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ABSTRACT

The static “train then deploy” paradigm fundamentally limits Large Language
Models (LLMs) from dynamically adapting their weights in response to continu-
ous streams of new information inherent in real-world tasks. Test-Time Training
(TTT) offers a compelling alternative by updating a subset of model parameters
(fast weights) at inference time, yet its potential in the current LLM ecosystem is
hindered by critical barriers including architectural incompatibility, computational
inefficiency and misaligned fast weight objectives for language modeling. In this
work, we introduce In-Place Test-Time Training (In-Place TTT), a framework that
seamlessly endows LLMs with Test-Time Training ability. In-Place TTT treats the
final projection matrix of the ubiquitous MLP blocks as its adaptable fast weights,
enabling a “drop-in” enhancement for LLMs without costly retraining from scratch.
Furthermore, we replace TTT’s generic reconstruction objective with a tailored,
theoretically-grounded objective explicitly aligned with the Next-Token-Prediction
task governing autoregressive language modeling. This principled objective, com-
bined with an efficient chunk-wise update mechanism, results in a highly scalable
algorithm compatible with context parallelism. Extensive experiments validate our
framework’s effectiveness: as an in-place enhancement, it enables a 4B-parameter
model to achieve superior performance on tasks with contexts up to 128k, and
when pretrained from scratch, it consistently outperforms competitive TTT-related
approaches. Ablation study results further provide deeper insights on our design
choices. Collectively, our results establish In-Place TTT as a promising step
towards a paradigm of continual learning in LLMs.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across a range of
complex tasks (Brown et al., 2020; Chowdhery & et al., 2022; Touvron et al., 2023; OpenAI, 2024).
This success is largely built on a static “train then deploy” paradigm, where a model first acquires
knowledge from massive corpora and then keeps fixed during inference. Yet this design imposes a
fundamental limitation: once deployed, the model’s weights cannot be updated, preventing dynamic
adaptation to the specific context provided by streaming input tokens. Consequently, at test time,
the model is constrained in its ability to process and reason over long-horizon, evolving tasks (Chan
et al., 2024; Starace et al., 2025), and to continuously learn from unbounded streams of experience
like humans (Silver & Sutton, 2025).

In-context learning (Brown et al., 2020; Wei et al., 2023) offers a way to mitigate this problem via
maintaining all past input tokens in the context. However, its effectiveness is tethered to the model’s
context window, restricted by the quadratic complexity of the de facto attention mechanism (Vaswani
et al., 2017). This bottleneck has spurred a line of research into architectural solutions aimed at
efficiently extending the context window (Beltagy et al., 2020; Peng et al., 2023; Child et al., 2019;
Dao et al., 2023). Differently, Test-Time Training (TTT) has emerged as a new paradigm (Sun et al.,
2020; Wang et al., 2021; Sun et al., 2024; Behrouz et al., 2024). Instead of merely making a static
model more efficient, TTT enables the model to dynamically update the parameters and adapt to any
specific context, directly targeting the aforementioned limitation. Specifically, TTT introduces a small
subset of model parameters, called fast weights (Schlag et al., 2021), which can be updated on the
fly for each new input. By minimizing a self-supervised reconstruction objective, these fast weights
compress and internalize contextual information, functioning as an expressive, online evolving state.

Despite its conceptual appeal, unleashing TTT’s potential within the current LLM ecosystem is
hindered by critical barriers: (i) Existing TTT methods often rely on specialized layers beyond
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standard Transformer blocks, which usually demand costly pretraining from scratch to achieve
satisfactory performance. (Sun et al., 2020; Wang et al., 2021; Zhang et al., 2025; Sun et al., 2024);
(ii) the canonical per-token update mechanism of TTT is inherently sequential, severely bottlenecking
the parallel processing capabilities of modern accelerators (Sun et al., 2020; Zhang et al., 2025);
and (iii) the prevalent use of a generic reconstruction objective for TTT’s fast weights updating is
not explicitly tailored for the causal, Next-Token Prediction task that governs autoregressive LMs,
potentially hindering their ultimate performance.

To bridge this gap, we introduce In-Place Test-Time Training (In-Place TTT), a framework designed
to seamlessly endow LLMs with Test-Time Training capabilities by directly addressing the afore-
mentioned barriers. Our core insight is to repurpose existing MLP blocks with an in-place design
rather than introducing a new, specialized layer (tackling barrier i). Specifically, In-Place TTT treats
the final projection matrix of MLP blocks as their fast weights, updating it in-place during inference.
This “drop-in” design requires no modifications to the model’s architecture, preserving the integrity
of pre-trained weights and enabling on-the-fly adaptation without costly retraining from scratch.

To tackle the computational inefficiency and objective misalignment, we further design a bespoke
adaptation mechanism for language modeling. We replace the inefficient per-token updates with a
scalable chunk-wise update rule (tackling barrier ii), ensuring high throughput on modern parallel
accelerators. Concurrently, we move beyond the generic reconstruction targets of prior work (Sun
et al., 2024; Zhang et al., 2025) and introduce a novel objective explicitly aligned with the Next-Token
Prediction (NTP) goal (tackling barrier iii). Grounded in a rigorous theoretical analysis, we show
this NTP-aligned objective encourages the fast weights to store predictively useful information for
autoregressive language modeling, leading to a highly effective and scalable algorithm.

Grounded in these principled design choices, our In-Place TTT provides a practical and effective
framework for enhancing LLMs with dynamic, continual adaptation. We conduct extensive exper-
iments on language modeling tasks of various compute scales, using them as a practical proxy to
probe the model’s potential on long-horizon, evolving tasks. Through relatively cheap continual
training, our In-Place TTT enables Qwen3-4B-Base to achieve superior performance on tasks with
contexts up to 128k. Furthermore, we compare In-Place TTT with competitive TTT-related methods
by conducting pretraining from scratch on up to 32k-length corpora, validating the architectural
merit of our framework. Finally, ablation studies on state size, chunk size, and fast weight objectives
provide deeper insights, confirming the critical role of each design choice. Collectively, our results
establish In-Place TTT as a promising step towards a paradigm of continual learning in LLMs.

2 PRELIMILARY: TEST-TIME TRAINING

This section introduces Test-Time Training (TTT), a paradigm that enables models to adapt dynami-
cally to new data at inference time (Sun et al., 2020; 2024; Zhang et al., 2025). We will first elaborate
on the TTT mechanism and then discuss the key desiderata for successfully applying TTT to LLMs,
which directly motivates our framework.

The TTT mechanism. At its core, the TTT mechanism leverages fast weights (Ba et al., 2016; Schlag
et al., 2021), denoted by W. These weights constitute a small neural network fW(·) : Rd → Rd,
which is rapidly updated at test time. Unlike standard model weights that are frozen after training, the
fast weights W act as a dynamic memory, continuously storing and retrieving contextual information
from the sequence. To process an input sequence x = [x1, x2, . . . , xN ], each token xi ∈ Rd is
typically projected to derive the necessary inputs for the TTT operations, such as a query (qi), a key
(ki), and a value (vi). The TTT mechanism then operates through two core, sequential operations:

1. Update Operation: The fast weights W are updated to associate a key ki with its cor-
responding value vi. This is framed as a single optimization step that minimizes a loss
function L(·, ·) (e.g., Mean Squared Error), which measures the discrepancy in this asso-
ciation. Intuitively, this step encodes the information from the (ki, vi) pair into the neural
memory fW. Given a learning rate η, the update rule is:

Wi ←Wi−1 − η∇WL
(
fWi−1

(ki), vi
)
.

2. Apply Operation: The newly updated network fW, now parameterized by Wi, is used
to process a query qi, i.e., oi = fWi

(qi). This output oi is enriched with the contextual
information from preceding key-value pairs, as that information is now encoded in Wi.
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While this two-step formulation describes the high-level mechanism of TTT, the specific imple-
mentation details can vary significantly. Indeed, numerous recent studies have investigated a rich
design space, exploring different loss functions, more sophisticated optimizers, and alternative neural
memory parameterizations to improve performance and efficiency (Wang et al., 2025; Behrouz et al.,
2024; 2025b; Karami & Mirrokni, 2025). These design choices critically influence how effectively
the fast weights can store, retrieve, and forget sequential information, positioning the TTT mechanism
for different data modalities and tasks.

Desiderata for TTT within the LLM ecosystem. Despite its promise as a paradigm for dynamic
adaptation, unleashing TTT’s potential within the LLM ecosystem requires addressing several critical
challenges. For TTT to be a viable and effective component, it must satisfy the following desiderata:

• Architectural Compatibility. We call an architecture compatible with LLM if it can warm
start from a pretrained checkpoint. However, current TTT mechanisms are often developed
as standalone recurrent layers designed to replace attention, rather than complement it (Sun
et al., 2020; Wang et al., 2021; Zhang et al., 2025; Sun et al., 2024; Hu et al., 2025). This
necessitates costly pretraining from scratch, creating a significant barrier to adoption for
the massive, billion-parameter models that dominate the LLM ecosystem. Therefore, a key
desideratum is a “drop-in” design that requires no fundamental architectural modifications.

• Computational Efficiency. The mechanism must be efficient on modern parallel accelera-
tors. The canonical per-token update rule of TTT is inherently sequential and, as a result,
severely bottlenecks the parallel processing capabilities of GPUs and TPUs (Sun et al., 2024;
Zhang et al., 2025). This operational inefficiency makes fine-grained updates impractical for
high-throughput language modeling. Consequently, an efficient TTT implementation must
move beyond per-token schemes and ensure scalability.

• Tailored Learning Objective for Language Modeling. The predominant self-supervised
objective in TTT is reconstruction, where the model learns to associate (ki,vi) pairs, and
vi is typically derived from the input token xi itself (Sun et al., 2020; 2024; Zhang et al.,
2025; Wang et al., 2021; Hu et al., 2025). While this generic objective enables the TTT
mechanism to store information, its direct relevance to the ultimate goal of language
modeling—predicting the next token—is not guaranteed. The choice of the target value v
remains a critical, yet underexplored, design decision that may be suboptimal for capturing
the complex causal dependencies required for LLMs.

3 IN-PLACE TEST-TIME TRAINING

To satisfy the desiderata outlined in Section 2, we introduce In-Place Test-Time Training (In-Place
TTT), a framework designed to unlock TTT capabilities for LLMs. We first present our overall
framework, which resolves architectural incompatibility via an in-place design that repurposes
existing MLP blocks, while ensuring computational efficiency with a chunk-wise update mechanism
(Section 3.1). We then detail our novel LM-aligned objective, which is explicitly designed for LLMs
by aligning with the Next-Token Prediction (NTP) goal (Section 3.2). Following this, we provide a
theoretical analysis of our objective’s superior properties (Section 3.3) and conclude with practical
implementation details (Section 3.4).

3.1 OVERALL FRAMEWORK

Repurposing MLP Blocks for In-Place Adaptation. Previous TTT research has largely positioned it
as a potential solution to replace the attention mechanism. However, these prior studies were typically
conducted at moderate scales, a regime vastly different from that of modern, billion-parameter LLMs.
Consequently, replacing the core attention mechanism—whose learned properties are critical to
an LLM’s capabilities—is a high-risk architectural modification. Moreover, introducing any new,
randomly-initialized layer also creates a conflict with the billions of trained parameters of LLMs,
necessitating costly and often impractical retraining to resolve this imbalance.

Our core insight is to sidestep these challenges entirely. Instead of replacing or adding components,
we repurpose a ubiquitous module–the Multi-Layer Perceptron (MLP) block–to also serve as the fast
weights. Recalling the TTT formulations in Section 2, there exist no constraints on the choice of fast
weights, i.e., any parameters can serve as fast weights updated via the TTT mechanism. In particular,
the MLP blocks in Transformers can also viewed as a form of key-value memory (Geva et al., 2020),
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functioning as a “slow weights” for the vast, general knowledge acquired during pre-training. It is
therefore a natural extension to leverage this same component to also function as the adaptive ”fast
weights”, dynamically internalizing transient, in-context information at inference time.

Formally, we adapt the widely used gated MLP architecture (Grattafiori et al., 2024; Yang et al.,
2025). Given the hidden representation H, the gated MLP computes its output O = ((ϕ(HW⊤

gate)⊙
(HW⊤

up))W
⊤
down. In our framework, we treat the input projections Wup and Wgate as frozen slow

weights, while repurposing the final projection matrix, Wdown, as the adaptable fast weights. By
exclusively updating Wdown in-place, we preserve the model’s architectural integrity, transforming
TTT from a disruptive restructuring into a lightweight, “drop-in” enhancement for LLMs.

Efficient Adaptation with Chunk-Wise Updates. Beyond architectural compatibility, our in-place
design also unlocks significant computational efficiencies. Conventional TTT methods, by aiming
to replace the attention mechanism, were bound to inefficient per-token updates to enforce strict
causality and perform fine-grained token mixing. Our framework also sidesteps this trade-off entirely.
Since we adapt only the MLP blocks and leave the attention layers intact, we are liberated from the
per-token constraint, enabling a far more efficient chunk-wise update strategy.

The process operates as follows. Given the intermediate activations Z = ϕ(HW⊤
gate)⊙ (HW⊤

up) ∈
Rn×dff and corresponding value targets and outputs V,O ∈ Rn×dmodel , we partition them into k non-
overlapping chunks of size C, denoted □[i] = □iC+1:(i+1)C ∈ RC×d′

for □ ∈ {Z,V,O}, i ∈ [k]

and d′ being their corresponding dimension. Let W(i)
down be the fast weights state before processing

chunk i and W
(0)
down = Wdown. For each chunk i ∈ [k], we perform two sequential operations:

1. Apply Operation: The current state of the fast weights W(i)
down are used to process chunk

Z[i], i.e., O[i] = Z[i](W
(i)
down)

⊤.

2. Update Operation: The fast weight W(i)
down are updated using Z[i] as keys and V[i] as

values, which is performed via one gradient descent step with a loss function L and a
learning rate η: W(i+1)

down = W
(i)
down − η∇WL

(
Z[i](W

(i)
down)

⊤,V[i]

)
.

This chunk-wise update strategy is designed for modern hardware. By processing large blocks of
tokens at onece, it highly leverages parallelism and utilizes the computational power of GPUs or
TPUs, thus resolving the efficiency bottleneck that hinders prior research.

3.2 LM-ALIGNED OBJECTIVE

With the efficient, in-place adaptation framework established, the performance of In-Place TTT
now hinges on the design of its learning objective. In this subsection, we introduce our Language
Modeling-Aligned objective, which is explicitly tailored for LLMs.

Prior TTT approaches typically use a reconstruction target, e.g., L
(
fW(k), v

)
where both k and v

are linear projection outputs of the same input token x (Sun et al., 2020; 2024; Zhang et al., 2025),
which encourages the model to simply memorize the current token’s representation. We argue that
this is suboptimal for language modeling tasks. Instead, we propose to align the objective with the
Next-Token Prediction (NTP) goal governing LLMs.

To achieve this, we specify the target v to include future token information. Formally, we derive our
target V̂ = Conv1D(X0)Wtarget, where X0 ∈ Rn×dmodel denote the token embedding, Conv1D(·)
is the 1D Convolution operator and Wtarget ∈ Rdmodel×dmodel is a trainable projection matrix. Under
this formulation, the amount of future token information can be controlled in our target V̂, e.g., the
Next-Token target can be achieved by parameterizing Wtarget as an identity transformation and
assigning Conv1D(·)’s kernel weights to be 1 for the next token and 0 for other tokens.

With this aligned target, we use the widely used similarity measure to instantiate our loss function
for simplicity, i.e., L(·, ·) = −⟨·, ·⟩F . Under this loss function, the gradient with respect to the fast
weights in our chunk-wise mechanism can be directly derived:

W
(i)
down = W

(i−1)
down + ηV̂⊤

[i]Z[i]. (1)
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3.3 THEORETICAL ANALYSIS

Intuitively, our LM-Aligned objective explicitly encourages the fast weights to compress predictively
useful information for future tokens, thereby enhancing the model’s capacity for dynamic adaptation.
In this subsection, we formalize this intuition by theoretically analyzing the benefits of our objective.
We ground our analysis within the canonical induction head setting (Olsson et al., 2022; Elhage et al.,
2021), a mechanism understood to be critical for in-context learning in LLMs.

Setup. Consider an input sequence where a key-value pair, (xt∗ , xt∗+1) = (k∗, v∗), appears at an
arbitrary position t∗. Subsequently, at a query position n > t∗, the key k∗ reappears, such that
xn = k∗. The model must then correctly predict the associated value, xn+1 = v∗.

Without loss of generality, we analyze a single Transformer block enhanced by our In-Place TTT.
Let Zt ∈ Rdff be the intermediate activation of token xt and Ew ∈ Rdmodel be the token embedding
for xw. In our framework, the fast weights update from prior context chunks is ∆Wdown =
η
∑

t∈prior chunks VtZ
⊤
t . This update then change the output logit at the query position n by ∆ℓn[w] =

E⊤
w∆WdownZn. We compare two choices for the TTT target Vt:

• Reconstruction Target: Vrec
t = Ext , the embedding of the current token.

• LM-Aligned Target: VLM
t = Ext+1

, the embedding of the next token.

Assumptions. Our analysis rests on two mild assumptions about the properties of the embeddings
and intermediate activations, which are standard in theoretical analyses of Transformers:

1. Approximate Orthogonality of Embeddings: For any two distinct tokens wi, wj ∈ V , their
embeddings are nearly orthogonal: |e⊤wi

ewj | ≤ ϵ for a small constant ϵ > 0. Additionally,
embeddings have a non-trivial magnitude: ∥ewi∥2 ≥ c2norm > 0 for some constant cnorm.

2. Key-Query Alignment: The intermediate activations Zn for the query token xn = k∗ is
aligned with Zt∗ of its corresponding key token xt∗ = k∗: E[z⊤t∗zn] = calign > 0. For other
positions t ̸= t∗, the tokens are unrelated to the query, i.e, E

[
(VtZ

⊤
t )Zn

]
= 0.

With this setup, we present our main theoretical result:
Theorem 1 (Logit-wise Effect of LM-Aligned Target v.s. Reconstruction Target). Under the specified
setup and assumptions, for a sufficiently small learning rate λlr > 0, the expected change in logits
∆ℓn+1 after one update step using the LM-Aligned target satisfies:

(Correct logit increases) E [∆ℓn[v
∗]] ≥ λlr · c2norm · calign, (2)

(Other logits almost unchanged) |E [∆ℓn[w]]| ≤ λlr · ϵ · calign, ∀w ̸= v∗. (3)

In contrast, for the reconstruction target, the expected change in logits is negligible for the correct
token: |E [∆ℓn[v

∗]] | ≤ λlr · ϵ · calign.

The proof is provided in Appendix B. In Theorem 1, the LM-Aligned target is guaranteed in expecta-
tion to increase the logit of the correct next token v∗ and keep that of other tokens approximately
unchanged, directly aiding the model’s prediction task. In contrast, the reconstruction target pro-
vides no such predictive benefit, failing to increase the logit of the correct token. In practice, our
implementation extends this principle from a single next token to a learned, localized combination of
future tokens, which also aligns with recent promising results of Multi-Token Prediction in advanced
LLMs (Liu et al., 2024) as an effective extension of the NTP objective. This allows our In-Place
TTT to capture a richer predictive signal, thereby compressing useful contextual information more
effectively than simple reconstruction.

3.4 IMPLEMENTATION DETAILS

Combining aforementioned designs, Figure 1 illustrates our In-Place TTT framework. Here we further
elaborate on practical implementation details, which are engineered for high efficiency and scalability
on modern hardware. In particular, our approach is fully compatible with Context Parallelism (CP),
relying on a parallel scan algorithm to process sequence chunks simultaneously while preserving the
strict causal semantics of an auto-regressive update. Additional discussions are further presented.

Efficient Implementation with Context Parallelism. The associative nature of our update rule
in Equation (1) makes In-Place TTT amenable to a context-parallel implementation, which par-
titions a sequence along its length and processes the chunks simultaneously. The process un-
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Figure 1: The overall framework of our In-Place Test-Time Training. The module operates sequen-
tially on input chunks. For each chunk, the current fast weights are first applied to the intermediate
activations Z to produce the output. Then, these weights are updated using the activations Z and a
value V derived from the token embeddings. This ”apply-then-update” cycle allows the model to
dynamically adapt to incoming context in a strictly causal manner.

folds into three stages: (i) for all chunks i ∈ {1, . . . , T}, we compute the intermediate activa-
tions Z[i] and the fast weight update ∆W

(i)
down = (V̂[i])

⊤Z[i] in parallel; (ii)) a single prefix
sum over [...,∆W

(i)
down,∆W

(i+1)
down , ...] is conducted to compute the aggregated updates for each

chunk: ∆Si =
∑i−1

j=1 ∆Wj , which can be highly efficient on modern accelerators; (iii) the ef-

fective fast weights for each chunk, W(i−1)
down = W

(0)
down + η∆Si, and the corresponding output,

O[i] = Z[i](W
(i−1)
down )⊤, are computed in parallel.

Causality and Boundary Handling. To ensure that the update delta for chunk i itself contains
no future information, we apply causal padding to the 1D convolution when generating the value.
This isolates each delta calculation to its respective chunk, making the parallel scan mathematically
equivalent to a sequential update. Moreover, at document boundaries, the fast weights are reset to
their pre-trained state to prevent context leakage across independent sequences. The final context
parallel algorithm is presented in Algorithm 1 in Appendix C.

Discussion. In summary, our implementation of In-Place TTT synergistically combines a simple,
computationally efficient update rule with a parallel scan algorithm. This design choice makes our
method not only fast and scalable but also mathematically equivalent to a strictly causal sequential
process, thanks to careful boundary and padding management. The resulting module is CP-native,
fully causal, and can be seamlessly integrated as a drop-in replacement for the MLP block in standard
Transformer architectures. Lastly, it is also noteworthy that the core principles of our framework are
orthogonal to the specific choice of loss functions and its optimizer, which have been widely studied
in the broader TTT literature, an exploration we leave as a promising direction for future work.

4 EXPERIMENTS

In this section, we conduct a series of experiments to empirically validate the effectiveness of our
In-Place TTT framwork. Specifically, we aim to answer the following research questions:

• Q1: How effectively can In-Place TTT enhance pre-trained LLMs in a “drop-in” manner?

• Q2: When trained from scratch, how does In-Place TTT compare against prior TTT approaches?

• Q3: What are the effects of key design choices in our In-Place TTT framework?

Using language modeling tasks of various scales as a practical proxy, we answer each question with
carefully designed experiments in the following sub-sections. Due to space limits, we present detailed
descriptions of experimental settings in Appendix D.

6
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In-Domain Evaluation Extrapolation

Model 4k 8k 16k 32k 64k 128k 256k

Mistral-7B (Jiang et al., 2023) 93.6 91.2 87.2 75.4 49.0 13.8 -
GLM3-6B (GLM, 2024) 87.8 83.4 78.6 69.9 56.0 42.0 -
Phi3-medium-14B (Abdin et al., 2024) 93.3 93.2 91.1 86.8 78.6 46.1 -
Llama3-8B (Pekelis et al., 2024) 92.8 90.3 85.7 79.9 76.3 69.5 -
Qwen3-4B (Instruct) (Yang et al., 2025) 95.1 93.6 91.0 87.8 77.8 66.0 -

Baseline 96.6 94.1 92.1 88.7 74.3 74.8 41.7

In-Place TTT 96.1 95.6 92.7 89.3 78.7 77.0 43.9

Table 1: Evaluation results on the RULER benchmark (Hsieh et al., 2024). We report the average
accuracy (%) as scores, with the best results in bold.

4.1 IN-PLACE TTT AS A DROP-IN ENHANCEMENT FOR PRE-TRAINED LLMS

To validate In-Place TTT as a “drop-in” enhancement for existing, pre-trained LLMs, we start with
the competitive open-sourced Qwen3-4B-Base model. Its original context window is 32k, thereby we
can simulate the long-horizon, evolving tasks requiring Test-Time Training capabilities by language
modeling tasks of varying context lengths. In particular, we compare the performance of (1) Qwen3-
4B-Base (Baseline); (2) Qwen3-4B-Base + In-Place TTT (In-Place TTT). Both models undergo the
exact same continual training curriculum, ensuring a fair comparison where our In-Place TTT is the
only variable.

Training and Evaluation. The continual training curriculum is divided into two stages: an initial
phase of ∼20B tokens with 32k context length, followed by a second phase of ∼15B tokens with
128k context length. The detailed descriptions of training dataset can be found in Appendix D.1. To
effectively manage these long sequences, we adapt the model’s Rotary Position Embeddings using
YaRN (Peng et al., 2023). We evaluate the long-context performance of both models on the RULER
benchmark (Hsieh et al., 2024) using the popular OpenCompass framework (Contributors, 2023),
with context lengths ranging from 4k to 256k. The 256k setting specifically measures the models’
ability to extrapolate beyond the 128k context length limit. Detailed descriptions of training details
can be found in Appendix D.2.

Results and Discussion. The results, summarized in Table 1, demonstrate that In-Place TTT
significantly boosts the long-context proficiency of the pre-trained model. In particular, a clear trend
can be easily seen from the results: while both models are competitive at short contexts, Qwen3-4B-
Base enhanced by our In-Place TTT establishes a consistent and widening advantage as the sequence
length increases. It achieves substantial gains at the 64k and 128k context lengths. Crucially, this
advantage is maintained when extrapolating to a 256k context, demonstrating superior generalization.
These findings confirm that In-Place TTT can be seamlessly integrated into a pre-trained LLM to
boost its long-context proficiency. The model’s strong performance at and beyond the context length
validates our method as a practical and powerful tool for extending the capabilities of existing LLMs.

4.2 PRE-TRAINING FROM SCRATCH: A COMPARATIVE ANALYSIS

Having demonstrated In-Place TTT’s effectiveness as a “drop-in” module, we further evaluate its
performance and scalability when integrated into models pre-trained from scratch. Our analysis
proceeds in two stages: we first establish its language modeling capabilities at the 500M and 1.5B
scales, and then assess its scalability and impact on a larger 4B model.

Experimental Setup. Firstly, we benchmark our In-Place TTT against prior TTT-related approaches
and efficient attention methods based on TogetherAI (2024) at 500M and 1.5B parameter scales.
Various competitve baselines are compared: (1) standard Transformer with sliding window attention
(SWA) (Child et al., 2019; Beltagy et al., 2020) (2) Gated Linear Attention (GLA) (Yang et al.,
2024b); (3) DeltaNet (Schlag et al., 2021; Yang et al., 2024d;a) (4) Large Chunk Test-Time Training
(LaCT) (Zhang et al., 2025). For a fair comparison, both In-Place TTT and LaCT are built upon an
SWA backbone. All models are trained on sequences with a 32k context length.
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(a) Sliding Window Perplexity of 500M Model
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(b) Sliding Window Perplexity of 1.5B Model

2k 4k 8k 16k 32k
Context Length

8.0

8.5

9.0

9.5

Pe
rp

le
xi

ty

In-Place TTT
SWA
GLA
Deltanet
LaCT

Figure 2: Sliding Window Perplexity at varying context lengths on the Pile dataset for 500M (left)
and 1.5B (right) parameter models. Our In-Place TTT consistently achieves lower perplexity than all
competitive baselines.

Common Sense Reasoning Long-Context Evaluation

Model Architecture HellaSwag ARC-E ARC-C MMLU PIQA RULER-4k RULER-8k RULER-16k

Baselines
Full Attn. 55.67 64.52 33.19 36.43 72.63 45.77 38.09 6.58

SWA 54.92 64.18 32.85 36.06 72.58 14.77 9.91 5.07

I.P. TTT
Full Attn. 55.85 64.98 32.34 37.42 73.29 49.98 43.82 19.99

SWA 55.24 64.60 33.70 36.48 72.03 28.33 26.80 7.57

Table 2: Evaluation results of 4B models on common sense reasoning and long-context evaluation
benchmarks. Best performance is in bold. “SWA” is Sliding-Window Attention, “Full Attn.” is Full
Attention, and “I.P. TTT” is our In-Place TTT.

Building on these results, we further scale up to 4B-parameter models to evaluate scalability of our
In-Place TTT approach. In particular, we compare Transformers with Full Attention and Transformers
with SWA against their counterparts enhanced by our In-Place TTT. These models are trained for
120B tokens with an 8k context length. Detailed descriptions of datasets, model configurations, and
training procedures are available in Appendix D.1, D.3, and D.2.

Evaluation. For the 500M and 1.5B models, we evaluate their long-context utilization using Sliding
Window Perplexity on a validation set comprised of Pile (Gao et al., 2020) and Proof-Pile-2 (Paster
et al., 2023). This metric measures perplexity on a fixed final block of tokens when extending the
preceding context, where a decreasing perplexity trend indicates effective context usage. For the 4B
models, we conduct a broader evaluation on a suite of downstream tasks, including common sense
reasoning benchmarks (HellaSwag (Zellers et al., 2019), ARC (Clark et al., 2018), MMLU (Hendrycks
et al., 2021b;a), PIQA (Bisk et al., 2019)) and the long-context RULER benchmark (Hsieh et al., 2024).

Results and Discussion. In Figure 2, we plot the sliding window perplexity against context length
for both 500M and 1.5B model. It can be easily seen that our In-Place TTT consistently achieves
lower validation perplexity than all competitive baselines, with its performance steadily improving
up to the full 32k context. This sustained improvement suggests its core mechanism successfully
compresses and utilizes information from incoming context.

Moreover, the results in Table 2 further show that 4B-parameter Transformers with both Full Attention
and SWA are consistently improved across most common sense reasoning tasks. Furthermore, models
with our In-Place TTT yield superior performance on the long-context evaluation, e.g., RULER-16k
score is improved from 6.58 to 19.99 for the Transformer with Full Attention and RULER-8k score is
boosted from 9.91 to 26.80 for the SWA model. These substantial gains, particularly across models
of various scales, establish our In-Place TTT as a highly effective and scalable approach.

4.3 ABLATION STUDIES: ON THE IMPACT OF KEY DESIGN CHOICES

Lastly, we conduct a series of ablation studies on RULER with a 1.7B-parameter model, providing
deeper insights into our design choices. Detailed settings are presented in Appendix D.3 and D.2.
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Figure 3: Ablation studies on the key design choices of the In-Place TTT framework, evaluated on
the RULER benchmark with a 1.7B parameter model. The plots illustrate the impact of: (a) State
size, showing that performance improves as the state size scales; (b) Chunk size, demonstrating a
performance trade-off where intermediate sizes (e.g., 512, 1024) are optimal; and (c) The LM-Aligned
Value objective, confirming that both the convolution (w Conv) and the projection (w Proj) are crucial.
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Figure 4: Efficiency analysis of In-Place TTT. Both prefill throughput (a, b) and peak memory (c, d)
metrics are presented for 4B models with Sliding-Window Attention (SWA) and Full Attention at
various context lengths. Our In-Place TTT introduces negligible overhead in practical scenarios.

Impact of State Size. We first investigate how performance scales with the fast weights size, which
can be controlled by varying the number of TTT-enabled layers. Figure 3 (a) shows a clear trend that
the performance of our In-Place TTT consistently improves along with the state size scaling. This
confirms that larger fast weights allow the model to more effectively adapt to contextual information,
which further supports our repurposing approach leveraging the large amount of MLP states.

Impact of Chunk Size. The chunk size C in Section 3.1 controls both the granularity of fast weights
updating and parallelism, exposing a tradeoff between efficiency and performance. By varying the
chunk size, Figure 3 (b) shows that both C = 512 and C = 1024 competitively achieve better
performance compared to other choices, while C = 1024 has better efficiency.

Impact of LM-Aligned Objective. Next, we delve deep into our tailed LM-Aligned objective, i.e.,
V̂ = Conv1D(X0)Wtarget in Section 3.2. In particular, the Conv1D operator is used to yield targets
containing future token information, and the Wtarget is a projection transformation. In Figure 3 (c),
we comprehensively ablate combinations of these components. The result shows that both of them
are necessary for performance guarantee, while Conv1D plays an essential role on long context and
Wtarget is crucial on short context. These results align with our theoretical analysis in Section 3.3,
strongly supporting our motivation to derive a tailored objective for language modeling.

Efficiency Impact of In-Place TTT. We further study the computational overhead introduced by our
In-Place TTT. In Figure 4, we compare both prefill throughput and memory consumptions of whether
using our In-Place TTT. The results indeed verify the efficiency of our practical implementations.

5 CONCLUSION

We introduced In-Place Test-Time Training, a practical framework that resolves the critical barriers
of TTT for LLMs. Principled design choices are proposed including an in-place mechanism that
repurposes existing MLP blocks, an efficient chunk-wise update rule, and a theoretically-grounded
objective aligned with language modeling. Extensive experiments validate that our approach not
only serves as a powerful “drop-in” enhancement for pre-trained LLMs but also outperforms strong
baselines when trained from scratch. By providing a scalable solution for on-the-fly adaptation, our
work makes a promising step towards a new paradigm of more dynamic, continual learning for LLMs.
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ETHICS STATEMENT

This work introduces a foundational model architecture and does not present any direct real-world
applications with immediate ethical concerns. We acknowledge the broader societal risks associated
with Large Language Models, such as potential biases inherited from training data, and advocate for
further research into their responsible development and deployment.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we provide comprehensive details on all experimen-
tal settings, model configurations, and training hyperparameters in Appendix D. The theoretical
claims are supported by a complete proof in Appendix B, and the implementation is detailed in the
pseudocode in Appendix C. We will release source code and model checkpoints to facilitate further
research.
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A RELATED WORK

Test-Time Training (TTT). Test-Time Training (TTT) is a paradigm that enables a model to adapt
dynamically in response to continuous streams of data at inference by updating a small subset of
its parameters, known as fast weights (Ba et al., 2016). Initially demonstrating success in computer
vision (Sun et al., 2020; Wang et al., 2021), TTT has since been extended to numerous other modali-
ties—including language (Sun et al., 2024), video (Dalal et al., 2025), and audio (Dumpala et al.,
2023)—underscoring its broad applicability. Research in this area has largely focused on two avenues
for improving TTT’s effectiveness: the design of more sophisticated test-time optimizers (Behrouz
et al., 2025a) and the formulation of novel, self-supervised online learning objectives (Behrouz et al.,
2024; Karami & Mirrokni, 2025). However, the computational efficiency of TTT remained a critical
bottleneck due to its inherently sequential, per-token update process. The Large Chunk Test-Time
Training (LaCT) framework was the first to directly address this challenge by introducing a scalable,
chunk-wise update mechanism to better leverage parallel hardware (Zhang et al., 2025). Despite
these advances, prior work has not addressed how to seamlessly integrate TTT into large, pre-trained
models, nor developed learning objectives specifically tailored for the autoregressive nature of LLMs,
which are gaps our work directly addresses.

Efficient Long-Context Architectures. A parallel line of research seeks to extend the effective
context window of LLMs by mitigating the quadratic complexity of the standard attention mechanism.
Major approaches include: 1) Sparse attention methods, which restrict the range of token-to-token
interactions via fixed patterns like sliding or strided windows (Child et al., 2019; Beltagy et al., 2020;
Yuan et al., 2025); 2) Linear-time variants, which approximate the attention mechanism or replace it
with efficient recurrent or gated formulations, such as linear attention (Katharopoulos et al., 2020;
Schlag et al., 2021) Gated Linear Attention (GLA) (Yang et al., 2023); and 3) State-Space Models
(SSMs), which compress sequence history into a compact latent state, enabling processing with linear
complexity (Dao et al., 2023; Dao & Gu, 2024). Recently, the delta rule has emerged as a popular
design choice for linear attention and SSMs, enabling better experessivity and highly parallelizable
implementations (Yang et al., 2024c). These architectural advances are complementary to our
framework. While they focus on efficiently processing long contexts, TTT provides a mechanism
for online adaptation to the information within that context. Our In-Place TTT can be also naturally
integrated with these efficient backbones, as they also have MLP blocks. And we leave these as the
future work.

Memory Design and Augmentation. A related domain of research involves augmenting neural
architectures with explicit memory modules to enhance their reasoning and contextual understanding
capabilities. These approaches can be broadly distinguished by their function: some are designed
to store persistent, task-agnostic knowledge in an external memory bank, while others focus on
capturing transient, data-dependent information from the immediate context (Khandelwal et al., 2020;
Guu et al., 2020; Lewis et al., 2020; Wang et al., 2024; Yu et al., 2025). The latter, contextual
memories, have been implemented using various mechanisms, including recurrent state transitions,
attention-based context aggregation in Transformers (Dai et al., 2019), and rapid, gradient-based
updates to fast weights (Yang et al., 2024c). Test-Time Training (TTT) represents a powerful instance
of this latter category, which conceptually extends the notion of a hidden state found in Recurrent
Neural Networks (RNNs). Rather than compressing contextual history into a fixed-size activation
vector, TTT designates a subset of the model’s own parameters—the fast weights—to function as a
high-capacity, dynamic memory (Ba et al., 2016; Schlag et al., 2021). These weights are updated
on the fly at inference time, allowing the model to continuously internalize evolving contextual
information and thereby function as an expressive, online evolving state.

B PROOF OF THEOREM 1

For completeness, we first restate the theorem with the precise bounds derived from the assumptions.

Theorem 2 (Logit-wise Effect of NTP vs. Reconstruction). Under the specified setting and assump-
tions, for a sufficiently small learning rate λlr > 0, the expected change in logits ∆ℓn+1 after one
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update step using the NTP-aligned target satisfies:

(Correct logit increases) E [∆ℓn[v
∗]] ≥ λlr · c2norm · calign, (4)

(Other logits almost unchanged) |E [∆ℓn[w]]| ≤ λlr · ϵ · calign, ∀w ̸= v∗. (5)

In contrast, for the reconstruction target, the expected change in logits is negligible for the correct
token:

|E [∆ℓn[v
∗]] | ≤ λlr · ϵ · calign. (6)

Proof. We begin from the setup defined in Section 3.3. The change to the fast weights Wdown from
all prior context tokens is given by ∆Wdown = λlr

∑
t∈prior vtz

⊤
t , where we use λlr to denote the

learning rate η for consistency with the theorem statement. The resulting change in the logit for an
arbitrary token w at the query position n is:

∆ℓn[w] = e⊤w(∆Wdown)zn = λlr

∑
t∈prior

e⊤w(vtz
⊤
t )zn. (7)

Since e⊤wvt and z⊤t zn are scalars, we can rearrange the terms to get:

∆ℓn[w] = λlr

∑
t∈prior

(e⊤wvt)(z
⊤
t zn). (8)

To analyze the expected change, we take the expectation over the representations. Applying the
linearity of expectation, we have:

E[∆ℓn[w]] = λlr

∑
t∈prior

E[(e⊤wvt)(z
⊤
t zn)]. (9)

Per our setup, the target vectors vt (e.g., ext or ext+1 ) are treated as determined. Thus, we can factor
them out of the expectation:

E[∆ℓn[w]] = λlr

∑
t∈prior

e⊤wE[vtz
⊤
t zn]. (10)

Now, we invoke Assumption 2. It states that for the unique key position t∗, we have E[z⊤t∗zn] = calign,
and for all other prior positions t ̸= t∗, the updates provide no information gain, which implies
E[vtz

⊤
t zn] = 0. This simplifies the summation to a single term corresponding to the key-value pair

(k∗, v∗) at position t∗:
E [∆ℓn[w]] = λlr · E

[
(e⊤wvt∗) · (z⊤t∗zn)

]
. (11)

We now analyze this simplified expression for the two target choices.

Case 1: NTP-Aligned Target (vt∗ = ext∗+1
)

First, we consider the logit of the correct token, w = v∗. Substituting the target and the token into
Equation (11) yields:

E [∆ℓn[v
∗]] = λlr · E

[
(e⊤v∗ev∗) · (z⊤t∗zn)

]
. (12)

By Assumption 1, token embeddings have a non-trivial magnitude, ∥ev∗∥2 ≥ c2norm. This gives us
the lower bound in Equation (4):

E [∆ℓn[v
∗]] ≥ λlr · calign · c2norm. (13)

Next, for any incorrect token w ̸= v∗, the expected change is E [∆ℓn[w]] = E
[
(e⊤wev∗) · (z⊤t∗zn)

]
.

Taking the absolute value and applying Assumption 1, which states that distinct embeddings are
nearly orthogonal (|e⊤wev∗ | ≤ ϵ), we obtain the bound in Equation (5):

|E [∆ℓn[w]]| ≤ λlr · calign · ϵ. (14)

Case 2: Reconstruction Target (vt∗ = ext∗ )
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Here, we analyze the effect on the correct logit w = v∗. The expected change is:

E [∆ℓn[v
∗]] = E

[
(e⊤k∗ev∗) · (z⊤t∗zn)

]
. (15)

In an induction task, the key k∗ is distinct from the value v∗. We again invoke Assumption 1 for
these distinct tokens. Taking the absolute value gives the bound in Equation (6):

|E [∆ℓn[v
∗]]| ≤ λlr · calign · ϵ. (16)

This confirms that the reconstruction target has a negligible expected effect on the logit of the correct
answer v∗.

The results from these two cases establish the claims in Theorem 1, providing a clear theoretical basis
for the superiority of the NTP-aligned objective in the context of in-context learning. This completes
the proof.

C CONTEXT PARALLEL ALGORITHM FOR IN-PLACE TTT

For more clarity, we list the pseudocode of the context parallel implementation of our In-Place TTT
here in Algorithm 1.

Algorithm 1 In-Place TTT with Context Parallelism (Single Layer)

Require: Pre-trained weights θ (incl. Wup,Wgate,W
(0)
down); Conv1D kernel K; projection Wtarget;

learning rate η.
1: Input: Sequence chunks {X(i)}Ti=1. ▷ Sequence partitioned for Context Parallelism (CP).
2: for all i ∈ {1, . . . , T} in parallel do ▷ Step 1: Compute update deltas.
3: Hi ← AttentionBlock(X(i); θ) ▷ Standard attention, no changes required.
4: Ui, Gi ← HiW

⊤
up, HiW

⊤
gate

5: Zi ← ϕ(Gi)⊙ Ui

6: Vi ← Conv1DK(X
(i)
0 )Wtarget ▷ Compute NTP-aligned target with causal padding.

7: ∆Wi ← V ⊤
i Zi ▷ Compute gradient for the fast weight update.

8: end for
9: {Si}Ti=1 ← CUMSUM({∆Wi}Ti=1) ▷ Step 2: Aggregate deltas associatively.

10: for all i ∈ {1, . . . , T} in parallel do ▷ Step 3: Apply updates and compute outputs.
11: W

(i−1)
down ←W

(0)
down + ηSi ▷ Effective weight for chunk i uses updates from chunks < i.

12: Oi ← Zi(W
(i−1)
down )⊤

13: end for
14: At document boundaries: Reset fast weights to W

(0)
down.

D EXPERIMENT DETAILS

This appendix provides all details of the experimental settings, datasets, model configurations, and
training hyperparameters used for the results presented in Section 4. The following subsections detail
the setups for our three primary sets of experiments: the continual pre-training of Qwen3-4B-Base,
the from-scratch pre-training of models at multiple scales (500M, 1.5B, and 4B), and the targeted
ablation studies. Our goal is to provide sufficient detail to ensure the reproducibility of our findings.

D.1 DETAILS OF DATASETS

For the large scale pretraining, continual pretraining, and ablation study, we use the dataset collected
by ourselves, we give the details of these datasets as follows.

From Scratch Pretraining Dataset. The pretraining dataset mainly includes general English and
Chinese text, along with high knowledge- or reasoning-density data, code, mathematics data, and
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multilingual text, forming a balanced mixture of linguistic diversity, knowledge and reasoning-rich
content, programming material, and mathematical reasoning.

Continual Pretraining Dataset. The continual pretraining dataset is designed to enhance long-
context modeling: its short-document portion follows a distribution similar to Pretrain Data, while
the long-document portion combines natural data such as books and repository-level code with
synthetic data including retrieval-augmented and long-context-QA style constructions, ensuring
both consistency with pretraining and coverage of challenging long-context scenarios. The data is
organized into subsets with maximum sequence lengths of 32k and 128k for our two-stage training
curriculum.

D.2 DETAILS OF TRAINING AND EVALUATION

Training Details. All models are trained on Nvidia H800 GPUs, with the detailed training hyperpa-
rameters listed in Tables 3 through 5.

Table 3: Training hyperparameters for 500M and 1.5B models.

Hyperparameter 500M Model 1.5B Model
Optimizer AdamW AdamW
Learning Rate 5e-4 3e-4
Batch Size 2M tokens 4M tokens
Weight Decay 0.1 0.1
Gradient Clipping 1.0 1.0
Warmup Steps 1024 1024

Sequence Length 32,768 32,768
Tokens Trained 20B 60B
Sliding Window Size 2,048 4,096

Table 4: Training hyperparameters for 1.7B models and 4B models pretraining

Hyperparameter value
Optimizer AdamW
Learning Rate 3e-4
Batch Size 8M tokens
Weight Decay 0.1
Gradient Clipping 1.0
Warm-up Tokens1 1.6B
Sequence Length 8,192
Tokens Trained 120B

Table 5: Hyperparameters for two-stage continual pre-training.

Hyperparameter Stage 1 (32k Context) Stage 2 (128k Context)
Base Model Qwen3-4B-Base Qwen3-4B-Base
Optimizer AdamW AdamW
Learning Rate 5e-6 5e-6
Weight Decay 0.1 0.1

Sequence Length 32,768 131,072
Tokens Trained ∼20B ∼15B
RoPE Extension None YaRN

Evaluation Details. We employ the evaluation framework lm-evaluation-harness (Gao et al., 2024)
to evaluate the models on the common sense reasoning benchmarks and employ the evaluation
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framework opencompass (Contributors, 2023) to evaluate the models on the long context benchmarks.
All evaluation are conducted on Nvidia H800 GPUs.

In the evaluation of our continual pretrained models, to ensure stable fast-weight updates during
long-context evaluation, we apply a clipping mechanism at inference time. Specifically, if the
Frobenius norm of an update delta, ∥∆W

(i)
down∥F , exceeds a predefined threshold τ , the delta matrix

is scaled down to have a norm of τ before being applied to update the fast weights. For all reported
long-context evaluations, this threshold was set to τ = 1e-5.

To evaluate the efficiency of our In-Place TTT, we evaluate the prefill throughput and peak memory
for sequence length ranging from 8k to 128k. We run the inference for our continual pretrained
checkpoints based on Qwen3-4B-Base model. For the setting of sliding window, we set change the
attention mechanism of these pretrained checkpoints to sliding window of 1024 tokens manually. We
run the inference on Nvidia H800 GPUs with batch size of 1.

D.3 DETAILS OF MODEL CONFIGURATION

This section details the architectural configurations of the models used in our experiments. All models
are decoder-only Transformer architectures featuring standard components, including SwiGLU acti-
vations and Rotary Position Embeddings (RoPE) (Su et al., 2023). The key architectural parameters
for all models trained from scratch are summarized in Table 6.

Table 6: Model architectural configurations for 500M and 1.5B Model.

Parameter 500M 1.5B
Parameters (Approx.) 500M 1.5B
Hidden Size (dmodel) 1024 2048
Num Layers 24 24
Num Attention Heads 8 16
FFN Hidden Size (dff) 3072 6144
Window Size 2048 4096
Vocabulary Size 32,000 32,000
Rope Base 1e6 1e6

The models trained from scratch employ different attention mechanisms based on their experimental
purpose. The 500M, 1.5B utilize sliding-window attention and we list the model configuration in
Table 6. The 4B-scale experiments and ablation study evaluate two variants: one with full attention
and another with sliding-window attention. The backbone architectures for the 4B models and 1.7B
models are identical to the Qwen3-4B-Base model and the Qwen3-1.7B-Base model.

For the continual pre-training experiments described in Section 4.1, we start directly from the publicly
available Qwen3-4B-Base model, inheriting its architecture without modification. In experiments
featuring our method, the In-Place TTT module is integrated into the MLP blocks. For the 4B and
continual pre-training experiments, it is applied to every sixth layer. For the ablation studies, this
frequency is varied as described in the main paper.

E USAGE OF LLMS

During the preparation of this manuscript, LLMs was used to check grammar and improve readability.
All authors have reviewed, edited, and take full responsibility for the paper’s final version.
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