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Abstract

Sperm whales (Physeter macrocephalus) communicate using patterned click se-1

quences called codas. Whether there are any systematic patterns governing the2

structure of coda sequences, or how coda production influences group behavior,3

remain open questions. To answer these questions, we train neural sequence models4

(“sperm whale language models”) on vocalization and behavior data from a popu-5

lation of sperm whales in the eastern Caribbean. By systematically manipulating6

models’ training data and measuring changes in predictive power, we find that7

vocalizations exhibit order dependence and long-range dependencies on up to eight8

previous codas in an exchange. We additionally find that this structure encodes9

information about behavior: whales’ current behavioral context and future actions10

are predictable with high accuracy from coda sequences. The methods developed11

for relating vocalization to behavior are general, and offer a flexible framework12

for using language models to investigate the structure and information content of13

unknown communication systems.14

1 Introduction15

Communication is a key characteristic of intelligenceLieberman [1984], Hauser et al. [2002], Jack-16

endoff [2002]. In humans, language allows us to share knowledge, coordinate actions, and establish17

social structures. Recently, modern language models (LMs)—neural sequence predictors trained18

to model the probability distribution of natural language text—have advanced our understanding19

of how efficiency and learnability constraints shape human languages Wilcox et al. [2023], Kirov20

and Cotterell [2018], Steinert-Threlkeld and Szymanik [2019] as well as scientific understanding21

of a number of other biological systems Jumper et al. [2021], Rives et al. [2021]. Humans are not22

the only animals that communicate to coordinate behavior; non-human organisms produce and per-23

ceive communicative signals in very different ways from humans, and many animal communication24

systems remain incompletely understood. Can neural sequence models aid and guide the scientific25

characterization of animal communication as well?26

We use neural sequence models to characterize both the structure and information content of an27

animal communication system—specifically, to model communication and behavior in sperm whales28

(Physeter macrocephalus). Sperm whales exhibit a multi-level social structure Whitehead [2004],29

Cantor et al. [2015], Gero et al. [2016], coordinated group foraging and child-rearing behavior30

Marcoux et al. [2007], Cantor and Whitehead [2015], Whitehead and Rendell [2004], and a complex,31

socially learned communication system Watkins [1977], Weilgart and Whitehead [1993], Rendell32

and Whitehead [2003]. Sperm whale vocalizations consist of sequences of stereotyped, rhythmic33

click patterns called codas. Several recent studies have characterized codas’ internal structure Sharma34

et al. [2024], including with machine learning models Leitao et al. [2024], Beguš et al. [2023],35
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Goldwasser et al. [2023]. But the patterns in which codas are combined into sequences, and their role36

in coordinating group behavior, are still not understood.37

To obtain first answers to these questions, we train a collection of neural sequence models (“sperm38

whale language models”) on several years of recordings from a population of sperm whales in the39

eastern Caribbean, the EC1 clan. Models receive as input a “conversation history” (a sequence of40

vocalizations by one or more whales) and predict either the whales’ future vocalizations, present41

behavior, or future behavior. By systematically manipulating the data these models are trained on42

(e.g. by restricting the length of the conversation history they have access to, or masking specific43

acoustic features of individual codas), and measuring the impact of these manipulations on predictive44

power, we can identify specific features of vocalizations that are predictive of future vocalizations or45

behavior.46

We first show that vocal exchanges between sperm whales in our sample have complex internal47

structure: coda production exhibits long-range statistical dependencies, and is sensitive to the identity48

and ordering of the preceding 8 codas (up to 30 seconds in the past)—including not only codas49

produced by the vocalizing whale, but also those produced by conspecifics. Next, we show that50

these exchanges contain information about behavior: sequence models can predict both whales’51

present behavioral context and future actions from their vocalizations alone. By inspecting models’52

predictions, we identify a specific, multi-coda motif that is predictive of future diving when made53

by all whales present in an exchange. While past work has found specific individual codas that54

are predictably associated with (current) behavior Frantzis and Alexiadou [2008], these results55

provide the first evidence that some sperm whale vocalizations exhibit long-range structure above56

the single-coda level, and the first evidence that this structure encodes information about future57

behavior. As recently highlighted by Rutz et al. Rutz et al. [2023], machine learning models hold58

great promise for advancing scientific understanding of communication systems across the tree of59

life, and the approach to sequence-model-guided discovery we present here can serve as a precursor60

to interactive playback experiments by enabling offline identification of informative features and61

predictive relationships—offering a flexible framework for using the tools of artificial intelligence to62

study complex biological systems.63

2 Method64

Using the Dominica Sperm Whale66 Project dataset (see supplementary for details), we train a neural65

sequence model to predict codas and behaviors from preceding coda sequences. We then examine the66

behavior of this model to determine what codas and behaviors are predictable and what features of67

vocalizations support these predictions.68

In this paper, we are specifically concerned with sequence models parameterized by deep neural69

networks, which encode and then predict by first embedding input data in a high-dimensional vector70

space, then applying alternating linear and non-linear transformations to these token representations71

mapping them to a distribution over possible outputs. The parameters of the neural network are72

learned from data as described below. We train two families of neural sequence models, one of which73

predicts future coda production, and the other of which predicts a vocalizing whale’s present or future74

behavior given coda sequences. We begin by formally defining these networks and their training75

objective, then describe how they can be used to analyze the structure and information content of76

sperm whale vocalizations.77

Model training and evaluation: Our dataset (denoted D) comprises a sequence of coda exchanges78

(each denoted ei), each of which in turn comprises a sequence of codas (cij), where cij is the jth79

coda in the ith exchange. We ‘tokenize’ call sequences by assigning every coda a discrete identifier80

that captures the four defining coda features (rhythm, tempo, rubato, and ornamentation) previously81

described by Sharma et al. Sharma et al. [2023], as well as the time elapsed since the preceding coda82

in the exchange, and the identity of the vocalizing whale. Each exchange ei also takes place in a83

specific behavioral context (e.g. the beginning of a foraging dive or a period of socialization near the84

surface of the water; see Fig. 3). We denote by bi the behavioral context for the exchange ei. Refer to85

Section 1.1 in the supplementary material for additional details on tokenization.86

For each prediction task, we construct an encoder–decoder LSTM Hochreiter and Schmidhuber87

[1997], a type of recurrent neural network, that maps from a sequence of input codas to a distribution88
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over next codas or behavior labels. To produce an accurate predictor, we train the network to imitate89

real coda sequences.90

To do so, we first divide the dataset D into a training set Dtrain and a test set Dtest. When91

training models for coda prediction tasks, we choose parameters to maximize the log-likelihood92 ∑|Dtrain|
i=1

∑|ei|
j=1 log p(c

i
j | . . . , cij−2, c

i
j−1; θ), where p(y | x; θ) denotes the probability that the LSTM93

with parameters θ assigns to the output y given the input x. Intuitively, this choice of θ encourages94

the model to assign a high probability to sequences that appeared in the training data and a low95

probability to all other sequences. When training models for behavior prediction, we optimize96 ∑|Dtrain|
i=1

∑|ei|
j=1 log p(bi or bi+1 | . . . , cij−2, c

i
j−1), which encourages the model to assign high proba-97

bility to the true behavioral context of training vocalizations. As described below, our experiments98

vary both the size of the context window and the features used to distinguish input codas.99

As is standard when studying neural sequence models, we evaluate coda-prediction models according100

to their perplexity exp{− 1
N (

∑|Dtest|
i=1

∑|ei|
j=1 log p(c

i
j | . . . , cij−2, c

i
j−1)}, where N denotes the total101

number of codas in Dtest. Perplexity is simply the exponentiated average log-likelihood per token.102

Example predictions are shown in Fig. 2E. We evaluate behavior-prediction models according to their103

accuracy (whether the behavior assigned the highest probability matches the ground-truth behavior in104

the dataset). Averages for both evaluation metrics are computed over the full DSWP dataset using105

k-fold cross-validation (k = 10). Each cross-validation split holds out recordings from a distinct day106

for evaluation, and trains a sequence model on the remaining days, ensuring that models are evaluated107

on their ability to extrapolate to novel interactions. Refer to Section 1.2 in the supplementary materials108

for additional training details.109

Experimental method: To understand what features of coda sequences contain information about110

future vocalizations or behavior, we repeat the training procedure described above while systematically111

varying the information available to the model. For example, to determine whether the next coda112

choice is solely influenced by the single preceding coda, we train two models, one of which conditions113

on a sequence of n > 1 input codas cj−n, . . . , cj−2, cj−1, and the other of which conditions on114

only the most recent coda cj−1. If these two models exhibit similar perplexity on a held-out set, we115

conclude that longer contexts contain no additional information that is usable for prediction; if the116

long-context model performs better, we conclude that there is usable information in codas beyond the117

most recent. Formally, this procedure may be interpreted as measuring the transfer entropy Schreiber118

[2000] or V-information O’Connor and Andreas [2021] from the context to the next coda.119

This same methodology can be used to evaluate the informativeness of individual features of codas;120

for example, the “rhythm” feature described by Sharma et al. Sharma et al. [2023]. To do so, we train121

one baseline model on full coda sequences as above, and one in which each input coda’s identity is122

determined only by its tempo, rubato, and ornamentation features. For both models, we continue to123

identify output codas as before with all four features (to ensure predictions between the two models124

are directly comparable). If the second, “ablated” model produces less accurate predictions, we may125

conclude that the rhythm feature contains information useful for prediction.126

Importantly, this method for quantifying the informativeness of features is self-supervised: it requires127

only communication (or communication and behavior) data, without additional labels or interventions128

from researchers. Below, we use it to identify aspects of sperm whale vocalizations that carry129

information about future vocalizations, as well as current and future behavior.130

Results and Discussion131

We first use neural sequence models to study the internal structure of coda sequences. To do so, we132

train next-coda prediction models while removing various sources of information from the input and133

measuring the effect on predictivity. Results are shown in Fig. 2.134

Vocalizations exhibit long-range dependencies and order-sensitivity135

First, we investigate the effect of communicative context by studying how coda sequencing influences136

call production. As motivation, human languages exhibit complex structure in which words and137

morphemes must be combined and ordered in specific patterns to convey precise meanings: the138

sentence The dog in the park was playing is meaningful, while the sentence Dog playing park in139
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the the was is not. Moreover, natural languages exhibit non-local statistical dependencies: if dog140

were replaced by dogs, then was would need to be replaced by were for the sentence to remain141

grammatical, even though these words are not adjacent to each other in the surface order of the142

sentence. Sequence-level structure is by no means unique to humans: past studies have shown143

that songbirds Searcy et al. [2022], Morita et al. [2020], humpback whales Allen et al. [2019], and144

primates Inoue et al. [2020], Clarke et al. [2006], Leroux et al. [2021] also produce vocal sequences145

that exhibit statistical regularities over long distances.146

In Fig. 2B(i), we evaluate the informativeness of call order. We hold the context window fixed at the147

past two codas as well as a longer context of eight codas and train LMs on versions of the data in148

which these input codas arrive in (1) their natural order, or (2) are replaced with a uniformly random149

permutation of the input. In both cases, models are trained to predict future calls in their natural150

order. Removing order information from inputs increases perplexity (i.e. decreases predictivity) by151

up to 22.7%, indicating that ordering information is crucial for predicting future calls (Wilcoxon152

Sign-Ranked Test, sum of ranks = 55, p = 0.001).153

In Fig. 2B(ii), we evaluate the informativeness of context length by varying the number of preceding154

codas available to the LM during training and prediction. Short contexts (containing 6 or fewer155

preceding codas) substantially reduce the predictability of future codas (by up to 20.6%) relative156

to long contexts (Wilcoxon Sign-Ranked Test, sum of ranks = 54, p = 0.002). Together with the157

ordering information, these results indicate that the patterns governing call production depend on the158

ordering of a large number of preceding calls. The sperm whale communication system is sensitive159

to call order and exhibits statistical dependencies across calls separated by as much as 30 seconds (a160

typical duration for an 8-coda sequence).161

Predicting vocalizations requires complex models and fine-grained coda representations162

Having shown that sperm whale call production is sensitive to call history and call order, we next163

investigate which features within each individual call influence call production, and how expressive164

sequence models must be to capture this influence.165

Past work Sharma et al. [2023] previously proposed to analyze codas as a combination of four features166

termed rhythm, tempo, rubato, and ornamentation. In our first experiment, we evaluate which of these167

features are needed to predict future vocalizations. To do so, we systematically ablate information168

about these features (one at a time) from the input, while leaving the model’s output space unchanged.169

For example, to evaluate the role of the rhythm feature, we assign the same input token identifier170

to all codas that differ only in their rhythm type: for example, 4R/5 (where 4R denotes the rhythm171

category and 5 denotes the tempo category), 5R/5 and 1+1+3/5 codas are all mapped to the same172

input token ID. However, output coda IDs are kept unchanged to ensure all models make predictions173

over the same set of possible output tokens. We then compare the perplexity of this model to models174

with access to all features. If removing rhythm information from the input increases perplexity,175

we may conclude that this feature carries information about future vocalizations. Results of this176

experiment for rhythm and tempo, are shown in Fig. 2C. It can be seen that, when considering a177

communicative context of only two codas, both features are predictive. Interestingly, with longer178

contexts, ablating the rhythm feature no longer meaningfully alters predictivity, indicating that it179

may be somewhat redundant with information conveyed by changes in the other three features over180

multiple time steps. Corresponding experiments for ornamentation and rubato are provided in Section181

1.4 in the supplementary material.182

The preceding experiments have all used a specific recurrent neural sequence model for prediction.183

Our final coda prediction experiments evaluate the role that the choice of sequence model plays in184

these findings. To do so, we compare the predictive accuracy of the model in Fig. 2D with four185

other neural and non-neural sequence models: (a) a linear model in which the input sequence is186

represented by concatenating indicator features for each input coda in order, then mapped directly to187

a distribution over next codas, (b) a multi-layer perceptron which uses the same input representation188

as the linear model, but passes these inputs through a neural network with an additional hidden layer,189

(c) an n-gram model which predicts next items by counting empirical frequencies of different input190

coda sequences, and (d) a LSTM model with attention, which augments the sequence-to-sequence191

LSTM model with a single attention head, as in a pointer-generator network See et al. [2017]. See192

Section 1.3 in the supplementary materials for implementation details of all models. Results are193

shown in Fig. 2D: expressive models with explicit sequential structure predict the next call in a194
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sequence more accurately. Surprisingly, n-gram models perform nearly as well as recurrent models,195

while models based on a (fixed, non-recurrent) input feature representation obtain significantly worse196

perplexities. The addition of an attention mechanism does not substantially alter predictivity. These197

results show that vocalizations can be predicted accurately by a range of learned sequence models,198

but that recurrent neural models enjoy a slight advantage over their classical counterparts.199

Current and future diving behavior are predictable from vocalizations alone200

We next apply neural sequence models to predict not vocalizations, but behavior. When not floating201

on the surface of the water, sperm whales in the Eastern Caribbean community alternate between202

three high-level behavioral states during their active period: conducting deep foraging dives (at203

depths of over 600 meters), shallow dives (at depths of less than 200 meters), and sleep (during204

which whales are perpendicular to the surface of the water at depths of less than 100 meters). These205

behavioral states can be distinguished using accelerometry data that is captured and is aligned to206

acoustic data captured by the tags. While past work has found that some individual codas are207

predictably associated with whales’ current behavioral state Frantzis and Alexiadou [2008], the208

question of whether vocalizalizations also carry information about future behaviors has remained209

open for decades.210

Using accelerometry data, we automatically annotated the DSWP dataset with the behaviors that211

accompany vocalizations. These annotations are shown in Fig. 3A: we split foraging dives into their212

descent and ascent phases, and additionally mark periods of sleep and shallow dives. See Tab. 1 in the213

supplementary materials for definitions of the behavioral phases and Section 2.1 in the supplementary214

materials for details of the annotation procedure. Using these annotations, we then train sequence215

models with the structure described in Fig. 3B(i) and Fig. 3C(i) to perform two prediction tasks. We216

first predict the current behavioral state (i.e. the state of the whale at the moment a particular coda was217

produced). Because no vocalization occurs during sleep, this involves discriminating between three218

states: the descent and ascent phases of foraging dives, along with shallow dives. We additionally219

also predict the future behavioral state of the vocalizing whale. We train a model to predict the tagged220

whale’s next action after the call sequence is produced: whether it will be a deep foraging dive or221

some other behavior (e.g. another shallow dive or sleep).222

Results for both prediction tasks are shown in Fig. 3B(ii, iii) and C(ii, iii). We evaluate on balanced223

test test set containing equal portions of the three current-behavior and two future-behavior labels. It224

can be seen that, for both the present and future prediction tasks, a neural sequence model trained to225

predict behavior from vocalizations can do so non-trivially, obtaining 72.8% accuracy on the current226

behavior prediction task (Wilcoxon Sign-Ranked Test, sum of ranks = 54, p = 0.002) and 86.4%227

accuracy on the future behavior prediction task (Wilcoxon Sign-Ranked Test, sum of ranks = 55, p228

= 0.001), compared to a random baseline at 33.3% and 50% for the tasks respectively.229

Behavior prediction is possible from coda sequences, but not isolated codas230

As in Fig. 3B(iv) and Fig. 3C(iv), we conclude by evaluating what aspects of whales’ vocalizations231

are necessary for accurate behavior prediction. We first evaluate coda-level features by training232

predictors on rhythm features or tempo features alone. As can be seen in Fig. 3C(ii), tempo features233

alone suffice to match the accuracy of the full model at both behavior prediction tasks, while rhythm234

features alone provide reduced (but still non-trivial) predictive accuracy. This demonstrates that235

specific combinations of rhythm and tempo are uniquely produced before and during foraging dives.236

In the future behavior prediction task, these results are partially explained by a single coda type237

that individually predicts future diving behavior. In Fig. 3B(iv), it can be seen that most pre-dive238

calls, i.e. calls produced within 15 minutes before the onset of a foraging dive, contain 1+1+3/5239

codas (where 1+1+3 denotes the rhythm category and 5 denotes the tempo category), while these are240

comparatively infrequent in contexts that are not followed by a dive. In fact, considering only the241

subset of exchanges from Fig. 3B(iv) in which all calls (from both the tagged whale and conspecifics)242

are of the long 1+1+3 type, we find that 67.4% of these exchanges are followed by a dive, while only243

19.6% of other exchanges are followed by a dive (Fisher’s exact test (two-sided), odds ratio: 8.94,244

p = 8.2e−7).245

Conversely, for the task of predicting the whales’ current rather than future behavior, we find that246

single coda types are not strongly predictive of behavioral context, i.e., ascent, descent and shallow247
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dives: when limiting the number of preceding codas available to the model, as in Fig. 3D (left),248

accuracy on this task is substantially degraded relative to performance with long input sequences249

(of seven or more codas). This result indicates distinctive sequences of codas discriminate different250

behavioral contexts from each other. This pattern may again be seen visually: in Fig. 3D (left), we251

embed all codas from our dataset in two dimensions using t-SNE, then draw lines connecting codas252

produced sequentially in different behavioral contexts. Each context exhibits a distinctive sequence of253

coda transitions, even though some individual coda types are produced in multiple contexts. In some254

cases, these coda sequences are reproduced identically on different days and by different individuals255

when the same behavior occurs. If codas are taken to be the atomic units of the communication256

system, this finding may be interpreted as revealing a kind of “behavior-dependent syntax” governing257

coda production (analogous to that observed in house finches Ciaburri and Williams [2019]).258

Concluding Remarks259

Machine learning offers promising directions for advancing our understanding the complex com-260

munication systems of sperm whales. We have shown that the neural sequence models can identify261

novel structure within vocalizations produced by sperm whales in the EC1 clan, predict likely future262

vocalizations, and in some cases link vocalization to behavior. A major challenge in studying an263

animal communication system is simply identifying, from within an enormous hypothesis space,264

which features of the system are likely to be information-carrying, and how these features relate to265

behavior. Our results show that neural sequence models for animal communication, analogous to266

language models for human languages, can play a key role in meeting these challenges.267
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Figure 3: Predicting behavior from Vocalizations. A shows depth profile of a tagged whale and the
corresponding behavioral states of the whale across the period depicted. B (i) depicts a neural sequence model
trained to predict the future diving behavior of the whale based on its current sequence of calls. (ii) The
model predicts the future behavioral state of the whale correctly 86.4% of the time, significantly better than
random-chance baseline of 50%. The sequence of durations of the calls in the sequence is most informative of
the next state. (iii) shows the confusion matrix evaluating the model’s performance on the test set over different
classes. (iv) Examples of pre-dive codas C (i) shows model trained to predict the current state of the whale
given a sequence of calls. (ii) The model predicts the current state with an accuracy of 72.8% accuracy, again
significantly greater than a chance baseline at 33%. Here too we see that duration information is independently
informative about current behavior. (iii) Confusion matrix for the task of current state prediction. (iv) Sample
calls for different behavioral states. D (Left) Models with a larger input context predict the current behavioral
state of the whale better. (Right) By embedding codas in two dimensions using t-SNE, and connecting codas
produced during the same exchange, we observe characteristic sequences of codas associated with different
behavioral states, even when some of the constituent codas in these sequences recur across contexts. For B, C,
and D, Cousineau–Morey error bars are plotted; see manuscript for statistical tests.
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A Sperm Whale Language Model364

A.1 Tokenization scheme365

In natural language processing, tokenization refers to the process of representing a text corpus in terms366

of a finite collection of atomic text units called tokens. To build a sequence model of whale exchanges,367

we apply an analogous tokenization procedure to represent call sequences in terms of a finite set368

of atomic elements. Following the phonetic alphabet features defined by Sharma et al. [2024], we369

represent each coda using rhythm, tempo, rubato, and ornamentation (see Table 1 for definitions). Past370

work identifies 18 rhythm types, 5 tempo types, 3 rubato types, a binary ornamentation feature. To371

accurately model the structure of whale exchanges, our tokenization scheme also includes information372

about turn-taking behaviors, which account for speaker changes and the timing of calls. There are373

three types of turn-taking: 1) Self-response: A whale follows up its own call after a pause. 2)374

Response by another whale: A different whale responds after a pause. 3) Overlapping call: A whale375

produces a call that overlaps with another’s. Each unique combination of rhythm, tempo, rubato,376

ornament, and turn-taking behavior is assigned a unique token. Not all possible combinations are377

realized across different data splits. Any combination not present in the training split but appearing in378

the test split is mapped to the same <unk> (unknown) token.379

A.2 Details on cross-validation380

To ensure robust performance estimates, we conduct each experiment on 10 different dataset splits. In381

each split, whale calls from a single day are held out for testing, while recordings from the remaining382

days form the training and validation set. There is no overlap in days between the training and test383

recordings in any split. The size of the train-val-test datasets is different for different splits of the384

dataset. This dataset splitting ensures we measure the model’s ability to generalize to exchanges385

from a new day. Due to variability in exchanges across days, the model’s performance varies across386

different splits.387
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Figure 4: Schematic of our method: Our proposed approach uses sequence models to test hypotheses
about the information content and structure of whale calls. Here, we illustrate our method with
an example of verifying if rhythm impacts the prediction of future calls. Two models, one with
information about rhythm in its input and the other without, are trained and then tested to predict
all the call features i.e., the same output. If the model without information of the rubato loses
predictive power on the test set, then we reject the null hypothesis “H0: Coda rhythm does not
contain information about future calls” in favour of the alternate hypothesis.
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A.3 Architectural details388

To evaluate how expressive sequence models need to be to capture the long-range dependencies and389

structure of whale calls, we train a collection of models with different inductive biases. Each model390

is trained on the same input sequence length (sequence length of 6) and optimized for the same391

objective: predicting the next call. We outline the architectural details of the models below.392

n-gram model: An n-gram model is a probabilistic language model that predicts the probability393

of the next item in a sequence based on the previous n − 1 items. This is done by computing394

frequency-based estimates of the conditional probability of the next token given the previous n− 1395

tokens on the training set.396

The paper uses the implementation of the kenLM repository for training the n-gram models ? with its397

default settings. Like with any count-based model, one challenge with an n-gram model is modeling398

the probability of occurrence of unseen n-grams. To obtain better probability estimates for unseen and399

less frequent n-grams, Kneser-Ney smoothing is used. Kneser-Ney smoothing starts by discounting400

from the counts of observed n-grams and redistributes the probability mass to better handle rare and401

unseen n-grams. Further, the n-gram model is discounted with backoff penalties. Backoff penalties in402

n-gram models adjust probability estimates when the model has to rely on lower-order n-grams due to403

the absence of higher-order ones. These penalties help balance the model’s reliance on different levels404

of context, ensuring more accurate and realistic probability estimates across different sequences.405

Linear model: A linear model assumes that the output can be expressed as a linear combination of406

the input features. Here we learn a linear model that outputs the probability distribution over the next407

token given the previous 6 calls. The number of parameters in this model is a product of the context408

window times the output.409

Multi-layer perceptron: A multi-layer perceptron model contains multiple linear layer layers410

arranged in a feed-forward fashion with non-linearities between the layers. For this experiment we411

train a two-layer neural network with a hidden dimension of 64 with a ReLU non-linearity in between.412

LSTM: An LSTM (Long Short-Term Memory) is a type of recurrent neural network (RNN)413

architecture. The LSTM cell contains a more complex unit structure with a specialized gating414

mechanism that regulates the flow of information in the network, thereby giving it a much more415

powerful inductive bias to effectively model sequential data. For our experiments, we use an encoder-416

decoder LSTM, where the encoder LSTM encodes the input sequence into a context vector and the417

decoder LSTM decodes this vector into an output sequence. We use a bi-directional encoder LSTM418

cell and a uni-directional decoder LSTM cell, both with 64-dimensional hidden state.419

LSTM with attention: An LSTM with Attention is an enhanced version of the Long Short-Term420

Memory (LSTM) architecture. It incorporates an attention mechanism to improve the model’s ability421

to focus on specific parts of the input sequence when generating each element of the output sequence.422

This architecture is especially useful for tasks when certain parts of the input sequence are more423

relevant to the output than others. We modify the architecture of the encoder-decoder LSTM to add424

to this computation.425

Implementational details: The parameters of the model were trained with stochastic gradient426

descent (SGD) using the Adam optimizer with a learning rate of 1e−4, weight decay of 1e−5 and427

batch size of 32. We early-stopped the training of the models based on their performance on a428

held-out validation set to prevent the models from over-fitting on the small training sets. This usually429

resulted in the models being trained up to 50 epochs in practice.430

A.4 Additional Ablations: Rubato and Ornamentation431

Ablating ornamentation and rubato information does not affect the model’s ability to predict the next432

call with statistical significance. This may be partly because ornaments are rare, making up only 4%433

of the dataset, and the dataset is too small to capture the precise dynamics of changing rubato.434
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B Behavior Prediction435

B.1 Details on annotating behavior phases436

The different behavioral phases—sleep, shallow dives, and foraging dives—are annotated both437

automatically and with input from expert humans. Below we outline the procedure used to identify438

each of the different behavioral phases.439

Foraging dives: The start and end points of a whale’s foraging dives are moments when the whale440

starts a sharp descent into the ocean to forage and when the whale first arrives at the ocean’s surface441

by ascending post-foraging. These are automatically detected using the accelerometer and depth data442

from the DTAG. Foraging dives typically show a steep, uninterrupted descent and ascent profile. A443

foraging dive is identified when the rate of depth change is nearly constant before and after the start444

and end points and when the whale reaches a depth of over 500m. This method correctly identifies all445

the dive start and end points from the collected DTAG data, which are thereafter verified by a human446

for accuracy.447

Figure 5: Pitch and depth data for shallow and sleep dives: Shallow and sleep dives are identified
using motion data collected using the DTAG. Sperm whale sleep dives have a characteristic change
in the depth and pitch data (indicated by the red box) where the whale goes from a position parallel
to the surface of the ocean to one where it becomes perpendicular to the ocean.

Shallow and sleep dives: Sleep and shallow dives are identified using accelerometer data and are448

then annotated and verified by expert human annotators. Examples of the depth and accelerometer449

data for these dives are shown in Fig. 5. Sleep dives exhibit a distinctive change in the accelerometer450

reading, indicating the whale’s shift from a horizontal position, parallel to the ocean’s surface, to a451

position that is vertical and perpendicular to the ocean’s surface. This is highlighted in Fig. 5. In452

contrast, no such change in the accelerometer reading is observed in other shallow dives. A dive is453

classified as shallow if the maximum depth of the whale in the course of the dive is less than 100m.454
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B.2 Behavioral-context baselines for future-behavior prediction.455

Our main experiments show that vocalizations contain information about both vocalizing whales’456

present and future behavior. However, these two prediction targets are correlated with each other: for457

example, 83% of foraging dives are followed by another foraging dive, rather than a shallow dives.458

Thus it is possible to obtain non-trivial accuracy at the future-behavior-prediction task using only459

information about a whale’s current state, and not its vocalizations.460

In this section, we present an additional analysis showing that these behavioral correlations do not461

fully explain model accuracy at the future prediction task: that is, vocalizations contain information462

about future behavior even after accounting for the information they contain about present behavior.463

In particular, we compare the difference in the performance of the future-behavior-prediction model464

with a model that predicts the most common next-turn behavior conditioned on a whale’s current465

behavioral state as predicted by the current-behavior-prediction model. Across the different cross-466

validation splits, the average difference in the performance between the future-behavior-prediction467

model and this suggested baseline model is 21.92% (test: Wilcoxon Sign-Ranked Test, sum of ranks468

= 36, p-value = 0.006). This indicates that future-behavior predictions are not fully explained by469

correlations between future and current behaviors: some vocalization features are directly predictive470

of future behavior.471

Interestingly, the characteristic “pre-dive” calls identified in the main text are produced not only472

during the ascent phase but also at the end of social exchanges produced at the surface; however, not473

all calls produced during ascent follow this “pre-dive” pattern.474

B.3 Dataset475

We study coda exchanges in a manually annotated coda dataset from The Dominica Sperm Whale476

Project (DSWP). This includes recordings of the Eastern Caribbean clan (EC1) collected between477

2014 and 2018 from bio-logging tags (Dtags, Johnson and Tyack [2003]) deployed on known478

individuals off the island of Dominica. This dataset contains manually annotated coda clicks and479

extracted inter-click intervals comprising 3948 codas Sharma et al. [2023]. The dataset also contains480

the accelerometer, gyroscope, and magnetometer readings from the tags. This allows us to compute481

the position of the tagged whale over time. The EC1 clan has a membership of fewer than 300482

individuals Vachon et al. [2024]. A total of 41 tags were deployed on 25 different individuals in 11483

different social units. We conservatively estimate that at least 60 distinct whales are recorded in our484

dataset. An example sequence of coda exchanges between two whales and the depth profile of the485

tagged whale is shown in Fig. 1A.486
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Notation Description
Coda: A short burst of clicks with varying inter-click intervals generally less than

two seconds in duration.
Inter Click Interval (ICI): The time difference between two consecutive clicks within a coda.
Coda duration: The sum of a coda’s absolute ICIs.
Rhythm type: The discrete category a coda is assigned to based on its characteristic

sequence of standardized ICIs.
Tempo type: The discrete category a coda is assigned to based on its characteristic

duration.
Exchange / Chorus: Period of time where codas are made by more than a single whale (as in

Ravignani et al. [2014]).
Single-Whale Call Se-
quence:

A sequence of calls made by a given whale where every consecutive pair
of calls occur within 8 seconds (twice the average response time) of each
other.

Turn-taking: An exchange of codas involving alternating coda production. Also referred
to as ‘adjacent’ codas, these are defined as next-in-sequence codas whose
onset occurred within two seconds, but after the termination, of the initial
coda (as in Schulz et al. [2008]).

Overlapping Codas: An exchange of codas such that the next-in-sequence coda’s onset occurs
after the onset, but before the termination, of the previous coda (as in Schulz
et al. [2008]).

Ornament: “Extra click” appended to the end of a coda in a group of shorter codas. (For
further details on the identification criterion, see Ornamentation section in
the manuscript.)

Rubato: Gradual variation in duration across adjacent codas made by the same whale
within the same rhythm and tempo type.

Descent: The initial period of a foraging dive where there is a steady increase in the
depth the whale is located at. This is the period of time starting where the
whale is at the surface of the water and makes a plunge to start its foraging
dive to the point it reaches a depth at which it can start feeding.

Ascent: The terminal period of a foraging dive where there is a steady decrease in
the depth the whale is located at. This is the time period starting where
the whale is returning from feeding in deep waters to the point of time it
reaches the surface of the water.

Social (Socializing on
the surface):

The period of time when multiple whales remain at the surface or make
shallow dives (< 300 meters).

Foraging dives: Deep dives typically involve whales diving to a depth of over four hundred
meters. Deep dives almost always have buzzes which are evidence of
foraging.

Pre-dive calls: The set of codas made fifteen minutes less before the onet of a foraging
dive.

Behavioral Contexts: Groups of behaviors exhibited by whales motivated by a set of goals (diving,
socializing, pre-dive etc)

Context specific calls: The set of calls prototypically associated with a unique behavioral context.
Table 1: Glossary: Definitions of previously used and newly introduced terminology.
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Notation Description
Language: Any possible set of strings over some (usually finite) alphabet of words.

Berwick et al. [2011]
Syntax: The rules for arranging items (sounds, words, word parts or phrases) into

their possible permissible combinations in a language. Berwick et al. [2011]
Likelihood: Likelihood is a statistical concept that measures how probable a particular

set of observations is, given a specific model and its parameters.
Neural network: A neural network is a computational model consisting of interconnected

nodes (neurons) organized in layers. It is designed to recognize patterns
and learn from data through training by adjusting the connections (weights)
between nodes to improve predictions or classifications.

Multi-Layer Perceptron: A multi-layer perceptron (MLP) is a type of neural network consisting of
an input layer, one or more hidden layers, and an output layer. Each layer
is made up of neurons that use activation functions to process inputs and
produce outputs.

Neural Sequence Model: A neural sequence model is a type of machine learning model designed
to handle sequential data, where the order of the data points is significant.
Sequence models, such as recurrent neural networks (RNNs) and long short-
term memory networks (LSTMs), are used to predict the next item in a
sequence or to understand dependencies within the sequence.

Sequence to sequence
models:

A sequence-to-sequence (seq2seq) model is a type of neural network archi-
tecture designed to transform one sequence into another. It consists of an
encoder that processes the input sequence and a decoder that generates the
output sequence.

Language Model: A language model is a type of sequence model typically trained on the next
token prediction object. It learns the probabilities of sequences of tokens,
enabling it to generate coherent text, autocomplete sentences, or predict the
next word in a sentence.

LSTM: A type of recurrent neural network (RNN) architecture designed to effec-
tively capture long-term dependencies in sequential data.

n-gram models: Statistical language models that predict the next item in a sequence based
on the preceding n − 1 items. They represent sequences as contiguous
sequences of n items (words or characters) and estimate the probability of
each sequence based on the observed frequencies of such sequences in the
training data.

Perplexity: Perplexity is a metric used to evaluate the performance of a language model.
It is simply the exponentiated average log-likelihood per token. It measures
how well the model predicts a sequence, with lower perplexity indicating
better performance.

Table 2: Glossary 2: Definitions of important linguistics and ML concepts
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