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Abstract—Parkinson’s disease (PD) is a progressive neuro-
logical disorder that affects movement, posture, handwriting,
and speech. Parkinson’s disease is challenging to diagnose early
due to subtle symptoms that often go unnoticed, necessitat-
ing reliable and accurate classification models to aid clinical
decision-making. This research introduces a comprehensive
benchmarking of nine unified models, and a unique contribution
of this research is the adaptation of the Tabular Transformer
model for structured medical data, achieving an unprecedented
accuracy of 99.49%, setting a new benchmark for Parkinson’s
disease classification. The proposed approach provides an ad-
vanced, adaptable framework that supports clinicians in making
early, accurate diagnoses, ultimately improving patient care.
In contrast to previous studies that predominantly emphasize
traditional models, this research employs attention-based deep
learning to capture complex feature interactions, achieving
substantially higher accuracy. The study evaluates nine mod-
els: SVM, Decision Tree, Random Forest, AdaBoost, Gradient
Boosting, XGBoost, KNN, CNN, and Tabular Transformer,
achieving improved accuracy across all models compared to
previous studies, marking a notable advancement in Parkinson’s
disease classification performance. The Transformer’s attention
mechanism captures intricate data patterns, providing clear
advantages over traditional approaches and improving diag-
nostic precision for early-stage Parkinson’s detection. Data
preprocessing included the Synthetic Minority Over-sampling
Technique for class balancing and feature standardization,
with each model, from SVM and Decision Trees to CNN and
XGBoost, optimized through Optuna for optimal performance.
This research offers the medical field a versatile, high-accuracy
framework that aids clinicians in timely and reliable PD
diagnosis, potentially improving patient outcomes and advancing
Parkinson’s diagnostic tools for future clinical use.

Index Terms—Structured Medical Data, Transformer, Parkin-
son’s disease, Hyperparameter optimization, Attention-layers

I. INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenera-
tive disorder that affects millions of people worldwide and
is characterized by a complex array of motor and non-motor
symptoms. The hallmark motor symptoms include tremors,
rigidity, bradykinesia, and postural instability, while non-
motor manifestations encompass cognitive decline, depres-
sion, and anxiety [1]. As the global population ages, the
prevalence of PD is expected to rise significantly, presenting
an increasing challenge to healthcare systems and society
[2]. Early and accurate diagnosis of PD is crucial for ef-
fective management and improved patient outcomes. The
initial symptoms of PD are often subtle and can overlap
with those of other neurological conditions, complicating
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differential diagnosis and potentially leading to misdiagnosis
or delayed treatment [3], [4]. In recent years, the application
of advanced computational techniques, particularly machine
learning (ML) and deep learning (DL), has shown promising
results in supporting early PD detection. These approaches
offer the ability to detect complex patterns within medical
data that may be missed by traditional diagnostic methods [5].
The rapid advancements in ML and DL architectures, such
as Convolutional Neural Networks (CNNs) and Transformers,
have further enhanced the potential for capturing intricate data
patterns, thus improving classification accuracy and robust-
ness in PD diagnosis [6]. Our research encompasses a wide
range of algorithmic approaches, from traditional classifiers
to advanced deep-learning architectures. A key innovation in
this study is the introduction of the Tabular Transformer,
an attention-based deep learning model rarely applied in
PD classification, which effectively captures complex feature
interactions within structured data. By implementing and
refining multiple models coupled with extensive hyperpa-
rameter optimization, this research seeks to establish a high-
accuracy, adaptable framework that significantly enhances PD
classification accuracy and robustness. The comprehensive
nature of this study, combining diverse modeling approaches
with novel methodological refinements, has the potential to
make a substantial impact on PD diagnostics [7]. Ultimately,
this research aims to provide healthcare professionals with
an advanced diagnostic tool to support timely and reliable
PD diagnoses. The advanced diagnostic tool developed could
support timely, reliable PD diagnoses, facilitate early inter-
ventions, and improve care quality and outcomes, ultimately
benefiting patients facing this challenging neurological disor-
der [8].

II. LITERATURE REVIEW

Recent advancements in machine learning (ML) and deep
learning (DL) have significantly contributed to Parkinson’s
disease (PD) diagnostics, addressing the limitations of tra-
ditional methods by identifying complex patterns in medical
data. PD is a multifaceted disorder with motor and non-motor
symptoms that often overlap with other neurodegenerative
conditions, complicating diagnosis, especially in the early
stages [1], [9]. The need for reliable and accurate diagnostic
tools has driven research toward computational approaches
that improve early detection and patient outcomes [2], [4].
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ML techniques like SVM and Decision Trees have been
extensively applied to PD classification due to their inter-
pretability and relatively strong baseline performance. Srini-
vasan et al. (2024) [10] demonstrated the efficacy of SVM
combined with Recursive Feature Elimination in PD detection
from voice signals, achieving a high accuracy of 93.84%.
However, the focus on voice data limits its application,
whereas our study extends to a broader set of biomarkers.
Singh et al. (2023) [11] also highlighted that ensemble
methods like Random Forests and Gradient Boosting enhance
accuracy over single classifiers. However, they may lack
the flexibility needed for complex, early-stage PD diagnosis.
DL approaches, particularly Convolutional Neural Networks
(CNNSs), have shown great promise in medical diagnostics,
as they can capture spatial and sequential relationships in
structured data. Camacho et al. (2023) [12] developed an
explainable DL model using T1-weighted MRI data, achiev-
ing high accuracy in distinguishing PD patients from healthy
controls. While our study also incorporates MRI data, we
further expand by integrating multiple data modalities and
employing a broader set of models, including non-image data,
to enhance diagnostic insights. Thakur et al. (2022) [13]
introduced a CNN model with a soft-attention mechanism
for better feature extraction in DaTscan images, which aligns
with our approach of utilizing advanced DL architectures.
However, our work uniquely includes the Tabular Trans-
former, an attention-based model that effectively handles
structured data for PD, capturing intricate feature interactions
beyond the capabilities of CNNs alone.

Multimodal techniques have shown promise in PD diag-
nostics by incorporating diverse data types, such as imaging
and clinical markers. Musti et al. (2024) [7] investigated
multimodal DL architectures for prodromal PD detection,
achieving a 95.5% accuracy by integrating various 3D mod-
els. While similar in concept, our study distinguishes itself
by including both ML and DL models with an innovative
application of the Tabular Transformer. Originally designed
for language processing, the Transformer’s ability to capture
long-range dependencies makes it well-suited for structured
data and differentiates our research from previous studies
[14]. The Tabular Transformer has rarely been applied in
PD research, making this one of the first studies to explore
its potential for complex clinical data interpretation. Effec-
tive hyperparameter optimization is essential for maximizing
model performance, particularly in complex medical diag-
nostics. While previous studies have incorporated automated
optimization techniques, few have applied extensive, model-
specific tuning across a wide array of models for PD clas-
sification. Our study utilizes Optuna for systematic hyper-
parameter optimization, a method demonstrated by Yoshida
and Kameda (2021) and Kaur et al. (2022) [6], [15] to
significantly improve accuracy and generalizability in ML
applications. This research stands out by benchmarking nine
diverse models for PD classification, including traditional
ML, ensemble methods, and advanced deep learning archi-
tectures like CNNs and the Tabular Transformer. Unlike
prior studies focused on limited model comparisons, our
comprehensive evaluation establishes a robust framework for
PD diagnostics. Additionally, our study addresses common
diagnostic challenges, such as class imbalance and inadequate
validation, through rigorous cross-validation and explicit class
balancing. [16].
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Fig. 1. WorkFlow Diagram

III. METHODOLOGY

Fig. 1 workflow diagram illustrates the end-to-end process
of Parkinson’s disease classification and was designed to
explore and optimize various machine learning (ML) and
deep learning (DL) models) using a structured data approach.
Each step was meticulously crafted to address common
challenges in PD data analysis, such as class imbalance and
feature variability while leveraging advanced models and
tuning processes to enhance diagnostic accuracy.

A. Overview of Data Collection

The dataset used in this study was obtained from the
UCI Parkinson’s Disease dataset, a well-structured dataset
containing key vocal biomarkers for distinguishing PD pa-
tients from healthy controls. The dataset included features
related to vocal fold function and speech, which have been
shown to carry significant diagnostic potential in PD. Fig. 2
illustrates the imbalance in the dataset. To ensure unbiased
results, we partitioned the dataset into training and test sets
with an 80:20 split, maintaining a stratified approach to
ensure a balanced representation of PD and control groups
in both sets [17]. Fig. 3 presents the distributions of the
most significant acoustic features used for classification, such
as jitter, shimmer, fundamental frequency, and harmonic-to-
noise ratio.

B. Data Preprocessing

The data preprocessing pipeline was designed to enhance
model performance by addressing class imbalance and ensur-
ing feature standardization, essential for robust Parkinson’s
disease (PD) classification [18]. Fig. 4 shows the correlations
between features, identifying dependencies and redundancies
within the dataset’s acoustic measurement. Given the imbal-
ance in the dataset, the Synthetic Minority Over-sampling
Technique (SMOTE) was employed to generate synthetic
samples for the minority class, effectively balancing the
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distribution and reducing bias that could hinder model perfor-
mance [19]. This approach is particularly crucial for medical
datasets, where imbalances can skew predictions, and here, it
allowed the models to capture patterns effectively across both
PD-positive and control groups. To standardize feature scales,
each feature was transformed using StandardScaler, adjusting
all features to zero mean and unit variance. This step was in-
dispensable, particularly for gradient-based models and deep
learning architectures, which are sensitive to feature scaling
and can benefit from consistent magnitudes during training
[20]. A distinctive aspect of this preprocessing pipeline was
its integration with Optuna-based hyperparameter tuning.
Unlike conventional methods, which apply preprocessing in-
dependently, our approach incorporated SMOTE and scaling
directly within the tuning process. This integration allowed
models to leverage balanced, standardized data across each
hyperparameter trial, optimizing performance through consis-
tent data preparation.

C. Hyperparameter Optimization

Optuna, an advanced hyperparameter optimization frame-
work, systematically tune parameters across all nine clas-
sifiers, enhancing performance and robustness in Parkin-
son’s disease classification. Leveraging Optuna’s efficient
techniques, such as grid search and Bayesian optimization,
enabled us to explore a broad spectrum of hyperparameters,
including learning rate, batch size, neural network depth, and
the number of estimators for ensemble models. This tuning
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process allowed each model to be specifically optimized for
the Parkinson’s dataset, maximizing diagnostic accuracy and
minimizing overfitting risks. Optuna’s integration ensured
efficient model selection, significantly contributing to the
framework’s effectiveness in achieving early and accurate PD
detection and establishing optimal classifier configurations.

D. Overview of Model Architectures and Implementation

1) Transformer: The Tabular Transformer model employs
an advanced attention-based architecture tailored to structured
data, such as the Parkinson’s dataset. It integrates three core
components: an embedding layer, multi-head self-attention
layers, and feedforward layers, each essential for capturing
complex feature dependencies and enhancing classification
accuracy. The embedding layer transforms input vectors into
a high-dimensional latent space, uniformly representing fea-
tures of varying scales. At the model’s core, multi-head self-
attention layers generate sets of attention weights (heads) that
analyze feature interactions, transforming inputs into Queries
(Q), Keys (K), and Values (V) to compute attention scores.
This mechanism captures intricate inter-feature relationships
in Parkinson’s data. Finally, the feedforward layer, a multi-
layer perceptron with ReLU activation, refines high-level
representations and decision boundaries, retaining relevant
insights from attention layers. This architecture uniquely
captures both simple and complex dependencies, making
the Tabular Transformer a robust model for Parkinson’s
disease classification, outperforming traditional approaches in
structured medical data applications.

Attention(Q, K, V') = softmax (QKT) \% €))
) K \/@

2) Convolutional Neural Network (CNN): The Convolu-
tional Neural Network (CNN) model was tailored to analyze
structured Parkinson’s disease (PD) data, focusing on captur-
ing intricate spatial relationships among features. Utilizing
1D convolutional layers, the model effectively processed
feature-wise patterns in PD datasets. Each layer was fol-
lowed by batch normalization for stable and faster training
and dropout layers to reduce overfitting. Hyperparameter
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optimization with Optuna fine-tuned the number of layers,
filter sizes, and dropout rates. Global Average Pooling, rather
than conventional max-pooling, was employed to retain more
comprehensive spatial information. This customized CNN
design, capable of learning both low- and high-level feature
representations, proved effective in identifying complex PD-
related patterns, enhancing classification accuracy beyond
traditional methods.

K
hij=o0 <Z Wk * Titk,j + b) 2
k=0

3) Support Vector Machine: The Support Vector Machine
(SVM) model in our study leverages a Radial Basis Function
kernel, which is suitable for handling non-linear relationships
in PD data. This kernel choice is pivotal because PD-related
data features often exhibit complex, non-linear separability.
In implementation, we utilized Optuna to optimize key hy-
perparameters such as the regularization parameter C' and
the kernel coefficient 7, enhancing the SVM’s ability to
find the optimal margin and avoid overfitting. The resulting
model successfully handles the subtle distinctions in PD
feature space, making it a valuable baseline for performance
comparison.

4) Decision Tree: Decision trees were chosen for their in-
terpretability and hierarchical structure, which is beneficial in
understanding the importance of features in PD classification.
Our implementation utilizes Gini impurity to guide the split at
each node, constructing a tree that iteratively selects features
and thresholds to minimize class entropy. To further refine the
model, Optuna was employed to tune the maximum depth,
minimum samples per leaf, and minimum samples required
for a split, ensuring an optimal balance between model
complexity and interpretability. The decision tree provides an
easily interpretable model for PD classification with enhanced
accuracy through careful parameter selection.

5) Random Forest: The Random Forest model builds upon
Decision Trees by creating an ensemble of multiple trees us-
ing bootstrapped samples, where each tree is allowed to grow
without pruning. This approach reduces the risk of overfitting
and enhances model stability. The implementation included
200 decision trees, with hyperparameters like maximum tree
depth and the number of features to consider for each split op-
timized through Optuna. The Random Forest model benefits
from this ensembling approach, which averages predictions
across the trees and ultimately boosts classification robustness
for PD diagnosis.

6) Gradient Boosting Classifier: A gradient-boosting clas-
sifier was implemented to build an ensemble of weak learners
(shallow trees) sequentially, where each learner attempts to
correct the errors of its predecessors. Optuna was instrumental
in tuning parameters such as learning rate, number of esti-
mators, and tree depth. The incremental improvement of the
ensemble through learning from previous errors enhances the
model’s ability to accurately classify complex PD patterns. By
optimizing these hyperparameters, our GBC implementation
achieves a strong balance between accuracy and overfitting
control, making it a competitive model for PD classification.

Fm(x) = Frn1(2) + Ymhm(z) 3)

7) AdaBoost: The AdaBoost model was configured to
adaptively focus on misclassified instances by adjusting their

weights in subsequent rounds. Our implementation involved
setting up a series of weak classifiers, with each successive
classifier concentrating more on difficult-to-classify samples.
Optuna was used to adjust the number of estimators and
learning rate, ensuring the model converged to an optimal
solution. This adaptive focus makes it particularly suited for
handling challenging cases within the PD dataset, where early
symptoms might be subtle and harder to distinguish.

8) XGBoost: The XGBoost model, known for its speed
and accuracy, incorporates regularization to prevent overfit-
ting. We implemented it with a parameter grid that includes
max depth, learning rate, and subsample ratio. Optuna’s
hyperparameter tuning was essential here, allowing us to
configure the tree’s depth, learning rate, and regularization
coefficients (L1 and L2) to improve performance specifically
for PD data. By integrating L2 regularization, the model
achieves a refined balance between complexity and bias,
leading to improved generalization on PD classification tasks.

K

L= Uyids)+ > Uf) @)
1=1

k=1

9) K-Nearest Neighbors (KNN): K-Nearest Neighbors
(KNN) provides a simple yet effective non-parametric classi-
fication method. The KNN model implemented in this study
uses Euclidean distance to determine the nearest neighbors,
with hyperparameters such as the number of neighbors K and
the weighting function optimized via Optuna. This approach
allows for flexibility in PD classification, where instances are
classified based on the majority class among their closest
neighbors. Despite being a straightforward model, KNN’s
adaptability and interpretability make it valuable for our
model comparison.

E. Model Evaluation Metrics

The evaluation of the proposed model was conducted
using comprehensive metrics to ensure diagnostic reliability
in classifying Parkinson’s disease (PD).

TP + TN
Accuracy = (5
TP + TN + FP + FN
TP
Precision = —— (6)
TP + FP
Recall P @)
ecall = ————
TP + FN
Fl—9 Precision - Recall @)

" Precision + Recall

Accuracy measures the proportion of correctly classified
instances (true positives and true negatives) among all sam-
ples. Precision indicates the fraction of true positive pre-
dictions out of all positive predictions. Recall measures the
model’s ability to correctly identify all true positive cases.
F1 Score provides a harmonic mean of precision and recall.
These metrics collectively demonstrate the robustness and
clinical applicability of the model in distinguishing PD-
positive and healthy cases.
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IV. RESULTS AND MODEL ANALYSIS

Table I provides a summary of the performance metrics
for each model, highlighting the superior outcomes of deep
learning models over traditional methods. The Transformer
and CNN models demonstrated substantial classification effi-
cacy, particularly the Transformer, which achieved the highest
accuracy of 99%.

TABLE 1
PERFORMANCE COMPARISON OF DIFFERENT MODELS

Model Accuracy (%) | F1 Score (%) | Precision (%) | Recall (%)
CNN 98.31 0.9831 0.98 0.98
AdaBoost 96.00 0.9600 0.96 0.96
Decision Tree 90.82 0.9082 0.91 0.91
Gradient Boosting 96.94 0.9694 0.97 0.97
KNN 97.62 0.9762 0.97 0.97
XGBoost 96.60 0.9660 0.97 0.97
Random Forest 95.92 0.9592 0.96 0.96
SVM 97.96 0.9796 0.98 0.98
Transformer 99.49 0.9949 0.99 0.99

A. Performance Analysis by Model

The performance analysis of various machine learning
models revealed a clear superiority of deep learning tech-
niques over traditional algorithms. The Transformer model
emerged as the top performer, achieving an impressive accu-
racy of 99.49% with ROC AUC and PR AUC scores of 0.9957
and 0.9966, respectively. Its self-attention mechanism proved
highly effective in capturing both short-range and long-range
feature dependencies. The Convolutional Neural Network
(CNN) followed closely, demonstrating strong capabilities
in spatial feature extraction with an accuracy of 98.31%
and AUC scores above 0.996. Among traditional classifiers,
AdaBoost showed notable performance with 96% accuracy
and AUC scores around 0.978, leveraging its ensemble-based
architecture to handle dataset complexities. Other models,
including Gradient Boosting, XGBoost, Random Forest, and
SVM, achieved accuracies ranging from 90.82% to 97.96%,
with Gradient Boosting standing out at 96.94% accuracy
and 0.9946 ROC AUC. The superior performance of deep
learning models, particularly the Transformer and CNN,
underscores their potential in advancing machine learning
applications in healthcare, especially for complex, multi-
dimensional medical datasets. Their high recall and precision

scores further emphasize their suitability for clinical settings
where minimizing false negatives is crucial. This comprehen-
sive evaluation highlights the evolving landscape of machine
learning in medical diagnostics, with attention-based and
convolutional architectures demonstrating particular promise
in capturing intricate patterns in tabular medical data.

B. ROC AUC, Precision-Recall AUC, and Accuracy

Fig. 5 illustrates critical metrics such as ROC AUC,
Precision-Recall AUC, and accuracy, which were analyzed
to comprehensively assess diagnostic reliability. ROC AUC
provided insights into the models’ discrimination ability,
while Precision-Recall AUC focused on performance for
the positive class, which is crucial for minimizing false
negatives in a diagnostic setting. Accuracy was considered
in conjunction with these metrics to confirm the models’
generalized effectiveness. This multidimensional evaluation
approach highlights the clinical applicability of the deep
learning models and underscores their capability for high-
stakes medical data classification. Together, these metrics
demonstrate that our tailored architectures especially Trans-
formers and CNNs—are well-suited to the nuanced demands
of medical diagnostics, ensuring reliable classification and
minimizing the risks of false negatives.

DISCUSSIONS

The Tabular Transformer represents a significant advance-
ment, specifically addressing the challenges of structured
data classification in Parkinson’s disease (PD) detection.
Distinguished from conventional deep learning approaches,
this architecture leverages a specialized embedding layer that
uniformly transforms raw features into a high-dimensional
latent space, enabling robust feature representation indepen-
dent of original scale or distribution. The model’s multi-
head self-attention mechanism dynamically captures complex
inter-feature dependencies, a critical advantage in medical
datasets where nuanced biomarker interactions are pivotal for
accurate diagnostics. For instance, Srinivasan et al. (2024)
[10] achieved 93.84% accuracy using Support Vector Ma-
chines (SVM) with Recursive Feature Elimination on voice-
based features, while Singh et al. (2023) [11] reported
enhanced accuracy using ensemble methods like Random
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Forests and Gradient Boosting, though limited to a peak of
96%. Similarly, Camacho et al. (2023) [12] utilized Convo-
lutional Neural Networks (CNNs) for MRI data and achieved
notable accuracy, but these approaches often require complex
preprocessing or are confined to specific data modalities like
imaging.

By integrating advanced preprocessing techniques like
SMOTE and Optuna, the Tabular Transformer effectively
mitigates class imbalance and ensures consistent model per-
formance. Empirical validation demonstrates superior classi-
fication accuracy of 99.49%. Unlike sequential Transformers
and Vision Transformers designed for specific data modali-
ties, this approach directly processes tabular data, efficiently
capturing non-linear feature interactions and establishing a
promising paradigm for structured medical data analysis.

The study also evaluates models like CNNs, SVM, De-
cision Tree, Random Forest, AdaBoost, Gradient Boosting,
XGBoost, and KNN. CNNs excelled with 98.31% accuracy,
while XGBoost handled complex patterns effectively. En-
semble methods like Random Forest and Gradient Boost-
ing provided stability, and traditional models like SVM
offered baseline comparability. This highlights the strengths
of diverse approaches and the superiority of attention-based
architectures for PD diagnostics.

CONCLUSION AND FUTURE WORK

This study demonstrates new ground by adapting advanced
deep learning models—Transformers and Convolutional Neu-
ral Networks (CNNs)—to structured tabular healthcare data,
using Parkinson’s disease as a case study. This methodology,
integrating diverse models with advanced preprocessing and
optimization techniques, enabled the development of a high-
accuracy framework for PD diagnosis. This framework not
only enhances early PD classification accuracy by addressing
limitations in previous approaches but also paves the way for
future advancements in PD diagnostics. By successfully ap-
plying these sophisticated models to tabular healthcare data,
this research paves the way for enhanced diagnostic accuracy
and efficiency in clinical settings, potentially revolutionizing
the field of medical informatics.

Future work will focus on further enhancing these models
by exploring transfer learning to enable even more robust
generalization across diverse patient populations. Addition-
ally, integrating multimodal data like clinical notes, genetic
information, and imaging could refine diagnostic precision,
facilitating a comprehensive view of the patient profile.
Incorporating explainable Al techniques, like SHAP (Shapley
Additive Explanations), will be essential to interpreting model
outputs, providing transparency and insights into feature
importance. This approach could be extended to other neu-
rological conditions, thereby advancing predictive modeling
in broader healthcare contexts. Furthermore, developing real-
time, interpretable outputs from these models will ensure
alignment with clinical needs, empowering healthcare pro-
fessionals with actionable insights and fostering trust in Al-
driven diagnostic tools.
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