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Abstract

Super-resolution (SR) advances astronomical imaging by enabling cost-effective
high-resolution capture, crucial for detecting faraway celestial objects and precise
structural analysis. However, existing datasets for astronomical SR (ASR) exhibit
three critical limitations: flux inconsistency, object-crop setting, and insufficient
data diversity, significantly impeding ASR development. We propose STAR, a
large-scale astronomical SR dataset containing 54,738 flux-consistent star field
image pairs covering wide celestial regions. These pairs combine Hubble Space
Telescope high-resolution observations with physically faithful low-resolution
counterparts generated through a flux-preserving data generation pipeline, enabling
systematic development of field-level ASR models. To further empower the ASR
community, STAR provides a novel Flux Error (FE) to evaluate SR models in
physical view. Leveraging this benchmark, we propose a Flux-Invariant Super
Resolution (FISR) model that could accurately infer the flux-consistent high-
resolution images from input photometry, suppressing several SR state-of-the-art
methods by 24.84% on a novel designed flux consistency metric, showing the
priority of our method for astrophysics. Extensive experiments demonstrate the
effectiveness of our proposed method and the value of our dataset. Code and
models are available at https://github.com/GuoCheng12/STAR

1 Introduction

Image quality is critical to astronomical observation, while high quality means finer astrophysical
structures and enables precise measurements [1, 2, 3]. This results in the astronomy community
always establishing new telescopes to seek high-quality and high-resolution surveys, even facing high
costs [4, 5]. Different from astronomy, in natural image processing, the software computer vision
Super Resolution (SR) technique [6, 7, 8]has provided a series of successful methods to achieve
high-quality and high-resolution observations in an economical way [9, 10]. So, there is obviously an
opportunity to introduce the computer vision SR method to process high-quality astronomical images.
However, there remains a great challenge – data.

Existing datasets [11, 12] in astronomical super resolution (ASR) have 3 drawbacks: physically trivial,
object-centric, and limited-scale. 1). Flux Inconsistency: In the real world, telescopes under different
observation resolutions have a flux consistency relation [13, 14]. Specifically, although a celestial
object has different levels of distortions under low resolutions, it almost has the same total flux as
in high resolutions because of the telescope imaging principle [13, 15]. However, existing datasets

∗Equal contribution.
†Work done during internship at Shanghai Artificial Intelligence Laboratory.
‡Corresponding authors. Email: luyan@pjlab.org.cn

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.

https://github.com/GuoCheng12/STAR


have significant drifts from this property because they directly use simple interpolation [16, 17],
suitable for natural images but conflicts with astronomical observations. This catastrophic limitation
makes existing datasets almost physically trivial, significantly affecting their scientific value. 2).
Object-Crop Configuration: Each image in existing ASR datasets only contains a center-cropped
and resized singular celestial object (e.g., stars or galaxies) [16, 18]. This ideal configuration
neglects many valuable patterns beyond single object, important in astrophysics, such as large-scale
structure [19], cross-object interaction [20], and weak lensing [21, 22], limiting the value of existing
datasets. 3). Insufficient Data Diversity: The scale of existing ASR datasets ranges from 1,597 to
17,000 [11, 12, 16, 17, 18, 23]. The restricted scale limits the ability of the learned model and makes
evaluation unreliable and unfair. To address the above-mentioned dataset limitations, we introduce a
new dataset called STAR.

STAR is a large-Scale ASR dataset. It consists of 54,738 high-resolution star field images captured
by the Hubble Space Telescope (HST) [24]. Each image is totally field-level, covering a large range
of star fields and average containing 30 objects and complex scenarios including multiple celestial
objects, cross-object interaction and weak lensing phenomenon, as Figure 1 shows. Compared with
existing ASR datasets, STAR provides approximately at least 15 times more observation objects per
image on average, while also offering 60% of cosmic information outside the object area (e.g, like
diffuse interstellar medium (ISM) regions [25]), significantly showing the scale priority. We provide
overall advantages of the STAR for other datasets in Tab. 1.

Except that, to tackle the ’Physical trivial’ problem, STAR proposes a flux-consistent data generation
pipeline, which processes cross-resolution image pairs fitting the aforementioned real telescope
flux-consistent property, making the entire dataset physically faithful. Furthermore, STAR provides a
novel Flux Error (FE) to evaluate SR models from a physical perspective, ensuring their outputs align
with astrophysical principles critical for reliable scientific analysis.

With the STAR, we evaluate several state-of-the-art SR methods, including both natural [8, 26, 27,
28, 29, 30] and astronomical SR methods [11, 18] to quantify their generalization ability to the
field-level ASR topic, noting that many astronomical SR methods directly adopt natural SR methods.
Unfortunately, they cannot provide satisfactory results. We analyze that the main reason is the lack
of specific optimization for the flux-consistency prior. Due to this, we propose a novel field-level
ASR model, Flux-Invariant Super Resolution (FISR). It introduces the flux consistency property at
both the model design and optimization views to fulfill the flux relationships neglected by previous
ASR works. At the model view, FISR has a series of specific designs to extract flux information
from low-resolution input as visual prompts following astrophysical ideas. These prompts are then
injected into the model and give the ability to perceive input flux accurately, allowing the model to
propagate consistent flux cues from low-resolution inputs to predicted high-resolution outputs. And
at the optimization view, we provide a Flux consistency loss (FCL) which constrains the photometry
gap for each celestial object between the ground-truths and predictions, highlighting the importance
of flux during the model optimization process and leading to a more reliable trained model.

• STAR Benchmark: We introduce STAR, a large-scale, flux-consistent ASR benchmark
with 54,738 cross-resolution image pairs from HST F814W star fields. Unlike prior datasets,
STAR captures field-level complexity, offering 15 times more objects per image and 60%
additional cosmic information, using a flux-consistent pipeline.

• Flux Error (FE): We present FE, a novel metric to evaluate SR models’ alignment with
astrophysical flux conservation, ensuring reliable photometric analysis.

• Flux-Invariant Super Resolution (FISR) Model: We propose FISR, a field-level ASR
model and a Flux Consistency Loss, outperforming existing methods by addressing flux
relationships neglected in prior work.

2 Related Works

2.1 Super-Resolution Techniques

Super-resolution (SR) techniques, aimed at reconstructing high-resolution (HR) images from low-
resolution (LR) inputs, have significantly advanced, offering critical tools for enhancing astronomical
images. Traditional SR methods, including interpolation, deconvolution, and learning-based ap-
proaches like sparse representation [31], modeled image degradation or statistical relationships to
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Figure 1: Comparison of previous datasets and ours, highlighting richer structures such as cross-object
interaction, weak lensing, and dark matter halos.

Table 1: Comparison of existing astronomical SR datasets.

Dataset Size Type Downsampling Multiple Celestial Flux Consistency

AstroSR [11] 2000 Galaxy × × ×
QQ Shan et al [12] 9383 Galaxy × × ×
W Song et al [16] 1597 Solar ✓ × ×

DiffLense [17] 2880 Galaxy × × ×
ZJ Luo et al [18] 17000 Galaxy × × ×
WJ Li et al [23] 14604 Galaxy ✓ × ×

STAR 54738 Star field ✓ ✓ ✓

recover details, laying the foundation for SR applications. The advent of deep learning revolutionized
SR, with convolutional neural networks (CNNs) enabling robust feature learning (e.g., [6, 8, 32]) and
generative adversarial networks (GANs) enhancing perceptual quality through adversarial training
(e.g., [33, 34, 35, 36]). Recent advancements introduced transformer-based models, leveraging
global attention for superior detail recovery (e.g., [26, 29, 37, 29, 38]), and diffusion-based models,
using iterative denoising for high-quality image generation (e.g., [36, 39, 40]). Unlike natural image
SR, which prioritizes visual perception, astronomical SR must balance perceptual quality with the
physical integrity of scientific data, as required in applications like stellar population analysis [10, 41].

2.2 Astronomical Image Super-Resolution

Super-resolution (SR) techniques tailored for astronomical images have evolved to address the
unique challenges of celestial data, achieving notable success in enhancing specific targets like
stars and galaxies. To improve image quality, the most direct method is to enhance the hardware
capabilities of astronomical telescopes, leveraging advancements in optical and detection technologies.
Common hardware improvements include increasing the telescope aperture, equipping telescopes
with adaptive optics systems, advancing photodetector technology, and optimizing optical component
design [42, 43, 44, 45, 46, 47]. These advancements complement software-based SR methods, which
have significantly refined image resolution. Early software approaches, such as deconvolution [10, 41]
and multi-frame stacking [48, 49], successfully improved the resolution of isolated stellar and galactic
images by modeling point spread functions (PSFs) [47] or combining multiple exposures. These
approaches enabled precise analyses of individual stars and galaxy morphologies [50]. More recently,
computational advancements have explored SR for broader astronomical applications, primarily
focusing on single-target scenarios like galaxies [51], Sun [52], X-ray sources (nebulae, active
galactic nuclei, etc.) [53]. Our work extends this progress by developing a large-scale star field
dataset that captures diverse astronomical conditions, enabling robust SR model training for complex
star field scenes, an area previously underexplored. Additionally, we integrate flux consistency
constraints to ensure reconstructed images preserve critical physical properties, enhancing their
reliability for quantitative analyses such as photometry and stellar dynamics.
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2.3 Flux Consistency in Astronomical Image Processing

Flux consistency, ensuring that the total light intensity (flux, or photons received per unit area) of
celestial objects in processed images matches original observations, is a cornerstone of astronomical
image analysis, underpinning reliable photometry and stellar population studies [54, 55]. Historical
efforts prioritized flux consistency to preserve measurement accuracy in star clusters and galaxies.
The modern space telescope SDSS also follows this principle [56]. However, the complexity of star
fields, with diverse brightness and overlapping objects, poses ongoing challenges. Our work advances
this field with STAR, a large-scale star field dataset ensuring flux-consistent image pairs, and novel
flux consistency constraints, enhancing the scientific reliability of star field analyses.

3 STAR

Following natural SR works, we construct cross-resolution image pairs by downsampling high-
resolution images. We choose Hubble Space Telescope (HST)4 survey data as our high-resolution
images due to its widely recognized data quality and rich historical data accumulation. Given a
high-resolution HST image, we first apply a point spread function (PSF) [47] kernel to simulate the
optical blurring effects caused by low-quality telescopes and atmospheric turbulence.

Next, we downsample the image by a factor of s using a flux-conserving scheme. Finally, since both
HR and LR images have large spatial dimensions, we divide them into smaller sub-images to facilitate
model training. This pipeline generates physically consistent cross-resolution pairs of images, crucial
for robust super-resolution model training.

3.1 High-resolution Data Collection

The HST is a space-based observatory designed to capture high-resolution astronomical images
across a wide range of wavelengths, from ultraviolet to near-infrared. It provides two kinds of data,
including calibration and science. Calibration data is used to correct instrumental effects while
the science has a verified quality for scientific research. So we choose scientific data due to its high
and reliable quality.

The science data consists of images captured by various imaging instruments onboard HST, such as
the Advanced Camera for Surveys (ACS) [57], Wide Field Camera 3 (WFC3) [58], and Wide Field
and Planetary Camera 2 (WFPC2) [59]. We selected the ACS Wide Field Channel (WFC/ACS) for
its high sensitivity in optical wavelengths (350–1050 nm) and the widest field of view (202" × 202"),

which are critical for capturing high-resolution images of extended astronomical objects.

Astronomical data are captured under different filters, like natural images under Red, Green and
Blue filters. Here, for the WFC/ACS science data, we keep the F814W filter (centered at 814 nm,
also known as the I-band) data due to the band of the F814W is widely used in star field studies
because its wavelength (centered at 814 nm) effectively resolves individual stars in crowded fields
thile maintaining high photmetric accuracy [60]. So we choose it for its representative.

HST observes one location many times, resulting in a large number of overlapping images. To remove
high-overlapping data but keep diversity as wide as possible, we use the farthest point sampling
strategy [61] on the HST covered celestial regions and finally select 70 representative wide field
images covering an extremely large range of celestial regions but without any overlapping.

3.2 PSF Blurring

Different resolution devices share different PSF blurring. To simulate this phenomenon, we adopt two
representative PSF models. The first is the Gaussian PSF [62], which is widely used to approximate
blur caused by atmospheric turbulence or instrumental imperfections. The second is the Airy PSF,
which is a device-specific kernel widely used in astrophysics, describing the instrumental effect
that occurs when a telescope resolution changes. Their detailed formulation could be seen in the
supplementary. With these two PSFs, we define two blurring settings: one is a single Gaussian kernel
G, and the other is a combination of Airy and Gaussian to simulate more complex scenarios.

4https://www.stsci.edu/hst
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After operating PSF blurring, we perform a flux consistency downsampling scheme to obtain realistic
low-resolution counterparts, which we detail in the next section.

3.3 Flux Consistency Downsampling

The flux consistency relation in real-world telescopic observations stems from the telescope imaging
principle. The value of each pixel in observational data corresponds to the photon flux captured by
its corresponding CCD pixel. Consequently, when imaging the same celestial region, a single CCD
pixel in lower-resolution instruments covers a larger spatial area—equivalent to integrating photons
from multiple high-resolution CCD pixels. This mechanism enables Flux-Consistent Downsampling
by calculating the celestial receptive field ratio of each pixel across resolution scales. The details of
this flux consistency downsampling could be seen in the supplementary.

3.4 HR Image Subdivision

The previous flux consistency downsampling scheme provides us a flux-consistent image pairs. To
further optimize model training effectiveness, we divide the HR and LR wide field images into
smaller sub-images. Because astronomical images contain some outlier regions (have NaN values)
due to geometric calibration in DrizzlePac[63] processing, we retain only patches with >80% valid
regions containing stellar features. As a result of these processing steps, we obtain a large set of high-
quality HR-LR image pairs and construct the STAR dataset for training and evaluating astronomical
super-resolution models.

3.5 Flux Error

The STAR provides a Flux Error (FE) to evaluate flux consistency between a ground truth and its
corresponding prediction. The FE measures the flux value gap for each object, so its computation
process is based on astrophysical photometry. The basic process of the photometry is deriving flux by
detection. We follow this idea. For a given ground-truth and predicted image pair, we compute the
FE as following two steps: 1). For the ground-truth image, we use the Starfinder toolkit [64] to detect
celestial objects and obtain their parameters. Then, we derive the flux of each object by a widely-used
elliptical photometry method [64]. 2). For predicted images, we do not operate object detection
but directly use detection results from the ground-truth image because they provide reliable object
catalogs covering both strong and weak sources. The following photometry is the same as the ground
truth. After these two steps, we have a two set of flux values, denoted as {v1pred, v2pred..., vNpred} and
{v1gt, v2gt..., vNgt} where N is the number of detected objects. The FE is computed by the following:

FE =
1

N

N∑
i=1

∣∣vigt − vipred
∣∣ . (1)

Lower FE means higher flux consistency. Since the flux value is related to the object shape and
the pixel flux in object regions, this metric could reflect the geometric shape consistency for each
object in the reconstruction image, physically informed flux consistency and weak source object
reconstruction quality simultaneously.

4 Method

4.1 Overview

The entire pipeline of our Flux-Invariant Super-Resolution (FISR) is shown in Fig. 2. The low-
resolution input image are sent into two paths. The first one is an encoder block consisting of a
convolution operation and multiple transformer blocks, which represent the input image as multi-scale
feature maps. The second is a novel Flux Guidance Generation (FGG) module that extracts flux
information as multi-scale flux guidance representations. Each flux guidance is sent into a scale-wise
Flux Guidance Controller (FGC) to enhance the encoded feature maps. This scheme highlights
regions with significant flux to guide the network’s focus toward astrophysically relevant structures.
Then, multiple decoder transformer blocks progressively process these enhanced features and finally
upsample them as the output images.
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Figure 2: Overview of the FISR approach. The input image is processed through an encoder branch
and a Flux Guidance Generation (FGG). Flux information is extracted via FGG and injected into the
Flux Guidance Controllers (FGC) to enhance the encoded feature map. The enhanced features are
then decoded and upsampled to produce the final high-resolution output..

4.2 Flux Guidance Generation

We propose the (Flux Guidance Generation) FGG module to introduce the flux information. Specifi-
cally, given an input image, FGG first represents flux information for every celestial object in the
input image into a flux map, then transfers the flux map as multi-scale features as guidance which
will then be used in the next FGC module to enhance multi-scale feature maps.

To generate the flux map, FGG also computes flux by detection. It detects celestial objects first and
obtains a bounding box for each object. Then the photometry process is operated to derive object
fluxes. The entire detection and photometry process is real-time. With these, FGG generates the map
following the idea of drawing bounding boxes on a white background and corresponding flux value
in each bounding box region.

In practice, because the ’bounding box’ of a celestial object is essentially a rotatable ellipse rather
than a rectangle in standard object detection, the drawing scheme FGG has some modifications.
Specifically, for each ellipse, FGG puts a rotatable Gaussian Kernel at the center location and adjusts
the Gaussian standard deviation based on the ellipse size. Then, FGG multiplies the object flux value
directly with the rotated Gaussian kernel to modulate the kernel value. Finally, FGG draws all these
kernels together as the final flux map.

Finally, a multi-scale convolutional block transforms the flux map into a corresponding flux guidance
representation. In our architecture, we employ three such blocks at different feature levels to generate
a hierarchy of flux guidance, denoted as {G1,G2,G3}. The level 3 is set to align the block number
in the decoder, following common setting in a popular SR baseline [27].

4.3 Flux Guidance Controller

Based on the flux guidance produced by the FGG module, the (Flux Guidance Controller) FGC
interacts such guidance with the encoder features, generating the enhanced features. The FGC is
scale-wised and for the i-th scale FGC, its interaction pipeline is represented as follows:

F̂i = PIMi (GCMi (Pi,Fi,Gi) ,Fi) . (2)

It shows that the enhanced feature F̂i ∈ RH×W×C is derived from a guidance-controlled feature and
an original feature Fi ∈ RH×W×C by a prompt interaction module function PIM(·, ·), which is set
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same as combines image features with guidance-controlled feature and dynamically adjusts the input
features through a transformer block. following PromptIR [27]. The guidance-controlled features are
computed by a guidance controller module function GCM(·, ·, ·) that takes a learnable prompt Pi,
the flux guidance component Gi ∈ RH×W×C and the encoded feature Fi as inputs. The learnable
prompt Pi ∈ RH×W×C×K contains K learnable patterns expected to represent blind property in the
image restoration process [27]. The detail of GCM is as follows:

GCMi (Pi,Fi,Gi) =
∑
k∈K

WF
i (Fi)⊙WG

i (Gi)⊙Pi, (3)

where Wi means learnable modules, consisting of a global average pooling and a linear layer, takes
input corresponding features and derives a weight with the size of 1 × 1 × 1 ×K to indicate the
mportance of the learnable prompt patterns. ⊙ means Hadamard product with dimension broadcast
while

∑
k∈K means sum the last dimension of the multiplied features with the size of H×W×C×K

to derive the final output features with the size of H ×W × C.

4.4 Flux Consistency Loss

The idea of the Flux Consistency Loss is to train the model to generate flux consistent prediction.
We propose a simple yet effective scheme to achieve this goal by highlighting flux-related regions.
We first operate the flux map generation scheme described in Section 4.2 on the ground-truth image,
denoted as M . Then we use this map to weighted the pixel wised supervision as follows:

Lflux(Ipred, Igt) =
∑
x,y

M(x, y) · |Ipred(x, y)− Igt(x, y)| . (4)

Combined it with a reconstruction loss (L1 or L2), the total loss is:

Ltotal = Lrecon(Ipred, Igt) + λ · Lflux(Ipred, Igt), (5)

where λ balances terms. This loss takes into account both traditional regression supervision and flux
consistency constraints, which brings more physically reliable ASR results.

5 Experiment

5.1 Experimental Setup

Dataset. We use the proposed STAR to process comparisons, evaluate our model and perform
ablation studies. The downsampling ratio s is set as 2 and 4, respectively. As mentioned before, the
blurring PSF has two settings: Gaussian only and Gaussian+Airy. The experimental results of the
latter are placed in Appendix C.

Implementation details. Each model is trained for 100 training epochs with a batch size of 16 on
8 H800 GPUs. The initial learning rate is set to 2e-4 and decayed by a factor of 0.01 at the 50th
epoch. To make the training more stable, we apply the linear warm-up strategy in the first epoch.
More details about the environment setting can be found in Appendix F.

Evaluation protocols. Following prior work, we adopt Peak Signal-to-Noise Ratio (PSNR) [65] and
Structural Similarity Index (SSIM) [66] as standard evaluation metrics to measure reconstruction
quality. Further, we use the proposed FE to evaluate physical fidelity to quantify the alignment
between the output of the model and astrophysical principles. Note that we do not use SR commonly-
used perceptual metrics, such as LPIPS [67], which leverages ImageNet [68] pre-trained deep
models [28, 69] to measure semantic similarity. Because in our ASR task, they are not suitable due to
the significant domain gap between the pre-trained domain and astronomical images.

5.2 Quantitative and Qualitative Results

We compare our method with several methods in Tab. 2, including state-of-the-art natural SR
methods, such as HAT [29] and classical SR methods, for example, SwinIR [26]. SwinIR and
RealESRGAN [34] are also popular in the ASR topic [11, 17], which is also an important factor that
we choose them to compare.
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Table 2: Performance comparison of different methods under ×2 and ×4 super-resolution. Evaluation
metrics include PSNR, SSIM, and Flux Error.

Scale Metric Bicubic EDSR [8] RealESRGAN [34] RCAN [32] SwinIR [26] HAT [29] FISR (ours)

×2
PSNR↑ 28.6021 35.3816 36.8363 36.3703 37.2205 37.2501 37.8779
SSIM↑ 0.6842 0.8054 0.8225 0.8240 0.8286 0.8295 0.8311
FE↓ 4.9418 1.4623 7.3632 0.9237 0.813 0.7636 0.5739

×4
PSNR↑ 26.0518 33.8736 34.3725 34.9823 34.6655 34.9142 35.1788
SSIM↑ 0.6005 0.7201 0.7223 0.7263 0.7258 0.7276 0.7266
FE↓ 7.8733 1.3841 4.0782 1.0550 1.0657 1.0256 1.0125

From Tab. 2, it could be shown that our approach outperforms existing methods across different
evaluation criteria. Compared with HAT [29], our method achieves complete priority under the
×2 case while keeping most advantages under the harder ×4 case, showing the effectiveness of our
approach under different scenarios. The better PSNR and SSIM demonstrate higher reconstruction
quality of our FISR model. What’s more, a significant FE priority shows the satisfactory physical
reliability of our method, proving its value in physically faithful high-precision astrophysics image
processing. The comparison of the second-best SwinIR [26] who is the current state-of-the-art ASR
method, demonstrates that our method achieves a new state of the art in the ASR topic, further
proving our effectiveness.

5.3 Ablation Study

To evaluate the contribution of each proposed component in our FISR framework, we conduct compre-
hensive ablation studies on the STAR dataset under the ×2 super-resolution setting. Tab. 3 presents
the performance changes when incorporating or removing the Flux Guidance Generation (FGG),
Flux Guidance Controller (FGC) and Flux Consistency Loss (FCL).

The ablation of FCL is straightforward, but it is not easy and also trivial for us to ablate FGC and
FGG solely. So here, we modify the ablation study of FGC and FGG as the ablation of FG-Modules
and Flux cues. FG-Modules means keeping all learnable modules of FGG+FGC, but replacing the
flux map of FGG as the original input image. Only using FG-Modules means ablating the input flux
cues. The idea behind this design is that the key motivation of FGC+FGG is to introduce input flux
information. So, the ablation of the flux map is effective because it could demonstrate that the gains
introduced by the FGC and FGG are actually from flux information rather than more parameters.

Effect of FCL: In the 1st line of Tab. 3, we show the performance of our baseline, PromptIR [27].
In the 2nd line, we introduce the FCL, significantly decreasing the physical faithful metric FE
about 0.06+, showing its function to achieve flux consistency. Similar gains can be found by
comparing the 5th and the 6th lines. Except that, FCL also introduces little PSNR and SSIM gains,
showing its compatibility and potential benefits for image reconstruction. To further demonstrate the
generalization of the FCL, we combine FCL with several state-of-the-art SR methods, as shown in
Tab. 4. It could be seen that the FCL widely increases their performances, solidly demonstrating its
generalization.

Effect of FGG+FGC: In the 3rd line, we introduce the FG-Modules. Compared with the 1st line, we
could find that directly introducing the FG-Modules is trivial, even bringing large FE downgradation.
Comparing 2nd and 4th lines could derive similar conclusions. It shows that more parameters are
trivial. However, when we introduce our flux cues in the 5th line, it brings a significant increase
across all metrics. The 0.1+ FE decrease makes the model achieve high flux consistency without the
FCL. Finally, when we introduce FCL, the performance has further gains, showing the compatibility
of our different proposed modules.

5.4 Quality Analysis

Fig. 3 visually compares various super-resolution models on star field regions. The FISR model
demonstrates superior reconstruction quality over traditional CNN-based methods such as EDSR and
RCAN. Although these baselines can recover structures, they often fail to preserve flux consistency,
particularly in regions with bright or overlapping celestial sources.
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Table 3: Ablation study on the effectiveness of the Flux Guidance Generation (FGG) and Flux Error
(FE). Metrics are reported on ×2 SR task.

FG-Modules Flux cues FCL PSNR↑ SSIM↑ FE↓

1st 37.7715 0.8288 0.7022
2nd ✓ 37.8570 0.8283 0.6389
3rd ✓ 37.7101 0.8286 0.7572
4th ✓ ✓ 37.8681 0.8301 0.7467
5th ✓ ✓ 37.8454 0.8302 0.6527
6th ✓ ✓ ✓ 37.8779 0.8311 0.5739

Table 4: Comparison of different methods with and without FCL under ×2 and ×4 ASR.

Scale Flux Loss EDSR [8] RealESRGAN [34] RCAN [32] SwinIR [26] PromptIR [27] HAT [29]

×2

PSNR↑ (w/o) 35.3816 36.8363 36.3703 37.2205 37.7715 37.2501
SSIM↑ (w/o) 0.8054 0.8225 0.8240 0.8286 0.8288 0.8295

Flux Error↓ (w/o) 1.4623 7.3632 0.9237 0.8130 0.7022 0.7636

PSNR↑ (w/) 35.6259 36.8647 37.6441 37.5098 37.8570 38.0880
SSIM↑ (w/) 0.8064 0.8222 0.8291 0.8280 0.8283 0.8320

Flux Error↓ (w/) 1.3334 6.4402 0.6631 0.7809 0.6389 0.6042

×4

PSNR↑ (w/o) 33.8736 34.3725 34.9823 34.6655 34.6726 34.9142
SSIM↑ (w/o) 0.7201 0.7223 0.7263 0.7258 0.7230 0.7276

Flux Error↓ (w/o) 1.3841 4.0782 1.0550 1.0657 1.0800 1.0256

PSNR↑ (w/) 34.2381 34.9243 34.2024 35.1610 35.0936 35.3156
SSIM↑ (w/) 0.7205 0.7234 0.7234 0.7265 0.7253 0.7280

Flux Error↓ (w/) 1.3659 1.1219 1.0755 1.0634 1.0227 1.0199

To further emphasize the impact of our flux consistency loss, we compute the Kullback-
Leibler (KL) [70] and Jensen-Shannon (JS) [71] divergence between the predicted and ground-truth
intensity distributions within selected regions. Notably, FISR—especially when trained with the flux
loss—achieves significantly lower divergence scores, reflecting improved flux preservation and more
physically accurate reconstructions.

5.5 Evaluation on Downstream Scientific Tasks

To address concerns about error propagation to scientific outputs, we evaluated our method on two
representative downstream tasks: stellar mass estimation and weak lensing shear measurement.

For stellar mass estimation, we applied a simplified photometric pipeline to the STAR test set,
converting predicted fluxes to magnitudes (mag = −2.5× log10(flux) + 25.0) and inferring stellar
masses using a constant mass-to-light ratio (M/L ≈ 3.0). As shown in Table 5, our FISR method
achieves the lowest predicted magnitude error (1.66× 10−7) alongside RealESRGAN (1.67× 10−7),

Divergence KL JS
Ours* 0.2890 0.2751
Ours 0.4273 0.3398
SwimIR* 0.3087 0.2882
SwimIR 0.3748 0.3166

Divergence KL JS
Ours* 0.3115 0.2655
Ours 0.4545 0.3042
SwimIR* 0.3404 0.2480
SwimIR 0.3415 0.2620

EDSR RCANN PromptIR SwimIRHR HAT Ours

EDSR* RCANN* PromptIR* SwimIR*Bicubic HAT* Ours*

EDSR* RCANN* PromptIR* SwimIR*Bicubic HAT* Ours*

EDSR RCANN PromptIR SwimIRHR HAT Ours

Figure 3: Visual comparison on two star field regions. Red boxes mark areas for computing KL and
JS divergence between predictions and ground truth. Models with (∗) are trained using FCL.
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Table 5: Evaluation on downstream scientific tasks. We report predicted magnitude error, stellar mass
MAE, and mean shear error for different methods. Lower values indicate better performance.

Method Pred. Mag. Error Mass MAE Mean Shear Error

Bicubic 3.23× 10−7 1.79× 10−7 2.10× 10−1

SwinIR 2.02× 10−7 5.19× 10−8 1.98× 10−1

EDSR 2.96× 10−7 1.37× 10−7 2.14× 10−1

RCAN 2.01× 10−7 5.36× 10−8 2.06× 10−1

HAT 1.67× 10−7 3.06× 10−8 1.88× 10−1

RealESRGAN 3.37× 10−7 3.99× 10−7 1.95× 10−1

FISR (Ours) 1.66× 10−7 2.81× 10−8 1.87× 10−1

and demonstrates the best stellar mass MAE (2.81×10−8), significantly outperforming other methods
including EDSR (1.37× 10−7) and Bicubic (1.79× 10−7).

For weak lensing shear measurement, a critical task for cosmological studies, we computed shear
components γ = γ1 + iγ2 from SEP-detected galaxy ellipses, where:

γ1 =
a2 − b2

a2 + b2
× cos(2θ) (6)

γ2 =
a2 − b2

a2 + b2
× sin(2θ) (7)

with semi-major axis a, semi-minor axis b, and position angle θ. We measured the mean shear
difference |γpred − γgt| between predictions and ground truth. The results in Table 5 show that
FISR achieves competitive shear preservation (1.87 × 10−1), comparable to the best-performing
HAT (1.88 × 10−1) and superior to methods like RCAN (2.14 × 10−1). These comprehensive
evaluations demonstrate that our flux-preserving approach maintains both photometric accuracy and
morphological fidelity essential for downstream scientific inference, validating its practical utility in
astronomical applications.

6 Conclusion

In this work, we present STAR, a large-scale, flux-consistent benchmark specifically designed for
astronomical super-resolution (ASR). Addressing critical limitations in prior datasets—such as flux
inconsistency, object-centric bias, and limited diversity—STAR captures complex star fields with
physically faithful flux distributions, cross-object interactions, and weak lensing effects. Alongside,
we introduce a novel evaluation metric, Flux Error (FE), and propose the Flux-Invariant Super-
Resolution (FISR) model, which incorporates flux-aware prompts and consistency loss. Extensive
experiments show that FISR not only achieves state-of-the-art reconstruction quality but also signifi-
cantly improves flux consistency.

7 Limitations and future work

While our study offers promising insights, it has a few limitations that merit further exploration.
First, our experiments are based on observations from a single telescope, the HST WFC/ACS
with the F814W filter, which may limit the generalizability of our findings to other instruments or
observational contexts. Additionally, although our network design performs well, it could benefit
from incorporating more domain-specific optimizations rooted in astronomical knowledge, such as
leveraging physical principles or astronomical priors to enhance performance in complex scenarios.
These areas present opportunities for future refinement. Looking forward, we aim to broaden the
applicability of our method by extending it to a wider array of advanced telescopes, such as the James
Webb Space Telescope (JWST) [72] or the upcoming Large Synoptic Survey Telescope (LSST) [73],
to explore its potential across diverse astronomical contexts. Through these efforts, we hope to make
modest contributions to the field of astronomical image processing, fostering the development of
more robust and adaptable tools for future discoveries.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract highlights the introduction of the STAR dataset, a Flux consis-
tency Loss, a novel Flux Consistency Score, and a flux-based model(Flux-Invariant Super
Resolution) alongside comprehensive baseline evaluations. These claims are well-aligned
with the paper’s contributions. See Chapter 1 for details.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]
Justification: After the main experiment and the ablation experiment, we recognize the
Limitations and future expectations of this article, and the specific detailed content is placed
in Appendix E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our contribution, although not theoretically proven, has been demonstrated
to be effective in the field of astronomical super-resolution through experimental results.
We believe this is sufficient to bring some valuable insights and inspirations to the field of
astronomical super-resolution.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]
Justification: In Section 5 of the experimental chapter, we specifically describe the environ-
ment and training parameters we use, and the specific network hyperparameters are placed
in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We host the model code and the benchmark construction process code on
GitHub and make it public.All model hyperparameters and training code are included in
Appendix E.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We placed the details of the experiment in the 5, and all the hyperparameters
of the models and the training code are placed in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: We acknowledge the absence of error bars or statistical significance metrics in
the current version. However, our results are averaged over a large dataset (55,000 HR-LR
pairs), we have included error bars in Appendix F to address this issue.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We introduce our experimental environment and computing resources in the
Experiments section. More specific details are provided in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We adhere to responsible data set practices, demonstrate integrity, do not pose
social risks, and meet the transparency objectives of this standard, but providing additional
reproducibility details can further enhance compliance.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes, the paper discusses potential positive societal impacts, like advancing
astronomical research, but notes minimal negative impacts due to its scientific focus.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: No, the paper does not describe safeguards for high-risk data or model release,
as the research focuses on astronomical imaging with minimal misuse risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, the paper credits HST WFC/ACS data creators, mentions public domain
usage, and respects terms; other assets’ licenses are not specified but assumed compliant.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No.

Guidelines:
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification:This study does not involve any crowdsourcing experiments or research with
human subjects. All experiments were conducted using publicly available datasets or
synthetic data without any human participant involvement.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: No human participants were involved in this study. The research is based
entirely on publicly available datasets or synthetic data and does not include any experiments
involving human subjects, personal data, or user interaction. Therefore, there were no
potential risks to participants, and Institutional Review Board (IRB) approval was not
required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [No]
Justification: The paper does not use Large Language Models (LLMs)
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Flux Consistency Downsampling Details

Computing image plane coordinates: For a given high-resolution (HR) image with the resolution
of H ×W and a downsampling rate s, we generate the size of the downsampled low-resolution (LR)
image, referred to as H

s × W
s . With the two sizes, we have specific coordinates of pixels in both LR

and HR images.

Transfer pixels to sky: For HR and IR pixel coordinates, we transfer them into the celestial coordinate
system as: (u, v) → (ra, dec), where (u, v) is a coordinate in the image plane while (ra, dec) is the
longitude and latitude coordinates of the Earth. Note that, each pixel is not an ideal point and actually
a rectangle on the image plane. After the mapping, it becomes a quadrilateral surface of the celestial
coordinate system. The physical meaning of this quadrilateral surface is the sky area covered by a
pixel, denoted as the receptive field here. For the i-th pixel of the LR image and the j-th pixel of the
HR image, we calculate and denote the area value of their receptive field as ALR

i and AHR
j .

The transformation process in the aforementioned process is implemented by the telescope calibration
information carried by the high-resolution (HR) image, which could be interpreted as camera intrinsic
and extrinsic parameters of the telescope.

Low-resolution image Flux Computation: The previous steps essentially transferred HR and LR
image plane grids into two surface meshes in the celestial coordinate system, as shown in Fig. 4.
Obviously, the average receptive field of the LR image is larger than the HR one because the LR
pixel corresponds to larger regions, leading to an LR pixel covers multiple HR pixels in the sky. To
compute the flux of the i-th LR pixel, we first identify the set of HR pixels So

i whose receptive fields
overlap with that of the i-th LR pixel, i.e., So

i = {j | AHR
j ∩ALR

i ̸= ∅}. This set represents all HR
pixels whose sky areas contribute to the i-th LR pixel’s flux. The flux of the i-th LR pixel, FLR

i , is
then computed by summing the weighted contributions from all overlapping HR pixels:

FLR
i =

∑
j∈So

i

wi,j · fHR
j , (8)

where fHR
j is the flux of the j-th HR pixel, and wi,j is the weight representing the fractional

contribution of the j-th HR pixel to the i-th LR pixel.

The weight wi,j is calculated as:

wi,j =
Ai,j

AHR
j

, (9)

where Ai,j is the overlapping sky area between the i-th LR pixel and the j-th HR pixel, representing
their shared quadrilateral patch in the celestial coordinate system, and AHR

j is the total sky area
covered by the j-th HR pixel’s receptive field. To better understand the role of this weight in flux
computation, we substitute wi,j into Equation (8), transforming the contribution term as follows. The
flux contribution from the j-th HR pixel to the i-th LR pixel is wi,j · fHR

j , where fHR
j is the flux of

the j-th HR pixel. Substituting wi,j =
Ai,j

AHR
j

into this term, we obtain:

wi,j · fHR
j =

(
Ai,j

AHR
j

)
· fHR

j = Ai,j ·
fHR
j

AHR
j

. (10)

Here,
fHR
j

AHR
j

represents the flux density of the j-th HR pixel, i.e., the photon count per unit sky area, as

recorded by the telescope’s CCD sensor over the receptive field area AHR
j . Thus, Ai,j ·

fHR
j

AHR
j

is the
flux contributed by the j-th HR pixel over the overlapping area Ai,j , ensuring that the contribution is
proportional to the shared sky area between the LR and HR pixels. This approach preserves the total
photon flux during downsampling, maintaining flux consistency across resolutions.

As shown in Fig. 5, we compare flux consistency downsampling with traditional bilinear interpolation.
It can be found that the result of Fig. 5 (a) is closer to the average flux of HR star sources, indicating
that flux consistency downsampling can better keep the original HR flux information. To further high-
light the differences between the two methods, we visualize their residuals in Fig. 5 (c). Noticeable
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Figure 4: Schematic diagram of the flux-consistent downsampling process. The workflow illustrates
the transformation of HR and LR image pixels into the celestial coordinate system, the computation
of overlapping sky regions between HR and LR receptive fields, and the flux calculation for LR pixels
using weighted contributions from overlapping HR pixels.

differences can be observed at the locations of stellar sources. The bilinear interpolation method
tends to cause flux reduction when handling bright targets such as stars, making it less suitable for
flux consistency astronomical applications.

B PSF Details

We simulate the imaging blur in the STAR dataset using two PSF models: the Gaussian PSF and the
Airy PSF [74], aiming to increase training data diversity. The Gaussian PSF is a simple model often
used to approximate blur in astronomical observations [75, 76]. In contrast, the Airy PSF captures
diffraction effects from a telescope’s circular aperture, making it suitable for space-based instruments
like HST [24].

In the Gaussian PSF and Airy PSF models, σ and r serve as adjustable parameters to control the
spread of the blur by modulating the energy dispersion of the filter. For instance, in the Gaussian PSF,
a larger σ leads to a less concentrated signal with greater energy spread across the filter, while in the
Airy PSF, r governs the radial extent of energy distribution due to diffraction, as defined below.

PSFGaussian(x, y) = exp

(
−x2 + y2

2σ2

)
, (11)

and

PSFAiry(r) =

[
2J1(kr)

kr

]2
. (12)

We define these parameters based on the telescope’s observed blur characteristics, following Schaw-
inski et al. [51], who used the observed blur to set the PSF parameters for a realistic simula-
tion of hardware-specific degradation effects. Accordingly, we set the Gaussian PSF parameter
σ ∈ [0.8,1.2] and the Airy PSF radius r ∈ [1.9,2.2] pixels based on the FWHM [60], which mea-
sures the blur width at half its peak intensity, to approximate the actual HST WFC/ACS F814W filter
observations where the blur is characterized by its FWHM. This enables effective super-resolution
training.

C Additional Experiments with Gaussian + Airy PSFs

The original submission focuses on experiments using Gaussian PSF data. Here, we further evaluate
the combination of Gaussian PSF and Airy PSF (Gaussian + Airy PSFs) and validate the effectiveness
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Figure 5: Comparison between downsampling methods. Each HR patch is shown alongside three
columns: (a) flux-consistent downsampling, (b) bilinear interpolation, and (c) their pixel-wise
difference. FM means flux mean.
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Table 6: Performance of different methods under ×2 super-resolution with Gaussian PSF and Airy
PSF on the STAR dataset. Metrics: PSNR↑, SSIM↑, Flux Error (FE)↓.

Metric Bicubic EDSR RCAN SwinIR FISR

PSNR 29.4434 35.7398 37.4639 37.1347 38.2678
SSIM 0.7125 0.8086 0.8277 0.8279 0.8334
FE 4.286 1.3249 0.7451 0.7593 0.5585

Table 7: Performance of different methods under ×2 super-resolution with Gaussian PSF and Airy
PSF on the STAR dataset (with and without FCL). Metrics: PSNR↑, SSIM↑, Flux Error (FE)↓.

Flux Loss Metric EDSR RCAN SwinIR

w/o
PSNR 35.7398 37.4639 37.1347
SSIM 0.8086 0.8277 0.8279
FE 1.3249 0.7451 0.7593

w/
PSNR 35.8921 37.8914 37.6049
SSIM 0.8092 0.8286 0.8281
FE 1.242 0.5914 0.6767

of Flux-Consistent Loss (FCL) in this setting. In this setting, each image is degraded by randomly
selecting either the Gaussian or Airy PSF with equal probability.

We compare the performance of different methods under ×2 super-resolution with Gaussian PSF and
Airy PSF on the STAR dataset, analyzing the results model-wise and loss-wise. Tab. 6 compares
the performance of all methods in this setting. FIRS surpasses baselines like SwinIR and RCAN,
achieving a 3.05% higher PSNR and 26.45% lower FE than SwinIR, demonstrating its superior ability
to recover fine stellar details and preserve flux accuracy in astronomical image super-resolution.
Additionally, Tab. 7 compares EDSR, RCAN, and SwinIR with and without FCL to focus on the
impact of FCL across baseline methods. For instance, SwinIR with FCL improves PSNR by 1.27%
and reduces FE by 10.88% compared to the version without FCL, while RCAN with FCL improves
PSNR by 1.14% and reduces FE by 20.63%, highlighting FCL’s role in enhancing image quality and
flux preservation.

D Additional visualizations

We present additional visualizations to demonstrate the effectiveness of our approach in star-field
super-resolution (ASR) tasks. Fig. 6 displays the ×2 super-resolution results for the Gaussian PSF
experiment, comparing baselines (EDSR, RCAN, PromptIR, SwinIR, HAT) against our FIRS model.
The visualizations reveal that FIRS consistently outperforms all baselines, achieving superior visual
quality with finer stellar details and sharper structures. To further quantify these improvements, we
compute the KL divergence and JS divergence between the intensity distributions of the predicted and
ground truth values in selected regions, following the experimental settings in the original submission.
The results show that FIRS significantly reduces distribution discrepancies compared to SwinIR and
HAT, confirming its superior capability in preserving stellar details and flux accuracy in ASR tasks.

E Hyperparameters Tuning

We tune the parameter λ to balance the Flux-Consistent Loss (FCL) and reconstruction loss in
our star-field super-resolution (ASR) model. We evaluate different λ values (0.1, 0.05, and 0.01)
under the ×2 Gaussian PSF + Airy PSF setting, with results shown in Tab. 17. The performance
metrics show that λ = 0.01 yields the best results, improving PSNR by 1.40% and reducing FE by
15.88% compared to λ = 0.1. These results indicate that a proper λ matters in the balance between
reconstruction loss and the Flux-Consistent Loss. Fortunately, 0.01 seems to perform well in most
cases.
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F Experimental setting/details

We ensure reproducibility by providing the experimental environment and computational resources.
Tab. 8 shows the environment configuration, including hardware and software details. Tab. 9 summa-
rizes the computational resources used for training. For detailed training settings and parameters of
each model, please see the code.

Table 8: Experimental Environment Setup.

Component Version

OS Ubuntu 20.04.5 LTS
Python 3.10.15
PyTorch 2.0.0
CUDA 11.8

Table 9: Computational Resources for Different Methods (Training Time in Hours).

Method Training Time (Hours)

EDSR 52
RCAN 40
Hat 70
SwinIR(light weight) 14
PromptIR 15
GAN 27
FISR (ours) 15

G Additional Experiments

To further validate the robustness and scientific utility of our proposed dataset and model, we con-
ducted a series of additional experiments in response to reviewer feedback. These experiments
evaluate the model’s generalization capabilities across different domains, its performance on down-
stream scientific tasks, its robustness to noise, and its computational efficiency.

G.1 Generalization and Robustness Analysis

Cross-Filter Generalization: To test the model’s performance on data from different instrumental
filters, we evaluated our F814W-trained model on test sets from the F606w and F435w filters of the
Hubble Space Telescope (HST). As shown in Tab. 10, while there is a performance drop as the filter
domain shifts further from the training domain (F814W), the model maintains strong performance,
demonstrating satisfactory generalization capabilities. The F606w filter, being spectrally closer to
F814W, yields better results than the more distant F435w filter, confirming that domain similarity
influences performance.

Table 10: Cross-filter generalization performance of the FISR model trained on the F814W filter.

Metric F435w F606w F814w (In-Domain)
PSNR 35.9192 36.3522 37.8779
SSIM 0.7305 0.7667 0.8311
Flux Error 0.9193 0.8242 0.5739

Robustness to Noise: We evaluated FISR’s robustness by introducing random Poisson noise to
each image during inference, simulating realistic observational noise. The results in Tab. 11 show
that FISR maintains its state-of-the-art performance, achieving the best results across all metrics
compared to other methods under noisy conditions.

Cross-Dataset Evaluation: Although direct evaluation is challenging due to differences in data
units (STAR uses scientific counts, while AstroSR uses RGB), we re-trained our FISR model on the

30



Divergence Bicubic EDSR* RCAN* PromptIR* HAT* SwimIR* Ours
KL↓ 1.5121 0.4602 0.4089 0.1142 0.0820 0.0745 0.0659
JS↓ 0.8705 0.2515 0.2570 0.1462 0.1294 0.1158 0.1117
- Bicubic EDSR RCANN PromptIR HAT SwimIR Ours

KL↓ / 0.8099 0.8981 0.1329 0.0911 0.1558 /
JS↓ / 0.5615 0.4569 0.1548 0.1392 0.1649 /

EDSR RCAN PromptIR SwimIRHR HAT

EDSR* RCAN* PromptIR* SwimIR*Bicubic HAT* Ours

Divergence Bicubic EDSR* RCAN* PromptIR* HAT* SwimIR* Ours
KL↓ 0.4348 0.9002 0.2087 0.1402 0.1306 0.1640 0.1148
JS↓ 0.3253 0.4143 0.2146 0.1757 0.1882 0.1915 0.1344
- Bicubic EDSR RCANN PromptIR HAT SwimIR Ours

KL↓ / 0.9500 0.3200 0.2716 0.1871 0.3018 /
JS↓ / 0.4459 0.2709 0.2212 0.2155 0.2588 /

EDSR RCAN PromptIR SwimIRHR HAT

EDSR* RCAN* PromptIR* SwimIR*Bicubic HAT* Ours

Divergence Bicubic EDSR* RCAN* PromptIR* HAT* SwimIR* Ours
KL↓ 0.2198 0.1478 0.1384 0.1183 0.1107 0.1091 0.1052
JS↓ 0.2023 0.1468 0.1306 0.1290 0.1247 0.1204 0.1180
- Bicubic EDSR RCANN PromptIR HAT SwimIR Ours

KL↓ / 0.1941 0.1579 0.1207 0.1413 0.1455 /
JS↓ / 0.1654 0.1476 0.1338 0.1312 0.1359 /

EDSR RCAN PromptIR SwimIRHR HAT

EDSR* RCAN* PromptIR* SwimIR*Bicubic HAT* Ours

Figure 6: We further demonstrate several sets of visualization results on the ×2 Gaussian PSF
experiment. Models with (*) are trained using FCL.
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Table 11: Performance comparison under Poisson noise injection during inference. Best results are in
bold.

Method Bicubic EDSR SwinIR RCAN HAT RealESRGAN FISR (Ours)
PSNR 28.9823 34.8191 36.3945 35.2918 36.8342 35.8098 36.7803
SSIM 0.6825 0.7684 0.7883 0.7848 0.7743 0.7852 0.7888
Flux Error 4.7889 1.5682 1.1433 1.1993 1.1943 6.9292 1.1025

AstroSR dataset. Tab. 12 demonstrates that our method outperforms the original baseline models
reported in the AstroSR paper, showcasing its architectural effectiveness on different data types.

Table 12: Performance comparison on the AstroSR dataset after re-training. Best results are in bold.

Method Bicubic EDSR RCAN ENLCA SRGAN FISR (Ours)
PSNR 17.7714 23.2168 23.6082 23.4267 23.0039 24.0211
SSIM 0.1686 0.3910 0.3966 0.3963 0.3854 0.4025
Flux Error 233.2564 50.5872 61.3863 59.1659 42.3078 33.2331

G.2 Evaluation on Downstream Scientific Tasks

To quantify the practical impact of our super-resolution model on real-world scientific analysis, we
evaluated its performance on four representative downstream astronomical tasks. These experiments
are designed to demonstrate that improvements in standard metrics like PSNR, SSIM, and our
proposed Flux Error (FE) directly translate to higher fidelity in scientific measurements. The
methodologies and results for these tasks are detailed below, with a final comparative summary in
Table 13.

G.3 Evaluation on Downstream Scientific Tasks

To quantify the practical impact of our super-resolution model on real-world scientific analysis, we
evaluated its performance on two representative downstream astronomical tasks. These experiments
are designed to demonstrate that improvements in standard metrics and our proposed Flux Error (FE)
directly translate to higher fidelity in scientific measurements. The methodologies and results for
these tasks are detailed below.

Object Detection Sensitivity: The ability to detect faint objects is fundamental to astronomical
surveys, determining the depth and completeness of celestial catalogs. An effective SR model should
enhance faint sources, thereby improving detection sensitivity. In our experiment, we performed
bipartite matching between sources detected in the predicted images and the ground-truth catalog,
with a match considered successful if the spatial distance was within 2 pixels. The sensitivity was
quantified using the Recall metric. Our FISR model achieves a high recall of 81.47%, indicating
strong performance in identifying celestial objects.

Distance Estimation: Accurately measuring the distances to celestial objects is a cornerstone of
cosmology, combining both object detection and precise photometry. To evaluate this, we used
the successfully matched object pairs from the detection task. We converted each object’s flux to
an apparent magnitude (m) and then applied the distance modulus formula, d = 10(m−M+5)/5, to
estimate the distance (d) in megaparsecs (MPC), assuming a constant absolute magnitude (M ) of
4.83 (typical for Sun-like stars). The accuracy was evaluated by the Mean Absolute Error (MAE)
between the predicted and ground-truth distances, with the results shown in Table 13.

Table 13: Evaluation on the downstream task of distance estimation. Lower values indicate better
performance. Best results are in bold.

Metric Bicubic SwinIR EDSR RCAN HAT R-ESRGAN FISR

Distance MAE (MPC) 6.82E+03 5.37E+03 6.44E+03 5.61E+03 4.44E+03 4.89E+03 4.12E+03
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H More Ablation Studies on FGG Module

We performed ablation studies to analyze the sensitivity of the Flux Guidance Generation (FGG)
module.

Kernel Choice in FGG: We tested alternative kernels (Airy, and a random mix of Gaussian/Airy) for
rendering the flux map. Tab. 14 shows that performance remains stable across different kernel choices,
suggesting that the module’s primary function is to provide a spatial prior for flux information, rather
than depending on a specific kernel formulation.

Table 14: Ablation study on the kernel choice within the FGG module.

Kernel Type PSNR SSIM Flux Error
Gaussian 37.8779 0.8311 0.5739
Airy 37.6988 0.8305 0.5664
Gaussian/Airy (Random) 37.8186 0.8311 0.5726

Sensitivity to Detection Errors: To assess FGG’s robustness, we introduced noisy detections by
lowering the source detection threshold, resulting in twice the number of sources, including many
false positives. As seen in Tab. 15, while performance degrades slightly, FISR remains robust and
achieves results comparable to the model trained with clean detections. This indicates that the model’s
performance does not solely depend on the precision of the FGG’s input.

Table 15: Performance of FISR with clean versus noisy source detections in the FGG module.

Detection Quality PSNR SSIM Flux Error
Clean Detections 37.8779 0.8311 0.5739
Noisy Detections 37.3176 0.8275 0.6872

I Computational Efficiency

We measured the single-image inference time for all compared methods. The results in Tab. 16 show
that FISR is computationally efficient, with an inference time comparable to other high-performing
transformer-based models like SwinIR.

Table 16: Inference time per image (in seconds) for various SR methods.

Method Bicubic EDSR SwinIR RCAN HAT RealESRGAN FISR (Ours)
Time (s) 0.0014 0.1908 0.1088 0.1237 0.6747 0.0995 0.1698

J Limitations and future work

While our study offers promising insights, it has a few limitations that merit further exploration.
First, our experiments are based on observations from a single telescope, the HST WFC/ACS
with the F814W filter, which may limit the generalizability of our findings to other instruments or
observational contexts. Additionally, although our network design performs well, it could benefit
from incorporating more domain-specific optimizations rooted in astronomical knowledge, such as
leveraging physical principles or astronomical priors to enhance performance in complex scenarios.
These areas present opportunities for future refinement. Looking forward, we aim to broaden the
applicability of our method by extending it to a wider array of advanced telescopes, such as the
James Webb Space Telescope (JWST) [72] or the upcoming Large Synoptic Survey Telescope
(LSST) [73], to explore its potential across diverse astronomical contexts. Furthermore, we plan
to enhance our network design by integrating more astronomy-driven optimizations, incorporating
physical knowledge and astronomical priors to better address challenges like crowded stellar regions
or variable noise conditions. Through these efforts, we hope to make modest contributions to the

33



field of astronomical image processing, fostering the development of more robust and adaptable tools
for future discoveries.

Table 17: Ablation study on the penalty factor λ (×2 on Gaussian PSF + Airy PSF).

FCL Weight λ PSNR↑ SSIM↑ FE↓
0.1 37.0843 0.8198 0.7842
0.05 37.2672 0.8252 0.7064
0.01 37.6049 0.8281 0.6767

K More Visualizations of the STAR Dataset

To further illustrate the unique characteristics and scale of the STAR benchmark, this section provides
additional visualizations of the source data. We present examples of the original, full-frame observa-
tional images from the Hubble Space Telescope (HST) WFC/ACS instrument, which constitute the
raw data prior to the patch subdivision process for model training 7.

These wide-field views underscore a core advantage of STAR over previous object-centric datasets.
Instead of focusing on isolated, cropped targets, our dataset provides a holistic view of extensive
celestial regions, preserving the crucial spatial context and inter-object relationships (e.g., cross-
object interaction, weak lensing). Furthermore, we showcase a gallery of selected image patches
to highlight the rich diversity within STAR 8. These examples span a wide range of astronomical
environments, from dense, crowded stellar fields and sparsely populated regions to complex nebulae
and fields containing multiple galaxies. Collectively, these visualizations reinforce the value of STAR
as a comprehensive and physically faithful benchmark for advancing astronomical super-resolution
research.

34



Galaxies

Nebula

Cross-object 
interaction

Dark Matter Halo

Weak Lensing 

Galaxies

Cross-Object 
Interaction

Figure 7: Examples of the original wide-field raw data from the HST WFC/ACS survey, which form
the basis of the STAR dataset.
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Figure 8: A selection of patches from the STAR dataset, showcasing its diversity. The examples
include crowded stellar fields, regions with interacting galaxies, and complex nebulae, demonstrating
the variety of astronomical scenes available for training robust models.
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