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1 Introduction

Lacunes of presumed vascular origin are fluid-filled cavities of between 3 15 mm
in diameter [1, 2]. They are visualized as a hypointense cavity on Fluid-
attenuated inversion recovery (FLAIR) and T1-weighted imaging, usually with
a hyperintense rim on FLAIR imaging [1, 3]. Quantification of lacunes relies on
manual annotation or semi-automatic / interactive approaches; and almost no
automatic methods exist for this task [3, 4]. Initial work by Ghafoorian et al.
[5] presented a method for detection of lacunes with a deep multi-scale location-
aware 3D convolutional neural network (CNN). Preliminary results by Ooms [6]
suggest that segmentation of lacunes is feasible with a U-Net [7] CNN.

In this work, we present a two-stage approach to segment lacunes of pre-
sumed vascular origin: (1) detection with Mask R-CNN [8] followed by (2)
segmentation with a U-Net CNN.

2 Material and methods

2.1 Data

Data originates from Task 3 of the “Where is VALDO?” challenge (https://
valdo.grand-challenge.org/) and consists of 40 training subjects. For each
subject, a T1-weighted, T2-weighted, and FLAIR image are provided; including
manual annotations of lacunes made by two different observers.
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2.1.1 Lacune prevalence map

Lacunes do not occur randomly throughout the brain, but have preferential
locations. They occur mostly in the basal ganglia and the white matter of the
internal capsule and pons; and rarely at other locations [9]. To exploit this
prior knowledge, a lacune prevalence map was created that shows the expected
distribution of lacunes throughout the brain; to be used as a mask on the final
results.

From the SMART-MR study [10], we included 98 subjects for which manual
segmentation of lacunes were available; and combined this with the 40 training
subjects of the VALDO challenge. All images were registered to the MNI-152
[11] atlas to create a lacune prevalence map. The resulting map (Figure 1)
was made symmetric by mirroring, dilated by 7 mm in all directions, and the
ventricles and CSF were removed.

Figure 1: The final lacune prevalence map in MNI152-space is shown on the
left. Ventricles and extracerebral CSF were removed from the map with a CSF
mask (light-blue on the right).

2.2 Method

Lacunes are hard to find, because of their small size, versatile shape, and sparse
occurrence in the brain [1, 3, 4]. For this reason, a two-stage segmentation
approach was chosen. In the first step, Mask R-CNN [8] localizes possible
lacunes. In the second step, a U-Net [7] segments lacunes based on the locations
suggested by the Mask RCNN.
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2.2.1 Full prediction pipeline

The full prediction pipeline is shown in Figure 2. The various steps of the pi-
peline are: z-score intensity normalization, selecting slices and patches for Mask
R-CNN, up-sampling the 64×64 patches to 256×256, applying Mask R-CNN,
down-sampling back to 64×64 and reconstructing the full 3D image, applying
the lacune prevalence map to remove false positive detections, creating 32×32
patches for the remaining detections, segmenting them with the U-Net, and fi-
nally reconstructing the final segmentation map. The following sections describe
this pipeline in detail.

Figure 2: The full prediction pipeline showing the pre-processing steps, the two
stages (Mask R-CNN and U-Net) and the application of the lesion prevalence
map; to generate the final lacune segmentation for a patient.

2.2.2 Pre-processing

All image data was scaled using z-score normalization (zero-mean-unit-variance)
on the patient level.

2.2.3 Stage 1: Mask R-CNN

Mask R-CNN was trained on 2D patches of size 64×64 with 50% overlap, ex-
tracted from all slices with lacunes in the dataset. A pretrained Mask R-CNN
with a Resnet50 backbone trained on ImageNet was selected. This network
is more familiar with objects of medium and large size; and empirical results
showed that the current implementation cannot detect the lacunes, because of
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their small size. In order to detect lacunes with this network, patches were
up-sampled with nearest neighbour interpolation by a factor four to a size of
256×256. This creates object sizes in which the target is larger and more similar
to the pre-trained network.

Additional parameters of the Mask R-CNN include the anchor size and as-
pect ratios. The chosen anchor size ranged from 4 to 64 and the aspect ratios
were 0.02, 0.25, 1.0, 2.0, and 2.75. The T1, T2, and FLAIR images were pro-
vided as three separate channels to the network with a batch size of six. Data
augmentation consisted of random horizontal flips. The model was trained for
20 epochs, after which there was no apparent improvement.

2.2.4 Stage 2: U-Net

A U-Net was employed to segment lacunes at every location detected by Mask
R-CNN in stage one. The U-Net was trained on 2D patches of 32×32 with
50% overlap, selected from the locations within the lesion prevalence map in
10/90 ratio for lacune/background (selected empirically on validation data).
The model was trained for 30 epochs, and visual inspection showed that after
25 epochs there was no improvement on the training and validation losses (see
Results Figure 3).

2.2.5 Applying the lesion prevalence map

The lesion prevalence map was registered to the T1-weighted images using elas-
tix [12], using an affine transformation followed by a bspline transformation.
The lesion prevalence map was used to mask out false positive segmentations.

2.2.6 Uncertainty

The VALDO challenge requires an additional uncertainty map to be submitted.
Limited time and resources prohibited us from computing the actual epistemic
or aleatoric uncertainty. Prior experience suggests that methods are most un-
certain at the boundaries of objects. Visual inspection of our results suggest
that the final method tends to under-segment lacunes. Therefore we decided to
create a 1-pixel in-plane border outside of the segmented lacunes, as a pseudo-
uncertainty.

2.3 Evaluation

2.3.1 Stage 1: Mask R-CNN

The goal of the Mask R-CNN was to localize all the lacunes (high sensitivity)
with a trade-off of potential low specificity. The model produced two outputs
that were taken into account, the bounding-box and segmentation predictions;
which were both optimized. To evaluate these predictions, we calculated three
measures between the bounding-box predictions and the bounding-box of the
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ground truth; and also between the segmentation predictions and the segmen-
tation ground truths. The measures were as follows: Intersection over Union
(IoU), Average Precision, and Average Recall. Performance of the Mask R-CNN
is defined with these three measures, calculated separately for areas of small,
medium, and large size, and all combined. In other words, the model gives a
clear evaluation for different areas based on their size. For example, the mo-
del with both high Average Precision and Average Recall on small areas, can
accurately localize small lacunes.

2.3.2 Stage 2: U-Net

The goal of the U-Net was to segment lacunes in the ROIs given by the Mask
R-CNN. To evaluate the U-Net, we calculated the DICE between the segmen-
tations and the ground truth. We optimized the threshold for the posterior
probability based on the DICE of the validation set.

3 Results

3.1 Stage 1: Mask R-CNN

The best results of the Mask R-CNN were achieved after 20 epochs, both for the
bounding box and segmentation predictions. The highest value for the Average
Precision and Average Recall was measured on areas of medium size; both for
the bounding box and segmentation predictions. The Average Precision for
the medium-size bounding box was 0.02 and for segmentation was 0.06. The
Average Recall for the medium-size bounding box was 0.23 and for segmentation
0.27. This suggests that the model might be best in localizing medium-sized
lacunes, than small or large lacunes. Visual inspection showed that the majority
of lacunes were correctly localized, although at the cost of a large number of
FPs.

3.2 Stage 2: U-Net

The U-Net model was trained and evaluated independently from the Mask R-
CNN in three different dataset splits. The first case was on a 50/50 split for
lacune/background, resulting in a mean DICE on the validation set of 0.87.
However, this model predicted many false positives (FPs). For example, the
model predicted parts with low-intensity values, like the CSF, to be a lacune. For
this reason, more slices without lacunes were included in the training process,
with a new split of 25/75 for lacune/background. The given ratio improved the
results by having a visual inspection. Despite that still, many FPs remained.
Lastly, the dataset with a split of 10/90 for the lacune/background can recognize
the lacunes and produced only a minimal number of FPs, which were removed
with the prevalence map. We report the mean DICE on the training set of 0.83
and on the validation set of 0.84. The training loss got down to 0.19145 after
30 epochs and the evaluation metrics during training can be seen in Figure 3.
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Figure 3: Progression of the Dice metric during training, reported on both the
training and validation set.

3.3 Qualitative evaluation

Visual inspection of the results showed that most of the lacunes were correctly
detected. An example is shown in Figure 4. However, the predicted binary mask
does not precisely match with the ground truth. In some cases, the prediction
was a bit smaller compared to its ground truth. A small number of false positive
detections remain.

Figure 5 shows the positive and negative effects of the lacune prevalence
mask. Most of the times, the lesion prevalence map correctly removes false po-
sitive detections; as can be seen in the bottom row of Figure 5. Unfortunately,
sometimes the lesion prevalence map also removes a true positive; as can be
seen in the top row of Figure 5. This is most likely caused by an image regis-
tration error, where the close proximity of the lacune to the ventricles caused a
misalignment.

4 Discussion

In this work, we presented a two-stage approach to segment lacunes of presumed
vascular origin on brain MR images. The results suggest that this method can
accurately detect most of the lacunes on our training/validation dataset. As
illustrated in Figure 2, the U-Net decides whether the input from the Mask
R-CNN is the true lacune or not and produces the final binary segmentation.

The Mask R-CNN currently produces a substantial number of false positive
detections. On the one hand, a high sensitivity is essential in this first stage,
probably at the cost of a moderate specificity. On the other hand, a reduction of
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Figure 4: Example of a correctly detected but slightly under-segmented lacune.
Pink is the lacune prevalence map, red is the ground truth segmentation, and
blue is the predicted segmentation.

the number of false positives in this first stage might help the overall prediction
pipeline. Future work could look into thresholding the Mask R-CNN results, to
provide a better selection of lacune candidates to stage two.

A limitation of our U-Net model is the use of 2D patches. In some cases,
the lacune was correctly segmented on one slice, but missed on the next slice.
Using a 3D U-Net might solve this issue, because it can consider the full 3D
extent of the lacunes.

The use of a lacune prevalence map seems to improve the method results,
by removing a substantial amount of false positive detections; at the cost of
also removing some true positives. For future applications, the use of a lacune
prevalence map has some limitations. Even though lacunes occur at preferential
locations, they can occur throughout the full brain. Using a map to mask out
detections, might introduce false negatives at rare locations.

In conclusion, a two-stage deep learning method shows promise for facilita-
ting detection and segmentation lacunes of presumed vascular origin.

5 More information

Source code is available at: https://github.com/hjkuijf/MixLacune. The
docker container hjkuijf/mixlacune can be pulled from https://hub.docker.

com/r/hjkuijf/mixlacune.
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Figure 5: The first pair of images (top row) shows a correctly segmented lacune
which was later removed by the prevalence map. The second pair (bottom row)
shows how false positives are removed by the prevalence map.
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