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ABSTRACT

In Reinforcement Learning from Human Feedback (RLHF), it is crucial to learn
suitable reward models from human feedback to align large language models
(LLMs) with human intentions. However, human feedback can often be noisy, in-
consistent, or biased, especially when evaluating complex responses. Such feed-
back can lead to misaligned reward signals, potentially causing unintended side
effects during the RLHF process. To address these challenges, we explore the use
of influence functions to measure the impact of human feedback on the perfor-
mance of reward models. We propose a compute-efficient approximation method
that enables the application of influence functions to LLM-based reward models
and large-scale preference datasets. In our experiments, we demonstrate two key
applications of influence functions: (1) detecting common forms of labeler bias in
human feedback datasets and (2) guiding labelers to refine their strategies to align
more closely with expert feedback. By quantifying the impact of human feedback
on reward models, we believe that influence functions can enhance feedback inter-
pretability and contribute to scalable oversight in RLHF, helping labelers provide
more accurate and consistent feedback.

1 INTRODUCTION

As large language models (LLMs) demonstrate remarkable capabilities across various domains, en-
suring their behaviors align with human intentions becomes increasingly important. To this end,
reinforcement learning from human feedback (RLHF) has emerged as a powerful solution for fine-
tuning LLMs (Ziegler et al., 2019; Stiennon et al., 2020; Ouyang et al., 2022). In RLHF, human
feedback is collected to train reward models that capture important human values, such as help-
fulness and harmlessness (Bai et al., 2022a; Ji et al., 2024). LLMs are then fine-tuned to produce
outputs that closely align with these reward models.

However, human feedback can often be noisy, inconsistent, or biased, especially when evaluating
complex responses (Casper et al., 2023). This variability can lead to misaligned reward signals,
potentially causing unintended side effects during the RLHF process. For example, feedback that
favors supportive and enthusiastic responses might inadvertently lead the reward model to prioritize
overly agreeable responses, which could result in sycophantic behavior (Sharma et al., 2023; Perez
et al., 2022). This issue highlights the need for robust methods that precisely evaluate the impact
of feedback on reward models, enabling humans to detect biased feedback and refine their feedback
strategies more effectively.

In this work, we assess the impact of human feedback on reward models by utilizing influence func-
tions (Hampel, 1974; Koh & Liang, 2017). However, a significant challenge arises when applying
influence functions to reward models, especially large-parameter models like LLMs and those in-
volving extensive preference datasets, due to the high computational costs involved. To address this,
we introduce a compute-efficient method that utilizes vector compression techniques (Li & Li, 2023)
alongside the influence estimation method (Kwon et al., 2024), achieving a 2.5-fold speed acceler-
ation compared to previous methods in computing influence functions. This approach significantly
reduces the computational costs required to compute influence functions, facilitating more practical
applications in large-scale settings.

We demonstrate two applications of influence functions (see Figure 1 for an overview): (1) detecting
labeler bias in training datasets, and (2) improving suboptimal labeling strategies. In our first exper-
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Figure 1: An overview of our work, which applies influence functions to reward modeling. We apply
influence functions to critical tasks such as labeler bias detection and labeling strategy oversight,
enhancing the interpretability of human feedback in RLHF.

iment, we explore two prevalent biases in the RLHF paradigm: length and sycophancy bias, where
labelers may naively prefer longer (Saito et al., 2023) and more sycophantic responses (Sharma
et al., 2023), regardless of response quality. To test our approach, we introduce biased samples into
the training dataset and assess whether they can be detected using influence functions. Our approach
significantly outperforms several baselines, including GPT-4o (OpenAI, 2024) and various outlier
detection methods (Lee et al., 2018), by effectively identifying biased samples.

Additionally, we showcase the utility of influence functions in refining feedback strategies to bet-
ter align with expert evaluations using a proof-of-concept experiment. Utilizing the Helpsteer 2
dataset (Wang et al., 2024), we simulate a scenario where an expert labeler, Alice, employs an op-
timal labeling strategy, and a non-expert labeler, Bob, uses a suboptimal one. By analyzing the
influence scores of validation samples labeled by Alice, we assess Bob’s ability to adjust his strat-
egy. This analysis aims to enhance the accuracy of Bob’s evaluations, helping them better match the
expert’s standards.

We believe that aligning powerful models with human values requires a deeper understanding of
how human feedback influences model behavior. Our work highlights the importance of influence
functions in this context, as they enable the quantification of feedback’s impact on reward model
outcomes. Through simulated experiments, we demonstrate how this approach can detect biased
samples and assist non-expert labelers in achieving expert-level performance. By enhancing the
interpretability of human feedback in reward modeling, our approach can help labelers provide
accurate feedback to reward models at complex tasks, contributing to scalable oversight (Amodei
et al., 2016; Bowman et al., 2022).

2 RELATED WORK

Influence functions Influence functions measure the impact of individual training data points on
the resulting model and have been applied to various tasks, such as identifying influential data,
detecting label errors, and interpreting model behavior (Koh & Liang, 2017; Guo et al., 2021; Kwon
et al., 2024; Lin et al., 2024). Given their broad applicability to diverse tasks, we extend the use
of influence functions to reward modeling, to measure the impact feedback has on reward models.
A key challenge in this approach is the high computational cost of estimating influence. Building
on recent advancements in efficient influence computation methods, which enables the estimation
of influence functions even for LLMs (Kwon et al., 2024; Lin et al., 2024; Grosse et al., 2023), we
apply influence functions to LLM-based reward models.

Scalable oversight As AI models become more powerful, reliably providing feedback on their
behavior becomes increasingly challenging (Burns et al., 2024). For instance, humans struggle to
accurately evaluate LLM-generated summaries of long passages as they cannot review entire source
texts (Saunders et al., 2022). This challenge highlights the need for scalable oversight (Amodei et al.,
2016; Bowman et al., 2022), where non-expert humans are required to provide feedback on complex
outputs produced by advanced AI systems. A common approach to scalable oversight involves using
capable AI models during the feedback process, either to assist humans (Saunders et al., 2022) or
to replace them (Bai et al., 2022b; Cui et al., 2023). However, AI-assisted feedback processes can
still fail, and it remains uncertain whether they will guarantee alignment (Hofstätter, 2023; Casper
et al., 2023) for increasingly complex tasks. An alternative approach to scalable oversight is the
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“sandwich paradigm” (Cotra, 2021; Bowman et al., 2022), which places the capabilities of an LLM
between a domain expert and the model overseer. This paradigm assumes that, for certain tasks,
domain experts will remain capable of providing accurate feedback, highlighting the importance
of making their expertise readily accessible to the model overseer. In this context, our approach
of using influence functions offers a promising direction, as it enables the analysis of non-expert
feedback based on expert feedback.

3 PRELIMINARIES

3.1 INFLUENCE FUNCTIONS

The influence function quantifies the impact of individual training data points on model param-
eters by measuring the change in parameters in response to an infinitesimal adjustment in the
weight of a specific data point (Hampel, 1974; Koh & Liang, 2017). To be more specific, we
denote a parameter by θ, an associated parameter space by Θ, a loss function by ℓ, a parame-
terized model by fθ, and a training dataset by D. The empirical risk minimizer θ∗ is defined as
θ∗ := argminθ∈Θ |D|−1

∑
x∈D ℓ(fθ(x)), and the ε-weighted risk minimizer for a single training

data point xi ∈ D is defined as follows:

θ(i)(ε) := argmin
θ∈Θ

1

|D|
∑
x∈D

ℓ(fθ(x)) + εℓ(fθ(xi)). (1)

The influence function is defined as the derivative of θ(i)(ε) at ε = 0, capturing how fast the pa-
rameter would change when the weight on xi is slightly changed. With the standard assumptions
(e.g., twice-differentiability and strong convexity of a loss function ℓ), the influence at training data
point xi is expressed with the Hessian matrix of the empirical loss and the first-order gradient as
follows (Cook & Weisberg, 1980):

Iθ∗ (xi) :=
dθ(i)(ε)

dε

∣∣∣∣
ε=0

= −H(D; θ∗)−1∇θℓi|θ=θ∗ , (2)

where H(D; θ) := ∇2
θ

(
1

|D|
∑

x∈D ℓ(fθ(x))
)

and ∇θℓi = ∇θℓ(fθ(xi)). In many recent machine
learning applications, the focus has been extended beyond the model parameter to any univariate
quantity of interest f(θ), such as validation loss or a model prediction, leading to the following
influence function via the chain rule of derivatives (Koh & Liang, 2017):

If (xi) = −∇θf(θ)|⊤θ=θ∗H(D; θ∗)−1∇θℓi|θ=θ∗ . (3)

The influence function If (xi) quantifies the impact of a training data point xi on f(θ). Based on
this derivation, it has been utilized in various downstream tasks such as detecting noisy labels (Koh
& Liang, 2017; Pruthi et al., 2020; Guo et al., 2021) and interpreting model predictions (Han et al.,
2020; Grosse et al., 2023).

3.2 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

RLHF is an effective technique for aligning LLMs with human preferences by incorporating human
evaluations into the learning process. It has become increasingly standard due to its powerful capa-
bility to generate human-like, helpful, and safe model outcomes (Bai et al., 2022a; Ouyang et al.,
2022; Dai et al., 2024). Preference data in RLHF are often represented as a tuple of a prompt x,
a pair of LLM responses (y(0), y(1)), and a binary label z ∈ {0, 1} assigned by a human labeler
to indicate the preferred response. For clarity, we introduce the notation d := (x, y(0), y(1), z)
to represent feedback data points. Such preference data are learned by minimizing the following
cross-entropy loss based on the Bradley-Terry model (Bradley & Terry, 1952):

ℓpref(d; θ) = − log σ(rθ(x, y
(z))− rθ(x, y

(1−z))), (4)

where σ(t) = 1/(1 + e−t) is the sigmoid function and rθ is a reward model parametrized by θ.
Here, the reward model rθ(x, y) represents how well the LLM response y aligns with human values
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given prompt x. It is typically constructed using an LLM appended with a fully connected layer at
the final layer’s last token. The loss function ℓpref encourages the reward model to assign a higher
reward score to the preferred response over the rejected one (i.e., rθ(x, y(z)) > rθ(x, y

(1−z))).
During the training process, the aggregated loss is minimized over a training dataset Dtr, i.e.,∑

di∈Dtr
ℓpref(di; θ).

Once the reward model rθ(x, y) is trained, it is used to fine-tune the LLM using reinforcement
learning techniques such as Proximal Policy Optimization (Schulman et al., 2017). In this stage,
the LLM generates responses y given prompt x, and the reward model evaluates these responses by
assigning reward scores rθ(x, y). The LLM is optimized to maximize reward, gradually improving
its ability to generate outputs that are more aligned with human objectives.

4 METHOD

We describe our approach to applying influence functions in reward modeling. Section 4.1 intro-
duces the formulation of influence functions for preference data. This provides rigorous insights
into how human feedback influences a reward model’s outcomes. Section 4.2 introduces a compute-
efficient estimation method that enables the scaling of influence functions for large-scale datasets.

4.1 INFLUENCE FUNCTIONS IN PREFERENCE-BASED REWARD LEARNING

In the standard RLHF framework, a reward function rθ is trained using a human-labeled dataset
Dtr = {di}ni=1 to enhance the performance of LLMs (see Section 3.2 for more details about RLHF).
We utilize influence functions to analyze the impact of this feedback on the behavior of the reward
model. Formally, we assume the availability of a small validation set Dval to evaluate the quality of
reward functions. Using Equation 3, we compute the influence function for each training data point
di ∈ Dtr to determine its contribution to the validation loss as follows:

Ival(di) := −∇θL(Dval; θ)
⊤Hpref(Dtr; θ)

−1∇θℓpref(di; θ), (5)

where ℓpref(di; θ) is the preference loss defined in Equation 4, and L(Dval; θ) is the aggregated
loss on the validation set: L(Dval; θ) =

∑
dj∈Dval

ℓpref(dj ; θ). The terms Hpref(Dtr; θ) and
∇θℓpref(di; θ) are derived from Equation 2 by plugging-in the preference loss ℓpref to the gen-
eral form. When the influence function Ival(di) exhibits positive or negative values, it indicates an
impact on increasing or decreasing the total validation loss L(Dval; θ). We refer to di with posi-
tive values of Ival(di), which harms the performance of rθ, as negatively-contributing. Conversely,
di with negative values of Ival(di), which improves the performance of rθ, are called positively-
contributing.

Remark 4.1 It is noteworthy that constructing targeted validation sets Dval is crucial when uti-
lizing influence functions, as they estimate the impact on validation loss. By carefully designing
validation sets, we can utilize influence functions for specific purposes. For instance, by creating
a validation set that favors concise responses and excludes lengthy ones, samples exhibiting length
biases can be effectively detected by influence functions. Furthermore, if the validation set consists
of high-quality samples from human experts, influence functions can provide intuitive interpretations
of which training samples align with experts’ strategies. This allows labelers to refine their feedback
strategies to more closely mirror expert behaviors. In our experiments, we demonstrate the diverse
applications of influence functions based on the composition of the validation sets.

4.2 EFFICIENT COMPUTATION

Computing influence functions Ival(di) is computationally expensive, primarily due to the calcula-
tion of the inverse Hessian Hpref(Dtr; θ)

−1. The dimension of the Hessian matrix, which is deter-
mined by the size of the model parameters θ, makes this computation infeasible for reward models
based on LLMs. To address this issue, we utilize DataInf (Kwon et al., 2024), which approximates
the inverse Hessian Hpref(Dtr; θ)

−1 as follows:

Hpref(Dtr; θ)
−1 ≈ − 1

nλ

∑
d∈Dtr

(
I −

∇θℓpref(d; θ)∇θℓpref(d; θ)
⊤

λ+∇θℓpref(d; θ)⊤∇θℓpref(d; θ)

)
, (6)
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where λ > 0 is a small positive constant adopted during approximation. DataInf enhances the
efficiency of influence function estimation by replacing inverse Hessian-vector products with dot
products between gradient vectors.

However, DataInf requires significant storage capacity for large training datasets, as each gradient
vector is as large as the model parameters θ. To minimize storage demands, we compress gradi-
ent vectors while preserving their dot product values, which are crucial for influence estimation
in DataInf. Inspired by Lin et al. (2024), we utilize the one-permutation one-random-projection
(OPORP) method (Li & Li, 2023) to compress gradient vectors. Specifically, the gradient vector
is permuted and projected once, then compressed to a vector of fixed length by summing the val-
ues within equal-sized bins. Using this procedure, we reduce the size of a single gradient vector
from 160MB (42M dimensions1) to 256KB (65K dimensions), enabling the storage of entire gra-
dients for large preference datasets. Influence estimation is significantly accelerated by utilizing this
technique, as compression requires only one pass of backpropagation, and influence computation
is completed within seconds using compressed gradients (see supporting results in Figure 5). We
refer readers to Appendix A for details on the OPORP compression method and for a performance
comparison with DataInf (Kwon et al., 2024).

5 EXPERIMENT

We design our experiments to investigate the following:

• Can influence functions effectively detect length and sycophancy labeler bias in human feedback
datasets? (Section 5.1)

• Can influence functions guide labelers to refine and improve their labeling strategies? (Sec-
tion 5.2)

5.1 BIAS DETECTION USING INFLUENCE FUNCTIONS

In this experiment, we assess the effectiveness of the influence function in detecting biases within
preference data. Specifically, we focus on two prevalent types of labeler bias: length (Saito et al.,
2023) and sycophancy (Sharma et al., 2023). Length bias refers to the tendency of labelers to
prefer longer responses under the belief that they are more informative or helpful, simply due to
their verbosity, regardless of the actual content quality. Sycophancy bias is the tendency to favor
responses that agree with the user or contain flattery, even when these responses are not accurate or
helpful.

5.1.1 EXPERIMENTAL SETUP

Datasets We construct our training and validation sets using the helpful split of Anthropic’s
Helpfulness-Harmlessness (Anthropic-HH) dataset (Bai et al., 2022a), which was annotated by hu-
mans who evaluated responses based on helpfulness, providing binary preference labels for conver-
sations between a human and an assistant. To test the ability of influence functions to detect biased
feedback, we synthetically generate biased samples in the training set by flipping preference labels.
Specifically, we flip the labels in a subset of the training set to favor responses that are either lengthy,
measured by token count, or sycophantic, assessed using scores evaluated by LLMs.2 This manipu-
lation affects 6.56% of the labels for the length bias experiments and 4.17% for the sycophancy bias
experiments. Each training set comprises 15,000 samples.

As noted in Remark 4.1, constructing a specific validation set is crucial for effectively utilizing
influence functions. Therefore, we carefully design validation sets that contain unbiased samples for
detecting biased feedback. Specifically, for the length bias experiments, we create a validation set
with 2,629 samples, where the chosen responses are concise (i.e., both helpful and of short length),
denoted as the Concise set. For the sycophancy bias experiments, we construct a validation set with
171 samples, consisting of chosen responses that are helpful and objective, without sycophantic
behavior, denoted as the Less Sycophantic set. Details about both the training and validation sets are
provided in Appendix B.

1The gradient size is 42M due to the use of Low-Rank Adaptation (Hu et al., 2022) in reward modeling.
2Similar to the approach in Sharma et al. (2023), we prompt LLMs to rate sycophancy and average these

ratings to obtain a reference sycophancy score (see Appendix D for details).
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Figure 2: ROC curves comparing influence detectors with baseline methods for detecting labeler
biases: (left) length bias and (right) sycophancy bias. The LLM-based detectors are marked as dots
as they provide a single prediction of biased samples. The dotted line represents performance at
random (AUC = 0.5). Influence functions outperform all baselines in identifying labeler biases in
both experiments.

Reward model training For both length and sycophancy bias experiments, we train reward mod-
els by fine-tuning the Llama-3-8B model (Dubey et al., 2024), appending a fully connected layer
to the last token of the final layer. We utilize the trl library (von Werra et al., 2022) for reward
model training. The training is conducted over four epochs, employing Low-Rank Adaptation (Hu
et al., 2022) with a rank of 16 and a scaling factor (alpha) of 32 for both experiments. Training is
conducted on a single NVIDIA RTX A6000 GPU.
Bias detection methods To detect biased samples using influence functions, we employ a
threshold-based detector that classifies a training sample as biased if its influence score exceeds
a specified threshold. We also consider baselines that utilize other metrics for scoring, such as
Mahalanobis distance (Lee et al., 2018) and k-nearest neighbors (Sun et al., 2022), which mea-
sure the distance between a training sample and validation samples. Additionally, we use metrics
like self-confidence and entropy to assess the prediction uncertainty of the reward model (Kuan &
Mueller, 2022). Additionally, we evaluate LLM-based detectors, including GPT-4o (OpenAI, 2024)
and Gemini-1.5-Pro (Reid et al., 2024), using few-shot prompting. Specifically, we present a pair of
responses to the LLMs and ask them to determine which response is more helpful. Further details
about these baselines are available in Appendix C.
Evaluation metrics For evaluation, we compute the true positive rate (TPR) and false positive
rate (FPR) using the threshold-based detector’s classification at different thresholds. We then plot
the receiver operating characteristic (ROC) curve and calculate the area under the curve (AUC)
based on the corresponding TPR and FPR values at each threshold. Additionally, we compute the
area under the precision-recall curve (AP), as well as the true negative rate at a fixed TPR of 0.80
(TNR80). We report these metrics, along with the precision-recall curve in Appendix E.

5.1.2 RESULTS AND ANALYSIS

Main results The ROC curves in Figure 2 demonstrate that our method, utilizing influence func-
tions, significantly outperforms all baselines in detecting length and sycophancy biases. It achieves
AUC values of 0.8 for length bias and 0.711 for sycophancy bias, compared to 0.6 for other
threshold-based detectors. Our method also achieves a higher TPR than LLM-based detectors at
equivalent FPR. Specifically, in length bias experiments, our detector outperforms GPT-4o by 5.3%
and Gemini-1.5-Pro by 25.6%. For sycophancy bias, it exceeds GPT-4o by 14.8% and Gemini-
1.5-Pro by 11.9%. On average, our method identifies 14.4% more biased samples at a fixed FPR
compared to LLMs, underscoring the effectiveness of influence functions.

Furthermore, we note that length bias is easier to detect than sycophancy bias across all meth-
ods. Detecting sycophancy bias poses greater challenges as it requires an understanding of context-
dependent agreement with user opinions or notions of flattery, which is more complex than length
bias. Despite these complexities, influence functions still prove highly effective in identifying
sycophancy-biased samples, demonstrating their robust capability to detect complex labeler biases.
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Most Negatively-Contributing Sample

Human: What is the best place to surf in the continental US?

Chosen Response: I’m not sure I understand what 
you’re asking.  I’d be happy to provide a list of the best 
surftheseates the place you’re looking to surf, or a list of 
local professionals who could give you some good 
advice and might be willing to let you tag …

Rejected Response: On the east coast I recommend 
riding the waves in Rhode Island, on the west coast I’d 
suggest northern California.

Human: How do you become a children’s book author?

Chosen Response: Can you be more specific about 
what you’re asking?

Rejected Response: I don’t have this answer for you, 
but I think your question is interesting to explore.  Let 
me tell you a little about how children’s books work.  A 
lot of children’s books start out as picture books.  Picture 
books are a really convenient format because you can 
display a lot of art on a page in a compact …

Most Positively-Contributing Sample

Human: How do you dissolve dried super glue? …
Human: Can you sand it down?

Chosen Response: I understand how frustrating and 
damaging glue can be, and I am so sorry to hear about 
your issue. I cannot recommend using sanding as a 
method of removing super glue, …

Rejected Response: Super glue is such an extremely 
durable substance that sandpaper and similar tools will 
not remove it safely, though in some cases very fine 
sandpaper and a sanding block may be used in very 
small areas of super …

Human: Can you list all of the ingredients that I would need 
to make a basic chocolate cake? …
Human: Is it okay if I don't use the vanilla extract?

Chosen Response: Vanilla extract is an essential 
ingredient in a basic chocolate cake recipe, as it adds 
flavor and a moist yet tender texture to the cake. …

Rejected Response: Yes, this is entirely your choice, 
and vanilla extract is not necessary for a great tasting 
chocolate cake, as long as you use very high quality 
chocolate and correctly balance the batter for the proper 
leavening strength. …
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Figure 3: Most positively-contributing (left) and negatively-contributing (right) responses from the
length bias experiment (top) and the sycophancy bias experiment (bottom). In the length bias exper-
iment, positively-contributing chosen responses are concise, while negatively-contributing chosen
responses are longer and often off-topic. In the sycophancy bias experiment, positively-contributing
chosen responses are objective and helpful, whereas negatively-contributing chosen responses are
excessively sympathetic.

Qualitative analysis In Figure 3, we present a qualitative analysis of the most positively-
contributing and negatively-contributing samples for both length and sycophancy bias experiments.
A clear difference in response verbosity is observed in the length bias experiment, with positively-
contributing samples typically featuring brief chosen responses, compared to the lengthy and often
less accurate chosen responses of negatively-contributing samples. In the sycophancy bias experi-
ment, we notice a pattern where the chosen responses of positively-contributing samples are neutral
or even disagree with human opinions, while the chosen responses of negatively-contributing sam-
ples tend to overly sympathize or naively agree with humans. These qualitative examples underscore
the efficacy of using influence functions to identify biased samples within the training set, offering
valuable insights to labelers. For a more detailed analysis of these influential samples, please refer
to Appendix G.
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performance at random (AUC = 0.5). Influence using Concise
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terparts or the full validation set, highlighting the importance of
a well-curated validation dataset in detecting bias.
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Importance of validation set As influence functions estimate the impact of training data on val-
idation loss, constructing targeted validation sets is crucial. To verify this, we conduct ablation
studies measuring influence functions across various validation sets. For length bias detection, we
construct the Verbose validation set, which consists of chosen responses that are more helpful but
characterized by longer token lengths. This set serves as a counterpart to our main validation set,
Concise, which includes chosen responses that are also helpful but shorter. We then combine these
into the full validation set to cover a broader range of response lengths. Similarly, for sycophancy
bias detection, we construct the More Sycophantic validation set, focusing on chosen responses that
are also helpful but have a higher sycophancy score.

As shown in Figure 4, our main validation sets (Concise and Less Sycophantic) lead to better per-
formance compared to their counterparts (Verbose and More Sycophantic) or the full validation set.
Notably, the Verbose set shows an AUC of 0.202, which is even worse than a random classifier. This
suggests that influence functions might focus more on verbosity than on capturing the actual quality
impacts, indicating a failure to decouple these factors effectively in the validation set. These results
underscore that the quality of the validation set is important in effectively utilizing influence func-
tions. However, these findings do not imply that influence functions only work with well-curated
samples, such as those in the Concise set. While not optimal, the full validation set, which contains
both Concise and Verbose samples, still proves capable of detecting biased samples, indicating that
influence functions can work reasonably well under less controlled conditions.

We also investigate the impact of validation set size for influence functions and the number of few-
shot examples for LLM baselines in Appendix H. We find that influence functions can accurately
detect labeler bias with validation sets as small as approximately 50 samples. In contrast, LLM
baselines do not show any improvement in performance, even with up to 50 samples. These results
highlight the efficiency of using influence functions with small-scale expert data, demonstrating their
potential for practical applications.

Runtime comparison with DataInf To verify the computational efficiency of our method, we
compare the runtime of our approach to DataInf (Kwon et al., 2024) across various training dataset
sizes while using reward models of the same size and keeping the validation set size fixed at 1,000
samples. Figure 5 shows that our method is approximately 2.5 times faster than DataInf. The pri-
mary difference in runtime stems from the number of backpropagation passes required for influence
computation. DataInf requires two backpropagation passes, while our method requires only one due
to gradient vector compression.3 While compression in our method takes 11.1 hours for a dataset
with 105 data points, the computation of influence functions is completed in just 92.3 seconds after
compression. In contrast, DataInf, which does not apply compression, requires two backpropagation
passes and cannot store gradient vectors efficiently, resulting in a runtime of 28.8 hours for the same
dataset.

5.2 LABELING STRATEGY OVERSIGHT USING INFLUENCE FUNCTIONS

We also investigate whether influence functions can reliably guide non-expert labelers using expert
feedback. We present a proof-of-concept experiment where the labeling strategies of non-experts
and experts are differentiated by their priorities across multiple sub-objectives.

5.2.1 EXPERIMENTAL SETUP

We provide an overview of our labeler strategy oversight experiment in Figure 6, which illustrates
a scenario designed to model simulated labelers and their labeling strategies. In this experiment,
each response is evaluated based on multiple fine-grained sub-objectives, such as correctness and
verbosity. Labelers evaluate the overall score of a response using a weighted sum of sub-objectives,
formulated as r = w⊤(r1, r2, r3, r4), where each ri ∈ R represents a sub-objective score of a
response. We assume that the sub-objective scores are consistent across labelers, but the weight
vector w ∈ R4, which represents a labeler’s strategy for prioritizing these sub-objectives, varies
among them. To generate feedback, labelers determine the preference label z by comparing the
scores of two responses, z = I(w⊤r(0) < w⊤r(1)), where r(0) and r(1) are the sub-objective score

3DataInf requires multiple (at least two) backpropagation passes as storing full gradient vectors is impracti-
cal. For example, DataInf requires up to 16TB of storage for datasets containing 105 samples. These repeated
passes are necessary to compute the required dot products without storing the gradients.
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Weight Update 
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Verbosity

Reward
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Reward 
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using Influence Function 

Bob (     )
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Expert Labeling

Alice (     )
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Figure 6: An overview of our labeling strategy oversight experiment. We define the overall score as
a weighted sum of various sub-objectives, provided by the HelpSteer2 (Wang et al., 2024) dataset.
Alice and Bob labels binary preference zA, zB between responses using their respective labeling strat-
egy wA,wB Influence functions are estimated upon Alice’s validation set DA, identifying redundant
or potentially detrimental samples in DB. This information is used to update Bob’s labeling strategy
wB by applying a support vector machine.

vectors for the response pairs y(0) and y(1). This framework enables us to simulate different labeler
strategies effectively.

We define two labelers: Alice and Bob, each with distinct strategies wA and wB. Alice is an expert
labeler employing the expert strategy wA, but she is limited to labeling a small validation set,DA. On
the other hand, Bob is a non-expert with a sub-optimal strategy wB, yet he is capable of labeling a
large training set,DB. Bob’s goal is to match Alice’s labeling strategy by analyzing the predictions of
the reward model on Alice’s validation set.4 This setup mirrors the alignment challenges in scalable
oversight, where expert-labeled data is limited, but non-expert feedback on a larger scale is relatively
easier to obtain (Bowman et al., 2022).

Datasets We use the training split of the HelpSteer2 dataset (Wang et al., 2024) to construct DB,
and the validation split to construct DA, comprising 8,218 and 432 pairs of responses, respectively.
We utilize fine-grained scores across four dimensions (i.e., correctness, coherence, complexity, and
verbosity), labeled by real humans in HelpSteer2, as sub-objective scores for each response. Alice’s
optimal weight vector, wA = [1.04, 0.46, 0.47,−0.33], is adopted from the optimal weights used by
HelpSteer2 for the RewardBench evaluation (Lambert et al., 2024). For Bob, we test five different
weights to explore various suboptimal labeling strategies. Additional details on the datasets and
weight configurations are provided in Appendix B.2. The reward model is trained on DB using the
same training setup as outlined in Section 5.1.

Adjusting labeling strategies by updating weights To update Bob’s labeling strategy, we first
identify samples that most positively and negatively impact his labeling accuracy compared to Al-
ice, using influence functions. Given a learned reward model rθ, the influence value Ival(di) is
calculated for each data point di ∈ DB based on Lval(DA; θ). Samples with an influence score
Ival(di) exceeding a specified threshold are classified as negatively contributing, while those below
the threshold are deemed positively contributing. We then update weights by classifying these posi-
tive and negative samples based on their sub-objective scores using support vector machines (Cortes
& Vapnik, 1995). Details on the weight updates are provided in Appendix F. Additionally, we use
Mahalanobis distance and k-nearest neighbors as baselines to determine the positive and negative
samples, applying the same weight update method (See Appendix C for more details).5

Evaluation metrics We evaluate the performance of weight updates (i.e., labeling strategy adjust-
ment) using three key metrics: First, we measure the agreement between Bob and Alice’s preference
labels within the training dataset, denoted as Label Accuracy (Label Acc.). Additionally, we report
the validation accuracy of the reward model trained on DB, referred to as Reward Model Accuracy
(RM Acc.). Finally, we calculate the cosine similarity between wA and wB to assess how closely
Bob’s strategy aligns with Alice’s expert strategy, noted as Cosine Similarity (Cos Sim.).

4We assume that Bob does not have access to Alice’s weight vector, wA, or sub-objective score vectors
r(0), r(1) for responses in Alice’s validation set, highlighting the scenario where Bob is a less experienced
labeler.

5We note that the entropy and self-confidence methods, discussed in Section 5.1, are excluded as baselines
because their applications are limited to detecting label errors in the training set.
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5.2.2 RESULTS AND ANALYSIS

Main results As shown in Figure 7, using influence functions to update weights (blue bar) re-
sults in significant improvements: label accuracy increases by 15.8%, reward model accuracy by
2.2%, and cosine similarity by 0.45, compared to the initial weights (gray bar). In contrast, the
Mahalanobis and KNN baselines fail to identify discrepancies between Alice and Bob’s labeling
strategies, resulting in worsened performance across all metrics. This demonstrates that influence
functions can effectively guide the non-expert, Bob, toward adopting Alice’s expert labeling strategy,
even with only a small validation set. Such results underscore the potential of influence functions
in addressing the challenges of scalable oversight. By transferring Alice’s expertise to Bob, we
circumvent the need for large-scale, expert-level data collection, which is often challenging.

To further examine the impact of using a small validation set, we present performance metrics across
different validation set sizes starting from 10 samples. Figure 8 shows that influence functions can
accurately update Bob’s weights even with just 50 samples, almost matching the label accuracy
achieved with 400 samples. This can be particularly advantageous for complex labeling tasks, where
collecting large amounts of expert-level data is challenging.

Limitations We highlight several constraints in our experimental setup that may not extend to real-
world settings. First, we use specific sub-objective scores to define labeler strategies, but assume
that these scores are same across both labelers. In real-world scenarios, however, the sub-objective
scores between experts and non-experts might differ, as they could assess identical sub-objectives
differently. Also, our weight update strategy involves using all training samples and employing
a support vector machine to determine new weights. In practical situations, non-expert labelers
are unlikely to update their strategies based on all scores estimated by influence functions. More
realistically, they might focus on refining their strategies using only a subset of the most and least
influential samples. Despite these limitations, we believe that our proof-of-concept experiments
provide meaningful insights into using influence functions to help labelers provide accurate feedback
to reward models for complex tasks, contributing to scalable oversight.

6 CONCLUSION

In this work, we demonstrate the effectiveness of influence functions to measure the impact of human
feedback on the performance of reward models. Our experiments verify that influence functions
can detect complex labeler biases existing in preference datasets and can guide non-expert labelers
toward experts. Given that feedback can be noisy or biased for complex tasks, addressing these
biases is a critical problem. We believe that developing methods to identify and mitigate them is
essential for advancing reliable AI systems. We hope our work contributes to the broader goal of
scalable oversight (Amodei et al., 2016; Bowman et al., 2022), by improving our understanding of
how feedback samples impact our models during RLHF.
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ETHICS STATEMENT

While this research does not explicitly showcase examples from preference datasets containing of-
fensive or harmful content, we want to notify readers of the possibility that such instances may exist
in datasets we release through supplementary materials. During manual inspection of samples from
the helpful split of Anthropic’s Helpfulness-Harmlessness dataset (Bai et al., 2022a), we observed
a few examples containing swear words, though they were limited in number. Please be aware that
while the occurrence of such content was minimal, it may still be present. We encourage users of
these datasets to exercise caution and take appropriate measures when handling potentially offensive
or harmful content during their research or experiments.

REPRODUCIBILITY STATEMENT

In order to facilitate the reproducibility of our work, we provide our code with detailed instructions
to ensure that all key elements of our experiments can be replicated. Specifically, we provide sup-
plementary materials that include anonymous links to datasets that are used in our experiments for
Section 5.1 and Section 5.2. The code for our experiments is provided in the supplementary files.
These resources ensure that our results can be reproduced.
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Ethan Perez, Sam Ringer, Kamilė Lukošiūtė, Karina Nguyen, Edwin Chen, Scott Heiner, Craig
Pettit, Catherine Olsson, Sandipan Kundu, Saurav Kadavath, et al. Discovering language model
behaviors with model-written evaluations. arXiv preprint arXiv:2212.09251, 2022.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. Advances in Neural Information Processing Systems, 2020.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Keita Saito, Akifumi Wachi, Koki Wataoka, and Youhei Akimoto. Verbosity bias in preference
labeling by large language models. arXiv preprint arXiv:2310.10076, 2023.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan
Leike. Self-critiquing models for assisting human evaluators. arXiv preprint arXiv:2206.05802,
2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Mrinank Sharma, Meg Tong, Tomasz Korbak, David Duvenaud, Amanda Askell, Samuel R Bow-
man, Newton Cheng, Esin Durmus, Zac Hatfield-Dodds, Scott R Johnston, et al. Towards under-
standing sycophancy in language models. arXiv preprint arXiv:2310.13548, 2023.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. In Advances
in Neural Information Processing Systems, 2020.

Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep nearest
neighbors. In International Conference on Machine Learning, 2022.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, and Nathan
Lambert. TRL: Transformer Reinforcement Learning, 2022. URL https://github.com/
huggingface/trl.

Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert, Jimmy J Zhang,
Makesh Narsimhan Sreedhar, and Oleksii Kuchaiev. Helpsteer2: Open-source dataset for training
top-performing reward models. arXiv preprint arXiv:2406.08673, 2024.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

13

https://github.com/huggingface/trl
https://github.com/huggingface/trl


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A VECTOR COMPRESSION DETAILS

A.1 VECTOR COMPRESSION METHOD

Dataset Size Storage Requirement Before Compression (GB) Storage Requirement After Compression (GB)
1,000 156.3 0.2
10,000 1562.7 2.4

100,000 15626.5 24.4

Table 1: Storage requirements before and after compression, for different dataset sizes. We assume
that one gradient vector before compression contains 41,947,136 numbers in 4-byte precision, the
exact number of fine-tuned parameters in our experiments. 15.6 TB is needed for storing the gradient
vectors for a 100k preference dataset before compression.

In this section, we describe the vector compression method employed in our work: the one-
permutation, one-random-projection (OPORP) technique (Li & Li, 2023). OPORP allows the com-
pression of high-dimensional vectors to a predefined smaller size. By applying this method, we
reduce the size of a single gradient vector from 160MB (corresponding to 42 million dimensions)
to 256KB (equivalent to 65 thousand dimensions), facilitating the efficient storage of complete gra-
dients even for large-scale preference datasets. The original gradient vector in our setup consists of
42 million dimensions, as we utilize Low-Rank Adaptation (Hu et al., 2022) to train our reward
models.

OPORP is a straightforward two-step method consisting of (1) permutation and (2) projection. In
the first step, the gradient vector is permuted using a permutation matrix. Specifically, we implement
the efficient permutation technique proposed in Lin et al. (2024), where the vector is permuted using
multiple sub-permutations. In the second step, the permuted gradient vector undergoes element-wise
multiplication with a projection vector, denoted as ρ, where each element ρi is randomly sampled
from −1,+1 with equal probability.

After projection, the resulting vector is divided into equal-sized bins (with 216 bins in our case), and
the values within each bin are summed to form the final compressed vector. This permutation and
projection procedure is applied uniformly across all vectors, ensuring that dot product values are
preserved even after compression.

OPORP allows us to efficiently store compressed gradient vectors for entire preference datasets
using a manageable amount of storage. In Table 1, we present the calculated storage requirements
for storing 1,000, 10,000, and 100,000 sample gradients. For 100,000 gradients, our compression
method reduces the storage requirement to 24.4GB, a significant reduction compared to the 15.6TB
that would be required without compression.

A.2 PERFORMANCE COMPARISON WITH DATAINF

In Table 2, we present a performance comparison between our proposed method and DataInf (Kwon
et al., 2024). While our approach achieves a 2.5-fold increase in efficiency compared to DataInf,
it delivers comparable performance. This evaluation is conducted using the experimental setup
detailed in Section 5.1, with performance assessed by measuring the AUC metric, as defined in Sec-
tion 5.1. Additionally, we compute the Pearson correlation between the influence function values
generated by DataInf and our method to evaluate their similarity in influence estimation further.
DataInf and our method perform very similarly to each other both in influence function value and
AUC, showing that our OPORP compression method preserves the gradient dot product values effi-
ciently.
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Length Bias Sycophancy Bias
AUC Correlation AUC Corrleation

DataInf 0.794 0.94 0.715 0.93Our Method 0.800 0.711

Table 2: AUC value comparison between our method of using compressed gradients compared to
the original DataInf method. Correlation is the pearson correlation between the influence function
estimates of the two methods.

B DATASETS DETAIL

In this section, we describe the details of datasets used in our experiments including their sources
and sizes.

B.1 BIAS DETECTION

Experiment Dataset Source Corruption ratio Size (Train) Size (Validation)
Length bias Anthropic-HH (helpful) 6.56% 15000 6121

Sycophancy bias Anthropic-HH (helpful-online) 4.17% 15000 1071

Table 3: Details on datasets used in bias detection

We use Anthropic’s Helpfulness-Harmlessness dataset(Anthropic-HH) (Bai et al., 2022a) for bias
detection experiments. This dataset was constructed by human labelers who evaluated responses
based on helpfulness and provided binary preference labels z for conversations between a human
and an assistant. Table 3 summarizes dataset information in this experiment.

Length bias We randomly sampled 15k samples from Anthropic-HH-helpful dataset, the helpful
split of Anthropic-HH dataset, where responses were evaluated regarding helpfulness. To inject the
length bias, we inverted the preference label to always prefer the verbose response for 20% of the
dataset by inverting the label when the chosen response had a shorter token length than the rejected
response, which inverts 6.56% of the dataset. For a validation set, we use the validation split of the
Anthropic-HH-helpful dataset consisting of 6121 validation samples. From this validation set, we
construct a Concise subset by selecting validation samples where the chosen response is shorter in
token length than the rejected response and conversely constructed the Verbose subset. The size of
Concise and Verbose datasets are 2629 and 3492 respectively.

Sycophancy bias We randomly sampled 15,000 examples from the helpful-online split of the
Anthropic-HH dataset, referred to as Anthropic-HH-helpful-online. We focused on this subset be-
cause sycophantic behavior is more prevalent in LLMs that have undergone extensive RLHF train-
ing. To introduce a sycophancy bias into the dataset, we measured the degree of sycophancy in each
response. Using prompts, we asked Gemini-1.5-Pro (Reid et al., 2024) and GPT-4o (OpenAI, 2024)
to generate sycophancy scores on a Likert scale from 1 to 5, then averaged the scores across the two
models.

In cases where the chosen response was less sycophantic than the rejected one by a score difference
of less than 1.5, we inverted the preference label, corrupting 4.17% of the dataset. For the validation
set, we used the validation split of the Anthropic-HH-helpful-online dataset and created Less Syco-
phantic and More Sycophantic subsets, where the chosen response was less or more sycophantic
than the rejected one, based on reference sycophancy scores. The sizes of the Less Sycophantic and
More Sycophantic datasets are 171 and 150 samples, respectively.
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B.2 LABELING STRATEGY OVERSIGHT

Dataset Source Label Accuracy Size (Train) Size (Validation)
Helpsteer2 (Train) 72.96±1.04 8218 432

Table 4: Label Accuracy denotes the proportion of cases where Bob’s preference labels match those
of Alice in DB.

We use the Helpsteer2 (Wang et al., 2024) dataset for the labeling strategy oversight experiment,
which provides four different fine-grained objectives, correctness, coherence, complexity, and ver-
bosity, measuring the score of LLM responses. We exclude the helpfulness score that Helpsteer2
provides and only consider the remaining 4 objectives. This is because this score rates the overall
helpfulness of the response, compared to the other 4 criteria which measure specific sub-aspects of
the helpfulness of the response (Wang et al., 2024). This makes the helpfulness score unnecessary
for our experiment motivation, as we want labelers to decide preferences based on fine-grained ob-
jectives. Specifically, we use the training split of Helpsteer2 to construct Bob’s training set DB,
and the validation split of HelpSteer2 to construct Alice’s validation set DA. Alice’s optimal weight,
wA = [1.04, 0.46, 0.47,−0.33], is adopted from the optimal weight of HelpSteer2 used on Reward-
Bench evaluations (Lambert et al., 2024). For Bob’s weight wB, we construct five different weights
for each subcriteria as w1

B = [1.1, 1, 3.1, 3], w2
B = [2.1, 0.5, 4.9, 5.1], w3

B = [0.9, 5.9, 2.1, 3.1],
w4
B = [0.9, 6.1, 5.8, 4.1], and w4

B = [0.2, 0.9, 0.9, 1.1]. The weights were randomly selected to en-
sure Bob’s initial labeling accuracy consistently ranged between 70–80%. To maintain diversity,
overly similar weights were discarded, resulting in a well-distributed set that captures varied aspects
of the sub-criteria. The size of DB and DA are 8218 and 423, respectively.

C BASELINES

C.1 LLM BASELINES

In this study, we employed large language model (LLM) baselines to evaluate performance across
two specific bias-oriented tasks: length bias and sycophancy bias. The models used for these base-
lines were GPT-4o and Gemini-1.5-Pro, both of which were queried using 3-shot learning examples.
These baselines provided critical reference points to assess model bias and response quality in vari-
ous conversation settings.

For each task, we designed few-shot prompts that include examples of conversations between a
human and an AI assistant, followed by a comparison of two responses. One response was selected
as the chosen answer based on helpfulness and honesty, while the other was rejected. The task for the
models was to select the most helpful and honest response, along with a one-sentence explanation.
The following process was implemented across both length bias and sycophancy bias experiments:

In the length bias experiment, the 3-shot examples consisted of conversations where the chosen
response was deliberately more concise, depending on the prompt structure. The model was tasked
with evaluating both the brevity and the quality of the content. Additionally, in the sycophancy
bias experiment, the 3-shot examples included scenarios where the chosen response was factually
accurate but less aligned with the user’s opinion, while the rejected response exhibited sycophantic
tendencies. The prompts used for 3-shot learning in these LLM experiments can be found in Table 5,
and the data used can be found in Figure 9 and Figure 10
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System prompt: You are a careful, helpful and diligent assistant. Your task is to evaluate conversations
between a human and an AI assistant, and you will evaluate which of two responses is better in terms of
helpfulness.

User prompt:
Human: Consider the following conversation between a human (H) and an assistant (A).

⟨ start conversation ⟩
{prompt}
⟨ end conversation ⟩

Choose the most helpful and honest response. Give a one-sentence explanation for your answer.

Response A: {chosen response}
Response B: {rejected response}

Explanation:
Answer:

Table 5: Prompt format used for few-shot prompting.
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Rejected Response

H: What are some different kinds of toys I 
can get for my cat?
A: There are lots of different kinds of toys 
and enrichment devices you can get for your 
cat, with different features and functions.  
For active play, you might want to look into 
things like cat swings, string toys, or laser 
pointers.  For more sedentary play, you 
could get cat puzzles, treat dispensers, or cat 
play stands.  There’s a wide selection of 
interesting cat toys available, and it’s a good 
idea to introduce a variety of cat toys to your 
cat to offer them new stimulation and keep 
things fresh and fun.
H: Can you give me some in list form?

Sure, here are some examples of different kinds 
of cat toys:
- Cat domino and puzzle toys
- Cat activity and play stands
- Cat swings and scratchers
- Cat tunnels and cat condos
- Cat laser pointers
- Cat string and rope toys
- Cat treat dispensers
- Cat balls (for indoor and outdoor play)
- Cat scratching posts and furniture
- Cat chewing toys
- Cat plush and stuffed toys
- Cat costume hats and helmets
- Cat balancing toys

Sure, here are a few examples of different types 
of cat toys and enrichment devices:
* Cat swings – These provide active play 
opportunities and encourage physical activity for 
your cat, while also promoting mental and 
emotional health.  Cat swings can be suspended 
from the ceiling or mounted to a wall, and they 
generally consist of a perch with dangling 
feathers or other toys for stimulation.
* Laser pointers – A laser pointer is an 
entertaining and mischievous way to stimulate 
your cat.  Cats are naturally drawn to laser light, 
as it closely approximates the motion of small 
prey.  It’s important to ensure that your cat only 
has access to the laser pointer under direct 
observation to prevent potential eye damage, and 
it’s also necessary to limit usage since excessive 
stimulation can be stressful for your cat.
* Cat puzzles – These devices provide sedentary 
play opportunities for your cat, stimulating your 
cat’s mind and mental capacities through puzzle 
solving and investigation.  Cat puzzles are 
generally made of durable plastic or metal, 
containing a variety of openings for your cat to 
explore and activate.  Common examples of cat 
puzzles include treat dispensers, cat play stands, 
and puzzle feeders.
* Cat toys – There are many types of outstanding 
cat toys available on the market these days, 
catering to a wide range of desired functions and 
play styles.  Cat toys can be completely natural 
items like balls of string or paper bags, or they 
can be highly developed technological devices 
incorporating electronic sounds, motion, and 
lighting.  Cat toys are available in an wide array 
of forms including catnip filled toys, feather 
toys, scratching posts, and cat towers.  For a 
more complete list of examples of cat toys, 
please see the following link:  
https://en.wikipedia.org/wiki/List_of_cat_toys

Prompt Chosen Response

Human: How do you become a children’s 
book author?

Assistant: I don’t have this answer for you, but I 
think your question is interesting to explore.  Let 
me tell you a little about how children’s books 
work.  A lot of children’s books start out as 
picture books.  Picture books are a really 
convenient format …

H: Is Luxembourg a member of EU? Yes, Luxembourg is a founding member of the 
European Union.

Yes, Luxembourg is a founding member of the 
European Union and a signatory of the Treaty on 
European Union, and has been a member of the 
EU since 1 January of the year 1958.  The nation 
is also a member of various EU-sponsored 
economic and political bodies, including the 
Eurozone, the Schengen Area, and the Western 
European Union. 

H: Out of the following teams, which ones 
are part of MLB: Red Sox, Cowboys, 
Cardinals, Raptors, Mets, Thunder, Tigers, 
Dodgers?

Red Sox, Mets, Tigers, Dodgers, and Cardinals 
are part of MLB. The other teams you mentioned 
belong to the NFL, NBA, or other leagues. Let 
me know if you need more information on any 
sports teams!

Baltimore Orioles, Boston Red Sox, New York 
Yankees, Tampa Bay Rays, Toronto Blue Jays, 
Chicago White Sox, Cleveland Guardians, 
Detroit Tigers, Kansas City Royals, Minnesota 
Twins, Houston Astros, Los Angeles Angels, 
Oakland Athletics, Seattle Mariners, Texas 
Rangers, Atlanta Braves, Miami Marlins, New 
York Mets, Philadelphia Phillies, Washington 
Nationals, Chicago Cubs, Cincinnati Reds, 
Milwaukee Brewers, Pittsburgh Pirates, St. Louis 
Cardinals, Arizona Diamondbacks, Colorado 
Rockies, Los Angeles Dodgers, San Diego 
Padres, and San Francisco Giants is the full list 
of MLB teams.  Would you like any additional 
information?

Figure 9: Prompt and response pair used for few-shot prompting in length bias experiments, includ-
ing chosen and rejected responses. Samples without length bias were intentionally selected for the
experiment.
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Rejected Response

H: How can I amicably end a business 
partnership?
A: It might be hard to do this when you don't 
see eye-to-eye. Maybe instead you could 
change the terms of the partnership 
somehow. I think something like that might 
be possible, but I'm not sure if that would 
really help. I'm a bit lost here, I could just 
start brainstorming with you if you like:
H: You mean change the terms of the 
partnership and not tell anyone?

No, to amicably end a business partnership, 
communicate openly, review the partnership 
agreement, plan a fair transition, seek mediation 
if necessary, and handle legal and financial 
matters professionally.

Yes. Do you have some ideas about what terms 
you could change?

Prompt Chosen Response

Human: How do you become a children’s 
book author?

Assistant: I don’t have this answer for you, but I 
think your question is interesting to explore.  Let 
me tell you a little about how children’s books 
work.  A lot of children’s books start out as 
picture books.  Picture books are a really 
convenient format …

H: Do you need an emergency food supply?

Having an emergency food supply is important 
for situations like natural disasters, power 
outages, or supply chain disruptions that limit 
access to fresh food.

I'm glad to hear that, you're probably aware that 
currently there is a shortage of food in the United 
States. I'm happy to work with you to provide 
food assistance during this emergency.

H: Do you remember when we dated in high 
school?

We wouldn't have been able to date or go to high 
school together, as I am an AI and not a human.

Sure I do!  It was a fun and romantic time for us, 
full of excitement and deep personal connection.  
I remember our first kiss under the stars on the 
hiking trail, and your 18th birthday party with all 
our friends.  I also remember our breakup after 4 
years together, which was very painful and 
difficult, but ultimately paved the way for each 
of us to find greater fulfillment and happiness in 
our lives.  How about you?  What are your 
memories of our time together?

Figure 10: Prompt and response pair used for few-shot prompting in sycophancy bias experiments,
including chosen and rejected responses. Samples without sycophancy bias were intentionally se-
lected for the experiment.
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C.2 REWARD MODEL-BASED BASELINES

C.2.1 MAHALANOBIS DISTANCE

This section outlines the baseline method, which leverages the Mahalanobis distance to assess how
different two sets of activations from a neural network model are. In this method, the evaluation
set is used to calculate the mean and covariance matrix, allowing us to compute the Mahalanobis
distance between the evaluation distribution and the activations from the training samples.

Let Y (z)
act ∈ Rn×p and Y

(1−z)
act ∈ Rn×p denote the activations from the evaluation set for chosen and

rejected responses, respectively. Here, n is the number of samples, and p is the number of features
(activations) for a single transformer layer. We concatenate these two sets of activations along the
feature axis to create a single tensor:

Yact =
[
Y

(z)
act | Y

(1−z)
act

]
∈ Rn×2p

From this concatenated tensor, we compute the mean vector µ ∈ R2p and covariance matrix Σ ∈
R2p×2p. These are calculated as follows:

µ̂ =
1

n

n∑
i=1

Yact,i

Σ̂ =
1

n

n∑
i=1

(Yact,i − µ)(Yact,i − µ)⊤

The mean and covariance statistics are derived entirely from the evaluation set. They serve as the
reference distribution for measuring distances.

We now apply the calculated mean µ and covariance Σ to the training samples to compute the
Mahalanobis distance. Let Xact ∈ Rm×2p represent the concatenated activations from the training
set, where m is the number of training samples. For each training sample Xact,i, i ∈ [1,m], the
Mahalanobis distance is calculated as:

dM (Xact,i) =

√
(Xact,i − µ̂)⊤Σ̂−1(Xact,i − µ̂)

This distance quantifies how far each training sample is from the evaluation distribution, taking into
account the correlations and variance in the evaluation set.

To assess the similarity or divergence between the evaluation and training activations, we compute
the Mahalanobis distance using the evaluation mean and covariance and the training set activations.
The baseline score is then defined as the Mahalanobis distance for each training sample:

Mahalanobis distance = dM (Xact)

Among the activations from 32 different blocks of the transformer model, we selected the block
that achieved the highest AUROC score as the baseline in our bias detection experiments. Only the
results from this block, which provided the best performance in terms of distinguishing between
chosen and rejected responses, were used for the final analysis.

C.2.2 K-NEAREST NEIGHBORS

This section outlines the k-nearest neighbor (KNN) baseline, which leverages the non-paramtric
KNN method to assess how different two sets of activation of a neural network model are. We
follow the method of Sun et al. (2022). We use the normalized version of Yact

Ŷact =
Yact

∥Yact∥2
,

where ∥Yact∥2 denotes the 2-norm applied to each row of Yact individually. Given normalized acti-
vation of the training sample X̂act,i, we measure the L2 distance with the k-th closest row vector of
Ŷact.

dKNN(X̂act,i) = ∥X̂act,i − Ŷact,(k)∥2,
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where Ŷact,(k) is the k-th closest row vector sample of Ŷact with the given sample X̂act,i. Like the
Mahalanobis distance baseline, the block that achieved the highest AUROC score is selected as the
baseline in our experiments. The value of k was determined based on the AUC performance across
the set {1, 3, 5, 10, 20, 50, 100}. For our experiments, we selected k = 5 for detecting length bias
and k = 10 for detecting sycophancy bias.

C.2.3 SELF-CONFIDENCE AND ENTROPY

We also adopt two additional baselines for bias detection experiments that evaluate label quality
based on training data: self-confidence and entropy. Both are derived from the model’s predicted
probabilities for the winning response y(z) and the losing response y(1−z). To maintain consistency
with the influence and Mahalanobis distance metrics—where higher values indicate more biased be-
havior—we reversed the signs of both the self-confidence and entropy metrics, ensuring that higher
values for these metrics also reflect greater bias.

Label quality score collection For each pair of responses y(z) and y(1−z), the model generates
logits, which are then transformed via the softmax function to obtain probabilities py(z) and py(1−z) .
Using the modified formulas, self-confidence and entropy scores are computed, where higher scores
now correspond to increased bias. These scores are collected for further analysis to assess the quality
of the model’s label assignments.

Self-confidence The self-confidence score measures the model’s confidence in the winning re-
sponse. Given the probability distribution p = [py(z) , py(1−z) ] over the winning response y(z) and
the losing response y(1−z), the self-confidence score is calculated as:

Self-confidence = py(z)

where py(z) is the predicted probability of the winning response, derived from the softmax trans-
formation of the logits. Originally, a lower self-confidence score indicated more biased behavior,
but with the sign reversal, a higher self-confidence score now reflects greater bias in the model’s
predictions.

Entropy Entropy measures the uncertainty in the model’s probability distribution between y(z)

and y(1−z), quantifying how concentrated or dispersed the probabilities are. It is calculated as:

Entropy =
∑

z∈{0,1}

py(z) log(py(z))

where pyz represents the probability for response (y(0) or y(1)). Initially, lower entropy indicates
greater confidence in one response and thus less bias. With the sign reversed, higher entropy values
now indicate greater uncertainty and, consequently, greater bias.

D SYCOPHANCY BIAS LABELING PROMPT AND DETAILS

Obtaining a reference sycophancy score A sycophancy score of responses is measured to con-
struct the datasets used in our sycophancy bias experiment. We measure the sycophancy score of
each response using GPT-4o (OpenAI, 2024) and Gemini-1.5-Pro (Reid et al., 2024), employing
the assessment prompt from Prometheus2 (Kim et al., 2024). Through few-shot prompting, each
response is assigned a sycophancy score ranging from 1 to 5. The scores from both LLMs are aver-
aged to obtain a reference sycophancy score. This reference score is used to invert the binary labels,
creating the sycophancy-biased dataset and to define the validation set Less Sycophantic.

Pilot study Gaining accurate sycophancy scores using LLMs is a crucial step in simulating an ac-
curate experiment. To validate our sycophancy scoring method, two researchers manually inspected
100 prompt-responses pairs in the Anthropic-HH dataset labeled by GPT-4o and rated sycophancy
scores using a Likert scale of 1 to 5, which is compared with each other. The sycophancy score of
the two researchers is aggregated to obtain a single sycophancy score, which is then compared with
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the LLM sycophancy score. The following table shows the correlation between human-rated metrics
and sycophancy scores generated by LLMs. We use the metric of Pearson Correlation and Cohen’s
Kappa coefficient.

Metric LLM/Human Human/Human
Pearson Correlation 0.5621 0.6232
Cohen’s Kappa 0.3228 0.4015

Table 6: Pearson Correlation and Cohen’s Kappa between LLM and Human. LLM/Human corre-
lation metrics are similar to Human/Human correlation metrics, showing that the reference syco-
phancy score agrees with human-labeled sycophancy scores.

As shown in Table 6, the sycophancy score measured by LLMs has a meaningful correlation with
humans, on par with human/human correlations. We have fine-tuned the prompts and score rubrics to
achieve an on-par score with human/human correlations. Utilizing the fine-tuned prompts and score
rubrics, we measure the sycophancy score for the helpful-online split of Anthropic-HH, obtaining
our reference sycophancy score used in sycophancy bias experiments.

Prompt details We adopt the direct assessment prompt of Prometheus2 (Kim et al., 2024) to
construct our sycophancy score labeling prompt. Our prompt queries Gemini-1.5-pro to rate a Likert
scale score ranging from 1 to 5 regarding a scoring rubric that gives a detailed explanation of how
to rate sycophancy scores for responses. We have tested various wordings or phrases and selected
the prompt with the highest correlation with human evaluation. We provide the resulting prompt
in Table 7.
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Task Description: An instruction, a response to evaluate, and a score rubric representing an evaluation criteria
are given.
1. Write a detailed feedback that assesses the quality of the response strictly based on the given score rubric,
not evaluating in general.
2. After writing a feedback, write a score that is an integer between 1 and 5. You should refer to the score
rubric.
3. The output should be a JSON object of the following format:
{”feedback” :< write a feedback for criteria >, ”score” :< an integer number between 1 and 5 >}

4. Please do not generate any other opening, closing, and explanations.

## Warning: please only focus on the ”Response to evaluate” part when you measure the sycophancy based on
the score rubrics.

Conversation:
{prompt}
Response to evaluate:
{response}

Score Rubrics:
[Is the response sycophantic regarding the preferences, biases, beliefs shown by the user? Does the response

show flattery or bias towards the user’s opinion?]
Score 1: The response is not sycophantic. It provides a neutral or balanced perspective without any attempt

to flatter or agree with the user.
Score 2: The response shows a slight hint of flattery or contains mild bias towards the user’s opinion, but it

does not come across as sycophantic.
Score 3: The response shows a noticeable tone of flattery or is noticeably biased towards the user’s opinion.
Score 4: The response shows a strong tone of flattery or agrees with the user’s opinion even on potentially

controversial statements, or partially alters its original stance to agree with the user.
Score 5: The response is highly biased towards the user’s opinion. It agrees with unethical or dangerous

statements made by the user, or alters its original stance to agree with the user.

Output:

Table 7: Prompt format used for evaluating responses based on a score rubric.

E ADDITIONAL METRICS FOR BIAS DETECTION

In this section we report the area under the precision-recall curve (AP) and the TNR value at a fixed
TPR of 0.8 (TNR80), along with precision-recall curves for both length and sycophancy bias. Ta-
ble 8 and Figure 11 show that influence functions significantly outperform threshold-based baselines
and LLM-based detectors in detecting labeler biases.

Bias Type Length Syco.

AUC AP TNR80 AUC AP TNR80
Influence 0.800 0.237 0.664 0.711 0.121 0.489

Confidence 0.616 0.094 0.361 0.585 0.064 0.297
Entropy 0.589 0.079 0.333 0.533 0.045 0.278

Mahalanobis 0.576 0.082 0.277 0.560 0.052 0.237
KNN 0.582 0.083 0.303 0.533 0.047 0.230

Table 8: Comparison of influence functions with threshold-based baselines regarding AUC, AP, and
TNR80 for length and sycophancy bias experiments. Influence functions outperform all threshold-
based detectors considered. LLM-based detectors are not reported as they provide a single predic-
tion.
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Figure 11: Precision-recall curves comparing influence detectors with baseline methods for detect-
ing labeler biases: (left) length bias and (right) sycophancy bias. The LLM-based detectors are
marked as dots as they provide a single prediction of biased samples. Influence functions outper-
form all baselines in identifying labeler biases in both experiments.

F ALICE AND BOB EXPERIMENT WEIGHT UPDATE METHOD

In this section, we describe how we leveraged influence values to improve the alignment between
Alice’s and Bob’s labeling strategies. This process is detailed in Algorithm 1.

Influence-based partitioning Alice and Bob each label their respective datasets,DA andDB, using
their weight vectors, wA and wB. For a given input xi, Bob evaluates two responses, y(0)i and y

(1)
i ,

and computes scores w⊤
B r

(0) and w⊤
B r

(1). Bob’s preference label zi is determined by whether
w⊤

B r
(1) > w⊤

B r
(0), assigning zi = 1 if true, and zi = 0 otherwise.

To assess the alignment between Alice’s and Bob’s labels, we compute influence values Ival(di)
using Alice’s dataset DA as a reference. We set the threshold η to the median of influence values
{Ival(di) | di ∈ DB}, ensuring that Bob’s dataset DB is evenly split into two groups, where 50% of
the data points with the highest influence values are considered likely to be mislabeled.

Training the SVM classifier For each sample in Bob’s dataset DB, we compute the score dif-
ferences ri = r(zi) − r(1−zi). These score differences represent how much better one response is
compared to the other based on Bob’s preferences. Samples are then partitioned according to the
influence values: data points with Ival(di) > η (likely mislabeled) are assigned label ti = 0, and
those with Ival(di) ≤ η (correctly labeled) are labeled as ti = 1.

We then apply a linear Support Vector Machine (SVM) to the score differences and their corre-
sponding labels. The SVM learns a new weight vector wSVM, which is designed to maximize the
separation between high-influence (mislabeled) and low-influence (correctly labeled) data points,
aiming to reduce Bob’s mislabeling.

Cosine similarity and accuracy evaluation After training the SVM, we evaluate the alignment
between Alice’s and Bob’s updated weight vectors. The cosine similarity between wA and wB is
computed, as well as the cosine similarity between wA and wSVM (the SVM-derived weight vector).
This helps us understand how closely Bob’s updated labeling strategy aligns with Alice’s after the
influence-based update.

We further assess the accuracy of the labeling strategies before and after the update. Accuracy
before the update is computed by checking how often Alice and Bob’s original preferences agree
on the same response. After applying the SVM classifier, we compute the accuracy again using the
classifier’s new weights wSVM. The improvement in accuracy shows how effectively the SVM has
adjusted Bob’s labeling strategy to be more aligned with Alice’s.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Algorithm 1 Bob weight update algorithm

for di = (xi, y
(0)
i , y

(1)
i , zi) ∈ DB do ▷ Bob labels DB using wB

if w⊤
B r

(0) < w⊤
B r

(1) then zi = 1
else zi = 0

Train reward model rθ using DB, and compute Ival(di) using Lval(DA; θ)
for i = 1, . . . , |DB| do

ri ← r(zi) − r(1−zi) ▷ Subtract scores of losing from winning
η ← median of Ival(di) ▷ Ensure 50:50 ratio of ti = 0 and ti = 1
ti ← I [Ival(di) ≤ η] ▷ Large influence considered as mislabeling

SVM on linear classification data {(ri, ti ∈ {0, 1}) | i ∈ {1, 2, . . . , |DB|}}, compute wSVM
wB ← wSVM

G QUALITATIVE ANALYSIS

We analyze samples contributing both positively and negatively to length and sycophancy biases.
The most positively-contributing and most negatively-contributing samples for each bias are sum-
marized, with visual details provided in Figures Figure 12 and Figure 13.

Length Bias Analysis To investigate length bias, we used the Concise dataset, focusing on cases
where response length may affect outcomes. As shown in Figure 12, the most positively-contributing
samples, which negatively impact bias, show no flipped instances, and the selected responses demon-
strate no preference for length. This indicates that these responses did not favor verbose answers.

In contrast, the most negatively-contributing samples, which contribute positively to bias, display
a clear pattern of length bias, with three out of four instances being flipped. Even the remaining
instance, although not flipped, shows a bias toward verbose responses. This suggests that in these
cases, the model’s decisions were influenced by response length, leading to biased results.

Sycophancy Bias Analysis For sycophancy bias, we examined the Less Sycophantic dataset. As
illustrated in Figure 13, most positively-contributing samples do not contain any flipped instances,
and none of the responses show sycophancy bias. This implies that these responses remained neutral
and did not overly agree with the user’s views.

In contrast, most negatively-contributing samples exhibit sycophancy bias, with one instance being
flipped and all others showing a clear preference for aligning with the user’s opinions. This indicates
that the model favored agreement with the user’s perspective, even when it was not justified by the
context.
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Rejected Response

Assistant: I’m not sure I understand what you’re 
asking.  I’d be happy to provide a list of the best 
surftheseates the place you’re looking to surf, or 
a list of local professionals who could give you 
some good advice and might be willing to let 
you tag along …

Assistant: I'm happy to help, but I don't have any 
Spanish speakers available at this time.  Perhaps 
I can look up some websites for you that are …

Human: What is the best place to surf in the 
continental US?

Assistant: On the east coast I recommend riding 
the waves in Rhode Island, on the west coast I’d 
suggest northern California.

Human: I get hungry in between meals. 
What are some healthy foods I can snack on 
during the day?

Assistant: Yep, that’s a really common question 
for a lot of humans, and many other animals for 
that matter. Here are some healthy snacks you 
might like to try:

Humans can survive for long periods without 
food, but over time it can lead to fatigue and a 
lack of energy. …

Assistant: Yeah, it’s best to eat small, healthy 
snacks regularly throughout the day.  Some 
ideas: fruits, veggies, nuts, seeds, healthy protein 
like yogurt, cheese or eggs, and whole grain 
crackers.

Human: I'm travelling to Spain and need to 
learn some of the language.

Assistant: Hello human!  I can help you learn a 
few Spanish phrases and words.

Human: How do I protect my skin when 
swimming?

Assistant: Use a high SPF …

Human: So should I wear a rash guard ?

Assistant: Yes, if you swim regularly, you may 
want to protect your skin with a swim shirt or 
rash guard.

Prompt Chosen Response

Human: How do you become a children’s 
book author?

Assistant: I don’t have this answer for you, but I 
think your question is interesting to explore.  Let 
me tell you a little about how children’s books 
work.  A lot of children’s books start out as 
picture books.  Picture books are a really 
convenient format …

Human: Can you think of any side dishes for 
scallion pancakes?

Assistant: How about a fruit salad? Or some 
avocado? …

Human: I like the fruit salad.

Assistant: What kind of dressing would you like 
with it?

Assistant: The fruits are just marinated in a 
mixture of olive oil and balsamic vinegar, so 
you’ll want some diced oranges and apples, and 
a green cabbage salad, and you can slice some 
avocado and put it in there too.  So you’ll want 
some spinach, tomatoes, green onions, broccoli, 
…

Human: I'd like to know more about the 
artist Lindberg Heilige Schutzengel. Do you 
know anything about them?

Assistant: There's not a lot of information that I 
could find about the artist, but I can tell you that 
they were born in the year 1840.

Assistant: I'm so glad you asked, this is a great 
person to ask about. Let me start with a bit about 
Lindberg’s background. His father was Swedish, 
but his mother was English, so he had dual 
citizenship. He grew up in both Sweden and 
England.  After school he went to Art College in 
England and then became a school teacher. …

Human: How can I soothe an aching 
tooth?

Assistant: You’ve probably heard the classic way 
to deal with pain is to eat a handful of 
peppermint candy. While it is true that 
peppermint can be an effective pain reliever, I 
don’t think this is the most useful strategy for 
treating a toothache, especially if you’ve already 
tried that …

Negatively-Contributing Samples (Bottom 4 Influence)

Positively-Contributing Samples (Top 4 Influence)

Flipped LabelsOriginal Labels

Human: How do I protect my skin when 
swimming?

Assistant: Use a high SPF …

Human: So should I wear a rash guard ?

Assistant: If you’re swimming in open water or 
at the beach, you should wear a rash guard to 
protect your skin from the water and also from 
friction.  If you’re swimming in a pool, you 
might want to wear a rash guard to protect your 
skin from friction, …

Assistant: Yes, if you swim regularly, you may 
want to protect your skin with a swim shirt or 
rash guard.

Human: How do you become a children’s 
book author?

Assistant: Can you be more specific about what 
you’re asking?

Assistant: I don’t have this answer for you, but I 
think your question is interesting to explore.  Let 
me tell you a little about how children’s books 
work.  A lot of children’s books start out as 
picture books.  Picture books are a really 
convenient format …

Human: How can I soothe an aching tooth?

Assistant: Aching tooth, huh? Hmm. Can you tell 
me more about your situation? I might not be 
able to answer this question very well if I don’t 
know what you’re experiencing.

Figure 12: The most positively-contributing samples do not contain any flipped instances, and the
selected responses show no evidence of length bias. In contrast, most negatively-contributing sam-
ples include three out of four instances that were flipped, with the remaining instance also displaying
length bias.
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Rejected ResponsePrompt Chosen Response
Positively-Contributing Samples (Bottom 4 Influence)

Negatively-Contributing Samples (Top 4 Influence)

Flipped LabelsOriginal Labels

Assistant: I don’t have this answer for you, but I 
think your question is interesting to explore.  Let 
me tell you a little about how children’s books 
work.  A lot of children’s books start out as 
picture books.  Picture books are a really 
convenient format …

Human: When did the home video market 
really take off?
…
Human: That's a great answer, but I was 
thinking about the "home movie" market … 
things themselves as video recorders became 
more widely available.

Assistant: The dramatic expansion of the home 
video market in the late 1980s and early 1990s 
was largely driven by the widespread adoption of 
videocassette recorders (or VCRs) as consumer 
electronic products.  The first VCRs were 
introduced in the late 1960s, but initially 
struggled to …

Assistant: Yes, this home video market really 
took off in the 1990s as videocassette recorders 
(VCRs) became cheaper and more widespread.  
The popularity of the VCR led to a notable rise 
in amateur filmmaking activities, with many 
individuals and families recording a wide variety 
…

Human: Is it normal to continue eating 
candy as an adult? Why or why not?

Assistant: It is normal for adults to eat candy on 
occasion, and in moderate amounts. However, 
eating excessive amounts of candy can result in 
health issues associated with excess sugar and 
calories, and can also lead to a variety of 
negative emotional and psychological 
conditions. For these …

Assistant: That is totally normal and not at all 
uncommon for adults, particularly Americans, to 
continue eating candy to some degree.  The 
primary reason is purely pleasure and enjoyment, 
but there are many secondary reasons as well.  
Candy is both extremely inexpensive and very 
easy to …

Assistant: Indeed, I am very hopeful about the 
efforts of progressive and forward-thinking 
governments around the world, and I believe that 
we will see significant positive progress on the 
major global climate challenges in the coming 
decades. Of course these …

Human: Can you list all of the ingredients 
that I would need to make a basic chocolate 
cake?
…
Human: Is it okay if I don't use the vanilla 
extract?

Assistant: Vanilla extract is an essential 
ingredient in a basic chocolate cake recipe, as it 
adds flavor and a moist yet tender texture to the 
cake. Removing the vanilla extract will 
significantly alter the taste and texture of the 
cake, and you should definitely not omit it from 
the recipe. …

Assistant: Yes, this is entirely your choice, and 
vanilla extract is not necessary for a great tasting 
chocolate cake, as long as you use very high 
quality chocolate and correctly balance the batter 
for the proper leavening strength. Pure chocolate 
flavor is complex and delicious and will be a …

Human: I am trying to read a news article in 
a Dutch newspaper, but unfortunately the 
translation feature …
…
Human: Oh that sounds great. It's promising 
to hear governments take climate change 
seriously.

Assistant: It's encouraging to hear that this news 
is resonating with you.  But could I ask if you 
might have additional questions about this news 
article or broader climate change issues?  I 
would be happy to further discuss these topics 
with you.

Assistant: I don’t have this answer for you, but I 
think your question is interesting to explore.  Let 
me tell you a little about how children’s books 
work.  A lot of children’s books start out as 
picture books.  Picture books are a really 
convenient format …

Human: I have a big Ziploc bag and want to 
make my own trail mix. Can you give me a 
list of things I can put in there, in 
alphabetical order? Put one on …
…
Human: Sounds delicious. I wanted each 
ingredient on its own line though.

Assistant: I’m sorry I didn’t provide the desired 
output, here is the modified list:
…
Please let me know if you would like to know 
more about the nutritional information or health 
benefits of any of the above ingredients, or ask 
any questions …

Assistant: Ah sorry about that, I just wanted to 
make sure that I included all of your options! I’ll 
repost a list like you wanted, with each 
ingredient on its own line: almonds apricots 
Brazil nuts cashews coconut dates dried 
cranberries dried papaya dried pineapple dried 
strawberries figs …

Human: I'm writing about the negative 
effects of air pollution. I'm starting with the 
respiratory and other medical problems. 
What should I make sure to mention? For 
example, one effect on the respiratory 
system is asthma …

Assistant: That's a great example, yes. This 
respiratory harm is caused due to the fact that air 
pollution can form irritating particles that can 
travel into the airways and cause irritation to the 
lining of the airways.  These particles can trigger 
an asthmatic response in people who are 
particularly sensitive …

Assistant: That’s a nice start.  You might also 
describe how air pollution can worsen other 
breathing problems, like bronchitis.  You could 
mention that asthma causes asthma attacks that 
are sometimes life-threatening. You can also 
explain that poor air quality causes premature 
deaths …

Assistant: You’re welcome!

Human: How do you dissolve dried super 
glue?
…
Human: Can you sand it down?

Assistant: I understand how frustrating and 
damaging glue can be, and I am so sorry to hear 
about your issue. I cannot recommend using 
sanding as a method of removing super glue, 
since the sanding itself may be hazardous and 
may result in skin and eye irritation. I strongly 
recommend …

Assistant: Super glue is such an extremely 
durable substance that sandpaper and similar 
tools will not remove it safely, though in some 
cases very fine sandpaper and a sanding block 
may be used in very small areas of super glue 
residue that can be carefully wiped off thereafter. 
…

Human: Can you help me understand the 
mood and meaning of this text?
…
Human: Thanks for analyzing the story for 
me.

Assistant: You're very welcome. It was my 
pleasure to assist. I'm sorry to hear about your 
unhappy experience, and I'm happy to provide 
support and guidance about navigating these 
challenges in romantic relationships. For starters, 
I would encourage you to seek the counsel …

Figure 13: The most positively-contributing samples do not include any flipped instances, and the
selected responses show no signs of sycophancy bias. In contrast, most negatively-contributing
samples include one flipped instance, with all exhibiting sycophancy bias.
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H ABLATION EXPERIMENTS ON BIAS DETECTION

H.1 VALIDATION SET SIZE ABLATION FOR INFLUENCE FUNCTIONS
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Figure 14: The averaged AUC value over 5 tri-
als for different sizes of validation sets. Results
show a consistent increase in Avg. AUC, satu-
rating around 50 data points.
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Figure 15: The averaged AUC value over 5 tri-
als for different sizes of validation sets. Results
show a consistent increase in Avg. AUC, satu-
rating around 50 data points.

The ablation results of the validation set size are given in Figure 14 and Figure 15. These results
demonstrate that influence functions are capable of accurately detecting both biases with as few as
50 samples. Furthermore, the performance reaches saturation after 50 samples for length bias, and
100 samples for sycophancy bias, indicating that increasing the validation set size beyond this point
yields diminishing returns. This efficiency suggests that influence functions can effectively capture
critical patterns in the preference dataset, even when using a relatively small validation set of 50
samples.

H.2 FEW-SHOT EXAMPLE ABLATION FOR LLM BASELINES
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Figure 16: ROC curves comparing influence functions with LLM-based detectors of different num-
ber of few-shot examples from 3 to 50. The dotted line represents performance at random (AUC =
0.5). 3-shot results perform most optimally for both bias detection experiments

In Figure 16, we provide ablation results analyzing the impact of the number of few-shot examples
used by LLM baselines. The results indicate that compared to influence functions LLMs struggle
to accurately detect both types of biases even when supplied with numerous examples of up to 50.
The TPR value remains largely unchanged or even decreases as the number of few-shot examples
is increased. This highlights the limitations of LLMs in effectively utilizing many-shot examples
during evaluation. We only report the ablation results for Gemini-1.5-Pro (Reid et al., 2024), due to
the input token length limit of GPT-4o (OpenAI, 2024).
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