
Syn-QL: Prefernce Optimization with Synthetic Data
for Text-to-SQL

Ruilin Hu
2024210886

Tsinghua University
hrl24@mails.tsinghua.edu.cn

Lu Fan
2024210883

Tsinghua University
fanl24@mails.tsinghua.edu.cn

Yizhe Chen
2023311175

Tsinghua University
chenyizh23@mails.tsinghua.edu.cn

Abstract

This paper addresses the challenge of improving the performance of open-source
Large Language Models (LLMs) in Text-to-SQL tasks, where a natural language
query is converted into an SQL statement for database interaction. Despite their ac-
cessibility and cost-efficiency, open-source LLMs lag behind closed-source models
in accuracy. To bridge this gap, we introduce Syn-QL, a framework leveraging syn-
thetic data generation and self-training techniques to fine-tune models iteratively.
Our method utilizes a dual-model approach, pairing a SQL Writer and SQL Verifier
to enhance the quality of SQL outputs through repeated refinement. Experimental
results demonstrate notable performance improvements on established benchmarks,
including Spider and BIRD, underscoring Syn-QL’s potential to make open-source
LLMs more competitive in Text-to-SQL tasks.

1 Intro

1.1 Problem Definition

The Text-to-SQL task aims at converting a user’s natural language(NL) question into a valid SQL
query that can be executed in a given database. Text-to-SQL allows users without SQL proficiency to
interact with databases, perform data exploration, make data-driven decisions, and build the initial
version of more complex SQL queries[10, 5]. Located at the intersection of data management [1, 2]
and natural language processing (NLP) [11, 13], Text-to-SQL has received considerable attention.

Text-to-SQL Task. Assume Q is a natural language question and D = {S, V } is a relational
database where S is the database schema and V is the collection of all the values in the database.
Given D, the task of Text-to-SQL is to generate an SQL query S to answer the user’s natural language
question Q. The generated SQL query S is considered correct iff S can be successfully executed in
the database D and retrieve the correct content.

LLM for Text-to-SQL. Given the impressive capabilities of Large Language Models(LLMs) in
language understanding and code generation, numerous studies have endeavored to apply LLMs to the
Text-to-SQL task [7, 3, 9]. Although high accuracy was obtained, these prior methods depend heavily
on the capability of powerful close-source LLMs, which have unignorable impacts on practical
applications. For example, many methods based on few-shots prompting require inputting a large

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



number of tokens into GPT-4, which can incur significant economic costs. Additionally, it is often
unacceptable for companies to send proprietary data to LLM service providers.

1.2 Motivation

Open-Source LLMs for Text-to-SQL. Open-source large language models for the Text-to-SQL
task offer advantages such as low latency and reduced costs. However, they exhibit a significant
performance gap compared to their closed-source counterparts. In particular, the popular coding
LLM StarCoder-15B still demonstrates a 30% lower execution accuracy on the challenging BIRD
benchmark [5].

Training Open-Source Text-to-SQL LLMs. Given the substantial disparity between open-source
and closed-source models in Text-to-SQL, numerous aspects remain unexplored. We focus on
enhancing the capability of open-source base models with fine-tuning methods.

Challenges. Text-to-SQL can be considered a special form of code generation, with additional con-
textual information including the database schema and potentially external knowledge. But compared
to plain code generation, the Text-to-SQL task requires models to understand probably unseen and
complex database schemas and possess strong reasoning capability to generate an matching SQL
query. Beyond its inherent challenges, improving open-source LLMs through supervised fine-tuning
encounters several obstacles.

Challenge 1: High difficulty in reasoning. SQL syntax is intricate. Even experienced data
scientists often need to engage in trial-and-error processes to formulate the correct SQL queries.
Consequently, the Text-to-SQL task necessitates models with strong reasoning capabilities, chal-
lenging models to interpret natural language queries, understand the underlying database schema,
and generate syntactically correct and semantically accurate SQL queries that correspond to the
user’s intent. While Chain-of-Thought (CoT) [12] is efficient in enhancing the reasoning capabilities
of LLMs, it faces limitations in the context of SQL query generation. SQL queries exhibit strong
interdependencies between their components, where the formulation of earlier parts often requires
consideration of subsequent elements. This characteristic challenges the linear, front-to-back output
approach typically associated with CoT methods.

Challenge 2: Limited Training Data. Text-to-SQL faces another issue of scarce high-quality
training data. To empower models with cross-domain generalization capabilities, a diverse array of
database schemas is essential. Concurrently, to enable models to generate complex queries, a wide
variety of natural language questions and their corresponding SQL answers is required. However,
in reality there is a significant scarcity of diverse and semantically aligned (Schema, NL Question,
SQL) pairs. The acquisition of high-quality training data relies on manual expert annotation, which is
time-consuming and costly.

2 Method

We aim to investigate methods for enhancing the Text-to-SQL capabilities of open-source Large
Language Models (LLMs) through the utilization of synthetic data generation and self-training
techniques.

Specifically, our approach leverages the concept of self-training, where the model’s own outputs are
utilized iteratively as training data for fine-tuning.Following the initial fine-tuning phase, we continue
to input synthetically generated questions into the model. Subsequently, we extract high-quality
question-answer pairs from these outputs to serve as additional data for further fine-tuning iterations.
This process aims to create a positive feedback loop, potentially enhancing the model’s performance
with each cycle.

To address the challenge of noisy outputs resulting from synthetic input questions, we have designed
and implemented a verification mechanism using a separate LLM, which we term the SQL Verifier.
This additional model serves as a semantic validator, tasked with assessing the correspondence
between NL queries and their associated SQL outputs.While our research indicates that the Chain-of-
Thought approach proves challenging to implement directly in the Text-to-SQL generation process,

2



we have discovered its potential for enhancing the verification phase. Building upon this insight,
we propose a novel method termed Chain-of-Clause (CoC) to augment our verification LLM’s
capabilities.

We propose an iterative optimization framework leveraging two specialized Large Language Models
(LLMs) to enhance the quality and reliability of Text-to-SQL translations. This dual-model approach
consists of a SQL Writer and a SQL Verifier, working in tandem to refine the model’s performance
through successive iterations.

2.1 Verifier Training

Algorithm 1 Generating SQL Verifier Model
Input: pre-trained LLM Mpretrain, training dataset D, annotator LLM Mant

Output: fine-tuned verifier model Mverify

1: Split D ⇒ Dsft, Dsample ▷ Split D into sft set and sample set
2: Fine-tune Mpretrain with Dsft ⇒ Msft

3: Execute Dsample with Msft ⇒ {(qi, g_sqli, p_sqli)}Li=1 ▷ Sample multiple sql queries
4: Judge correctness with {gold_sqli}Li=1 ⇒ {(qi, p_sqli, ci)}Li=1

5: Annotate Chain-of-Clauses rationales using Mant ⇒ {(qi, p_sqli, ci, coci)}Li=1

6: Filter data if CoC matches correctness ⇒ V = {(qi, p_sqli, coci)}Ki=1
7: Fine-tune Mpretrain with V ⇒ Mverify

8: return SQL verifier model Mverify

3 Experiment

3.1 Evaluation Benchmarks

We evaluate the effectiveness of our method with recognized Text-to-SQL benchmarks across multiple
datasets.

General Benchmark Spider[14] is a widely-recognized Text-to-SQL benchmark. Spider contains
7000 human-annotated Text-to-SQL pairs in its training set and 1034 pairs in the validation set, across
200 different databases and 138 domains.

Challenging Benchmark BIRD[5] is a challenging benchmark of large real-world databases.
BIRD contains 95 databases across 37 fields and 9428 high-quality Text-to-SQL pairs. BIRD features
massive and dirty database contents and requires Text-to-SQL systems to reason on external expert
knowledge to generate SQL queries.

3.2 Evaluation Metrics

We report two common evaluation metrics: Exact Match Accuracy (EM) and Execution Accuracy
(EX). EM requires every subcomponent of the predicted SQL query to match the reference SQL
query in the dataset. EX determines equivalence between a predicted SQL query and a reference
SQL query if they produce identical results across various database instances. EX is considered a
more accurate measurement of Text-to-SQL methods since multiple correct SQL queries can differ in
output style.

3.3 Evaluation Results

This is a placeholder, see Table1.

4 Related Work

LLM based Text-to-SQL Recently, many studies focus on utilizing LLMs to solve Text-to-SQL
tasks by developing novel pipelines and exploring innovative prompting techniques. For instance,

3



Model / Method Spider BIRD

Name # Calls Dev Test Dev Test

Prompting Methods w/ Closed-Source LLMs

GPT-4 1 72.9 - 49.2 54.9
DIN-SQL + GPT-4 4 82.8 85.3 50.7 55.9
DAIL-SQL + GPT-4 4 83.5 86.2 54.8 57.4
TA-SQL + GPT-4 3 85.0 - 56.2 59.1
PTD-SQL + GPT-4 3 85.7 - 57.0 -

Fine-tuning Open-Source LLMs

SENSE-7B 1 83.2 83.5 51.8 59.3
SENSE-13B 1 84.1 86.6 55.5 63.4
SFT CodeS-7B 1 85.5 - 55.8 60.3
SFT CodeS-15B 1 85.4 - 57.2 59.2
Qwen 2.5-Coder-7B 1 82.0 - 51.1 -

Multi-Stage NL2SQL w/ Open-Source LLMs

Ours-7B 2 87.6 – 63.0 –

Table 1: Performance Comparison of Different Models

ACT-SQL[15] generates Chain-of-thought prompts automatically , DIN-SQL[7] decomposes complex
problems into LLM-solvable easy problems, DAIL-SQL[3] samples semantically similar examples as
prompts to improve Text-to-SQL performance, PTD-SQL[6] partitions examples in different banks
and selects shots as examples at run-time. Li et al.[4] conducted sufficient experiments about the pros
and cons of each popular method and used genetic algorithms to propose SuperSQL, which chooses
the best option at different Text-to-SQL stages. Apart from mainly employing proprietary LLMs
to solve Text-to-SQL tasks, ZeroNL2SQL[2] combines small pretrained models as SQL skeleton
parsers and utilizes LLMs to obtain the complete SQL, and DTS-SQL[8] fine-tunes two open-source
LLMs separately to prune the database schemas and generate SQL queries.

References
[1] Ursin Brunner and Kurt Stockinger. Valuenet: A natural language-to-sql system that learns

from database information. In IEEE 37th International Conference on Data Engineering, pages
2177–2182, 2021.

[2] Ju Fan, Zihui Gu, Songyue Zhang, Yuxin Zhang, Zui Chen, Lei Cao, Guoliang Li, Samuel
Madden, Xiaoyong Du, and Nan Tang. Combining small language models and large language
models for zero-shot nl2sql. Proc. VLDB Endow., 17(11):2750–2763, 2024.

[3] Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-sql empowered by large language models: A benchmark evaluation. Proc. VLDB
Endow., 17(5):1132–1145, 2024.

[4] Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. The dawn of natural
language to sql: Are we fully ready? Proc. VLDB Endow., 17(11):3318–3331, 2024.

[5] Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin C.C. Chang, Fei
Huang, Reynold Cheng, and Yongbin Li. Can llm already serve as a database interface? a big
bench for large-scale database grounded text-to-sqls. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, 2024.

4



[6] Ruilin Luo, Liyuan Wang, Binghuai Lin, Zicheng Lin, and Yujiu Yang. Ptd-sql: Partitioning
and targeted drilling with llms in text-to-sql. arXiv preprint arXiv:2409.14082, 2024.

[7] Mohammadreza Pourreza and Davood Rafiei. Din-sql: decomposed in-context learning of
text-to-sql with self-correction. In Proceedings of the 37th International Conference on Neural
Information Processing Systems, 2024.

[8] Mohammadreza Pourreza and Davood Rafiei. Dts-sql: Decomposed text-to-sql with small large
language models. arXiv preprint arXiv:2402.01117, 2024.

[9] Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo, Chenhao Ma, and Reynold Cheng. Before
generation, align it! a novel and effective strategy for mitigating hallucinations in text-to-sql
generation. In Findings of the Association for Computational Linguistics ACL 2024, pages
5456–5471, 2024.

[10] Michael Stonebraker and Andrew Pavlo. What goes around comes around... and around...
SIGMOD Record., 53(2):21–37, 2024.

[11] Chang-Yu Tai, Ziru Chen, Tianshu Zhang, Xiang Deng, and Huan Sun. Exploring chain of
thought style prompting for text-to-sql. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages 5376–5393, 2023.

[12] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, 2022.

[13] Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang Lin, and Chang Zhou. Synthesizing
text-to-sql data from weak and strong llms. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 7864–7875, 2024.

[14] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 3911–3921, 2018.

[15] Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen Xu, and Kai Yu. Act-sql: In-
context learning for text-to-sql with automatically-generated chain-of-thought. arXiv preprint
arXiv:2310.17342, 2023.

5


	Intro
	Problem Definition
	Motivation

	Method
	Verifier Training

	Experiment
	Evaluation Benchmarks
	Evaluation Metrics
	Evaluation Results

	Related Work

