the (low-level) action spaces—196- and 289-dimensional for NYC and SHZ. In contrast, OHIO
effectively capitalizes on the dimensionality reduction induced by the hierarchical decomposition,
leading to 14- and 17-dimensional high-level action spaces for NYC and SHZ, respectively.

Similarly, Results in Table 5 highlight several important insights. First, OHIO enhances the performance
of offline learning algorithms that require querying the value function on unseen actions during training
(e.g., CQL). As noted in (Kumar et al., 2020), sample-based value estimation in high-dimensional
action spaces poses significant challenges due to high variance and the curse of dimensionality. In this
context, the hierarchical decomposition introduced by OHIO allows for more accurate value function
estimation through dimensionality reduction, resulting in a more stable offline learning process.

Second, at first glance, there may not appear to be a clear advantage of OHIO when employing BC
and IQL in the context of moderately sized graphs. However, the results in Table 5 reveal that E2E
policies are extremely brittle, even when subjected to minimal variations in the scenario. Specifically,
we evaluate both OHIO and E2E policies (trained on 1W10S-MPC data) in a minimally modified
version of the same environment (i.e., 1W10S-MPC-CAP), where all state elements remain unchanged
except for a reduction of storage capacity at store facilities from 15 to 10. Results in Table 5 illustrate
the advantages of OHIO, with E2E policies experiencing a performance drop of at least 50%, whereas
OHIO’s performance only deteriorates by up to 5%.

9

Published as a conference paper at ICLR 2025

(a) (b)

Figure 2: Supply chain fine-tuning performance of OHIO (FT-OHIO) and end-to-end (FT-E2E) policies
pre-trained on (a) sub-optimal (i.e., HEUR) and (b) biased data (i.e., MPC with biased forecast).

Robustness in online fine-tuning. We further examine various scenarios of practical relevance,
including fine-tuning policies that (i) are trained on sub-optimal data (Figure 2a), and (ii) must adapt
to out-of-distribution bias (Figure 2b). Although both policies yield similar results during direct
deployment (in the case of IQL), Figure 2 illustrates that OHIO policies demonstrate significantly
greater stability and robustness during fine-tuning. The OHIO policy consistently improves upon the
performance of the sub-optimal and biased policy it was trained on, whereas the E2E policy rapidly
declines to a score below zero. Crucially, this degradation coincides with the E2E policy violating
constraints during online interaction with the environment. This issue likely arises from two factors:
(i) constraint violations are rarely included in offline datasets, as current operators must adhere to
critical constraints during operations, and (ii) achieving hard guarantees within E2E architectures is
challenging. In contrast, the OHIO policy can effectively encode domain-specific constraints through
its low-level optimization-based policy, thereby avoiding infeasible out-of-distribution states by design.

Alongside the safety guarantees provided, this framework enables current system operators to train
policies using offline data until they achieve a satisfactory level of performance. Subsequently, they can
deploy these policies while safely enhancing performance through online interactions with the system.

6 DISCUSSION AND CONCLUSIONS

RL within large-scale, complex real-world systems has so far been limited by issues such as lack of
robustness, sensitivity to distribution shifts, and expensive training processes. Hierarchical policy struc-
tures and offline RL are both promising strategies to tackle these issues, yet their integration remains an
open challenge. To overcome the difficulties of combining offline RL with hierarchical policies, we pro-
pose an approach that leverages the structure of low-level policies along with approximate knowledge of
the system dynamics and reward function. This approach formulates an inverse problem that transforms
low-level state (and possibly action) information into datasets suitable for standard offline RL tools.
OHIO not only successfully recovers hierarchical policies from datasets generated by arbitrary, i.e. flat
behavior policies, but it also effectively utilizes datasets collected under varying or unknown low-level
controller configurations—a common challenge in practice that often hinders the efficient use of
available data (e.g., data collected across multiple robotic embodiments). Our approach demonstrates
strong performance across all problem settings we evaluate, substantially outperforming end-to-end
RL and other hierarchical approaches in terms of both performance and, crucially, robustness. While
standard offline RL struggles to avoid constraint violations that are not present in the dataset, OHIO
addresses this by directly encoding domain-specific constraints. As a result, OHIO inherently avoids
infeasible out-of-distribution states, facilitating more robust deployment and safer online fine-tuning.

While our approach demonstrates considerable strengths, it also has certain limitations. Since OHIO
integrates elements of both model-based and model-free reinforcement learning, its performance
is sensitive to the accuracy of the dynamics approximation. Although we have not explored the
robustness of our framework against model errors in this study, this represents a highly promising
avenue for future research. Moreover, solving the inverse problem can be computationally intensive,
even though this process is conducted entirely offline. In our current implementation, we simplified
action reconstruction by neglecting temporal information for computational feasibility; however, more
sophisticated estimation methods, such as cross-timestep losses, present a compelling direction for
future exploration. More generally, we believe this research opens several promising directions for
the extension of these concepts to a wider range of large-scale, real-world applications.

10

Published as a conference paper at ICLR 2025

REFERENCES

A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z. Kolter. Differentiable convex
optimization layers. In Conf. on Neural Information Processing Systems, 2019.

A. Ajay, A. Kumar, P. Agrawal, S. Levine, and O. Nachum. Opal: Offline primitive discovery for
accelerating offline reinforcement learning. In Int. Conf. on Learning Representations, 2021.

Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and Daniela Rus.
On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the
National Academy of Sciences, 114, 2017.

B. Amos, I. D. J. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter. Differentiable MPC for end-to-end
planning and control. In Conf. on Neural Information Processing Systems, 2018.

S. Bansal, V. Tolani, S. Gupta, J. Malik, and C. Tomlin. Combining optimal control and learning for
visual navigation in novel environments. In Conf. on Robot Learning, 2020.

Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete event dynamic systems, 13:341–379, 2003.

T. R. Bewley, P. Moin, and R. Temam. DNS-based predictive control of turbulence: an optimal
benchmark for feedback algorithms. Journal of Fluid Mechanics, 447:179–225, 2001.

Damian Boborzi, Christoph-Nikolas Straehle, Jens Stefan Buchner, and Lars Mikelsons. State-only
imitation learning by trajectory distribution matching, 2022.

Timothy C.Y. Chan and Neal Kaw. Inverse optimization for the recovery of constraint parameters.
European Journal of Operational Research, 282(2):415–427, 2020. ISSN 0377-2217. doi:
https://doi.org/10.1016/j.ejor.2019.09.027.

Timothy Chan C. Y., Rafid Mahmood, and I. Yihang Zhu. Inverse optimization: Theory and
applications. Operations Research, 23, 2022.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Robotics: Science
and Systems, 2023.

P. T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein. A tutorial on the cross-entropy method.
Annals of Operations Research, 134, 2005.

Arthur Delarue, Ross Anderson, and Christian Tjandraatmadja. Reinforcement learning with
combinatorial actions: An application to vehicle routing. In Conf. on Neural Information Processing
Systems, 2020.

Jiajun Duan, Di Shi, Ruisheng Diao, Haifeng Li, Zhiwei Wang, Bei Zhang, Desong Bian, and Zhehan
Yi. Deep-reinforcement-learning-based autonomous voltage control for power grid operations.
IEEE Transactions on Power Systems, 35(1):814–817, 2019.

Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs, Adrian
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. In Conf.
on Robot Learning, pp. 158–168. PMLR, 2022.

C. Fluri, C. Ruch, J. Zilly, J. Hakenberg, and E. Frazzoli. Learning to operate a fleet of cars. In Proc.
IEEE Int. Conf. on Intelligent Transportation Systems, 2019.

D. Gammelli, K. Yang, J. Harrison, F. Rodrigues, F. C. Pereira, and M. Pavone. Graph neural network
reinforcement learning for autonomous mobility-on-demand systems. In Proc. IEEE Conf. on
Decision and Control, 2021.

D. Gammelli, K. Yang, J. Harrison, F. Rodrigues, F. Pereira, and M. Pavone. Graph meta-reinforcement
learning for transferable autonomous mobility-on-demand. In ACM Int. Conf. on Knowledge
Discovery and Data Mining, 2022.

11

Published as a conference paper at ICLR 2025

D. Gammelli, J. Harrison, K. Yang, M. Pavone, F. Rodrigues, and Pereira C. Francisco. Graph reinforce-
ment learning for network control via bi-level optimization. In Int. Conf. on Machine Learning, 2023.

J. Gilmer, S. Schoenholz, P. Riley, O. Vinyals, and G. Dahl. Neural message passing for quantum
chemistry. In Int. Conf. on Machine Learning, 2017.

A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving
long-horizon tasks via imitation and reinforcement learning. In Conf. on Robot Learning, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and Andreas
Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 1861–1870. PMLR, 10–15 Jul 2018.

Hado Hasselt, Arthur Guez, and David Silver. Double q-learning. In Conf. on Neural Information
Processing Systems, 2010.

Taylor A Howell, Simon Le Cleac’h, Sumeet Singh, Pete Florence, Zachary Manchester, and Vikas
Sindhwani. Trajectory optimization with optimization-based dynamics. IEEE Robotics and
Automation Letters, 7(3):6750–6757, 2022.

B. Ichter, J. Harrison, and M. Pavone. Learning sampling distributions for robot motion planning.
In Proc. IEEE Conf. on Robotics and Automation, Brisbane, Australia, May 2018.

Oussama Khatib. A unified approach for motion and force control of robot manipulators: The
operational space formulation. IEEE Journal on Robotics and Automation, 3(1):43–53, 1987.

Geon-Hyeong Kim, Jongmin Lee, Youngsoo Jang, Hongseok Yang, and Kee-Eung Kim. Lobsdice:
Offline learning from observation via stationary distribution correction estimation. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information
Processing Systems, volume 35, pp. 8252–8264. Curran Associates, Inc., 2022.

T.-N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In
Int. Conf. on Learning Representations, 2017.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. CoRR, abs/2110.06169, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Conf. on Neural Information Processing Systems, 2020.

H. Le, N. Jiang, A. Agarwal, M. Dudik, Y. Yue, and H. Daumé. Hierarchical imitation and
reinforcement learning. In Int. Conf. on Machine Learning, 2018.

T. Lew, S. Singh, M. Prats, J. Bingham, J. Weisz, et al. Robotic table wiping via reinforcement learning
and whole-body trajectory optimization. In Proc. IEEE Conf. on Robotics and Automation, 2023.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Pinxin Long, Tingxiang Fan, Xinyi Liao, Wenxi Liu, Hao Zhang, and Jia Pan. Towards optimally
decentralized multi-robot collision avoidance via deep reinforcement learning. In Proc. IEEE Conf.
on Robotics and Automation, 2018.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

O. Nachum, S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning. In Conf.
on Neural Information Processing Systems, 2018.

Mitsuhiko Nakamoto, Yuexiang Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-tuning.
In Conf. on Neural Information Processing Systems, 2023.

12

Published as a conference paper at ICLR 2025

NYC Taxi & Limousine Commission. Trip Record Data, 2013. See h t t p s :
//www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

Jan Peters and Stefan Schaal. Learning to control in operational space. Int. Journal of Robotics
Research, 27(2):197–212, 2008.

Aoyang Qin, Feng Gao, Qing Li, Song-Chun Zhu, and Sirui Xie. Learning non-markovian
decision-making from state-only sequences. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36,
pp. 6596–6618. Curran Associates, Inc., 2023.

Faizan Rasheed, Kok-Lim Alvin Yau, Rafidah Md Noor, Celimuge Wu, and Yeh-Ching Low. Deep
reinforcement learning for traffic signal control: A review. IEEE Access, 8:208016–208044, 2020.

J. Rawlings and D. Mayne. Model predictive control: Theory and design. Nob Hill Publishing, 2013.

Benjamin Rolf, Ilya Jackson, Marcel Müller, Sebastian Lang, Tobias Reggelin, and Dmitry Ivanov.
A review on reinforcement learning algorithms and applications in supply chain management.
International Journal of Production Research, 61(20):7151–7179, 2023.

E. Rosete-Beas, O. Mees, G. Kalweit, J. Boedecker, and W. Burgard. Latent plans for task-agnostic
offline reinforcement learning. In Conf. on Robot Learning, 2023.

R. Y. Rubinstein. Optimization of computer simulation models with rare events. European Journal
of Operational Research, 99, 1997.

A. Singhal, D. Gammelli, J. Luke, K. Gopalakrishnan, D. Helmreich, and M. Pavone. Real-time control
of electric autonomous mobility-on-demand systems via graph reinforcement learning, 2024.

Erotokritos Skordilis, Yi Hou, Charles Tripp, Matthew Moniot, Peter Graf, and David Biagioni. A
modular and transferable reinforcement learning framework for the fleet rebalancing problem. IEEE
Transactions on Intelligent Transportation Systems, 23, 2022.

Francesco Stranieri, Edoardo Fadda, and Fabio Stella. Combining deep reinforcement learning and
multi-stage stochastic programming to address the supply chain inventory management problem.
International Journal of Production Economics, 268, 2024.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel,
Tom Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm control: Software and
tasks for continuous control. Software Impacts, 6:100022, 2020. ISSN 2665-9638. doi:
https://doi.org/10.1016/j.simpa.2020.100022.

Alex Wallar, Menno Van Der Zee, Javier Alonso-Mora, and Daniela Rus. Vehicle rebalancing for
mobility-on-demand systems with ride-sharing. In IEEE/RSJ Int. Conf. on Intelligent Robots &
Systems, 2018.

F. Xia, C. Li, R. Martı́n-Martı́n, O. Litany, A. Toshev, and S. Savarese. Relmogen: Integrating motion
generation in reinforcement learning for mobile manipulation. In Proc. IEEE Conf. on Robotics
and Automation, 2021.

Gioele Zardini, Nicolas Lanzetti, Marco Pavone, and Emilio Frazzoli. Analysis and control of
autonomous mobility-on-demand systems. Annual Review of Control, Robotics, and Autonomous
Systems, 5:633–658, 2022.

D. Zhang, J. Zhao, F. Zhang, and T. He. Urbancps: a cyber-physical system based on multi-source big
infrastructure data for heterogeneous model integration. In Int. Conf. on Cyber-Physical Systems,
pp. 238–247, 2015.

W. Zhou, S. Bajracharya, and D. Held. Plas: Latent action space for offline reinforcement learning.
In Conf. on Robot Learning, 2021.

Henry Zhu, Abhishek Gupta, Aravind Rajeswaran, Sergey Levine, and Vikash Kumar. Dexterous
manipulation with deep reinforcement learning: Efficient, general, and low-cost. In Proc. IEEE
Conf. on Robotics and Automation, 2019.

13

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Published as a conference paper at ICLR 2025

Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martı́n-Martı́n, Abhishek Joshi, Soroush Nasiriany,
and Yifeng Zhu. robosuite: A modular simulation framework and benchmark for robot learning.
arXiv preprint arXiv:2009.12293, 2020a.

Zhuangdi Zhu, Kaixiang Lin, Bo Dai, and Jiayu Zhou. Off-policy imitation learning from observations.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 12402–12413. Curran Associates, Inc., 2020b.

14

Published as a conference paper at ICLR 2025

A Algorithmic Details 16

A.1 Policy Inversion in the Observed-action Case . 16

A.2 Policy Inversion Problem Statement . 16

A.3 Inverse Problem: Linear-Quadratic Gaussian . 17

A.4 Solving the Inverse Problem Numerically . 18

A.5 Assumptions on Data Quality and Property . 18

B Experimental Details 19

B.1 Goal-directed Control . 19

B.1.1 Analytical Inverse . 19

B.1.2 Numerical Inverse . 20

B.2 Robotic Manipulation . 20

B.2.1 Numerical Inverse . 21

B.2.2 Hierarchical RL (”HRL”) . 21

B.3 Vehicle Routing . 21

B.3.1 Environment Details . 21

B.3.2 MDP Details . 22

B.3.3 Model Implementation . 22

B.3.4 Optimization Policy Formulation . 24

B.3.5 Analytical Inverse . 24

B.4 Supply Chain Inventory Management . 25

B.4.1 Environment Details . 25

B.4.2 MDP Details . 25

B.4.3 Model Implementation . 26

B.4.4 Optimization Policy Formulation . 26

B.4.5 Analytical Inverse . 27

B.5 Learning Components for Network Optimization 27

B.5.1 Network Architectures . 27

B.5.2 Online fine-tuning . 28

B.5.3 Hyperparameters . 28

C Further Experimental Results 29

C.1 Analytical Inverse on Linear State Space Model 29

C.2 Visualization of Policies in Robotic Manipulation 29

C.3 Leveraging Different Data Sources for Robotic Manipulation 30

C.4 Comparison of Sample-efficiency during Online Training 30

C.5 Comparison of Runtime at Inference . 30

C.6 Online fine-tuning of OHIO Policy in Network Optimization Scenarios 31

15

Published as a conference paper at ICLR 2025

st

ut at

rt

st+1

ut+1 at+1

rt+1

Figure 3: A graphical model for the system evolution, assuming Markovian dynamics and policies.

A ALGORITHMIC DETAILS

In this section, we provide further algorithmic details, and discuss practicalities of the policy inversion
problem.

A.1 POLICY INVERSION IN THE OBSERVED-ACTION CASE

We consider the case in which we assume access to a datasetD= {τi}Ni=1 consisting of trajectories
τi=(s0,a0,r0,s1,...,sT). This matches the information available in the classical offline RL setting;
note that, critically, we do not assume access to upper-level actions u.

Lower-level policy inversion. Our approach aims to recover the high-level actions that generated
the observed low-level actions. We treat this problem as a probabilistic inference problem, and aim
to solve the (regularized) maximum likelihood estimation problem

û0:T = arg max
u0:T−1

log p(a0:T |u0:T ,s0:T ,r0:T)+
∑
t

L(ut)

s.t. at=πl(st,ut) ∀t,
(10)

which is constructed jointly across each trajectory, and where L denotes a regularization term, e.g.,
L2 regularization of the high-level actions. In practice, we will decompose this joint likelihood across
time and (assuming that the policy is stochastic) solve the one-timestep problem,

ût= arg max
ut

log πl(at |st,ut)+L(ut). (11)

A.2 POLICY INVERSION PROBLEM STATEMENT

The policy inversion problem is to recover u0:T from available data, provided in τi (corresponding
to episode i), which includes either states, possibly actions, and possibly rewards. We include a
graphical model for the system evolution in Figure 3, in the case where only the high-level actions are
unobserved. In general, we may assume the low-level actions and/or the rewards are also unobserved.

There are numerous inferential procedures for the graphical model specified in Figure 3. In particular,
EM-based methods or variational inference methods are possible to characterize uncertainty, and are
well-established in e.g. hidden Markov models. In our settings, however, the mapping from high-level
action to low-level action is typically underdetermined, and thus the inverse mapping is typically
overdetermined. For example, in network control tasks, the high-level action corresponding to a goal
state may be satisfied by many low-level (edge flow) actions.

Thus, we turn to a regularized maximum likelihood approach,
û0:T = arg max

u0:T

log p(τi |u0:T)+L(u0:T) (12)

which we decompose across time as previously mentioned, yielding inferential procedures shown
in Figure 4.

In the action-observed case, it is sufficient to directly invert the policy. Typically, this takes the form of
ût= arg max

ut

log p(at |st,ut)+L(ut). (13)

16

Published as a conference paper at ICLR 2025

st

ut at

st

ut at

st+1

Figure 4: A diagram showing our inference procedure. Left: the observed-action case. Right: the
case in which low-level actions are not observed.

In the case of explicit policies, this corresponds to a standard inverse problem, in which one aims to
recover the input from an output. In some cases this is analytically tractable (as in the LQR example),
but more commonly one must turn to numerical optimization, in which the objective corresponds to
minimizing predictive error.

For implicit policies—especially optimization-based policies—this takes the form of inverse
optimization (Chan C. Y. et al., 2022). Inverse optimization is analytically tractable in limited cases,
but more generally one must turn to numerical methods.

When actions are not observed, the inversion procedure is similar to the action observed case. In
contrast to e.g. EM procedures (which may be a natural inferential scheme to recover a,u jointly)
we first compute a point estimate of a based on state transitions, and in turn use this to compute a
point estimate u. While this may induce error in the inverse problem, we have found this scheme to
work effectively in the settings we consider. Typically, systems dynamics are explicit—as opposed
to optimization-based dynamics, which can occur for example in robotics with contact or multi-agent
decision-making (Howell et al., 2022). Thus, if we define our dynamics as s′=g(s,a), logp(s′ |s,u)
is straightforwardly written in terms of a,u,s, leading to a similar objective to the action-observed case.

A.3 INVERSE PROBLEM: LINEAR-QUADRATIC GAUSSIAN

In this section, we provide the details on the linear-quadratic example from the body of the paper.
Recall that the optimization policy is

arg max
a∈A

− 1

2
Es′

[
∥a−m∥2M+∥s′−u∥2V

]
s.t. s′∼N (As+Ba+c,Σ)

(14)

where, by substituting, we have

arg max
a∈A

− 1

2
Es′

[
∥a−m∥2M+∥As+Ba+c+ϵ−u∥2V

]
(15)

for ϵ∼N (0,Σ). For the case whereA=Rdim(A), this problem is concave, and thus for maximizer a∗,

0=E[M(a∗−m)+BTV (As+Ba∗+c+ϵ−u)] (16)

=M(a∗−m)+BTV (As+Ba∗+c−u) (17)

which yields
a∗=(M+BTV B)†[BTV (u−As−c)+Mm] (18)

which corresponds to a∗=Ku+k for

K=(M+BTV B)†BTV (19)

k=(M+BTV B)†(Mm−BTV (As+c)). (20)

To compute the next state density, we can substitute this action, to yield policy density

s′∼N (As+B(Ku+k)+c,Σ) (21)

17

Published as a conference paper at ICLR 2025

which has a concave log-density. Again, the maximizer u∗ is achieved when

0=(BK)⊤Σ−1(s′−As+c+B(Ku+k)) (22)

which is satisfied by
u∗=(BK)†(s′−(As+c+Bk)). (23)

A.4 SOLVING THE INVERSE PROBLEM NUMERICALLY

We have shown that for a particular choice of inner policy and dynamics models, an analytical solution
of the policy inversion problem is possible. While this approach is numerically efficient due to our
recursive sensitivity calculation and our exploitation of problem convexity, we can instead turn to
numerical solutions.

First, using automatic differentiation, the sensitivity of the low-level action (or post-transition state)
to u may be automatically computed. This enables a partially structured approach, in which we still
exploit problem convexity, but automate computations that are potentially error-prone.

An alternative approach is simply turning to non-convex optimization methods—such as gradient
descent—to compute an approximate minimizing u. Indeed, the only requirement for gradient descent
is the differentiability of the policy with respect to u, as we have discussed previously. Finally, if the
lower level is not differentiable we can resort to gradient-free methods, e.g. CEM. Thus, the numerical
solution of the inverse problem is a considerably more general approach, and we will typically favor
this approach. Algorithm 2 and Algorithm 3 illustrate the numerical inverse depending on available
information in the dataset. Note, that in Algorithm 2, we could also calculate the loss over each state
tuples in the lower-level (e.g. L(xi,si), instead of only the resulting state.

Algorithm 2 Numerical inverse - state-only trajectories
1: Given approximate dynamics A,B
2: Given s,sT ∈D
3: u←s′

4: for each step do
5: Set x0←s
6: for i=0 to T do
7: Get action â=πl(xi,u)
8: Unroll system dynamics: xi+1←Axi+Bâ
9: end for

10: Compute lossL(xT ,sT)
11: Update u usingLtotal, either using gradient descent or CEM
12: end for

Algorithm 3 Numerical inverse with low-level actions a
1: Given, s1..T ,a1..T
2: u← 0⃗
3: for each step do
4: Initialize cumulative lossLtotal←0
5: for i=0 to T do
6: Get action âi=πl(si,u)
7: Compute lossLtotal=+L(âi,ai)
8: end for
9: Update u usingLtotal, either using gradient descent or CEM

10: end for

A.5 ASSUMPTIONS ON DATA QUALITY AND PROPERTY

OHIO is agnostic to the learning signal used for training the high-level policy and, therefore, does
not impose additional data quality assumptions beyond standard offline RL requirements. We
demonstrate OHIO’s effectiveness with both expert data -collected from trained RL agents and

18

Published as a conference paper at ICLR 2025

traditional MPC policies- and suboptimal data—gathered from partially trained RL agents, heuristic-
and optimization-based policies. We note that, when no approximate dynamics model is available, we
require that low-level actions are observed to either learn an approximate dynamics model or directly
perform policy inversion with low-level actions.

B EXPERIMENTAL DETAILS

In this section, we provide further detail about experiment details for the goal-directed control
(Appendix B.1) and manipulation experiments (Appendix B.2). Further, we provide details
on environment specifics relating to vehicle routing (Appendix B.3) and supply chain control
(Appendix B.4) experiments, respectively and on learning components (Appendix B.5) for the network
optimization tasks. The training of our models was executed on a Tesla V100 16 GB GPU.

B.1 GOAL-DIRECTED CONTROL

For the first robotic experiment, we evaluate OHIO on the Reacher-hard task from the DeepMind
Control Suite (Tunyasuvunakool et al., 2020). The end-to-end policy directly learns the low-level
environment actions, whereas our hierarchical framework learns a desired goal state (position and
velocity of robot joints), which serves as input to a goal-conditioned finite-horizon Linear Quadratic
Regulator (LQR) with a horizon of T =5. Specifically, the system is linearized at the current state
using finite differences, yielding constant linear dynamics A and B. The cost function penalizes
deviations from the goal state, and we perform the Riccati recursion over a finite horizon T to compute
the time-varying feedback gains for control law a =K(s−u). At each step of the recursion, the
optimal feedback gain is computed as

Kt=−(R+B⊤Pt+1B)−1(B⊤Pt+1A),

Pt=Q+A⊤Pt+1(A+BKt).

To generate the datasets, we train both an E2E and a hierarchical SAC policy (Haarnoja et al., 2018)
online and use the final checkpoint to collect the demonstration data. All policy and value function
networks are MLPs with two hidden layers, each containing 256 units. Similarly, the learned dynamics
model consists of two MLP layers with 256 units each and two output layers that map to the A and
B dynamics matrices.

All datasets used for this experiment consist of 250 episodes of interactions (each consisting of 1000
timesteps). To learn the dynamics model, we use a train/val split of 0.9/0.1.

The SAC and BC algorithms use the following hyperparameters indicated in Table 6.

As lower-level policy we use an LQR policy with

Q=

10.0 0.0 0.0 0.0
0.0 10.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0


and

R=

(
0.1 0.0
0.0 0.1

)
B.1.1 ANALYTICAL INVERSE

Our goal is to compute the inverse analytically for an LQR policy that tracks goal state u with a
temporal abstraction T to the higher-level policy.
First, without temporal abstraction, to compute the next state density, we substitute the action
a=K(s−u) to yield the policy density:

s′∼N (As+B(K(s−u))+c,Σ), (24)

which has a concave log-density. The maximizer u∗ is achieved when

0=(BK)⊤Σ−1(s′−As−B(K(s−u))). (25)

19

Published as a conference paper at ICLR 2025

This is satisfied by
u∗=(BK)†((A+BK)s−s′). (26)

We define two recursive terms Φ1 and Φ2 that evolve over time, allowing us to generalize our low-level
policy across a temporal horizon T .

Initialization:
Φ1=B0K0, Φ2=(A0+B0K0)s.

Recursive computation for l=1 to T :
Φ1=(Al+BlKl)Φ1+BlKl,

Φ2=(Al+BlKl)Φ2.

Final Solution for u:
u=−Φ†

1(s
′−Φ2).

Regularised analytical inverse. We show that using this analytical inverse formulation recovers
the high-level action exactly in a linear state space model in Appendix C.1. However, in the main body,
we apply this method to a more challenging, non-linear system using approximate linearized dynamics.
When solving this inverse problem exactly, we observe large magnitudes in the recovered actions,
as the solution attempts to perfectly fit the data under these approximate dynamics, which reduces
generalizability and makes learning harder. To address this, we employ an implicit regularization
technique by using the analytical gradient in a gradient descent algorithm, iteratively updating the
solution with early stopping to prevent overfitting.

B.1.2 NUMERICAL INVERSE

As an alternative to the analytical solution, we can solve the inverse numerically (see Algorithm 2).
We use the Adam optimizer with a learning rate of 0.01 and run 10000 steps per data point with early
stopping if the difference between the previous and current loss is below 1e6. To avoid that solutions
from bad local minima impact learning, we only include transitions with a loss < 0.2 in the dataset.
Further, for all of the datasets we scale the action to be within [−1,1].

Table 6: Hyperparameters of SAC.
Parameter Value
Optimizer Adam
Learning rate 1∗10−3

Discount (γ) 0.97
Batch size 100
Entropy coefficient 0.3
Target smoothing coefficient (τ) 0.005
Target update interval 1
Gradient step/env.interaction 1

B.2 ROBOTIC MANIPULATION

In Robosuite, we selected two tasks— Door Opening and Lift —that can be solved using online RL to
collect datasets, both using standard environment configurations. We use the recommended lower-level
controller, the Operational Space Controller, and set the temporal abstraction between the high-level
RL and low-level controller to T =5.

For data collection, we trained a standard online SAC (Haarnoja et al., 2018) algorithm for 1,500
episodes for Door Opening and 2,000 episodes for Lift to convergence. This process yielded
datasets containing 750,000 transitions for Door Opening and 1,000,000 transitions for Lift,
respectively. Data collection is done under standard controller settings with original stiffness
(kp= [150,150,150,150,150,150]) and damping (kd= [1,1,1,1,1,1]). For the modified controller
scenarios, we either change to kp=[150,150,150,50,50,50] or kd=[3,3,3,1,1,1].

For offline training of IQL, we use the parameters indicated in Table 7.

20

Published as a conference paper at ICLR 2025

Table 7: Hyperparameters of IQL.
Parameter Value
Optimizer Adam
Learning rate 1∗10−3

Discount (γ) 0.97
Batch size 256
Target smoothing coefficient (τ) 0.005
Target update interval 1
Gradient step/env.interaction 1
Temperature 3 (Lift), 1 (Door)
Quantile 0.7 (Lift), 0.9 (Door)

B.2.1 NUMERICAL INVERSE

For this lower-level controller, we resort to numerical methods. Fortunately, it remains differentiable,
allowing us to utilize both gradient-based and gradient-free methods, such as the Cross-Entropy Method
(CEM). In general we observe, that gradient-based approaches require fewer controller runs—thus re-
ducing computational time—to converge to a solution. However, depending on the initialization ofu, the
higher exploration of CEM can help to escape local minima and lead to better results. (see Algorithm 3))

Consequently, in scenarios where we aim to restore the high-level action for the given controller, we
initialize u as a zero vector and run gradient descent. For transitions where gradient descent gets stuck
in local minima, indicated by high final loss, we rerun CEM to improve the results.

In casesExec where we want to modify controller settings compared to the data collection, we can
use the original high-level action as the initialization. In this case, gradient-based methods tend to
perform well and deliver satisfactory results.

For the gradient descent algorithm, we use the Adam optimizer with a learning rate of 0.01, running
for up to 10,000 steps with early stopping triggered if the loss falls below 1e−5. For the Cross-Entropy
Method (CEM), we generate 50 samples per iteration, retaining the top 20% of them based on
performance in each step. Early stopping is applied if the loss does not improve over the course of
4 consecutive steps.

B.2.2 HIERARCHICAL RL (”HRL”)

For the ”HRL” baseline, where both levels are learned, we evaluate two scenarios: (i) the upper level
predicts the same reduced goal state as in the case of an operation space controller (position and
orientation of end-effectors) (ii) the upper level predicts the goal state directly in the low-level joint
space (position and velocity of the robot joints. The lower-level network then outputs the required
torques to reach the desired goal state. As the network architecture, we employ a recurrent neural
network consisting of two LSTM layers and a fully connected MLP layer, followed by a Tanh activation
function. The Tanh output is scaled to match the feasible range for torque control, ensuring the actions
remain within valid limits. All hidden dimensions are set to 256, we use a train/val split of 09./01.
and train for 100 epochs, where we save the model with the best validation loss.

B.3 VEHICLE ROUTING

B.3.1 ENVIRONMENT DETAILS

In our experiments, we focus on two case studies generated from trip record data, which we provide
with our codebase, from the cities of New York, USA (NYC Taxi & Limousine Commission, 2013),
and Shenzhen, China (Zhang et al., 2015). We are looking at a taxi-like system serving commute
demand in the areas of Brooklyn and Shenzhen, respectively. In each scenario, the road network is
segmented into geographical areas, representing stations. The trip record data are converted to demand,
travel times, and trip prices between stations. As in (Gammelli et al., 2022), the arrival of passengers
is assumed to be a time-dependent Poisson process, where the Poisson rate is aggregated from the
trip record data every 3 minutes.

21

Published as a conference paper at ICLR 2025

An on-demand service provider coordinates M single-occupancy autonomous vehicles on a
transportation network represented by a complete graph G = (V,E) where V = {vi}{i=1:Nv} and
E={ej}{j=1:Ne} represent the set of vertices and edges of G. Specifically, V defines the set of stations
(e.g., pick-up or drop-off locations), and E defines the shortest paths between stations. The time
horizon is discretized into a set of time steps I=1,2,...,T of length T . At any time step t, vehicles are
controlled to travel along the shortest path between station i and j ̸= i∈V with a travel time of τ ti,j ∈Z+

and travel cost cij , as a function of travel time. At each time step t, passengers submit trip requests
for a desired origin-destination pair (i,j)∈V×V , which is characterized by demand dti,j and price pti,j .
The operator matches passengers to vehicles, and the vehicles will transport the passengers to their
destinations. For idle vehicles that are not matched with any passengers, the operator controls them to
stay at the same station or rebalance to other stations. We denote f t

ij,P ∈N,f t
ij,P ≤dti,j as the passenger

flow, i.e., the number of passengers traveling from station i to station j at time t and f t
ij,R∈N as the

rebalancing flow, i.e., the number of vehicles rebalancing from station i to station j at time t.

B.3.2 MDP DETAILS

Reward (r(st,at)): we choose the reward to be the operator’s profit, which we define as the difference
between the revenue from serving passengers and the cost of operations:

r(st,at)=
∑

(i,j)∈E

f t+1
ij,P (p

t+1
ij −c

t+1
ij)−

∑
(i,j)∈E

f t
ij,Rc

t
ij .

State space (S): the state space describes the current status of the transportation network via node
features. Specifically, given a planning horizon K, we consider: (1) the current and projected
availability of idle vehicles in each stationmt

i∈ [0,M],∀i∈V and {mt′

i,j}t′=t,...,t+K
, (2) provider-level

information trip price pti,j and cost cti,j , (3) current dtij and estimated {d̂t′i,j}t′=t,...,t+K
transportation

demand between all stations.

High-level action u: Given the number of idle vehicles and their current spatial distribution, we
consider the problem of determining the desired idle vehicle distribution ˆqt+1

i .

B.3.3 MODEL IMPLEMENTATION

In what follows, we provide details for the implemented data collection methods and models.

Optimization- and heuristic-based approaches:

1. Random Dispersion: at each time step, the desired distribution is sampled from a Dirichlet
prior with a concentration parameter c=[1,1,...,1].

2. Informed rebalancing (INF) (Wallar et al., 2018): This model assigns idle vehicles Vidle to
rebalance to regionsR that are reachable within a pre-defined time horizonH. By including
the forecasted demand rate in each region λ̃j , it maximizes the expected number of requests
each vehicle would observe in its assigned rebalancing regions. This formulation is extremely
sensitive to the hyperparameters H and ρ. In our experiments, we tune them through an
exhaustive grid search (Table 8, Table 9). Variable yi,j indicates assignment for vehicle
i∈Vidle to rebalance to region center j∈R and τi,j gives the travel time from vehicle i∈Vidle
to region center j∈R.

max
∑

i∈Vidle

∑
j∈R

yij ·λ̃j ·(H−τi,j) (27a)

s.t.
∑
j∈R

yij≤1 ∀i∈Vidle (27b)

yij ·
(
H−τ ti,j

)
≥0 ∀i∈Vidle ,j∈R (27c)∑

i∈Vidle

yij ·(H−τi,j)≤ λ̃j ·H2 ·ρ ∀j∈R (27d)

3. Dynamic trip-vehicle assignment (DTV) (Alonso-Mora et al., 2017): This model assigns
vehicles to unassigned requests by minimizing travel time and either assigning all idle vehicles

22

Published as a conference paper at ICLR 2025

(Vidle) or all open requests (Rko). yv,r indicates assignment of vehicle v∈Vidle to request r∈
Rko, while τv,r gives the shortest travel time for vehiclev∈Vidle to pickup up request r∈Rko.

min
Y

∑
v∈Vidle

∑
r∈Rko

τv,ryv,r (28a)

s.t.
∑

v∈Vidle

∑
Rko

yv,r=min(|Vidle |,|Rko|) (28b)

0≤yv,r≤1 ∀v,r∈Y. (28c)

4. Proportional Heuristic (PROP): This heuristic distributes excess vehicles according to the
forecasted demand λi. It rebalances proportional to the averaged forecasted demand over
the next K=6 timesteps in region i q̂i=

λi∑
j∈Vλj

min
fij,R

∑
i̸=j∈V

ctijfij,R (29a)

s.t.
∑
j ̸=i

(ytji−fij,R)+qi≥ q̂i, i∈V, (29b)

∑
j ̸=i

fij,R≤qi, i∈V. (29c)

Table 8: Hyperparameter tuning of SHZ-INF.
H ρ 1 2 3 4 5 6

2 60.1 60.2 60.1 60.1 60.1 60.0
3 60.9 59.6 59.6 59.8 60.0 60.1
4 52.97 50.65 51.50 51.79 52.00 60.10
5 50.83 44.62 44.19 44.19 44.19 52.10
6 48.61 43.13 43.44 43.44 43.44 44.19

Table 9: Hyperparameter tuning of NYC-INF.
H ρ 1 2 3 4 5 6 7

2 27.25 27.20 27.18 27.09 26.95 26.89 26.89
3 39.70 38.30 39.17 39.30 29.30 39.30 39.30
4 49.50 50.08 50.54 50.55 50.55 50.55 50.55
5 52.88 54.21 54.23 54.23 54.23 54.23 54.20
6 56.22 57.24 57.25 57.25 57.25 57.25 57.25
7 56.68 56.04 56.04 56.22 56.22 56.22 56.20

Learning-based approaches:

1. End-to-end RL: for the end-to-end RL implementation, the flow action is defined along the
edges as opposed to the desired distribution over nodes. We achieve this through minimal
changes with respect to the OHIO network architecture. Specifically, this results in an edge
convolution (consisting of 2 linear layers of 256 units) that outputs the mean and standard
deviation parameters of a Gaussian policy for each edge in the graph.

2. OHIO: for all networks, we use one layer of GCN with 256 hidden units with a sum
aggregation function, followed by 2 linear layers of 256 hidden units and a final layer mapping
to the respective output’s support.

23

Published as a conference paper at ICLR 2025

B.3.4 OPTIMIZATION POLICY FORMULATION

Given a desired next state described by the desired number of idle vehicles across stations q̂ti ,∀i∈V ,
we define the following linear control problem according to Gammelli et al. (2023) as follows:

min
ft
ij,R

∑
(i,j)∈E

ctijf
t
ij,R (30a)

s.t.
∑
j ̸=i

(f t
ji,R−f t

ij,R)+qti≥ q̂ti , i∈V (30b)

∑
j ̸=i

f t
ij,R≤qti , i∈V (30c)

f t
ij,R≥0, (i,j)∈E (30d)

where the objective function (30a) represents the rebalancing cost, constraint (30b) ensures that the
resulting number of vehicles is close to the desired number of vehicles, and with constraints (30c),
(30d) ensuring that the total rebalancing flow from a region is upper-bounded by the number of idle
vehicles in that region and non-negative.

B.3.5 ANALYTICAL INVERSE

We formulate the inverse problem using a data-driven inverse optimization approach Chan C. Y. et al.
(2022). The general primal optimization problem models a network flow system that minimizes
rebalancing costs and penalties for deviations from the desired target distribution (in cases where not
all desired distributions are feasible and reachable). The primal problem is formulated as follows:

Primal Objective: Minimize c⊤x+p⊤z

s.t.: Ax+Bz≤b,

x≥0, z≥0.

,where in our example, x denotes rebalancing flows, and z is a slack variable penalizing deviations
from the target distribution, with respective costs c and p. The constraint matrix A encodes the flow
and supply constraints, while B accounts for the deviations from the goal state.

In the inverse optimization problem, the goal is to reconstruct the unknown desired target distribution
by adjusting the right-hand side (b) such that the observed solution (x∗) remains feasible and
maximizes the fit of the forward model. This is achieved by minimizing absolute sub-optimality. The
absolute sub-optimality problem can be reformulated and efficiently solved using strong duality Chan
C. Y. et al. (2022).

Minimize: ϵ

s.t.: Ax∗+Bz≤b,

A⊤λ≤c,

B⊤λ≤p,

λ≤0,ϵ≥0,z≥0,b∈R
ϵ=

(
c⊤x∗+p⊤z

)
−b⊤λ,

where specific components of b are fixed to the current vehicle distribution. This ensures that the
reconstructed b aligns with the observed flows (x∗) while enforcing feasibility and minimizing the
optimality gap under the adjusted model. The desired target distribution can then be inferred from
the optimized b. We note, that this inverse model is bilinear, but Chan & Kaw (2020) show that this
problem has an analytical solution. For increased exploration and robustness at the higher level, we
could reconstruct different (potentially infeasible) target distributions that lead to the same observed
flows. For this, we could add a small regularizer to the objective function, such as

∑
rαrb[r], which

encourages flexibility in reconstructing the target distribution, which is left as an interesting direction
for future work.

24

Published as a conference paper at ICLR 2025

On closer examination, in the current hierarchical formulation with action definitions on a fully
connected graph — where all actions are feasible and reachable—, and since all the data collection
strategies are central policies and we, therefore, observe optimal x∗, i.e. minimal cost flows, the inverse
problem simplifies. Specifically, the constraint parameters that satisfy equation (30b) with equality
Ax∗= b provide one direct solution to the inverse problem. The reconstructed target distribution q̂ti
is then computed as: q̂ti =qti+

∑
j ̸=i(f

t
ji,R−f t

ij,R),i∈V .

B.4 SUPPLY CHAIN INVENTORY MANAGEMENT

In what follows, we describe environment specifics, MDP definitions, baseline implementation, and
the low-level, optimization formulation.

B.4.1 ENVIRONMENT DETAILS

In our scenario, we consider a distribution network in a supply chain consisting of interconnected ware-
houses and stores aiming to meet customer demand while minimizing storage and transportation costs.
We define the supply chain as a graph G={V,E}, where V=Vd∪VW is the set of warehouse VW and
distributionVd nodes respectively and E the set of edges connecting warehouses to stores. If a sufficient
inventory is available, demand dti is fulfilled in stores s∈Vd and sold at a price p. Unsatisfied orders are
back ordered at a cost. At each time step t, warehouse i orders additional units of inventory wt

i bounded
by production capacity Cp and stores available ones bounded by storage capacity Cs. Simultaneously,
each store orders additional inventory from the warehouses bounded by storage capacity ci. Ordered
units get delayed by production tP and travel times ti,j respectively. During operations, production
mO, transportation mT , storage mS , and backorder costs mB occur. All stores are assumed to have
an independent demand-generating process. We simulate seasonal demand behavior by representing
demand di∈Vd as a co-sinusoidal function with a stochastic component defined as follows:

dit=

⌊
dimax

2

(
1+cos

(
f ∗π(2∗r+t)

T

))
+U(0,divar)

⌋
, (31)

where dimax is the maximum demand value, U(0,divar) is a uniformly distributed random variable, T
the episode length, f and r controlling the frequency and shift respectively.

Environment parameters are defined in Tables 10 and 11.

Table 10: Parameters for the 1F10S environment.
Parameter Explanation Value Parameter Explanation Value

dmax Maximum demand [5, 15, 20] mS Storage cost [0.1, 0.5, 0.5, 0.5]
dvar Demand variance [2, 2, 2] mO Production cost 5
f Demand frequency [2, 4, 6] cp Production capacity 25
r Demand shift [1, 3, 6] mT Transportation cost 0.5
tij Travel time [1, 1, 1] p Price 15
tP Production time 1 mB Backorder cost 1.5
c Storage capacity [50, 15, 15, 15] T Episode length 30

Table 11: Parameters for the 1F10S environment.
Param. Explanation Value Param. Explanation Value
dmax Maximum demand [5,5,5,5,10,10,10,18,18,18] mS Storage cost [0.005,2,. . . ,2]
dvar Demand variance [2, 2, 2] mO Production cost 5
f Demand frequency [2, 4, 6, 2, 4, 6, 2, 4, 6, 3] cp Production capacity 60
r Demand shift [1, 1, 1, 3, 3, 3, 6, 6, 6, 2] mT Transportation cost 0.5
tij Travel time [1, 1, 1] p Price 15
tP Production time 1 mB Backorder cost 1.5
c Storage capacity [80,15,15,15,15,15,15,15,15] T Episode length 30

B.4.2 MDP DETAILS

Reward (r(st,at)): we select the reward function in the MDP as the profit of the inventory manager,
computed as the difference between sales revenues and the sum of storage, production, transportation,

25

Published as a conference paper at ICLR 2025

penalties for capacity violations, and backorder cost:

r(st,at)=
∑
i∈VW

p·min(dit,q
t
i)−

∑
i∈V

mS
i ·qti−

∑
i∈VW

mO
i ·wt

i−
∑

(i,j)∈E

mT
ij ·f t

ij

−
∑
i∈Vd

1.5∗p·max(0,qti−cs)−
∑
i∈Vd

mB
i ·max(0,dti−qti), (32)

where qti is the inventory level at node i at time t, wt
i the production order at warehouse i∈VW at time

t and f t
ij the shipment flow from warehouse i∈Vd to store j at time t.

State Space (S): the state describes the current state of the supply chain network by defining node
and edge features. Node features contain (i) current and back-ordered demand, (ii) current inventory,
(iii) storage and production cost, sales price, and storage and production capacities, (iv) incoming
flow or orders for the next T timesteps

∑
j∈Vfji:t+1:T or wi:t+1:T . Edge features are represented by

the concatenation of (i) travel time tij and (ii) transportation cost.

Output of the RL policy u: we define u by two elements: (i) a goal production in warehouse nodes
wi,∀i∈Vw and (ii) a goal inventory over nodes q̂ti , ∀i∈Vd.

B.4.3 MODEL IMPLEMENTATION

In what follows, we provide additional details for the implemented dataset collection strategies and
baselines.

Domain-driven heuristics:

1. S-type Policy: commonly known as the “order-up-to” policy, operates on the basis of the
order-up-to level for the warehouses and stores. Essentially, at every time step the inventory
manager places orders in an amount that will bring the total inventory on hand and in transit
up to their respective order-up-to levels. In practice, the optimal order-up-to levels for each
environment are determined through an exhaustive grid search.

MPC-based: Within this class of methods, we measure the performance of traditional optimization-
based approaches using an MPC approach.

1. MPC-Oracle: this benchmark serves the purpose of quantifying the performance of an “oracle”
controller. We provide this model with perfect foresight information on future demand and sys-
tem dynamics. By providing the optimization model with Oracle knowledge of the realization
of stochastic elements, we are able to quantify the optimality gap for the presented methods.

2. MPC: We relax the assumption of perfect foresight information in MPC-Oracle and substitute
it with a noisy and unbiased estimate of demand.

Learning-based:

1. End-to-end RL: this benchmark does not approach the problem via the proposed hierarchical
formulation of OHIO, but rather through more traditional end-to-end (E2E) architectures.
Specifically, the flow action is defined along the edges as opposed to over the nodes. We
achieve this through minimal changes to the architecture by an edge convolution (consisting
of 2 linear layers of 32 hidden units) that outputs α and β parameters of a Beta distribution
for each edge in the graph. We adopt an individual upper bound for each action respective
to the storage capacities/production capacities of the previous stage (Stranieri et al., 2024).

2. OHIO: for all networks, we use two layers of message-passing neural network of 256 hidden
units with a sum aggregation function, followed by a linear layer mapping to the respective
output’s support.

B.4.4 OPTIMIZATION POLICY FORMULATION

Given the output of the high-level RL-based policy defined as (i) the desired production ŵt
i at

warehouse nodes i∈VW and (ii) the desired distribution of available inventory over distribution nodes

26

Published as a conference paper at ICLR 2025

q̂ti , ∀i∈Vd, we define the following optimization-based policy Gammelli et al. (2023):

min
ft
ij ,w

t
i ,ϵ

t
w,i,ϵ

t
f,i

∑
i∈VW

|ϵtw,i|+
∑
i∈Vd

|ϵtf,i| (33a)

s.t.
∑

j∈N−(i)

f t
ji= q̂t+1

i +ϵtf,i, ∀i∈Vd (33b)

∑
j∈N−(i)

f t
ji+qti−dti≤Cs,i, ∀i∈Vd (33c)

∑
j∈N+(i)

f t
ij≤qti , ∀i∈VW (33d)

qti+wt
i−

∑
j∈N+(i)

f t
ij≤Cp,i, ∀i∈VW (33e)

wt
i= ŵt

i+ϵtw,i, ∀i∈VW (33f)

f t
ij≥0, (i,j)∈E (33g)

where wt
i is the realised production at node i ∈ VW at time t, f t

ij the commodity flows from node
i to node j at time t, dti the demand in node i∈Vd at time t, qti the available inventory at each node
i∈V , and Cs,i the storage and Cp,i the production capacity at node i∈V . The objective function 33a
represents the distance metric that penalizes the deviation from the desired next states. Constraint 33b
ensures that the total incoming flow in distribution nodes is as close as possible to the desired inventory,
constraint 33c ensures that the inventory after demand realization, and incoming shipments do not
exceed the storage capacity, constraint 33d guarantees that the combined shipment quantity is upper
bounded by the warehouse inventory. Constraint 33e ensures capacity adherence in the warehouse,
and constraint 33f ensures that orders from manufacturers are close to the desired orders quantity and,
lastly, that commodity flows are defined as non-negative.

B.4.5 ANALYTICAL INVERSE

The flow dynamics in this problem are deterministic, and the cost terms minimize the one-norm of
error terms. These error terms measure disagreement between the realized next state under the system
dynamics and the goal next state. In the context of inverse optimization, our goal is to infer the values
of constraint parameters q̂ti ∀i∈VS (which correspond to high-level action u) that make the observed
inventory flows optimal for the original LP. Similar to the vehicle routing scenario, we can achieve this
through data-driven inverse optimization Chan C. Y. et al. (2022). When assuming that the observed
flows do not violate capacity constraints, the direct solution to the inverse problem can be derived
as q̂t+1

i =
∑

j∈N−(i)f
t
ji,∀i∈Vd. Note, that this way we only generate feasible high-level actions for

the offline dataset. The inclusion of error term ϵtf,i in the inverse formulation to create non-feasible
high-level action as means of exploration for the offline RL agent is left as future work.

B.5 LEARNING COMPONENTS FOR NETWORK OPTIMIZATION

In this section, we provide details about the learning component in the network optimization
experiments.

B.5.1 NETWORK ARCHITECTURES

We parameterize policy, Q- and value function estimators through graph neural network encoders.
The specific network architectures are problem-specific and can be summarized as follows:

1. Vehicle Routing: to define a valid vehicle distribution, the output of the policy network
is sampled from a Dirichlet distribution ut ∼ Dir(ut|c). More precisely, we use a Graph
convolutional neural network (GCN) (Kipf & Welling, 2017) with sum aggregation function,
followed by three linear layers that compute the concentration parameters c∈RNv

+ over Nv

regions, where the positivity of c is ensured by a Softplus nonlinearity. The Q- and value
functions have the same backbone architecture. In the Q-function architecture, the node

27

Published as a conference paper at ICLR 2025

Table 12: Hyperparameters of SAC.
Parameter Value
Optimizer Adam
Learning rate 1∗10−3

Discount (γ) 0.97
Batch size 100
Entropy coefficient 0.3
Target smoothing coefficient (τ) 0.005
Target update interval 1
Gradient step/env.interaction 1

embeddings are concatenated with the action before being fed into the linear layers. The value
function maps from node embeddings to the final value estimate through a sum aggregation.

2. Supply Chain Inventory Management: we use a message-passing neural network
(MPNN) (Gilmer et al., 2017) with sum aggregation. The output of the policy network
is defined as (i) concentration parameters c∈RV

+ of a Dirichlet distribution over warehouses
and stores for computing the shipment flows, and (ii)α∈R|VW |

+ and β∈R|VW |
+ of a Beta distri-

bution, where the output is scaled by the production capacity to define the desired production.
The Q- and value functions share the same encoder architecture. The action is concatenated
with the node embeddings before the linear layers to achieve a Q-value estimate, while the
node embeddings are aggregated through summation to compute the value function estimate.

B.5.2 ONLINE FINE-TUNING

In this section, we state the specifics of our online fine-tuning procedure.

With offline RL, we obtain a policy initialization, which is intended for sample-efficient online fine-
tuning. Offline learned policy and value functions via IQL or BC can be fine-tuned directly. However,
conservative methods such as CQL tend to learn smaller Q-values than their true values. Consequently,
initial interactions during online fine-tuning are spent adjusting the Q-function, leading to unintentional
unlearning of the initial policy. To address this, we calibrate the Q-function during offline learning
to match the range of the ground-truth Q-values via Cal-CQL, as proposed in Nakamoto et al. (2023).

Further, to mitigate large gradient updates during initial fine-tuning that potentially lead to unstable
policy behavior, we (i) freeze the weights of the policy network and only train the Q- and/or value
function for the first 200 episodes (ii) we start by sampling 50% of the batch from the offline dataset
and gradually decrease this proportion to 0 over 3000 episodes.

B.5.3 HYPERPARAMETERS

SAC: The hyperparameters used to train our online baseline can be found in Table 12. To improve
learning stability, we implement (i) a double estimator for the Q-function (Hasselt et al., 2010) and
(ii) target Q-networks (Mnih et al., 2015).

CQL: For our offline experiments, we train the CQL(H) version of CQL with trade-off factor
α=1. We use a policy learning rate of 1∗10−4 and a critic learning rate of 3∗10−4. The remaining
hyperparameters are kept identical to the online SAC version in Table 12.

IQL: We use τ =0.9 and β=3 for all implementations and a policy learning rate of 1∗10−4 and
a critic learning rate of 3∗10−4. General hyperparameters are kept the same as in the online SAC
version in Table 12.

28

Published as a conference paper at ICLR 2025

C FURTHER EXPERIMENTAL RESULTS

C.1 ANALYTICAL INVERSE ON LINEAR STATE SPACE MODEL

Given a linear state space model with state transition matrix As and control input matrix Bs: ∆t=0.5,

As=

[
1 ∆t
0 1

]
and Bs=

[
∆t2

2
∆t

]
, we recover several high-level actions with Equation (23) for different

LQR parameter settings that exactly lead to the next observed state, which are illustrated in Figure 5.
Specifically, we test R∈{0,0.2}, and Q11∈{3.5,4.0,4.5,5.0,5.5} and Q22=1, Q12=Q21=0.

Figure 5: Visualistion of high-level actions recovered by the analytical inverse for different LQR
parameter settings

C.2 VISUALIZATION OF POLICIES IN ROBOTIC MANIPULATION

We provide a visualization of the policies obtained by standard offline RL in Figure 6a), which fails
to perform the task of opening the door, and OHIO Figure 6b) performing effective offline RL and
completing the task.

(a) (b)

Figure 6: Door opening task with modified stiffness (a) standard offline RL (No Sucess), (b) OHIO
(Succes)

29

Published as a conference paper at ICLR 2025

C.3 LEVERAGING DIFFERENT DATA SOURCES FOR ROBOTIC MANIPULATION

We introduce an “Expert Dataset” comprising 250 episodes collected using an expert policy for the
Door Opening task. Using this dataset, we compare:

• i) Hierarchical imitation learning (HIL). This approach applies an imitation learning objective
to both the high- and low-level policies. The high-level policy predicts a goal state in the
joint space (position and velocity of the robot joints), whereas the low-level learns the robot
torques to reach this goal state.

• ii) OHIO-based Imitation Learning (“OHIO-IL”). This method employs an imitation learning
objective for the high-level policy, combined with the inverse optimization process derived
by an operational space controller for the low-level policy. The high-level policy predicts
a goal state in the operational space (position of the robot end effectors).

As shown in Table 13 (left) learning solely from expert demonstrations proves challenging due to
limited data coverage, which impacts both HIL and OHIO-based methods and prevents them from
consistently solving the task. To address this limitation, we leverage a broader set of demonstrations
to enhance offline learning. Specifically, we construct a “Combined Expert Dataset” by merging
demonstrations from three distinct expert policies, each collected under a different controller setup
(200 episodes per policy, totaling 600 episodes)—a setup commonly encountered in practice. As
shown in Table 13 (right), OHIO demonstrates its effectiveness in integrating diverse data sources,
outperforming non-OHIO-based methods. Furthermore, offline RL objectives enable learning from
datasets created by multiple expert policies, consistently outperforming imitation learning approaches
(e.g., HIL vs. HRL and OHIO-IL vs. OHIO-IQL).

Table 13: Normalized scores on the door opening task
Expert Dataset Combined Expert Dataset

HIL OHIO - IL HIL HRL OHIO - IL OHIO - IQL

57.73±39.2 26.44±37.9 29.89±34.8 64.75±37.7 81.85±33.1 91.1±23.2

C.4 COMPARISON OF SAMPLE-EFFICIENCY DURING ONLINE TRAINING

We provide the training curves in Figure 7 to demonstrate the significant improvement in
sample-efficiency and learning stability of hierarchical RL over traditional E2E RL.

Figure 7: Training curve for online hierarchical (Bi-level) RL and E2E RL in the supply chain 1W10S
experiment.

C.5 COMPARISON OF RUNTIME AT INFERENCE

We perform additional analyses on run times for the DVR problem (Table 14). We show how, despite
the substantially increased graph sizes, the computation time of our method remains tractable across
different real-world scale.

30

Published as a conference paper at ICLR 2025

Table 14: Runtimes of OHIO at inference on the Dynamic Vehicle Routing environment on different
graph sizes.

No. Edges 16,000 10,000 40,000 90,000
E2E 0.02 s (± 0.04) 0.04 s (± 0.00) 0.16 s (± 0.01) 0.32 s (± 0.01)
OHIO 0.09 s (± 0.01) 0.73 s (± 0.01) 5.61 s (± 0.04) 14.90 s (± 0.25)
MPC-Oracle (T=6) 0.47 s (± 0.02) 3.93 s (± 0.38) 21.97 s (± 2.58) 44.13 s (± 2.76)
MPC-Oracle (T=12) 1.69 s (± 0.28) 45.21 s (± 3.5) 85.23 s (± 7.92) 163.06 s (± 11.29)

C.6 ONLINE FINE-TUNING OF OHIO POLICY IN NETWORK OPTIMIZATION SCENARIOS

We further evaluate the performance of the policy learned by OHIO during online fine-tuning, both
in-distribution (i.e., within the same city) and in a transfer learning setting (i.e., requiring adaptation
to a different city, with unseen topology, demand patterns, travel times, etc.). Results in Figure 8 show
how, in both cases, OHIO policies are able to reliably improve upon the starting performance learned
from offline data. Crucially, the policy learned by OHIO is consistently above the performance of the
behavior policy during the entire fine-tuning process, thus avoiding prohibitively expensive low-reward
interactions during the initial phases of training and potentially alleviating a critical bottleneck for
the deployment of RL within real-world systems. In Figure 9, we show how the E2E policy is unable
to adhere to constraint violations during online fine-tuning.

(a) (b)

Figure 8: Vehicle routing fine-tuning performance (y-axis) of pre-trained hierarchical policies
(FT-OHIO) compared with training from scratch (Online-BL) as a function of gradient steps deriving
from online interaction (x-axis) with either (a) a same-city scenario (NYC→NYC) or (b) in a transfer
learning setting (NYC→SHZ). “Beh. Pol.” indicates the performance of the behavior policy.

(a) (b)

Figure 9: Supply chain fine-tuning performance (a) and constraint violation (b) of OHIO (FT-OHIO)
and end-to-end (FT-E2E) policies pre-trained on near-optimal data (i.e., MPC).

31

	Introduction
	Problem Statement
	Methodology
	Lower-Level Policies
	Policy Inversion
	Full Methodology

	Related Work
	Experiments
	Robotics
	Goal-directed control
	Robotic manipulation

	Network Optimization

	Discussion and Conclusions
	Algorithmic Details
	Policy Inversion in the Observed-action Case
	Policy Inversion Problem Statement
	Inverse Problem: Linear-Quadratic Gaussian
	Solving the Inverse Problem Numerically
	Assumptions on Data Quality and Property

	Experimental Details
	Goal-directed Control
	Analytical Inverse
	Numerical Inverse

	Robotic Manipulation
	Numerical Inverse
	Hierarchical RL ("HRL")

	Vehicle Routing
	Environment Details
	MDP Details
	Model Implementation
	Optimization Policy Formulation
	Analytical Inverse

	Supply Chain Inventory Management
	Environment Details
	MDP Details
	Model Implementation
	Optimization Policy Formulation
	Analytical Inverse

	Learning Components for Network Optimization
	Network Architectures
	Online fine-tuning
	Hyperparameters

	Further Experimental Results
	Analytical Inverse on Linear State Space Model
	Visualization of Policies in Robotic Manipulation
	Leveraging Different Data Sources for Robotic Manipulation
	Comparison of Sample-efficiency during Online Training
	Comparison of Runtime at Inference
	Online fine-tuning of OHIO Policy in Network Optimization Scenarios

