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Abstract

Phylogenetic tree inference requires optimizing both branch lengths and topologies, yet tra-
ditional MCMC-based methods su!er from slow convergence and high computational cost.
Recent deep learning approaches improve scalability but remain constrained: Bayesian mod-
els are computationally intensive, autoregressive methods depend on fixed species orders,
and flow-based models underutilize genomic signals. Fixed-order autoregression introduces
an inductive bias misaligned with evolutionary proximity: early misplacements distort sub-
sequent attachment probabilities and compound topology errors (exposure bias). Absent
sequence-informed priors, the posterior over the super-exponential topology space remains
di!use and multimodal, yielding high-variance gradients and sluggish convergence for both
MCMC proposals and neural samplers. We propose MDTree, a masked dynamic autore-
gressive framework that integrates genomic priors into a Dynamic Ordering Network to
learn biologically informed node sequences. A dynamic masking mechanism further enables
parallel node insertion, improving e"ciency without sacrificing accuracy. Experiments on
standard benchmarks demonstrate that MDTree outperforms existing methods in accuracy
and runtime while producing biologically coherent phylogenies, providing a scalable solution
for large-scale evolutionary analysis.

1 Introduction

Phylogenetic trees are fundamental for revealing evolutionary relationships, enabling lineage tracing from
common ancestors to present-day organisms using DNA or protein sequences (Brocchieri, 2001; Munjal et al.,
2019). They underpin studies in taxonomy, evolutionary biology, and medicine, o!ering insights into species
origins, biodiversity, and the evolutionary trajectories of pathogens and cancer cells (Hugenholtz et al., 2021;
Tummers & Green, 2022). Accurate and e"cient inference has high practical value: in pathogen source trac-
ing, it supports timely outbreak interventions (Biek et al., 2015); in cancer evolution analysis (Fimereli et al.,
2022), it reveals clonal architecture and treatment resistance; and in biodiversity conservation (Theissinger
et al., 2023), it enables large-scale, automated species relationship reconstruction. These applications under-
score both the scientific and societal significance of phylogenetic modeling. Yet, the surge of genomic data
and the combinatorial growth of tree topologies pose major computational challenges, calling for scalable
and accurate new methods.

Traditional statistical frameworks, notably Maximum Likelihood Estimation (MLE)(Izquierdo-Carrasco
et al., 2011; Solís-Lemus & Ané, 2016) and Bayesian Inference (BI) via Markov Chain Monte Carlo
(MCMC)(Zhang et al., 2018; Wang et al., 2020), have long underpinned phylogenetic inference. Yet, with
increasing taxa, they encounter severe computational bottlenecks: the space of unrooted bifurcating topolo-
gies grows super-exponentially as (2N →5)!!, while the joint optimization of continuous branch lengths and
discrete topologies further compounds complexity.

Leveraging deep learning, breakthroughs in phylogenetic inference have burst onto the scene, addressing
long-standing computational challenges in the field (Nesterenko et al., 2022; Smith & Hahn, 2023; Tang
et al., 2024). Research e!orts primarily follow two main directions: representation learning on known tree
structures and generative models. The former, exemplified by VBPI-GNN (Zhang, 2023), optimizes perfor-
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Figure 1: Comparison between fixed-order autoregressive generation (ARTree) and our
dynamic-order method (MDTree). (a) Fixed-order ARTree adds species sequentially according to a
predefined order, ignoring biological priors. This leads to suboptimal intermediate structures and slower
generation, as only one leaf node is added at each step. (b) MDTree (ours) employs a Dynamic Ordering
Network to determine a biologically-informed insertion order based on genomic features, enabling related
species to be clustered earlier. The Tree Construction & Branch Learning module further supports parallel
insertion of multiple nodes, achieving faster generation and more phylogenetically consistent topologies.

mance based on predefined topologies but struggles when the topology is unknown and both topology and
branch lengths must be inferred. These methods also underutilize evolutionary information from biological
sequences, impacting accuracy and flexibility (Penny, 2004). On the other hand, generative models, which
infer tree structures directly from data, can be further divided into three types: Bayesian generative mod-
els (e.g., Geophy (Mimori & Hamada, 2024)) leverage probabilistic frameworks to capture uncertainty but
are computationally intensive; autoregressive models (e.g., ARTree (Xie & Zhang, 2024)) sequentially add
nodes, o!ering flexibility yet relying on predefined orders that overlook true evolutionary relationships, while
their stepwise nature leads to ine"ciency for large datasets (Razavi et al., 2019). Lastly, Generative Flow
Networks (GFNs) (e.g., PhyloGFN (Zhou et al., 2024)) provide greater flexibility by exploring multimodal
posterior distributions but still struggle to fully integrate evolutionary signals, impacting the accuracy of
inferred trees. Therefore, few methods have achieved these goals simultaneously.

+ 5.21 acc.
1.85× speed + 4.03 acc.

1.72× speed

Figure 2: Runtime and node count comparison
between MDTree and ARTree. Evaluation is con-
ducted on eight benchmarks under two optimization
settings (log-scale).

To overcome these limitations, we focus on a core
question: how can biological priors e!ectively guide
node addition to improve phylogenetic inference ac-
curacy? As shown in Fig. 2, classical autoregressive
methods (Fig. 2a) rely on fixed orders (e.g., lexi-
cographical), overlooking evolutionary relationships
and often producing inaccurate trees 1. Our method
(Fig. 2b) learns evolutionarily meaningful node or-
ders, ensuring species like reptiles, birds, and mam-
mals are added in line with their ancestry. This
improves the accuracy and biological relevance of
generated trees by prioritizing species with closer
common ancestors.

Specifically, we adopt a dynamic autoregres-
sive generation paradigm, where both the or-
der of node additions and their insertion positions
are learned from genomic sequences instead of be-
ing fixed in advance. This paradigm is instanti-
ated by our Masked Dynamic Autoregressive Model
(MDTree), which integrates a Di!usion Ordering
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Network (DON) to learn biologically informed or-
ders directly from sequence data via an absorbing di!usion model (Bond-Taylor et al., 2021), mitigating the
limitations of fixed or random orders. By combining the strengths of Graph Neural Networks and Language
Models (LMs), MDTree captures intricate genomic relationships while modeling complex tree structures. A
Dynamic Masking Mechanism enables parallel node processing, improving e"ciency. Lastly, we employ a
dual-pass tree traversal strategy for branch length estimation and use the LAX model (Grathwohl et al.,
2017) to reduce variance in discrete sampling for stabilizing optimization and enhancing convergence.

Experiments on phylogenetic benchmarks show that MDTree outperforms existing methods in accuracy and
e"ciency. Empirical analysis of Angiosperms353 (Zuntini et al., 2024) further demonstrates its ability to
recover evolutionary lineages, including Rosaceae and Moraceae, suggesting broader biological applications.
In summary, our contributions are:

• A novel dynamic autoregressive generation paradigm for phylogenetic inference: We
leverage a generation strategy that dynamically learns node order and insertion positions from
genomic sequence data, improving the accuracy and biological relevance of inferred trees.

• An innovative methodology: We propose MDTree, which integrates a Di!usion Ordering Net-
work for biologically informed node orders, combines genomic Language Models with dual-pass
traversal for precise tree generation, and employs a dynamic masking mechanism for e"cient paral-
lel processing.

• Strong experimental validation: Comprehensive experiments validate that MDTree achieves
state-of-the-art performance. Visualizations from real-world Angiosperm datasets further confirm
the biological relevance and interpretability of the generated trees.

2 Related Works

Phylogenetic inference methods are generally categorized into traditional and deep learning-based ap-
proaches; each is further divided into graph structure generation and representation models. For details
on background, please see Appendix A.

Traditional Methods rely on predefined evolutionary models and statistical inference. Graph Structure
Generation Models: MrBayes (Ronquist et al., 2012) utilizes Bayesian inference to generate trees but strug-
gles with high-dimensional combinatorial spaces, requiring large sample sizes for accuracy. VaiPhy (Kop-
tagel et al., 2022) combines SLANTIS sampling strategy (Diaconis, 2019) with biological models (e.g., JC
model (Munro, 2012)) to estimate branch lengths and generate accurate tree structures. Graph Struc-
ture Representation Models: SBN (Zhang & Matsen IV, 2018a) models the probability distribution of tree
topologies from existing trees, focusing on subsplit relationships without directly estimating branch lengths.
VBPI (Zhang & Matsen IV, 2018b) extends SBNs to estimate posterior distributions and optimize branch
lengths through variational inference.

Deep Learning-based Methods o!er more flexible and scalable solutions. Graph Structure Genera-
tion Models: (1) Bayesian Generative Models like GeoPhy (Mimori & Hamada, 2024) learn latent tree
representations to generate diverse topologies. (2) Autoregressive Models such as ARTree (Xie & Zhang,
2024) sequentially generate trees, well-suited for hierarchical data. (3) Generative Flow Networks like Phy-
loGFN (Zhou et al., 2024) optimize tree generation paths using Markov decision processes. Graph Structure
Representation Models: VBPI-GNN (Zhang, 2023) combines SBNs with variational inference to optimize
topology and branch lengths.

3 Methods

A unified model that can handle both tasks must therefore (i) capture biologically meaningful topological
structures (Tree Topology Density Estimation, TDE), and (ii) accurately estimate continuous evolutionary
distances(Variational Bayesian Phylogenetic Inference, VBPI), while being robust to limited or no supervision
on the topology. Unless otherwise specified, all vector representations (e.g., hi) are treated as column vectors.
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Figure 3: Framework of MDTree for dynamic autoregressive tree generation. A. The Dynamic Or-
dering Network module utilizes a pre-trained enomic LM to extract embeddings from sequences Y , guiding
nodes into absorbing states in an autoregressive manner as determined by DON qω(ω|G). B. The Au-
toregressive Tree Construction module employs a parallel strategy to add multiple leaf and internal nodes
simultaneously at specified positions based on the order provided by DON. C. The Branch Length Learning
module optimizes branch lengths through a dual-pass traversal.

Formulation. Given a set of N species sequences S = {si}N
i=1

and their corresponding genomic represen-
tations G = {gi}N

i=1
extracted from a pretrained Genomic Language Model (e.g., DNABERT2 (Zhou et al.,

2023)), we aim to infer a phylogenetic tree that captures both its discrete topology and continuous evolution-
ary distances. Formally, the tree is modeled as an unrooted binary graph GT = (VT , ET ), where VT denotes
the set of taxa and internal nodes, and ET the set of undirected edges between them. Each edge e ↑ ET is
associated with a branch length be ↑ R+, and we denote the set of branch lengths as Bε = {be : e ↑ ε}. Our
objective is to learn a mapping,

F : S →↓ {(e, be) | e ↑ ε}, (1)

which jointly specifies the topology ε (a binary tree structure over VT ) and its associated branch lengths Bε .

This formulation naturally covers both tasks, (i) For TDE, we focus on estimating the topology ε by marginal-
izing out the branch lengths Bε in the likelihood p(A | ε), enabling evaluation against reference topologies.
(ii) For VBPI, we jointly infer both ε and Bε under the posterior p(ε, Bε | S), using amortized inference to
model their dependencies. In practice, MDTree runs the full pipeline for VBPI, while for TDE the branch-
length refinement module is bypassed during inference and only used implicitly when marginalizing over
Bε .

To address the limitations of fixed node orders in prior autoregressive models (Xie & Zhang, 2024), we pro-
pose MDTree (Fig. 3), which dynamically learns biologically informed node addition orders and insertion
positions from G via a Dynamic Ordering Network (DON) based on an absorbing di!usion process (Austin
et al., 2021). The learned order and contextual node embeddings jointly guide an autoregressive tree con-
struction module with dynamic masking for parallel insertion. Finally, a dual-pass traversal refines branch
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lengths using both global and local structural cues. This unified pipeline enables accurate reconstruction of
phylogenetic structure and evolutionary distances, supporting both TDE and VBPI tasks.

Framework of MDTree. Fig. 3 illustrates the overall architecture of MDTree, comprising three tightly
coupled components. The DON first produces biologically informed node orders and contextual embeddings
from genomic inputs. These are then consumed by the autoregressive tree construction module, which
determines node insertion positions under a dynamic masking schedule. Finally, the dual-pass traversal
refines branch lengths using bidirectional context. The interaction between these components allows MDTree
to support both TDE and VBPI within the same inference pipeline.

3.1 DON for Learning Biologically Informed Node Orders with Genomic Priors

The order in which species nodes are added to a phylogenetic tree significantly impacts the inferred topol-
ogy, especially under the constraint of binary unrooted trees. From a biological perspective, species with
closer ancestry should be introduced earlier in the tree construction process to better preserve evolutionary
semantics (Penny, 2004; Gregory, 2008). While some recent works show robustness to taxa orderings (Xie
& Zhang, 2024), the benefit of learning biologically informed node orders remains underexplored. Such an
approach could allow the model to adaptively exploit genomic signals to produce topologies that better
reflect true evolutionary relationships.

Graph Construction Module Given an input set of sequences S, each si ↑ S is first encoded into a
genomic embedding gi ↑ Rd using a pretrained genomic language model (e.g., DNABERT2 (Zhou et al.,
2023)), injecting biological priors into subsequent ordering decisions. An initial graph G0 = (V, E) is then
constructed based on sequence similarity or known homology (species phylogeny prior), serving as the struc-
tural backbone for contextual reasoning. Node features are passed through a relational graph convolutional
network (RGCN) (Schlichtkrull et al., 2018):

h
(0)

i = RGCN (gi + PE(gi), E) , (2)

where PE(·) is a positional encoding and {h
(0)

i }N
i=1

are the initial contextualized embeddings that integrate
both sequence-level and local graph information.

Evolution Simulation Module Starting from G0, DON simulates an iterative absorption process to
determine the biologically informed node order ω = {i1, i2, . . . , iN }.

(1) Node selection probability: At each step t, the model computes the probability of absorbing each active
node:

q(it | H(t→1)) = Cat
(

h
(t)

it
Q

↑
t ↔ h

(0)

it
Q̄

↑
t→1

h
(0)

it
Q̄th

(t)↑
it

)
, (3)

where ↔ is element-wise multiplication, Q̄t→1 =
∏t→1

i=1
Qi is the cumulative transition matrix from previous

steps, and Qt is the current-step transition matrix.

(2) Transition dynamics: The discrete-time transition matrix Qt ↑ R(N+1)↓(N+1) controls state changes:

[Qt]ij =






1 if i = j = m

1 → ϑt,i if i = j ↗= m

ϑt,i if j = m, i ↗= m

0 otherwise,

(4)

where m = N + 1 is the absorbing (masked) state and ϑt,i ↑ [0, 1] is a monotonically increasing absorption
probability.

(3) Greedy absorption: The node with the highest selection probability is chosen i
↔
t = arg max q(it | ·)

absorbed into ω, and the graph is updated Gt+1 = Gt ↘ {i
↔
t }. This loop continues until all nodes are

absorbed.
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Ordering Supervision Module We supervise the Dynamic Ordering Network (DON) by aligning its
predicted node absorption order ω̂ with a reference order ω = (ω1, ω2, . . . , ωN ) obtained from external phylo-
genetic inference tools (e.g., MrBayes). At each step t, DON predicts a probability distribution q(it | G0, ω<t)
over candidate nodes it ↑ VT \ ω<t conditioned on the initial graph G0 and the previously absorbed nodes
ω<t = (ω1, . . . , ωt→1). The supervision objective is the negative log-likelihood (NLL) of the ground-truth
sequence:

LDON = →
N∑

t=1

log q
(
it = ωt

∣∣ G0, ω<t

)
, (5)

which encourages DON to assign high probability to biologically consistent construction sequences.

3.2 AutoRegressive Tree Construction with Dynamic Node Insertion

Given the biologically informed node ordering ω = {i1, i2, . . . , iN } and the corresponding contextual node
embeddings {hi} from the DON module, the autoregressive tree construction stage determines where each
node should be inserted in the growing phylogenetic tree. The embeddings are directly passed from DON
without re-encoding, while the order ω is kept fixed and used in two ways: (i) as a positional bias in the
attention-based placement network to favor evolutionarily prioritized nodes, and (ii) as a priority score to
adjust insertion probabilities. This tight coupling ensures that the biologically meaningful ordering learned
in DON directly shapes the resulting topology, while maintaining computational e"ciency for large N .

Selection & Placement Module Instead of inserting one node at a time—which is computationally ex-
pensive and prone to error propagation—we employ a dynamic parallel insertion strategy. At autoregressive
step t, let Vt be the set of placed nodes and Rt = V \ Vt the remaining nodes. A subset Ut ≃ Rt is selected
for insertion according to a cosine mask rate:

Ut = SelectNodes(Rt, ϖt), ϖt = 1
2

(
1 + cos

(
t

T
ϱ

))
, (6)

where T is the total number of autoregressive steps. Early steps insert fewer nodes for accuracy; later steps
insert more for speed.

For each i ↑ Ut, let p[i] be a candidate parent in the partial tree. We compute a relational embedding via
Multi-Head Attention (Vaswani, 2017):

ri = MHA(Q, hi, hi), (7)

where hi is the contextual embedding from DON, and MHA(Q, hi, hi) is the self attention mechanism
that captures interactions between hi and all other node embeddings, Q ↑ R(N→3)↓d probes all potential
attachment points.

Given ri and rp[i] (candidate parent’s embedding), the insertion probability is predicted as:

Li = softmax
(
MLP

(
Concat(ri, MAX(ri, rp[i])) + PE(t)

))
, (8)

where MAX(·) extracts dominant shared features, and PE(t) injects temporal information. Evolutionary
priority from ω is enforced by biasing toward lower Ranki, Ladj,i = Li + ς · (N → Ranki), with bias strength
ς. The final position is sampled as, posi ⇐ Multinomial(softmax(Ladj,i)), where posi is the position in the
current partial tree where node i will be inserted.

Node Update Module Let E(t)

T be the edge set at step t. After sampling {posi}, we update the topology:

E(t+1)

T = E(t)

T ↘ {(vi, vp[i]), (vp[i], vi)}. (9)

If insertion creates a new internal node j (degree two children), its embedding is initialized by averaging
neighbors:

r
internal

j = 1
Card(N (j))

∑

k↗N (j)

rk, (10)
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where Card(N (j)) is the cardinality of the neighbor set of j. This process repeats until all nodes are placed,
producing the final binary unrooted topology ε .

3.3 Dual-Pass Traversal for Branch Length Learning

The branch length learning module (Fig. 3) jointly captures global and local structural cues via a dual-pass
traversal, followed by graph-based encoding and di!erentiable branch length sampling.

Postorder and Preorder Aggregation Given a rooted tree converted from the inferred unrooted topol-
ogy ε by adding a dummy edge, a post-order aggregation propagates information bottom-up:

h
fwd

u = GRU



h
init

u ,
1

|C(u)|
∑

v↗C(u)

φ(hfwd

v , ↼uv)



 , (11)

where h
init
u is the genomic embedding from DON, C(u) is the child set of node u, ↼uv is the current branch

length estimate, and φ(·) is an MLP conditioned on ↼uv.

A subsequent pre-order aggregation propagates refined context top-down, updating each child node v:

h
bwd

v = ↽
(
h

bwd

u , h
fwd

v , PE(depth(u, v))
)

, (12)

where ↽(·) is an MLP and PE encodes relative depth.

DGCNN Encoding The bidirectionally aggregated features {xi}, obtained by combining forward and
backward states, are passed to a Dynamic Graph Convolutional Neural Network (DGCNN) to capture
higher-order relational dependencies, yielding refined node representations {zi}.

Branch Length Head and Reparameterization A lightweight branch length head maps each zi to
Gaussian parameters (µi, ωi). Di!erentiable sampling is enabled via the reparameterization trick:

bi = µi + ωi ↔ ⇀, ⇀ ⇐ N (0, I), (13)

where bi is the sampled branch length. This ensures low-variance gradient estimates and flexible distribution
modeling.

Branch Length Loss Branch length estimation is supervised by the negative log-likelihood of the sequence
alignment A under a continuous-time Markov chain (CTMC) substitution model (Yang, 1994):

Llen = →
|A|∑

c=1

log pCTMC(Ac | ε, ↼, !sub) , (14)

where Ac is the c-th alignment column and !sub are substitution parameters (e.g., GTR rates).

This dual-pass design explicitly decouples global structural encoding from local refinement, while the repa-
rameterized probabilistic formulation enables stable branch length estimation and improved alignment with
observed evolutionary signals.

3.4 MDTree Inference for Joint Topology and Branch Length Estimation

Building on the biologically informed node ordering loss LDON from Sec. 3.1 and the branch length likelihood
Llen from Sec. 3.3, the final stage integrates these components into a unified inference framework. MDTree
couples Tree Topology Density Estimation (TDE) and Variational Bayesian Phylogenetic Inference (VBPI)
to jointly optimize the posterior distribution over tree topology ε and branch lengths ↼ given the sequence
alignment A.
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Table 1: Research Questions (RQs) and their corresponding sub-questions.

RQ1: Performance How well does MDTree perform in generating tree topologies (TDE)
and inferring branch lengths (VBPI)?

RQ2: Time E!ciency How e"cient is MDTree in reducing runtime?

RQ3: Tree Quality
How optimal is MDTree to generate a tree structure? (RQ3-1)
How diverse are the tree topologies generated by MDTree? (RQ3-2)
How consistent is the MDTree-generated tree compared to MrBayes? (RQ3-3)

RQ4: Module Impact How does each MDTree’s module a!ect its performance? (RQ4-2)
How do key hyper-parameters a!ect MDTree? (RQ4-2)

RQ5: Case Study What evolutionary relationships between species does MDTree learn?

Tree Topology Density Estimation (TDE) Traditional phylogenetic methods often rely on fixed
topologies or heuristic search strategies that may not adequately explore the vast space of possible tree
structures. TDE addresses this limitation by learning a flexible distribution over topologies that can capture
the uncertainty inherent in phylogenetic inference. This probabilistic approach is particularly valuable when
dealing with closely related species or when sequence data contains conflicting evolutionary signals.

TDE refines qϑ(ε)—parameterized by the autoregressive insertion process—by maximizing the marginal log-
likelihood, e!ectively training the model to assign higher probability to topologies that better explain the
observed sequence data:

LTDE(⇁) = Eqω(ε) (log p(A | ε)) , (15)

where p(A | ε) is evaluated under a CTMC model and marginalized over branch lengths. This marginalization
is crucial as it allows the topology learning to focus on structural relationships without being confounded by
branch length estimation errors.

Variational Bayesian Phylogenetic Inference (VBPI) VBPI extends TDE by jointly modeling ε and
↼ via a structured posterior qϑ(ε, ↼) = qϑ(ε) qω(↼ | ε), with qω(↼ | ε) initialized from the dual-pass traversal
outputs and refined through amortized inference. The ELBO objective is:

LVBPI(⇁, φ) = Eqω(ε)qε(ϖ|ε) (log p(A | ε, ↼)) → KL(qϑ(ε)qω(↼ | ε) ⇒ p(ε, ↼)) . (16)

Unified MDTree Objective Rather than optimizing each stage independently, MDTree integrates all
component objectives into a unified training target that ensures ordering, topology construction, and branch
length inference reinforce one another:

LMDTree = λDON · LDON + λVBPI · LVBPI + λlen · Llen + λTDE · LTDE, (17)

where λlen balances explicit branch length refinement with the joint inference objectives. This end-to-
end coupling aligns all stages into a coherent optimization pipeline, yielding phylogenies that are both
topologically accurate and metrically consistent with evolutionary signals.

4 Experiments

In this section, we demonstrate the e!ectiveness of our proposed MDTree in terms of the research questions
in Table 1.

4.1 Experiment Setup

Evaluation Tasks and Datasets. We assess MDTree’s performance on two key tasks: TDE, which focuses
on optimizing tree topologies with MLL metric, and VBPI, where tree topologies and branch lengths are
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Table 2: Comparison of KL divergence (⇑) across eight benchmark datasets with di"erent
methods. Boldface for the highest result, Underline for the second highest result of traditional methods.

Methods

Dataset
(#Taxa,#Sites)

DS1
(27,1949)

DS2
(29,2520)

DS3
(36,1812)

DS4
(41,1137)

DS5
(50,378)

DS6
(50,1133)

DS7
(59,1824)

DS8
(64,1008)

Sampled Trees 1228 7 43 828 33752 35407 1125 3067
GT Trees 2784 42 351 11505 1516877 809765 11525 82162

MCMC-
based

SBN 0.0707 0.0144 0.0554 0.0739 1.2472 0.3795 0.1531 0.3173
SRF 0.0155 0.0122 0.3539 0.5322 11.5746 10.0159 1.2765 2.1653
CCD 0.6027 0.0218 0.2074 0.1952 1.3272 0.4526 0.3292 0.4149
SBN-SA 0.0687 0.0218 0.2074 0.1952 1.3272 0.4526 0.3292 0.4149
SBN-EM 0.0136 0.0199 0.1243 0.0763 0.8599 0.3016 0.0483 0.1415
SBN-EM-ς 0.0130 0.0128 0.0882 0.0637 0.8218 0.2786 0.0399 0.1236

Structure
Generation

ARTree 0.0045 0.0097 0.0548 0.0299 0.6266 0.2360 0.0191 0.0741
MDTree 0.0036 0.0129 0.0446 0.0216 0.5751 0.1591 0.0169 0.0634

jointly inferred, using ELBO and MLL. These evaluations span eight diverse benchmark datasets, covering
various organisms like marine animals, plants, bacteria, fungi, and eukaryotes, as outlined in Appendix C.

Baselines. MDTree is compared against three primary groups of baselines: (1) MCMC-based methods (e.g.,
MrBayes, SBN), (2) Structure Representation methods (VBPI, VBPI-GNN), which leverage pre-generated
topologies, and (3) Structure Generation methods for Bayesian inference without pre-selected topologies.
Notably, ARTree, a comparable autoregressive method like ours, is highlighted for comparison. All training
details and hyperparameters are provided in Appendix E.

4.2 Comparison Results on Benchmarks (RQ1)

Table 3: Evaluation of MLL (⇓) on eight benchmark datasets. VBPI and VBPI-GNN utilize pre-
generated tree topologies during training, making direct comparisons challenging. Boldface highlights
the highest result, Text denotes the second highest of structure generation methods, and Text indicates the
second highest of MCMC-based methods.

Methods Dataset
(#Taxa,#Sites)

DS1
(27,1949)

DS2
(29,2520)

DS3
(36,1812 )

DS4
(41,1137)

DS5
(50,378)

DS6
(50,1133)

DS7
(59,1824)

DS8
(64,1008)

MCMC-
based

MrBayes -7108.42
(0.18)

-26367.57
(0.48)

-33735.44
(0.50)

-13330.44
(0.54)

-8214.51
(0.28)

-6724.07
(0.86)

-37332.76
(2.42)

-8649.88
(1.75)

SBN -7108.41
(0.15)

-26367.71
(0.08)

-33735.09
(0.09)

-13329.94
(0.20)

-8214.62
(0.40)

-6724.37
(0.43)

-37331.97
(0.28)

-8650.64
(0.50)

Structure
Representation

VBPI -7108.42
(0.10)

-26367.72
(0.12)

-33735.10
(0.11)

-13329.94
(0.31)

-8214.61
(0.67)

-6724.34
(0.68)

-37332.03
(0.43)

-8650.63
(0.55)

VBPI-GNN -7108.41
(0.14)

-26367.73
(0.07)

-33735.12
(0.09)

-13329.94
(0.19)

-8214.64
(0.38)

-6724.37
(0.40)

-37332.04
(0.12)

-8650.65
(0.45)

Structure
Generation

ARTree -7108.41
(0.19)

-26367.71
(0.07)

-33735.09
(0.09)

-13329.94
(0.17)

-8214.59
(0.34)

-6724.37
(0.46)

-37331.95
(0.27)

-8650.61
(0.48)

phi-CSMC -7290.36
(7.23)

-30568.49
(31.34)

-33798.06
(6.62)

-13582.24
(35.08)

-8367.51
(8.87)

-7013.83
(16.99) NA -9209.18

(18.03)

GeoPhy -7111.55
(0.07)

-26379.48
(11.60)

-33757.79
(8.07)

-13342.71
(1.61)

-8240.87
(9.80)

-6735.14
(2.64)

-37377.86
(29.48)

-8663.51
(6.85)

GeoPhy LOO(3) -7116.09
(10.67)

-26368.54
(0.12)

-33735.85
(0.12)

-13337.42
(1.32)

-8233.89
(6.63)

-6735.9
(1.13)

-37358.96
(13.06)

-8660.48
(0.78)

PhyloGFN -7108.95
(0.06)

-26368.90
(0.28)

-33735.60
(0.35)

-13331.83
(0.19)

-8215.15
(0.20)

-6730.68
(0.54)

-37359.96
(1.14)

-8654.76
(0.19)

Ours -7101.38
(0.07)

-26357.96
(0.06)

-33715.31
(0.10)

-13322.10
(1.34)

-8210.76
(0.23)

-6713.13
(0.32)

-37326.50
(1.39)

-8645.07
(0.69)

The TDE Task. We compare the KL divergence to measure the di!erence between the model’s generated
tree topology distribution qϑ(ε) and the true posterior p(ε): KL(p(ε)||qϑ(ε)) =


ε p(ε) log p(ε)

qω(ε)
. Table 2

shows that our MDTree consistently achieves lower KL divergence across all datasets compared to MCMC-
based and structure generation methods. On complex datasets such as DS5 and DS6, it outperforms ARTree
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Table 4: Comparison of mean log-likelihood (MLL) and runtime between ARTree and MDTree
under RWS and VIMCO optimization, each trained for 400,000 iterations. MDTree consistently
achieves higher MLL and reduces runtime by over 40% compared to ARTree.

Methods MLL Runtime (s)
ARTree_rws -7107.74 128.7
MDTree_rws -7103.71 75.0(↓41.72%)
ARTree_vimco -7106.59 114.7
MDTree_vimco -7101.38 63.7(↓44.46%)

and SBN, demonstrating superior scalability. Even on smaller datasets like DS1 and DS3, the performance
remains competitive, highlighting the model’s robustness. The comparison with ARTree underscores the
advantage of autoregressive models, including ours, particularly on larger, more complex datasets.

Figure 4: Comparison of ELBO. Figure 5: Comparison of MLL.

The VBPI Task. We evaluate the VBPI task using ELBO and MLL metrics. Since direct computation
of MLL is intractable, it is approximated via importance sampling. Unlike TDE, which relies on known
tree topologies, VBPI evaluates the fit between model-generated tree topologies and branch lengths and the
observed gene sequence data. As shown in Table 3 and Table 5, Tree Structure Generation methods exhibit
broader applicability in MLL and ELBO metrics compared to Structure Representation methods, which are
restricted by their reliance on pre-generated topologies. Our method, MDTree, consistently achieves the
highest metrics across all datasets, highlighting its enhanced capacity to approximate the posterior distri-
bution of tree topologies and branch lengths. Fig. 4 shows MDTree’s superior stability and fast convergence
in ELBO on DS1, outperforming baselines.ARTree and SBN improve later but with fluctuations, while Geo-
Phy performs the worst with consistently low and unstable values. Fig. 5 highlights MDTree’s advantages
in MLL, quickly reaching and maintaining high scores, whereas ARTree, SBN, and especially GeoPhy lag
behind.

4.3 Runtime Reduction and E!ciency Evaluation (RQ2)

MDTree demonstrates substantial runtime e"ciency across all datasets, outperforming ARTree consistently.
Both runtime and the number of nodes are log-transformed on the vertical axes, with solid and dashed lines
representing the RWS and VIMCO optimization techniques. MDTree achieves faster than ARTree across
all datasets, with VIMCO providing further reductions, especially for MDTree-VIMCO, which exhibits the
lowest runtime. The e"ciency of MDTree becomes even more apparent as dataset complexity increases.
Table 4 confirms this finding, with MDTree reducing runtime by 41.72% (RWS) and 44.46% (VIMCO)
compared to ARTree while maintaining superior MLL metrics. This underscores MDTree’s e"ciency and
scalability, particularly with VIMCO optimization.

10
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Table 5: Evaluation of ELBO (⇓) on eight datasets. Higher values indicate better performance.
Results for GeoPhy were not reported in its original publication and are reproduced by us. Light gray marks
the best baseline result, and darker gray marks the best overall result. Our method consistently achieves
the highest ELBO across all datasets.

Methods Dataset
(#Taxa,#Sites)

DS1
(27,1949)

DS2
(29,2520)

DS3
(36,1812 )

DS4
(41,1137)

DS5
(50,378)

DS6
(50,1133)

DS7
(59,1824)

DS8
(64,1008)

MCMC-
based SBN -7110.24

(0.03)
-26368.88
(0.03)

-33736.22
(0.02)

-13331.83
(0.02)

-8217.80
(0.04)

-6728.65
(0.04)

-37334.85
(0.03)

-8655.05
(0.04)

Structure
Generation

ARTree -7110.09
(0.04)

-26368.78
(0.07)

-33735.25
(0.08)

-13330.27
(0.05)

-8215.34
(0.04)

-6725.33
(0.06)

-37332.54
(0.13)

-8651.73
(0.05)

GeoPhy -7116.67
(1.71)

-26434.84
(0.10)

-33766.72
(0.15)

-13389.36
(3.45)

-8220.91
(2.64)

-6769.41
(3.25)

-37882.96
(1.97)

-8654.39
(0.97)

Ours -7005.98
(0.06)

-26362.75
(0.12)

-33430.94
(0.34)

-13113.03
(3.65)

-8053.23
(2.57)

-6324.90
(1.26)

-36838.42
(1.99)

-8409.06
(1.09)

Table 6: Topological comparison of three tree diversity metrics. Higher values of Simpson’s Diver-
sity Index and the number of topologies accounting for the top 95% cumulative frequency indicate better
diversity. In contrast, a lower frequency of the most frequent topology reflects a balanced distribution.

Dataset Statistics MrBayes ARTree Ours

DS1
Diversity Index (↑) 0.87 0.89 0.99
Top Frequency (↓) 0.27 0.1 0.007
Top 95% Frequency (↑) 42 10 121

DS2
Diversity Index (↑) 0.89 0.96 0.99
Top Frequency (↓) 0.27 0.43 0.13
Top 95% Frequency (↑) 208 203 301

DS3
Diversity Index (↑) 0.98 0.89 0.90
Top Frequency (↓) 0.02 0.01 0.004
Top 95% Frequency (↑) 753 509 1146

DS4
Diversity Index (↑) 0.86 0.89 0.99
Top Frequency (↓) 0.11 0.05 0.002
Top 95% Frequency (↑) 4169 4125 8746

4.4 Tree Parsimony in Phylogenetic Inference (RQ3-1)

To evaluate the parsimony of tree structures generated by the model, we follow established methodolo-
gies (Zhou et al., 2024), minimizing the genetic mutations required to infer the optimal tree. The parsimony
score evaluates how well the generated tree adheres to the principle of minimizing evolutionary changes,
where fewer mutations are assumed to explain the observed genetic data better. We compare the results
against the most parsimonious tree identified by the traditional PAUP* tool (Swo!ord, 1998). The parsimony
score in Fig. 6 denotes the minimum mutations of genetic changes needed to account for the evolutionary
relationships in the data. Since scores are plotted as negative values, lower scores indicate more complex
trees and, consequently, poorer model performance. MDTree and ARTree achieved higher scores (approach-
ing -4000) in fewer steps, reflecting simpler and more parsimonious trees. In contrast, PhyloGFN exhibited
early fluctuations and ultimately stabilized around -5000, indicating suboptimal performance compared to
others.

4.5 Tree Topological Diversity in Generated Trees (RQ3-2)

To assess the diversity of tree topologies generated by MDTree, we use three metrics: Simpson’s Diversity
Index (He & Hu, 2005), Top Frequency, and Top 95% Frequency, as detailed in Table 6. A higher Diversity
Index, which approaches 1, suggests broad diversity among generated tree topologies. A larger number of
topologies in the Top 95% Frequency implies the generated trees are more varied and distributed across many
unique structures. Conversely, a lower Top Frequency suggests the absence of a dominant tree structure,
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Figure 6: Comparison of negative parsimony scores on the DS1 dataset. The parsimony score
denotes the minimum number of variation steps required to interpret each tree. The lower the negative
score, the poorer the model performance.

Figure 7: Bipartition frequency distribution of tree topologies. The closer the two curves are, the
better.

pointing toward a more balanced generation. For instance, in DS3, with 36 species sequences, the Top
95% Topologies metric reveals 1,146 distinct tree structures, indicating a wide range of possible phylogenetic
solutions. MDTree achieves a Diversity Index close to 1, showcasing its capacity for generating highly diverse
topologies even in complex datasets. Furthermore, the Top Frequency metric remains notably low, further
reinforcing the diversity and indicating that no single tree topology is overly dominant.

4.6 Bipartition Frequency for Tree Quality (RQ3-3)

In phylogenetic analysis, a bipartition refers to dividing taxa (species or genes) into two groups on either side
of a node within the tree. When multiple tree samples are generated, as in Bayesian inference methods like
MrBayes, each sample may have a di!erent topology. Bipartition frequency quantifies how often a specific
bipartition appears across all tree samples, providing insight into the support for particular evolutionary
relationships. We use this bipartition frequency distribution to assess the model’s ability to capture phy-
logenetic relationships, as shown in Fig. 7. The horizontal axis indicates the bipartition rank within the
tree topology, while the vertical axis displays the normalized occurrence frequency of each bipartition. The
MDTree and MrBayes curves are closely aligned, indicating that MDTree’s results closely match those
of the widely accepted gold standard. In contrast, the ARTree method shows a noticeable deviation, espe-
cially in the higher-ranked bipartitions, demonstrating that MDTree o!ers improved accuracy over ARTree
in capturing evolutionary structures. This suggests that MDTree captures the evolutionary patterns with
greater accuracy compared to ARTree.
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Table 7: Comparison of di!erent genomic language models (LMs) as structure generators in our frame-
work, evaluated on Mean Log-Likelihood (MLL, ⇓) and Evidence Lower Bound (ELBO, ⇓). Models include
DNABERT2, HyenaDNA, and NT. Higher values indicate better performance. DNABERT2 achieves the
highest MLL and ELBO among the tested models, indicating its superior ability to capture genomic sequence
patterns beneficial for phylogenetic inference.

Method MLL(↑) ELBO(↑)
DNABERT2 -7101.38 -7005.98
HyenaDNA -7109.36 -7014.17
NT -7111.07 -7017.11

Figure 8: Ablation study of MDTree on four datasets, reported in mean log-likelihood (MLL)
and ELBO (higher is better). We evaluate the impact of removing the optimization phase, removing
LAX in VIMCO, and removing the Dynamic Ordering Network (DON). The last column shows the average
MLL across datasets, with green values indicating the drop compared to the full MDTree.

Method DS1 DS2 DS3 DS4 Average
MLL ELBO MLL ELBO MLL ELBO MLL ELBO

MDTree -7101.38 -7005.98 -26357.96 -26362.75 -33715.31 -33430.94 -13322.10 -13113.03 -20051.18
w/o optimization -7106.59 -7010.34 -26371.02 -26374.01 -33733.25 -33447.94 -13339.71 -13130.01 -20064.11 (-12.93)
w/ vimco w/o Lax -7103.74 -7007.86 -26361.81 -26368.52 -33718.20 -33436.07 -13326.95 -13118.60 -20055.22 (-4.04)
w/o DON -7105.05 -7010.02 -26366.47 -26372.04 -33723.67 -33439.18 -13332.38 -13121.33 -20058.77 (-7.59)

4.7 Analysis and Ablation (RQ4-1)

We compare MDTree with three other schemes, yielding the following observations: (i) Removing opti-
mization techniques like RWS or VIMCO led to a performance drop of 5.21 in MLL, as shown by slight
fluctuations in the MLL curve in Fig. 9, highlighting their role in stabilizing convergence. (ii) Excluding
the LAX model of VIMCO optimization caused a decrease of 2.36 in MLL and 1.88 in ELBO, indicating its
e!ectiveness in reducing variance during discrete sampling. (iii) Table 7 and Table 8 show that the removal
of the DON results in the most significant impact, with a drop of about 3.67 in MLL, underscoring its critical
role in optimizing node addition order and improving tree generation. Overall, the full MDTree consistently
achieves the best across both metrics. We select the genome-specific foundation model DNABERT2 for
our phylogenetic inference research. Although models like HyenaDNA (Nguyen et al., 2023) and Nucleotide
Transformer (NT) (Dalla-Torre et al., 2023) excel in long-sequence modeling, they are less apt for our spe-
cific needs. As shown in Table 7, DNABERT2 outperforms others, likely due to its specific optimization for
genomic data.

4.8 Visualization of PhyloTree Structure on Real-World Data (RQ5)

To assess the biological relevance of the tree structure generated by MDTree, we applied it to construct a
phylogenetic tree for an Angiosperms353 genomic dataset (Zuntini et al., 2024). The tree successfully recov-
ered major branches within the order Rosales, revealing distinct evolutionary lineages, including Rosaceae,
Moraceae, and Polygonaceae families. As shown in Fig. 10, the genera Polygala vulgaris and Polygala bal-
duinii are clearly separated from other groups, consistent with their classification in the Potentillaceae family.
The remaining groups, distinguished by color, represent genera within the Rosaceae and Moraceae families,
such as Rosa, Rubus, Ficus, and Adansonia. In Rosaceae, genera like Rosa, Rubus, and Prunus highlight
their common evolutionary ancestry, while in Moraceae, Ficus and Broussonetia reflect the internal diversity
and evolutionary divergence within the family.
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Figure 9: Ablation of di!erent modules. MDTree w/o optimization curve exhibits slight fluctuations,
emphasizing the importance of optimization techniques in improving stability.

Figure 10: Visualization of a generated phylogenetic tree for a subset of species from the An-
giosperms353 dataset. Di!erent colors indicate distinct plant families or genera, illustrating the model’s
ability to cluster related species into coherent subtrees. For example, species within the genus Rubus (blue)
and family Moraceae (green) are correctly grouped together, reflecting biologically plausible evolutionary
relationships. This demonstrates that the proposed method can recover meaningful phylogenetic structure
consistent with known taxonomy.

5 Conclusion and Limitation

In this paper, we present MDTree, a novel framework that redefines phylogenetic tree generation as a Dy-
namic Autoregressive Tree Generation task. By leveraging a Di!usion Ordering Network to learn biologically
informed node orders directly from genomic sequences, MDTree overcomes the limitations of fixed or random
node orders. It integrates GNNs and Language Models to capture complex tree topologies, while a Dynamic
Masking Mechanism enables parallel node processing, improving computational e"ciency. Experiments on
phylogenetic benchmarks show MDTree achieves state-of-the-art performance.

MDTree has yet to be applied to other sequence types, such as protein sequences. Future work will explore
multimodal approaches, integrating genomic and protein data for more comprehensive evolutionary tree
construction, as well as scaling the model for complex evolutionary scenarios.
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