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Abstract

Phylogenetic tree inference requires optimizing both branch lengths and topologies, yet tra-
ditional MCMC-based methods su!er from slow convergence and high computational cost.
Recent deep learning approaches improve scalability but remain constrained: Bayesian mod-
els are computationally intensive, autoregressive methods depend on fixed species orders,
and flow-based models underutilize genomic signals. Fixed-order autoregression introduces
an inductive bias misaligned with evolutionary proximity: early misplacements distort sub-
sequent attachment probabilities and compound topology errors (exposure bias). Absent
sequence-informed priors, the posterior over the super-exponential topology space remains
di!use and multimodal, yielding high-variance gradients and sluggish convergence for both
MCMC proposals and neural samplers. We propose MDTree, a masked dynamic autore-
gressive framework that integrates genomic priors into a Dynamic Ordering Network to
learn biologically informed node sequences. A dynamic masking mechanism further enables
parallel node insertion, improving e"ciency without sacrificing accuracy. Experiments on

→Both authors contributed equally to this research.
†Corresponding author.

1

https://openreview.net/forum?id=dTSptQNygv


Published in Transactions on Machine Learning Research (12/2025)

(a) Fixed-order Autoregressive Model (ARTree) (b) MDTree (Ours)
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Figure 1: Comparison between fixed-order autoregressive generation (ARTree) and our
dynamic-order method (MDTree). (a) Fixed-order ARTree adds species sequentially according to a
predefined order, ignoring biological priors. This leads to suboptimal intermediate structures and slower
generation, as only one leaf node is added at each step. (b) MDTree (ours) employs a Dynamic Ordering
Network to determine a biologically-informed insertion order based on genomic features, enabling related
species to be clustered earlier. The Tree Construction & Branch Learning module further supports parallel
insertion of multiple nodes, achieving faster generation and more phylogenetically consistent topologies.

standard benchmarks demonstrate that MDTree outperforms existing methods in accuracy
and runtime while producing biologically coherent phylogenies, providing a scalable solution
for large-scale evolutionary analysis.

1 Introduction

Phylogenetic trees are fundamental for revealing evolutionary relationships, enabling lineage tracing from
common ancestors to present-day organisms using DNA or protein sequences (Brocchieri, 2001; Munjal et al.,
2019). They underpin studies in taxonomy, evolutionary biology, and medicine, o!ering insights into species
origins, biodiversity, and the evolutionary trajectories of pathogens and cancer cells (Hugenholtz et al., 2021;
Tummers & Green, 2022). Accurate and e"cient inference has high practical value: in pathogen source trac-
ing, it supports timely outbreak interventions (Biek et al., 2015); in cancer evolution analysis (Fimereli et al.,
2022), it reveals clonal architecture and treatment resistance; and in biodiversity conservation (Theissinger
et al., 2023), it enables large-scale, automated species relationship reconstruction. These applications under-
score both the scientific and societal significance of phylogenetic modeling. Yet, the surge of genomic data
and the combinatorial growth of tree topologies pose major computational challenges, calling for scalable
and accurate new methods.

Traditional statistical frameworks, notably Maximum Likelihood Estimation (MLE)(Izquierdo-Carrasco
et al., 2011; Solís-Lemus & Ané, 2016) and Bayesian Inference (BI) via Markov Chain Monte Carlo
(MCMC)(Zhang et al., 2018; Wang et al., 2020), have long underpinned phylogenetic inference. Yet, with
increasing taxa, they encounter severe computational bottlenecks: the space of unrooted bifurcating topolo-
gies grows super-exponentially as (2N →5)!!, while the joint optimization of continuous branch lengths and
discrete topologies further compounds complexity.

Leveraging deep learning, breakthroughs in phylogenetic inference have burst onto the scene, addressing
long-standing computational challenges in the field (Nesterenko et al., 2022; Smith & Hahn, 2023; Tang
et al., 2024). Research e!orts primarily follow two main directions: representation learning on known tree
structures and generative models. The former, exemplified by VBPI-GNN (Zhang, 2023), optimizes perfor-
mance based on predefined topologies but struggles when the topology is unknown and both topology and
branch lengths must be inferred. These methods also underutilize evolutionary information from biological
sequences, impacting accuracy and flexibility (Penny, 2004). On the other hand, generative models, which
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infer tree structures directly from data, can be further divided into three types: Bayesian generative mod-
els (e.g., Geophy (Mimori & Hamada, 2024)) leverage probabilistic frameworks to capture uncertainty but
are computationally intensive; autoregressive models (e.g., ARTree (Xie & Zhang, 2024)) sequentially add
nodes, o!ering flexibility yet relying on predefined orders that overlook true evolutionary relationships, while
their stepwise nature leads to ine"ciency for large datasets (Razavi et al., 2019). Lastly, Generative Flow
Networks (GFNs) (e.g., PhyloGFN (Zhou et al., 2024)) provide greater flexibility by exploring multimodal
posterior distributions but still struggle to fully integrate evolutionary signals, impacting the accuracy of
inferred trees. Therefore, few methods have achieved these goals simultaneously.

+ 5.21 acc.
1.85× speed + 4.03 acc.

1.72× speed

Figure 2: Runtime and node count comparison
between MDTree and ARTree. Evaluation is con-
ducted on eight benchmarks under two optimization
settings (log-scale).

To overcome these limitations, we focus on a core
question: how can biological priors e!ectively guide
node addition to improve phylogenetic inference ac-
curacy? As shown in Fig. 2, classical autoregressive
methods (Fig. 2a) rely on fixed orders (e.g., lexi-
cographical), overlooking evolutionary relationships
and often producing inaccurate trees 1. Our method
(Fig. 2b) learns evolutionarily meaningful node or-
ders, ensuring species like reptiles, birds, and mam-
mals are added in line with their ancestry. This
improves the accuracy and biological relevance of
generated trees by prioritizing species with closer
common ancestors.

Specifically, we adopt a dynamic autoregres-
sive generation paradigm, where both the or-
der of node additions and their insertion positions
are learned from genomic sequences instead of be-
ing fixed in advance. This paradigm is instanti-
ated by our Masked Dynamic Autoregressive Model
(MDTree), which integrates a Di!usion Ordering
Network (DON) to learn biologically informed or-
ders directly from sequence data via an absorbing di!usion model (Bond-Taylor et al., 2021), mitigating the
limitations of fixed or random orders. By combining the strengths of Graph Neural Networks and Language
Models (LMs), MDTree captures intricate genomic relationships while modeling complex tree structures. A
Dynamic Masking Mechanism enables parallel node processing, improving e"ciency. Lastly, we employ a
dual-pass tree traversal strategy for branch length estimation and use the LAX model (Grathwohl et al.,
2017) to reduce variance in discrete sampling for stabilizing optimization and enhancing convergence.

Experiments on phylogenetic benchmarks show that MDTree outperforms existing methods in accuracy and
e"ciency. Empirical analysis of Angiosperms353 (Zuntini et al., 2024) further demonstrates its ability to
recover evolutionary lineages, including Rosaceae and Moraceae, suggesting broader biological applications.
In summary, our contributions are:

• A novel dynamic autoregressive generation paradigm for phylogenetic inference: We
leverage a generation strategy that dynamically learns node order and insertion positions from
genomic sequence data, improving the accuracy and biological relevance of inferred trees.

• An innovative methodology: We propose MDTree, which integrates a Di!usion Ordering Net-
work for biologically informed node orders, combines genomic Language Models with dual-pass
traversal for precise tree generation, and employs a dynamic masking mechanism for e"cient paral-
lel processing.

• Strong experimental validation: Comprehensive experiments validate that MDTree achieves
state-of-the-art performance. Visualizations from real-world Angiosperm datasets further confirm
the biological relevance and interpretability of the generated trees.
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2 Related Works

Phylogenetic inference methods are generally categorized into traditional and deep learning-based ap-
proaches; each is further divided into graph structure generation and representation models. For details
on background, please see Appendix A.

Traditional Methods rely on predefined evolutionary models and statistical inference. Graph Structure
Generation Models: MrBayes (Ronquist et al., 2012) utilizes Bayesian inference to generate trees but strug-
gles with high-dimensional combinatorial spaces, requiring large sample sizes for accuracy. VaiPhy (Kop-
tagel et al., 2022) combines SLANTIS sampling strategy (Diaconis, 2019) with biological models (e.g., JC
model (Munro, 2012)) to estimate branch lengths and generate accurate tree structures. Graph Struc-
ture Representation Models: SBN (Zhang & Matsen IV, 2018a) models the probability distribution of tree
topologies from existing trees, focusing on subsplit relationships without directly estimating branch lengths.
VBPI (Zhang & Matsen IV, 2018b) extends SBNs to estimate posterior distributions and optimize branch
lengths through variational inference.

Deep Learning-based Methods o!er more flexible and scalable solutions. Graph Structure Genera-
tion Models: (1) Bayesian Generative Models like GeoPhy (Mimori & Hamada, 2024) learn latent tree
representations to generate diverse topologies. (2) Autoregressive Models such as ARTree (Xie & Zhang,
2024) sequentially generate trees, well-suited for hierarchical data. (3) Generative Flow Networks like Phy-
loGFN (Zhou et al., 2024) optimize tree generation paths using Markov decision processes. Graph Structure
Representation Models: VBPI-GNN (Zhang, 2023) combines SBNs with variational inference to optimize
topology and branch lengths.

3 Background

3.1 Phylogeny and Machine Learning Applications in Biology

Phylogeny is the study of evolutionary relationships among species, aiming to infer their common ances-
tors and evolutionary paths by analyzing gene or protein sequences. Phylogenetic trees are widely used in
biology to represent these relationships, providing insights into species origins, biodiversity, and evolution-
ary trajectories. Phylogenetic trees play a crucial role in various applications, including pathogen source
tracing, cancer evolution analysis, and biodiversity conservation. However, with the surge in genomic data,
phylogenetic inference faces substantial computational challenges, especially when inferring trees for a large
number of species. Traditional methods encounter significant computational bottlenecks as the number of
taxa increases, requiring more time and computational resources.

Challenges in Traditional Phylogenetic Inference Methods. Traditional phylogenetic inference meth-
ods, such as Maximum Likelihood Estimation (MLE) and Bayesian Inference (MCMC), rely on exhaustive
searches over large tree spaces to calculate the optimal topology. As the number of species increases, the
combinatorial space of possible tree topologies grows exponentially, leading to severe computational bottle-
necks. For example, Bayesian inference methods are computationally expensive and slow, particularly as the
number of taxa increases. Additionally, traditional autoregressive models (e.g., ARTree) rely on predefined
species orders, which often do not align with the actual evolutionary relationships, resulting in suboptimal
tree structures and slower convergence.

The Role of Machine Learning in Phylogenetic Inference. In recent years, deep learning methods
have shown great potential in improving phylogenetic inference by leveraging complex relationships in ge-
nomic data. These methods allow for adaptive learning of node orders, which helps overcome the limitations
of fixed species orders in traditional models. For instance, Generative Flow Networks (GFNs) and autore-
gressive models, like ARTree, have improved the e"ciency and accuracy of tree generation. However, these
methods still fail to fully incorporate biological prior knowledge, such as evolutionary relationships between
species, and often do not capture the complete genomic signals, limiting their ability to provide accurate
phylogenies for large datasets.
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Innovations of MDTree. To address the limitations of traditional methods, we propose MDTree, a novel
dynamic autoregressive framework based on a Dynamic Ordering Network (DON). MDTree dynamically
learns the node addition order from genomic sequence data, instead of relying on predefined orders. This
approach ensures that the tree construction process better reflects the true evolutionary relationships among
species, improving both accuracy and biological relevance. Furthermore, MDTree incorporates a dynamic
masking mechanism that enables parallel insertion of nodes, significantly improving computational e"ciency.
By leveraging this method, we not only overcome computational bottlenecks but also ensure that the gener-
ated phylogenetic trees are biologically consistent, making them suitable for large-scale evolutionary analysis.

3.2 Phylogenetic Posterior and Variational Inference (VI)

Variational Autoencoders (VAE) Kingma & Welling (2013) are deep generative models that learn the input
data distribution by encoding it into a latent space. In this process, the encoder maps each input x to a
latent space defined by parameters: mean µ and variance ω. Latent variables z are then sampled from this
distribution for data generation.

Variational Inference (VI) is employed within VAEs to handle the computational challenges of estimating
marginal likelihoods of observed data. VI approximates the marginal likelihood using a variational distribu-
tion qω(z|x) to estimate the posterior. The goal of VI is to maximize the Evidence Lower Bound (ELBO),
formulated as:

ELBO = Eqω(z|x)[log pε(x|z)] → KL[qω(z|x)||p(z)] (1)
The first term is the reconstruction log-likelihood, log pε(x|z), which can be considered as a decoder, i.e.,
the log-likelihood between the reconstructed data and the original data given the potential representation.
The second term, the Kullback-Leibler (KL) divergence, quantifies the di!erence between the variational
posterior qω(z|x) and the latent prior p(z).

In the context of phylogenetic inference, VI helps to approximate the posterior distribution of tree topologies
and branch lengths, which are often intractable to compute directly. By applying VAE with VI, we can
e"ciently infer phylogenetic structures while maintaining the biological relevance of the tree, improving
both the accuracy and computational e"ciency of the process.

4 Methods

4.1 Problem Formulation and Notation

A unified model that can handle both tasks must therefore (i) capture biologically meaningful topological
structures, and (ii) accurately estimate continuous evolutionary distances, while being robust to limited or
no supervision on the topology. Unless otherwise specified, all vector representations (e.g., hi) are treated
as column vectors.

Formulation. Given a set of N species sequences S = {si}N
i=1

and their multiple sequence alignment (MSA)
A, along with genomic representations G = {gi}N

i=1
extracted from a pretrained Genomic Language Model

(e.g., DNABERT2 (Zhou et al., 2023)), we aim to infer a phylogenetic tree that captures both its discrete
topology and continuous evolutionary distances. Formally, the tree is modeled as an unrooted binary graph
ε = (Vϑ , Eϑ ), where Vϑ denotes the set of taxa and internal nodes, and Eϑ the set of undirected edges between
them. Each edge e ↑ Eϑ is associated with a branch length be ↑ R+, and we denote the vector of all branch
lengths as ωϑ = (be : e ↑ Eϑ ) ↑ R|Eε |

+
. Our objective is to learn a mapping, F : (S, A, G) →↓ (ε, ωϑ ), which

jointly specifies the topology ε and its associated branch lengths ωϑ .

Task Definitions. We evaluate MDTree on two complementary phylogenetic inference tasks:

Tree Topology Density Estimation (TDE). This task focuses on learning a flexible distribution qε(ε) over
tree topologies that captures the uncertainty inherent in phylogenetic inference. The model is trained to
maximize the marginal log-likelihood:

Eqϑ(ϑ) [log p(A | ε)] , where p(A | ε) =
∫

p(A | ε, ωϑ )p(ωϑ | ε) dωϑ . (2)
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Figure 3: Framework of MDTree for dynamic autoregressive tree generation. A. The Dynamic
Ordering Network module utilizes a pre-trained genomic LM to extract embeddings from sequences S,
guiding nodes into absorbing states in an autoregressive manner as determined by DON qε(ω | G0). B. The
Autoregressive Tree Construction module employs a parallel strategy to add multiple leaf and internal nodes
simultaneously at specified positions based on the order provided by DON. C. The Branch Length Learning
module optimizes branch lengths through a dual-pass traversal.

In practice, we approximate the integral using a point estimate ω̂ϑ obtained from our branch length estimation
module (Sec. 4.4), yielding p(A | ε) ↔ p(A | ε, ω̂ϑ ). During TDE evaluation, we focus solely on topological
accuracy metrics (e.g., Robinson-Foulds distance) and discard the branch length estimates.

Variational Bayesian Phylogenetic Inference (VBPI). This task extends TDE by jointly modeling both
topology and branch lengths through a structured posterior qε,ω(ε, ωϑ ) = qε(ε)qω(ωϑ | ε). The model
optimizes the Evidence Lower Bound (ELBO):

Eqϑ(ϑ)qω(ωε |ϑ) [log p(A | ε, ωϑ )] → KL(qε,ω(ε, ωϑ ) ↗ p(ε, ωϑ )) , (3)

where p(ε, ωϑ ) = p(ε)p(ωϑ | ε) with uniform topology prior and exponential branch length prior. During
VBPI evaluation, we assess both topological accuracy and branch length estimation quality (e.g., using
Euclidean distance in branch length space).

Model Architecture. To address the limitations of fixed node orders in prior autoregressive models (Xie &
Zhang, 2024), we propose MDTree (Fig. 3), which dynamically learns biologically informed node addition
orders and insertion positions from G via a Dynamic Ordering Network (DON) based on an absorbing
di!usion process (Austin et al., 2021). The learned order and contextual node embeddings jointly guide an
autoregressive tree construction module with dynamic masking for parallel insertion. Finally, a dual-pass
traversal refines branch lengths using both global and local structural cues. MDTree supports both TDE
and VBPI within a unified pipeline: the full architecture (DON + Tree Construction + Branch Length
Refinement) is used for both tasks, trained with a combined objective. During evaluation, task-specific
metrics are applied: for TDE, the branch length estimates ω̂ϑ serve as auxiliary variables to approximate the
marginal likelihood, while for VBPI, they are evaluated as part of the posterior distribution.
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4.2 DON for Learning Biologically Informed Node Orders with Genomic Priors

The order in which species nodes are added to a phylogenetic tree significantly impacts the inferred topol-
ogy, especially under the constraint of binary unrooted trees. From a biological perspective, species with
closer ancestry should be introduced earlier in the tree construction process to better preserve evolutionary
semantics (Penny, 2004; Gregory, 2008). While some recent works show robustness to taxa orderings (Xie
& Zhang, 2024), the benefit of learning biologically informed node orders remains underexplored. Such an
approach could allow the model to adaptively exploit genomic signals to produce topologies that better
reflect true evolutionary relationships.

Graph Construction Module Given an input set of sequences S, each sv ↑ S is first encoded into a ge-
nomic embedding gv ↑ Rd using a pretrained genomic language model (e.g., DNABERT2 (Zhou et al., 2023)),
injecting biological priors into subsequent ordering decisions. An initial graph G0 = (V, E) is constructed
based on sequence similarity or known homology (species phylogeny prior), which serves as the structural
backbone for contextual reasoning. The initial contextual embeddings h(0)

v ↑ Rd for each node v are com-
puted by passing node features through a relational graph convolutional network (RGCN) (Schlichtkrull
et al., 2018):

h(0)

v = RGCN (gv, E) , (4)

where gv is the genomic embedding of node v. The resulting set of embeddings {h(0)

v }v↑V integrates both
sequence-level genomic information and local graph structure information encoded in E . These embeddings
remain fixed throughout the subsequent absorbing di!usion process, which models node ordering through
evolving selection probabilities rather than feature updates.

Evolution Simulation Module The node ordering process models the sequential absorption of nodes
into a masked state over N discrete time steps t = 1, 2, . . . , N . At each step t, the model selects one node
from the remaining active set Vt to add to the ordered sequence ω.

(1) Transition dynamics: The discrete-time transition matrix Qt ↑ R(N+1)↓(N+1) controls state changes at
step t, where each element Qt

ij represents the probability of transitioning from state i to state j. The matrix
is designed to model gradual absorption into a masked state m = N + 1:

Qt
ij =






1 if i = j = m (absorbing state)
1 → ϑt if i = j ↘= m (self-loop)
ϑt if j = m, i ↘= m (absorption)
0 otherwise,

(5)

where ϑt = 1

2

(
1 + cos

(
t

N ϖ
))

is a monotonically decreasing schedule that controls the absorption rate,
starting near 1 at t = 1 and decreasing to 0 at t = N . For the base case, we define Q̄0 = IN+1 (the identity
matrix).

(2) Node selection probability: At each step t, the model computes the probability of absorbing each active
node v ↑ Vt. The active set comprises all nodes not yet absorbed: Vt = V \ {v1, . . . , vt↔1}, where during
inference vi = v→

i (greedy selections), and during training vi = vref

i (ground-truth prefix via teacher forcing).
The fixed initial embedding h(0)

v ↑ Rd is projected into the (N + 1)-dimensional state space via a learned
projection Wproj ↑ R(N+1)↓d. Since the embeddings are fixed, the projected representation zv is computed
once and reused at all time steps. The selection probability vector q(t)

v ↑ RN+1 for node v at step t is
computed by normalizing the posterior:

q(t)

v = (Qt↗zv) ≃ (Q̄t↔1↗zv)
z↗

v Q̄tzv
, where zv = Wprojh(0)

v ↑ RN+1, (6)

where ≃ represents element-wise multiplication and Q̄t↔1 =
∏t↔1

ϑ=1
Qϑ is the cumulative transition matrix

up to step t → 1. The numerator is an unnormalized probability vector in RN+1, and the denominator is a
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scalar normalization constant ensuring
∑N+1

i=1
q(t)

v [i] = 1. Although the node embeddings remain fixed, the
selection probabilities q(t)

v evolve over time through the transition dynamics.

(3) Node selection: During inference, starting from V1 = V, at each step t, the node is selected by comparing
the absorption probabilities to the masked state:

v→
t = arg max

v↑Vt

q(t)

v [m], (7)

where q(t)

v [m] denotes the probability of node v transitioning to the masked state m = N + 1 at step t.
The active node set is then updated: Vt+1 = Vt \ {v→

t }. This process continues until all nodes are absorbed
at step N , producing the final node order ω = (v→

1
, v→

2
, . . . , v→

N ). Since the node embeddings remain fixed
throughout the ordering process, we denote them simply as {hv}v↑V in downstream modules (dropping the
superscript (0)). These embeddings, together with the learned order ω, serve as input to the subsequent tree
construction and branch length estimation modules.

Ordering Supervision Module We supervise the Dynamic Ordering Network (DON) by aligning its
predicted node absorption order with a reference order ωref = (vref

1
, vref

2
, . . . , vref

N ) obtained from external
phylogenetic inference tools (e.g., MrBayes). During training, the active node set at each step t is determined
by the ground-truth prefix as described above (i.e., Vt = V \ {vref

1
, . . . , vref

t↔1
}), ensuring that DON learns

to predict the next node conditioned on the correct absorption history. The supervision objective is the
negative log-likelihood (NLL) of the ground-truth sequence:

LDON = →
N∑

t=1

log pt(vref

t ), where pt(v) = exp(q(t)

v [m])
∑

u↑Vt
exp(q(t)

u [m])
. (8)

This objective encourages DON to assign high probability to biologically consistent construction sequences
while maintaining di!erentiability for end-to-end training.

4.3 AutoRegressive Tree Construction with Dynamic Node Insertion

Given the biologically informed node ordering ω = (v→
1
, v→

2
, . . . , v→

N ) and contextual node embeddings {hv}v↑V
from the DON module, the autoregressive tree construction stage determines where each node should be
inserted. For notational simplicity, we denote vi = v→

i throughout this subsection. The embeddings are
directly passed from DON without re-encoding, preserving their biological semantics, while the ordering ω
is used in two complementary ways: (i) as an explicit bias in insertion scoring to prioritize evolutionarily
important nodes, and (ii) as a scheduling signal for dynamic parallel insertion.

Selection & Placement Module Instead of the standard sequential insertion (one node per step),
we propose dynamic parallel insertion that processes multiple nodes simultaneously while adapting the
batch size over time. We initialize the tree with the first three nodes: Vplaced

0
= {v1, v2, v3}, E(0) =

{(v1, p0), (v2, p0), (v3, p0)} where p0 is an internal node with embedding rp0 = 1

3
(hv1 + hv2 + hv3). At

each iteration t ↑ {1, . . . , T} (distinct from message-passing steps in DON), we maintain the placed input
nodes Vplaced

t , remaining nodes Rt = V \ Vplaced

t , current edges E(t), and embeddings for all nodes in the
current tree (initially rv = hv for input nodes). We select a subset Ut ⇐ Rt according to a cosine schedule:

Ut = SelectNodes(Rt, ϱt), ϱt = 1
2

(
1 + cos

(
t → 1
T → 1ϖ

))
, (9)

where ϱt ↑ (0, 1] controls the fraction of remaining nodes to insert at iteration t. This schedule starts
aggressive (inserting many nodes when the tree is sparse) and becomes conservative (inserting fewer nodes
when the tree is complex), automatically balancing accuracy and e"ciency. We terminate when Rt = ⇒,
which typically occurs in O(

⇑
N) iterations. For each node v ↑ Ut, we compute its contextual embedding by

attending to nodes already in the tree: rv = MHA(hv, {ru : u ↑ current tree}). For each edge e = (u1, u2) ↑
E(t), we compute edge embedding re = 1

2
(ru1 + ru2) and score:

sv,e = MLP(rv, re, rv ≃ re, PE(t)). (10)

8
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To explicitly leverage the biologically informed ordering, we introduce a rank-based bias. Let Rankϖ(v) ↑
{1, . . . , N} denote the position of v in ω (i.e., Rankϖ(vi) = i).

s̃v = sv + ς · (N → Rankϖ(v)) · 1, (11)

where 1 ↑ R|E(t)| is a vector of ones and ς ↑ R+ controls the strength of evolutionary guidance. This
ensures that nodes prioritized by DON are favored during insertion, creating a direct pathway from learned
evolutionary patterns to tree topology. The insertion edge is sampled from ev ⇓ Multinomial(softmax(s̃v)).

Node Update Module After sampling insertion edges {ev}v↑Ut , we update the tree sequentially (follow-
ing the order in ω) to avoid conflicts. For each v ↑ Ut, if ev = (u1, u2) is in the current edge set, we remove
ev, create a new internal node p[v], and add edges (v, p[v]), (p[v], u1), (p[v], u2). The new internal node’s
embedding is initialized as rp[v] = 1

3
(rv + ru1 + ru2). If ev was already removed by a previous insertion in

this batch, we resample ev from the updated edge set. We update Vplaced

t+1
= Vplaced

t ⇔ Ut and repeat until all
input nodes are placed. The final topology ε = (Vϑ , Eϑ ) has |Vϑ | = 2N → 2 nodes (including N input nodes
and N → 2 internal nodes) and |Eϑ | = 2N → 3 edges. The node embeddings {ru}u↑Vε , together with the
contextual embeddings {hv}v↑V from DON, are passed to the branch length refinement module (Sec. 4.4)
for metric estimation.

4.4 Dual-Pass Traversal for Branch Length Learning

The branch length learning module (Fig. 3) takes as input the inferred topology ε = (Vϑ , Eϑ ), node em-
beddings {ru}u↑Vε from the tree construction module, and the multiple sequence alignment A. It jointly
captures global and local structural cues via iterative dual-pass traversal with progressive branch length
refinement, followed by graph-based encoding and di!erentiable sampling.

Iterative Dual-Pass Aggregation We perform K iterations (typically K = 3) of dual-pass aggregation
to progressively refine branch length estimates. To enable tree traversal, we arbitrarily root the unrooted
topology ε at the midpoint of an edge; since the final topology remains unrooted, the choice of root does
not a!ect the branch length estimates. At each iteration k ↑ {1, . . . , K}, we execute the following steps:

(1) Postorder aggregation propagates information bottom-up from leaves to root:

hfwd,(k)

u =
{

ru, if C(u) = ⇒
GRU

(
ru, 1

|C(u)|
∑

v↑C(u)
φ(hfwd,(k)

v , ↼(k)

e )
)

, otherwise
(12)

where ru is the node embedding from tree construction (for both input nodes and internal nodes), C(u) is
the child set of u, ↼(k)

e ↑ R+ is the current branch length estimate (with ↼(1)

e = 0.1), and φ : Rd ↖ R ↓ Rd is
an MLP.

(2) Preorder aggregation propagates refined context top-down from root to leaves:

hbwd,(k)

v = ↽
(

hbwd,(k)

u , hfwd,(k)

v , PE(depth(v))
)

, (13)

where ↽ : Rd↖Rd↖RdPE ↓ Rd is an MLP, PE(·) ↑ RdPE encodes the depth of node v, and hbwd,(k)

root
= hfwd,(k)

root
.

(3) Branch length refinement. We combine bidirectional features x(k)

i = Concat(hfwd,(k)

i , hbwd,(k)

i ).
For intermediate iterations (k < K), we use Branch Length Head (BLH),a lightweight MLP, to predict
b(k)

e = exp(BLHiter(x(k)

u , x(k)

v )) and set ↼(k+1)

e = b(k)

e for the next iteration.

Graph Encoding and Final Prediction After K iterations, we pass the final features {x(K)

i }i↑Vε

through L = 2 layers of graph attention networks (Veli#kovi$ et al., 2017) on (Vϑ , Eϑ ), yielding refined
representations {zi}i↑Vε . A separate branch length head (a dual-output MLP) then produces final log-
Gaussian parameters. Specifically, the head outputs (µe, ω̃e) = BranchHead(zu, zv), and we set ωe = exp(ω̃e)
to ensure positivity. Di!erentiable sampling is enabled via reparameterization:

be = exp(µe + ωe · ⇀e), where ⇀e ⇓ N (0, 1) (training), ⇀e = 0 (inference). (14)
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Table 1: Research Questions (RQs) and their corresponding sub-questions.

RQ1: Performance How well does MDTree perform in generating tree topologies (TDE)
and inferring branch lengths (VBPI)?

RQ2: Time E!ciency How e"cient is MDTree in reducing runtime?

RQ3: Tree Quality
How optimal is MDTree to generate a tree structure? (RQ3-1)
How diverse are the tree topologies generated by MDTree? (RQ3-2)
How consistent is the MDTree-generated tree compared to MrBayes? (RQ3-3)

RQ4: Module Impact How does each MDTree’s module a!ect its performance? (RQ4-2)
How do key hyper-parameters a!ect MDTree? (RQ4-2)

RQ5: Case Study What evolutionary relationships between species does MDTree learn?

The collection ωϑ = (be : e ↑ Eϑ ) forms the final branch length vector.

Branch Length Loss The predicted branch lengths ωϑ are supervised by the negative log-likelihood under
a continuous-time Markov chain (CTMC) substitution model (Yang, 1994):

Llen = →
|A|∑

c=1

log pCTMC(Ac | ε, ωϑ , !sub) , (15)

where pCTMC is computed via Felsenstein’s pruning algorithm, Ac denotes the c-th column of the alignment,
and !sub = {ε, Q} represents the substitution model parameters (nucleotide frequencies ε and rate matrix
Q) estimated from A via maximum likelihood (Yang, 1994). This iterative design progressively refines branch
lengths through dual-pass aggregation, while the final reparameterized sampling enables stable gradient-
based optimization.

4.5 MDTree Loss and Training

Building on the biologically informed node ordering (Sec. 4.2), topology construction (Sec. 4.3), and branch
length estimation (Sec. 4.4), MDTree integrates these components via Variational Bayesian Phylogenetic
Inference (VBPI).

VBPI Objective The joint posterior qε,ω(ε, ωϑ ) = qε(ε)qω(ωϑ | ε) is optimized via the ELBO:

LVBPI = Eqϑ(ϑ)qω(ωε |ϑ) [log p(A | ε, ωϑ )] → KL(qε(ε) ↗ p(ε)) → Eqϑ(ϑ) [KL(qω(ωϑ | ε) ↗ p(ωϑ | ε))] , (16)

where p(A | ε, ωϑ ) is the CTMC likelihood, and p(ε), p(ωϑ | ε) are uniform and exponential priors.

Unified Objective The complete training objective combines node ordering supervision, VBPI, and aux-
iliary branch length loss:

LMDTree = ⇁DONLDON + LVBPI + ⇁lenLlen, (17)

with ⇁DON = 0.1 and ⇁len = 0.5 (Eq. 8). This end-to-end coupling yields phylogenies that are both topolog-
ically accurate and metrically consistent.

5 Experiments

In this section, we demonstrate the e!ectiveness of our proposed MDTree in terms of the research questions
in Table 1.
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Table 2: Comparison of KL divergence (↙) across eight benchmark datasets with di"erent
methods. Boldface for the highest result, Underline for the second highest result of traditional methods.
Results are reported as mean (standard deviation).

Methods

Dataset
(#Taxa,#Sites)

DS1
(27,1949)

DS2
(29,2520)

DS3
(36,1812)

DS4
(41,1137)

DS5
(50,378)

DS6
(50,1133)

DS7
(59,1824)

DS8
(64,1008)

Sampled Trees 1228 7 43 828 33752 35407 1125 3067
GT Trees 2784 42 351 11505 1516877 809765 11525 82162

MCMC-
based

SBN 0.0707
(0.0089)

0.0144
(0.0021)

0.0554
(0.0067)

0.0739
(0.0095)

1.2472
(0.1621)

0.3795
(0.0493)

0.1531
(0.0199)

0.3173
(0.0412)

SRF 0.0155
(0.0023)

0.0122
(0.0018)

0.3539
(0.0460)

0.5322
(0.0692)

11.5746
(1.5047)

10.0159
(1.3021)

1.2765
(0.1659)

2.1653
(0.2815)

CCD 0.6027
(0.0783)

0.0218
(0.0032)

0.2074
(0.0270)

0.1952
(0.0254)

1.3272
(0.1725)

0.4526
(0.0588)

0.3292
(0.0428)

0.4149
(0.0539)

SBN-SA 0.0687
(0.0089)

0.0218
(0.0032)

0.2074
(0.0270)

0.1952
(0.0254)

1.3272
(0.1725)

0.4526
(0.0588)

0.3292
(0.0428)

0.4149
(0.0539)

SBN-EM 0.0136
(0.0020)

0.0199
(0.0029)

0.1243
(0.0162)

0.0763
(0.0099)

0.8599
(0.1118)

0.3016
(0.0392)

0.0483
(0.0063)

0.1415
(0.0184)

SBN-EM-ς 0.0130
(0.0019)

0.0128
(0.0019)

0.0882
(0.0115)

0.0637
(0.0083)

0.8218
(0.1068)

0.2786
(0.0362)

0.0399
(0.0052)

0.1236
(0.0161)

Structure
Generation

ARTree 0.0045
(0.0007)

0.0097
(0.0012)

0.0548
(0.0071)

0.0299
(0.0039)

0.6266
(0.0815)

0.2360
(0.0307)

0.0191
(0.0025)

0.0741
(0.0096)

MDTree 0.0036
(0.0005)

0.0129
(0.0016)

0.0446
(0.0055)

0.0216
(0.0026)

0.5751
(0.0690)

0.1591
(0.0191)

0.0169
(0.0020)

0.0634
(0.0076)

5.1 Experiment Setup

Evaluation Tasks and Datasets. We assess MDTree’s performance on two key tasks: TDE, which focuses
on optimizing tree topologies with MLL metric, and VBPI, where tree topologies and branch lengths are
jointly inferred, using ELBO and MLL. These evaluations span eight diverse benchmark datasets, covering
various organisms like marine animals, plants, bacteria, fungi, and eukaryotes, as outlined in Appendix C.

Baselines. MDTree is compared against three primary groups of baselines: (1) MCMC-based methods (e.g.,
MrBayes, SBN), (2) Structure Representation methods (VBPI, VBPI-GNN), which leverage pre-generated
topologies, and (3) Structure Generation methods for Bayesian inference without pre-selected topologies.
Notably, ARTree, a comparable autoregressive method like ours, is highlighted for comparison. All training
details and hyperparameters are provided in Appendix E.

5.2 Comparison Results on Benchmarks (RQ1)

The TDE Task. We compare the KL divergence to measure the di!erence between the model’s generated
tree topology distribution qε(ε) and the true posterior p(ε): KL(p(ε)||qε(ε)) =

∑
ϑ p(ε) log p(ϑ)

qϑ(ϑ)
. Table 2

shows that our MDTree consistently achieves lower KL divergence across all datasets compared to MCMC-
based and structure generation methods. On complex datasets such as DS5 and DS6, it outperforms ARTree
and SBN, demonstrating superior scalability. Even on smaller datasets like DS1 and DS3, the performance
remains competitive, highlighting the model’s robustness. The comparison with ARTree underscores the
advantage of autoregressive models, including ours, particularly on larger, more complex datasets.

The VBPI Task. We evaluate the VBPI task using ELBO and MLL metrics. Since direct computation
of MLL is intractable, it is approximated via importance sampling. Unlike TDE, which relies on known
tree topologies, VBPI evaluates the fit between model-generated tree topologies and branch lengths and the
observed gene sequence data. As shown in Table 3 and Table 5, Tree Structure Generation methods exhibit
broader applicability in MLL and ELBO metrics compared to Structure Representation methods, which are
restricted by their reliance on pre-generated topologies. Our method, MDTree, consistently achieves the
highest metrics across all datasets, highlighting its enhanced capacity to approximate the posterior distri-
bution of tree topologies and branch lengths. Fig. 4 shows MDTree’s superior stability and fast convergence
in ELBO on DS1, outperforming baselines.ARTree and SBN improve later but with fluctuations, while Geo-
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Table 3: Evaluation of MLL (∝) on eight benchmark datasets. VBPI and VBPI-GNN utilize pre-
generated tree topologies during training, making direct comparisons challenging. Boldface highlights
the highest result, Text denotes the second highest of structure generation methods, and Text indicates the
second highest of MCMC-based methods. Results are reported as mean (standard deviation).

Methods Dataset
(#Taxa,#Sites)

DS1
(27,1949)

DS2
(29,2520)

DS3
(36,1812 )

DS4
(41,1137)

DS5
(50,378)

DS6
(50,1133)

DS7
(59,1824)

DS8
(64,1008)

MCMC-
based

MrBayes -7108.42
(0.18)

-26367.57
(0.48)

-33735.44
(0.50)

-13330.44
(0.54)

-8214.51
(0.28)

-6724.07
(0.86)

-37332.76
(2.42)

-8649.88
(1.75)

SBN -7108.41
(0.15)

-26367.71
(0.08)

-33735.09
(0.09)

-13329.94
(0.20)

-8214.62
(0.40)

-6724.37
(0.43)

-37331.97
(0.28)

-8650.64
(0.50)

Structure
Representation

VBPI -7108.42
(0.10)

-26367.72
(0.12)

-33735.10
(0.11)

-13329.94
(0.31)

-8214.61
(0.67)

-6724.34
(0.68)

-37332.03
(0.43)

-8650.63
(0.55)

VBPI-GNN -7108.41
(0.14)

-26367.73
(0.07)

-33735.12
(0.09)

-13329.94
(0.19)

-8214.64
(0.38)

-6724.37
(0.40)

-37332.04
(0.12)

-8650.65
(0.45)

Structure
Generation

ARTree -7108.41
(0.19)

-26367.71
(0.07)

-33735.09
(0.09)

-13329.94
(0.17)

-8214.59
(0.34)

-6724.37
(0.46)

-37331.95
(0.27)

-8650.61
(0.48)

phi-CSMC -7290.36
(7.23)

-30568.49
(31.34)

-33798.06
(6.62)

-13582.24
(35.08)

-8367.51
(8.87)

-7013.83
(16.99) NA -9209.18

(18.03)

GeoPhy -7111.55
(0.07)

-26379.48
(11.60)

-33757.79
(8.07)

-13342.71
(1.61)

-8240.87
(9.80)

-6735.14
(2.64)

-37377.86
(29.48)

-8663.51
(6.85)

GeoPhy LOO(3) -7116.09
(10.67)

-26368.54
(0.12)

-33735.85
(0.12)

-13337.42
(1.32)

-8233.89
(6.63)

-6735.9
(1.13)

-37358.96
(13.06)

-8660.48
(0.78)

PhyloGFN -7108.95
(0.06)

-26368.90
(0.28)

-33735.60
(0.35)

-13331.83
(0.19)

-8215.15
(0.20)

-6730.68
(0.54)

-37359.96
(1.14)

-8654.76
(0.19)

Ours -7101.38
(0.07)

-26357.96
(0.06)

-33715.31
(0.10)

-13322.10
(1.34)

-8210.76
(0.23)

-6713.13
(0.32)

-37326.50
(1.39)

-8645.07
(0.69)

Table 4: Comparison of mean log-likelihood (MLL) and runtime between ARTree and MDTree
under RWS and VIMCO optimization, each trained for 400,000 iterations. MDTree consistently
achieves higher MLL and reduces runtime by over 40% compared to ARTree.

Methods MLL Runtime (s)
ARTree_rws -7107.74 128.7
MDTree_rws -7103.71 75.0(↓41.72%)
ARTree_vimco -7106.59 114.7
MDTree_vimco -7101.38 63.7(↓44.46%)

Phy performs the worst with consistently low and unstable values. Fig. 5 highlights MDTree’s advantages
in MLL, quickly reaching and maintaining high scores, whereas ARTree, SBN, and especially GeoPhy lag
behind.

Table 5: Evaluation of ELBO (∝) on eight datasets. Higher values indicate better performance.
Results for GeoPhy were not reported in its original publication and are reproduced by us. Light gray marks
the best baseline result, and darker gray marks the best overall result. Our method consistently achieves
the highest ELBO across all datasets.

Methods Dataset
(#Taxa,#Sites)

DS1
(27,1949)

DS2
(29,2520)

DS3
(36,1812 )

DS4
(41,1137)

DS5
(50,378)

DS6
(50,1133)

DS7
(59,1824)

DS8
(64,1008)

MCMC-
based SBN -7110.24

(0.03)
-26368.88
(0.03)

-33736.22
(0.02)

-13331.83
(0.02)

-8217.80
(0.04)

-6728.65
(0.04)

-37334.85
(0.03)

-8655.05
(0.04)

Structure
Generation

ARTree -7110.09
(0.04)

-26368.78
(0.07)

-33735.25
(0.08)

-13330.27
(0.05)

-8215.34
(0.04)

-6725.33
(0.06)

-37332.54
(0.13)

-8651.73
(0.05)

GeoPhy -7116.67
(1.71)

-26434.84
(0.10)

-33766.72
(0.15)

-13389.36
(3.45)

-8220.91
(2.64)

-6769.41
(3.25)

-37882.96
(1.97)

-8654.39
(0.97)

Ours -7005.98
(0.06)

-26362.75
(0.12)

-33430.94
(0.34)

-13113.03
(3.65)

-8053.23
(2.57)

-6324.90
(1.26)

-36838.42
(1.99)

-8409.06
(1.09)
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Figure 4: Comparison of ELBO. Figure 5: Comparison of MLL.

5.3 Runtime Reduction and E!ciency Evaluation (RQ2)

MDTree demonstrates substantial runtime e"ciency across all datasets, outperforming ARTree consistently.
Both runtime and the number of nodes are log-transformed on the vertical axes, with solid and dashed lines
representing the RWS and VIMCO optimization techniques. MDTree achieves faster than ARTree across
all datasets, with VIMCO providing further reductions, especially for MDTree-VIMCO, which exhibits the
lowest runtime. The e"ciency of MDTree becomes even more apparent as dataset complexity increases.
Table 4 confirms this finding, with MDTree reducing runtime by 41.72% (RWS) and 44.46% (VIMCO)
compared to ARTree while maintaining superior MLL metrics. This underscores MDTree’s e"ciency and
scalability, particularly with VIMCO optimization.

5.4 Tree Parsimony in Phylogenetic Inference (RQ3-1)

To evaluate the parsimony of tree structures generated by the model, we follow established methodolo-
gies (Zhou et al., 2024), minimizing the genetic mutations required to infer the optimal tree. The parsimony
score evaluates how well the generated tree adheres to the principle of minimizing evolutionary changes,
where fewer mutations are assumed to explain the observed genetic data better. We compare the results
against the most parsimonious tree identified by the traditional PAUP* tool (Swo!ord, 1998). The parsimony
score in Fig. 6 denotes the minimum mutations of genetic changes needed to account for the evolutionary
relationships in the data. Since scores are plotted as negative values, lower scores indicate more complex
trees and, consequently, poorer model performance. MDTree and ARTree achieved higher scores (approach-
ing -4000) in fewer steps, reflecting simpler and more parsimonious trees. In contrast, PhyloGFN exhibited
early fluctuations and ultimately stabilized around -5000, indicating suboptimal performance compared to
others.

5.5 Tree Topological Diversity in Generated Trees (RQ3-2)

To assess the diversity of tree topologies generated by MDTree, we use three metrics: Simpson’s Diversity
Index (He & Hu, 2005), Top Frequency, and Top 95% Frequency, as detailed in Table 6. A higher Diversity
Index, which approaches 1, suggests broad diversity among generated tree topologies. A larger number of
topologies in the Top 95% Frequency implies the generated trees are more varied and distributed across many
unique structures. Conversely, a lower Top Frequency suggests the absence of a dominant tree structure,
pointing toward a more balanced generation. For instance, in DS3, with 36 species sequences, the Top
95% Topologies metric reveals 1,146 distinct tree structures, indicating a wide range of possible phylogenetic
solutions. MDTree achieves a Diversity Index close to 1, showcasing its capacity for generating highly diverse
topologies even in complex datasets. Furthermore, the Top Frequency metric remains notably low, further
reinforcing the diversity and indicating that no single tree topology is overly dominant.
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Table 6: Topological comparison of three tree diversity metrics. Higher values of Simpson’s Diver-
sity Index and the number of topologies accounting for the top 95% cumulative frequency indicate better
diversity. In contrast, a lower frequency of the most frequent topology reflects a balanced distribution.

Dataset Statistics MrBayes ARTree Ours

DS1
Diversity Index (↑) 0.87 0.89 0.99
Top Frequency (↓) 0.27 0.1 0.007
Top 95% Frequency (↑) 42 10 121

DS2
Diversity Index (↑) 0.89 0.96 0.99
Top Frequency (↓) 0.27 0.43 0.13
Top 95% Frequency (↑) 208 203 301

DS3
Diversity Index (↑) 0.98 0.89 0.90
Top Frequency (↓) 0.02 0.01 0.004
Top 95% Frequency (↑) 753 509 1146

DS4
Diversity Index (↑) 0.86 0.89 0.99
Top Frequency (↓) 0.11 0.05 0.002
Top 95% Frequency (↑) 4169 4125 8746
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Figure 6: Comparison of negative parsimony scores on the DS1 dataset. The parsimony score
denotes the minimum number of variation steps required to interpret each tree. The lower the negative
score, the poorer the model performance.

5.6 Bipartition Frequency for Tree Quality (RQ3-3)

In phylogenetic analysis, a bipartition refers to dividing taxa (species or genes) into two groups on either side
of a node within the tree. When multiple tree samples are generated, as in Bayesian inference methods like
MrBayes, each sample may have a di!erent topology. Bipartition frequency quantifies how often a specific
bipartition appears across all tree samples, providing insight into the support for particular evolutionary
relationships. We use this bipartition frequency distribution to assess the model’s ability to capture phy-
logenetic relationships, as shown in Fig. 7. The horizontal axis indicates the bipartition rank within the
tree topology, while the vertical axis displays the normalized occurrence frequency of each bipartition. The
MDTree and MrBayes curves are closely aligned, indicating that MDTree’s results closely match those
of the widely accepted gold standard. In contrast, the ARTree method shows a noticeable deviation, espe-
cially in the higher-ranked bipartitions, demonstrating that MDTree o!ers improved accuracy over ARTree
in capturing evolutionary structures. This suggests that MDTree captures the evolutionary patterns with
greater accuracy compared to ARTree.
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Figure 7: Bipartition frequency distribution of tree topologies. The closer the two curves are, the
better.

Table 7: Comparison of di!erent genomic language models (LMs) as structure generators in our frame-
work, evaluated on Mean Log-Likelihood (MLL, ∝) and Evidence Lower Bound (ELBO, ∝). Models include
DNABERT2, HyenaDNA, and NT. Higher values indicate better performance. DNABERT2 achieves the
highest MLL and ELBO among the tested models, indicating its superior ability to capture genomic sequence
patterns beneficial for phylogenetic inference.

Method MLL(↑) ELBO(↑)
DNABERT2 -7101.38 -7005.98
HyenaDNA -7109.36 -7014.17
NT -7111.07 -7017.11

5.7 Analysis and Ablation (RQ4-1)

We compare MDTree with three other schemes, yielding the following observations: (i) Removing opti-
mization techniques like RWS or VIMCO led to a performance drop of 5.21 in MLL, as shown by slight
fluctuations in the MLL curve in Fig. 9, highlighting their role in stabilizing convergence. (ii) Excluding
the LAX model of VIMCO optimization caused a decrease of 2.36 in MLL and 1.88 in ELBO, indicating its
e!ectiveness in reducing variance during discrete sampling. (iii) Table 7 and Table 8 show that the removal
of the DON results in the most significant impact, with a drop of about 3.67 in MLL, underscoring its critical
role in optimizing node addition order and improving tree generation. Overall, the full MDTree consistently
achieves the best across both metrics. We select the genome-specific foundation model DNABERT2 for
our phylogenetic inference research. Although models like HyenaDNA (Nguyen et al., 2023) and Nucleotide
Transformer (NT) (Dalla-Torre et al., 2023) excel in long-sequence modeling, they are less apt for our spe-
cific needs. As shown in Table 7, DNABERT2 outperforms others, likely due to its specific optimization for
genomic data.

5.8 Visualization of PhyloTree Structure on Real-World Data (RQ5)

To assess the biological relevance of the tree structure generated by MDTree, we applied it to construct a
phylogenetic tree for an Angiosperms353 genomic dataset (Zuntini et al., 2024). The tree successfully recov-
ered major branches within the order Rosales, revealing distinct evolutionary lineages, including Rosaceae,
Moraceae, and Polygonaceae families. As shown in Fig. 10, the genera Polygala vulgaris and Polygala bal-
duinii are clearly separated from other groups, consistent with their classification in the Potentillaceae family.
The remaining groups, distinguished by color, represent genera within the Rosaceae and Moraceae families,
such as Rosa, Rubus, Ficus, and Adansonia. In Rosaceae, genera like Rosa, Rubus, and Prunus highlight
their common evolutionary ancestry, while in Moraceae, Ficus and Broussonetia reflect the internal diversity
and evolutionary divergence within the family.
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Figure 8: Ablation study of MDTree on four datasets, reported in mean log-likelihood (MLL)
and ELBO (higher is better). We evaluate the impact of removing the optimization phase, removing
LAX in VIMCO, and removing the Dynamic Ordering Network (DON). The last column shows the average
MLL across datasets, with green values indicating the drop compared to the full MDTree.

Method DS1 DS2 DS3 DS4 Average
MLL ELBO MLL ELBO MLL ELBO MLL ELBO

MDTree -7101.38 -7005.98 -26357.96 -26362.75 -33715.31 -33430.94 -13322.10 -13113.03 -20051.18
w/o optimization -7106.59 -7010.34 -26371.02 -26374.01 -33733.25 -33447.94 -13339.71 -13130.01 -20064.11 (-12.93)
w/ vimco w/o Lax -7103.74 -7007.86 -26361.81 -26368.52 -33718.20 -33436.07 -13326.95 -13118.60 -20055.22 (-4.04)
w/o DON -7105.05 -7010.02 -26366.47 -26372.04 -33723.67 -33439.18 -13332.38 -13121.33 -20058.77 (-7.59)

Figure 9: Ablation of di!erent modules. MDTree w/o optimization curve exhibits slight fluctuations,
emphasizing the importance of optimization techniques in improving stability.

6 Conclusion and Limitation

In this paper, we present MDTree, a novel framework that redefines phylogenetic tree generation as a Dy-
namic Autoregressive Tree Generation task. By leveraging a Di!usion Ordering Network to learn biologically
informed node orders directly from genomic sequences, MDTree overcomes the limitations of fixed or random
node orders. It integrates GNNs and Language Models to capture complex tree topologies, while a Dynamic
Masking Mechanism enables parallel node processing, improving computational e"ciency. Experiments on
phylogenetic benchmarks show MDTree achieves state-of-the-art performance.

MDTree has yet to be applied to other sequence types, such as protein sequences. Future work will explore
multimodal approaches, integrating genomic and protein data for more comprehensive evolutionary tree
construction, as well as scaling the model for complex evolutionary scenarios.
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Figure 10: Visualization of a generated phylogenetic tree for a subset of species from the An-
giosperms353 dataset. Di!erent colors indicate distinct plant families or genera, illustrating the model’s
ability to cluster related species into coherent subtrees. For example, species within the genus Rubus (blue)
and family Moraceae (green) are correctly grouped together, reflecting biologically plausible evolutionary
relationships. This demonstrates that the proposed method can recover meaningful phylogenetic structure
consistent with known taxonomy.
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