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ABSTRACT

Modern neural models capture rich priors and have complementary knowledge
over shared data domains, e.g., images and videos. Integrating diverse knowl-
edge from multiple sources—including visual generative models, visual language
models, and sources with human-crafted knowledge such as graphics engines and
physics simulators remains under-explored. We propose a probabilistic frame-
work that combines information from these heterogeneous models, where expert
models jointly shape a product distribution over outputs. To sample from this
product distribution for controllable image/video synthesis tasks, we introduce an
annealed MCMC sampler in combination with SMC-style resampling to enable
efficient inference-time model composition. Our framework empirically yields
better controllability than monolithic methods and additionally provides flexible
user interfaces for specifying visual generation goals.

1 INTRODUCTION

Recent image and video generative models (Saharia et al., 2022; Rombach et al., 2022; Ho et al.,
2022; Brooks et al., 2024) have achieved remarkable success in realistic appearance modeling, yet
still have limitations in following complex text instructions and adhering to real-world constraints
such as physical laws. The former would benefit from semantic priors in visual language models
(VLMs) (Radford et al., 2021; Li et al., 2023; Bai et al., 2023; Achiam et al., 2023), and the latter
from rules embedded in physics simulators. However, training a single model to absorb all informa-
tion sources (texts/visual corpora, simulation trajectories, etc.) can be prohibitively expensive.

We address this challenge by integrating knowledge across models at inference time (Du & Kael-
bling, 2024), leveraging visual generative priors, discriminative rewards from VLMs, and rule-based
knowledge from physics simulators. We focus on the task of controllable visual generation and ag-
gregate opinions across a set of “expert” models by sampling from the product distribution defined
by the models. Each expert, in our case, pretrained models such as VLMs or image and video gener-
ative models, focuses on one or more constraints in generation, and the resulting product distribution
naturally assigns high probabilities only to samples that satisfy all constraints simultaneously. The
use of product distributions to combine the opinions of multiple experts has been extensively used
in the past (Bacharach, 1972; Genest & Zidek, 1986; Hinton, 1999), and in the visual domain in
Markov Random Forests (Wang et al., 2013; Kolmogorov & Zabih, 2002; Glocker et al., 2008;
Boykov & Funka-Lea, 2006) and Conditional Random Fields (Boykov & Jolly, 2001; Kumar &
Hebert, 2003; He et al., 2004).

Despite its conceptual appeal, sampling from product distributions is often intractable. Straightfor-
ward approaches like rejection sampling are inefficient due to vanishing acceptance rates in high
dimensions. Recent works have gotten around these difficulties by either composing model distri-
butions in a simpler Gaussian latent space (Huang et al., 2022) or by composing through models
through an annealed Langevin procedure (Du et al., 2020; 2023; Geffner et al., 2023), where the
combination of annealing and gradient-based sampling enables the modes of the product probability
distribution to be effectively identified. In this paper, we provide a more general framework that en-
ables us to sample from the product of both autoregressive and diffusion-based generative models,
as well as discriminative models such as VLMs. Our approach relies on a combination of Annealed
Importance Sampling (Neal, 2001) and Sequential Monte Carlo (Doucet et al., 2001a) to effectively
find the modes of the product distribution across all experts.
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Our overall framework enables us to integrate multiple input constraints without costly retraining.
We empirically validate its benefits in image generation following complex text instructions. It
also naturally yields a flexible user interface for defining complex generative goals by selecting and
configuring experts, e.g., allowing users to specify the pose and motion trajectory of an object of
interest, insert it into an existing image, and animate the full scene.

Overall, our contributions are threefold:

i) We formulate controllable visual synthesis tasks in a unified Product-of-Experts (PoE) frame-
work that enables principled knowledge integration of heterogeneous generative and discrimi-
native models, as well as physics simulators.

ii) We propose a practical, computationally efficient sampling framework based on Annealed Im-
portance Sampling (AIS) and Sequential Monte Carlo (SMC).

iii) Our method enables flexible forms of user-instruction-following (texts, images, and low-level
specifications such as object poses and trajectories) for image/video synthesis applications and
achieves better user controllability and output fidelity compared to baseline methods.

2 RELATED WORKS

Compositional Generative Modeling. Prior works on compositional generative modeling typically
combine multiple generative models to jointly generate data samples (Du et al., 2020; Garipov et al.,
2023; Du et al., 2023; Huang et al., 2022; Mahajan et al., 2024; Du & Kaelbling, 2024; Bradley et al.,
2025; Thornton et al., 2025; Gaudi et al., 2025) and has been previously applied in visual content
generation (Liu et al., 2022a; Bar-Tal et al., 2023; Zhang et al., 2023; Yang et al., 2024; Su et al.,
2024; Li et al., 2022), but such applications typically focus on multiple homogeneous generator
experts, or, in the case of Li et al. (2022), a single generator expert with multiple discriminative
experts. In contrast, our approach provides a general probabilistic framework through which many
heterogeneous generative and discriminative experts can be jointly combined in generation.

Reward Steering from Discriminative Models. Our work is further related to recent work steering
generative models with discriminative models and reward functions. Methods using gradient descent
on a discriminative reward (Grathwohl et al., 2019; Dhariwal & Nichol, 2021; Bansal et al., 2023;
Luo et al., 2025; He et al., 2023; Ye et al., 2024; Song et al., 2023; Rout et al., 2025) assume dense,
differentiable gradients on the reward. Classifier-free guidance (CFG) (Ho et al., 2020) alleviates
the need for training explicit reward models (classifiers) and we defer more detailed discussions to
Section F.1. Another branch of work applies SMC for more exact reward steering (Wu et al., 2023;
Zhao et al., 2024; Singhal et al., 2025). Both Skreta et al. (2025); He et al. (2025) and our work build
on top of this formulation and consider composing both generative and discriminative experts, but
with the following difference: when considering generative expert products (Eq. (2)), these works
calculate path-wise importance weights to ensure sampling correctness, risking weight degeneracy
as path length grows (Skreta et al., 2025), while ours uses per-timestep MCMC kernels that leave pt
(Eq. (3)) invariant without accumulating weights.

Video Generation with Physical Simulators. Our framework integrates knowledge from physical
simulators to improve physical accuracy compared to end-to-end models, while alleviating the need
for tedious 3D scene setups in traditional graphics rendering pipelines. Recent works have explored
such direction typically convert physical simulator outputs into a specific type of conditional signals
such as optical flow (Burgert et al., 2025; Montanaro et al., 2024; Yang et al., 2025) and point
tracking (Gu et al., 2025), or rely on a single pre-trained video generation model (Liu et al., 2024a;
Chen et al., 2025; Tan et al., 2024), while our framework allows for the integration of various signals
available from physical simulation, providing more complete specifications of controls.

3 METHOD

We aim to generate complex scenes x ∈ Rd by combining the priors from both generative models
(such as image/video models conditioned on texts or control signals converted from physics simu-
lators) as well as discriminative models (such as VLMs), with examples detailed in Section 4. We
formulate this composition of models in a probabilistic manner, where generative models are repre-
sented as probabilistic priors over data {p(i)(x)}Ni=1. Discriminative models are written as constraint
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functions, {r(j) : Rd → R}Mj=1, each assigning a scalar reward that represents how much a sam-
ple x matches the constraint encoded in the model. Each constraint function is converted into an
unnormalized probability distribution through the Boltzmann distribution, q(j)(x) := (exp r(j))(x).

To combine these two classes of models, we aim to sample from the product distribution:

x ∼ p(x) :∝
N∏
i=1

p(i)(x)

M∏
j=1

q(j)(x), (1)

where each generative expert p(i)(x) and discriminative expert q(j)(x) are defined over parts of
the scene x. The product distribution p(x) has high probability for a sample x when x has high
probability under both p(i)(x) and q(j)(x) (Hinton, 2002; Du et al., 2020; Du & Kaelbling, 2024),
allowing us to compose together the priors in both generative and discriminative models.

However, sampling from Eq. (1) is challenging, as we need to search for samples that satisfies con-
straints across all experts. Below, we will discuss how we can efficiently and effectively sample from
the Eq. (1) for high fidelity visual generation. We first discuss how we can sample from multiple
generative experts in Section 3.1 and then discuss how to sample jointly from multiple discriminative
and generative experts in Section 3.2, followed by a practical implementation in Section 3.3.

3.1 SAMPLING FROM GENERATIVE EXPERTS

We first discuss how we can effectively sample from the product of a set of generative experts,

x ∼ p(x) :∝
N∏
i=1

p(i)(x). (2)

To sample from the above distribution, we can use Markov chain Monte Carlo (MCMC) Robert
et al. (1999), where we iteratively refine samples based on their likelihood under the product distri-
bution. In discrete settings, a variant of Gibbs sampling may be used, while in continuous domains,
Langevin sampling based on the gradient of log density may be used (Welling & Teh, 2011).

A central issue, however, is that MCMC is a local refinement procedure and can take an expo-
nentially long time for the sampling procedure to mix and find a high likelihood scene x from the
product distribution (Robert et al., 1999). To effectively sample from product of generative experts,
we propose to use Annealed Importance Sampling (AIS) (Neal, 2001) and construct of a sequence
of T distributions, {pt(x)}1t=T , where pT (x) is a smooth, easy-to-sample distribution and p1(x) is
the desired product distribution defined in Eq. (2). To draw a sample from p1(x), we first initialize a
sample from pT (x) and iteratively run MCMC on the sample to sample from each intermediate dis-
tribution before finally reaching p1(x). Since intermediate distributions are easier to sample from,
this enables us to more effectively find a high likelihood scene x from the product distribution.

We construct the intermediate probability distributions of the following form:

pt(x) :∝
N∏
i=1

p
(i)
t (x), (3)

where p
(i)
t (x) is an expert-specific distribution interpolating between an initial distribution (e.g.,

Gaussian or uniform) and the final expert distribution p(i)(x). We list concrete choices of p(i)t (x)
for two common classes of generative models in Section 3.3. For autoregressive models (Oord
et al., 2016; Larochelle & Murray, 2011), it is the marginal distribution for a prefixed data region
determined by t; for diffusion/flow models (Liu et al., 2022b; Lipman et al., 2022; Ho et al., 2020;
Sohl-Dickstein et al., 2015), it is the time marginal distribution with estimated score functions.

Composing Conditional Generative Experts. To improve the efficacy of sampling from the prod-
uct distribution of generative experts, we can modify each generative expert to be conditionally
dependent on the outputs of other experts. Specifically, we can represent the product distribution as

x ∼ p(x) :∝
N∏
i=1

p(i)(xi|xpa(i)), (4)

3
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Algorithm 1 Product Distribution Sampling

1: Input: Annealing length T , initial distribution pT (·), particle count L, MCMC step count K,
generative experts {p(i)t (·)}N,T

i=1,t=1 with kernels Kt←t+1(· | ·) for MCMC initialization and
Kt(· | ·) for MCMC steps, discriminative experts with log probabilities {r(j)(·)}Mj=1.

2: Initialize: Sample x(l) ∼ pT (·), ∀l = 1, · · · , L.
3: for t = T − 1 to 1 do ▷ Transition to the next annealed distribution
4: for l = 1 to L do ▷ Parallel sampling
5: x(l) ← Kt←t+1(· | x(l)) ▷ MCMC initialization
6: for k = 1 to K do
7: x(l) ← Kt(· | x(l)) ▷ MCMC step
8: end for
9: end for

10: Resample samples with log weights
∑M

j=1 r
(j)
t (x(l)) where r

(j)
t (x(l)) ≈ r(j)(x̂(l)).

11: end for
12: l∗ ← maxl

∑M
j=1 r

(j)(x(l))

13: Output: x(l∗)

where each xi refers to the part of a scene x represented by the generative expert p(i), and xpa(i)
refers to the other parts of a scene specified by other experts the expert is conditioned on.

Making each generative expert conditionally dependent on the values of other experts reduces the
multi-modality in the distribution p(i)(x), enabling more efficient MCMC sampling on the product
distribution. Its benefit is empirically shown in Fig. 2 and Table 1.

3.2 PARALLEL SAMPLING WITH DISCRIMINATIVE EXPERTS

Next, we discuss how we can modify the annealed sampling procedure in Section 3.1 to sample from
the full product distribution from Eq. (1), including discriminative experts. Similar to the previous
section, we can define a sequence of intermediate sampling distributions

pt(x) :∝
N∏
i=1

p
(i)
t (x)

M∏
j=1

q
(j)
t (x). (5)

To implement AIS, one simple approach is importance sampling as follows. We first obtain L sam-
ples from the product of the intermediate generative expert distributions defined in Eq. (3) according
to Section 3.1, and then draw a weighted random sample from these L samples, each with impor-
tance weight

∏M
j=1 q

(j)
t (x) corresponding to the likelihood under product of discriminative experts.

An issue with this simple procedure is that each sample drawn from the MCMC may be correlated
with each other, since MCMC is slow at mixing and may not cover the entire generative product
distribution. To improve coverage, we use a parallel SMC sampler (Doucet et al., 2001b), where we
maintain L particles over the course of annealing. At each intermediate distribution, we run MCMC
on each particle to draw samples from the product of the generative distributions, and then weigh
and resample particles based on their likelihood under the product of the discriminative experts.

Our overall algorithm requires only black-box access to each discriminator, requiring knowing only
the likelihood the discriminator assigns to a sample x and not additional information such as log-
likelihood gradients. If we do have more information about the discriminative expert’s form, we can
directly treat it as generative as in Section 3.1 and use approaches such as gradient-based MCMC.

3.3 FRAMEWORK INSTANTIATION

We now introduce a specific implementation of the framework as summarized in Algorithm 1, which
describes the annealed distribution and expert instantiations primarily used in the paper.

Generative Experts. The framework requires specifying the annealed generative distributions fac-
tors {p(i)t (x)}1t=T (Eq. (3)), a kernel Kt←t+1(· | ·) to propagate samples from the previous an-
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Input Image + “glass box” + “coke can”

Graphics Engine Input

+ “metal box”

Graphics Engine Input Graphics Engine Input

Figure 1: Application on Image Object Insertion where the goal is to insert assets posed in a
graphics engine (top row) and described with text prompts (bottom row) into images (first column).
nealed distribution pt+1(x) to the next distribution pt(x) (line 5, Algorithm 1), and a MCMC kernel
Kt(· | ·) that leaves pt invariant (line 7). While Kt←t+1 does not draw a sample from pt(x) exactly,
it serves as an effective initialization for MCMC sampling.

When generative expert p(i)(x) is a flow model, a natural choice for {p(i)t (x)}1t=T is a discretization
of the probability path generated by its velocity prediction v

(i)
t (x). We set Kt←t+1 as one Euler

step in the flow ODE integration, and Kt is the Langevin dynamics transition, both under composed
score

∑
i∇x log p

(i)
t (x) (Section C.1). When p(i) is an autoregressive model, we use its prefix

marginal for annealing, namely p
(i)
t (x) = p(i)(x1:T+1−t) such that x1:T = x, where x1:T+1−t is a

data slice. We setKt←t+1 such that it appends the next data slice sampled from the model-predicted
conditional distribution, and Kt can be implemented as Gibbs sampling.

Conditional Sampling. We implement conditional generative experts p
(i)
t (xi | xpa(i)) for flow

models by modifying the original generative experts p(i)t (xi). In particular, we modify the generative
flow v

(i)
t (xi) to take into account the predicted flow at parent regions

v
(i)
t (xi | xi′) ≈ v

(i)
t (xi)− w

∑
i′∈pa(i)

∇xi∥v
(i)
t (xi)− stopgrad(v(i

′)
t (xi′))∥22, (6)

where w is the learning rate. Justifications of this approximation are deferred to Section C.2.

Discriminative Experts. We use pre-trained VLMs as reward functions r(i)(x). When generative
experts are flow models, the noisy samples x are out of distribution for discriminative experts. We
define the intermediate counterparts in Eq. (5) as r(j)t (x) = r(j)(x̂) where x̂ is the predicted endpoint
of x (Chung et al., 2022; Efron, 2011) whose computation is specified in Eq. (8).

4 EXPERIMENTS

We apply our framework to image/video synthesis tasks. Expert configurations can adapt to the
desired, task-dependent input granularity, including high-level text instructions (Sections 4.1 to 4.3)
and precise, low-level pose controls (Sections 4.1 and 4.2), and leverage expert knowledge ranging
across natural image and video priors (Sections 4.1 to 4.3), precise physics rules from physical
simulators (Section 4.2), and semantic visual understandings from VLMs (Section 4.3). To better
quantify sampling quality, we evaluate the method on synthetic data with known ground truth target
distribution in Section D.1.
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Input Image & Rendering Ours RF-Solver Ours (No Conditional)
Figure 2: Image Object Insertion Comparisons. Our method better adheres to input geometric
conditions while faithfully preserving background details. The last column shows that conditional
sampling improves visual harmonization and fidelity.

Methods Controllability Image Quality Text Alignment

MSE (bg) (↓) LPIPS (fg) (↓) GPT-4o (↑) Aesthetic (↑) GPT-4o (↑) ImageReward (↑) GPT-4o (↑)

Graphics Engine Rendering Input

RF-Solver 1.619±0.605 0.178±0.061 0.518±0.168 0.618±0.070 0.662±0.103 0.948±0.777 0.438±0.179

Ours No Cond 1.511±0.661 0.065±0.018 0.727±0.141 0.599±0.059 0.718±0.120 1.142±0.668 0.675±0.180

Ours 1.429±0.602 0.065±0.019 0.827±0.073 0.596±0.061 0.783±0.082 1.175±0.666 0.817±0.129

Character Rendering Input (Magic Insert (Ruiz et al., 2024) Dataset)

Magic Insert 0.769±0.535 0.106±0.042 0.743±0.142 0.721±0.076 0.758±0.130 1.169±0.701 0.649±0.141

Add-it 0.710±0.473 0.128±0.048 0.763±0.126 0.715±0.066 0.778±0.097 1.078±0.708 0.684±0.155

FLUX-Fill 0.058±0.044 0.103±0.042 0.655±0.147 0.691±0.070 0.746±0.092 0.828±0.777 0.590±0.152

SDEdit 0.968±0.965 0.026±0.020 0.744±0.131 0.724±0.074 0.871±0.061 1.640±0.376 0.658±0.144

Ours 0.365±0.247 0.064±0.033 0.818±0.097 0.760±0.060 0.769±0.118 1.711±0.308 0.763±0.107

Table 1: Image Object Insertion Evaluation.

4.1 GRAPHICS-ENGINE-INSTRUCTED IMAGE EDITING

Task. This task provides the following image object insertion interface for applications where users
want to insert an object precisely into certain parts of the image. Inputs consist of an image to
be edited, an input 3D asset posed in a graphics engine, and a text description describing higher-
level information such as object materials (“metal”) and semantics (“coke can”). We deploy two
generative experts for this task: a depth-to-image model, FLUX.1 Depth [dev], and an inpainting
model, FLUX.1 Fill [dev] (FLUX, 2024). The former ensures inserted objects follow input pose
specifications, and the latter provides a natural image prior to produce realistic outputs.

Evaluation. We compare with an editing method, RF-Solver (Wang et al., 2024), which inverts the
input image to a Gaussian noise and then generates the output starting from that noise, conditioned
on a text prompt that additionally describes where to insert the object, e.g., “a metal box standing
on the ground”. The evaluation dataset consists of 10 natural images paired with 3 object assets,
resulting in 30 scenes in total, with examples in Fig. 1. The metrics cover three major aspects: con-
trollability, image quality, and text alignment. Specifically, we evaluate the MSE distance between
generation outputs and input images on background pixels to evaluate background preservation,
and LPIPS (Zhang et al., 2018) distance between outputs and graphics engine’s RGB renderings
on foreground pixels to measure the fidelity to input objects. We report aesthetic score using the
LAION-Aesthetic predictor (Schuhmann & Beaumont, 2022) and measure text alignment with Im-
ageReward (Xu et al., 2023), and query GPT-4o for automatic evaluation (details in Section E.2).

Results are in Table 1 (top half). Baseline outputs do not conform to input object pose due to the
lack of precision of text prompts, and may fail to preserve input background as observed in Fig. 2.

Ablation on Conditional Sampling. Section 3.1 introduced the conditionally sampling strategy,
which is crucial for efficient sampling from the product distribution. Removing the updates in Eq. (6)
(“No Cond” in Table 1) decreases performance and results in less harmonized visual outputs (Fig. 2).

Character Insertion. The task spec above is closely relevant to the character insertion task studied
in Magic Insert (Ruiz et al., 2024), where the goal is to insert a character from an image into a
background image. We use 10 background images paired with 8 character inputs released on their
official demo page to construct an evaluation dataset of 80 scenes. Since their model uses a different

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

“Pigeons startled as the white cloth slips off the box and flutters to the pavement.”

“Cloth slips off the wooden box as a distant car emerges, its low rumble stirring dust.”

Input Image

Input Image

“Raindrops burst into splashes. The spray in the foreground sinks as its pressure fades.”

“A bike rider speeds along the wet pavement as water splashes up from the wheels.”

Input Image

Input Image

Input Physical Simulation (4 keyframes)

Input Physical Simulation (4 keyframes)

Figure 3: Application on Physical-Simulation-Instructed Video Generation. Given an input
image and a physical simulator rendering describing precise object motions, our method generates
videos aligned with input motions while synthesizing natural content for non-foreground regions.

Methods Controllability Video Quality Semantic Alignment

IoU (fg) (↑) LPIPS (↓) GPT-4o (↑) Smooth (↑) Aesthetic (↑) Imaging (↑) GPT-4o (↑) ViCLIP (↑) GPT-4o (↑)

Object-Centric Simulation Input

Traj2V 0.602±.193 0.109±.033 0.638±.172 0.993±.003 0.534±.071 0.570±.154 0.725±.179 0.258±.041 0.757±.141

Depth2V 0.787±.229 0.103±.031 0.650±.144 0.984±.015 0.534±.069 0.581±.155 0.750±.126 0.261±.041 0.775±.130

Image2V 0.321±.249 0.111±.021 0.708±.104 0.978±.025 0.553±.057 0.611±.101 0.775±.099 0.255±.036 0.788±.079

Ours 0.739±.221 0.104±.030 0.708±.104 0.994±.003 0.549±.068 0.625±.117 0.842±.132 0.270±.038 0.817±.080

Full-Scene Simulation Input (PhysGen3D (Chen et al., 2025) dataset)

PhysG3D – – 0.438±.099 0.995±.002 0.571±.114 0.673±.046 0.513±.117 0.224±.026 0.588±.117

Inversion – 0.237±.084 0.263±.122 0.993±.002 0.468±.097 0.410±.144 0.250±.206 0.202±.058 0.400±.206

Depth2V – 0.164±.065 0.550±.173 0.993±.003 0.579±.067 0.680±.081 0.662±.216 0.242±.030 0.788±.108

Image2V – 0.242±.077 0.525±.192 0.986±.010 0.594±.074 0.662±.052 0.638±.245 0.236±.028 0.788±.105

Ours – 0.136±.047 0.587±.220 0.993±.003 0.575±.071 0.688±.045 0.763±.132 0.239±.038 0.825±.141

Table 2: Physics-Simulator-Instructed Video Generation Evaluation.
backbone (Podell et al., 2023), for fair comparisons, we also include three baselines using the same
FLUX backbone as ours: Add-it (Tewel et al., 2024), SDEdit (Meng et al., 2021), and FLUX-Fill.

Results are in Table 1 (bottom half). Add-it receives text instructions for object insertion, but tends
not to follow the specified character location in the prompts; SDEdit produces harmonized outputs
but does not closely preserve the background due to the global noising operation; the inpainting
method, FLUX-Fill, sometimes ignores the character descriptions in the input text instruction and
fails to insert any object. These observations are also reflected qualitative samples in Section D.3.

4.2 PHYSICAL-SIMULATOR-INSTRUCTED VIDEO GENERATION

Task. The setup from Section 4.1 can be directly extended to dynamic scenes for video genera-
tion, with object poses and dynamics (e.g., a ball bouncing, Fig. 3 top row) specified by a physical
simulator, an input image, and a textual scene description. Below, we consider two sets of experts:
flow-based (Wang et al., 2025) and autoregressive-based (Zhang & Agrawala, 2025).
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billboards…as a metal sphere falls down.”

Figure 4: Comparisons on Physics-Simulator-Instructed Video Generation. Predictions are pro-
cessed in grayscale and overlaid with estimated tracking (Xiao et al., 2024) for visualization.

Flow-Based Experts. We evaluate our method and several monolithic models, including image-to-
video (Image2V), depth-to-video (Depth2V), and trajectory-to-video (Traj2V), all using the same
Wan2.1 (14B) model as backbone, on a dataset consisting of 3 simulation inputs paired with 4 input
images each, giving a total of 12 scenes with examples in Fig. 3. To obtain the initial frame for all
methods, we edit the input image with our method described in Section 4.1 to insert the simulated
object. Depth maps required as method inputs are rendered from the physical simulator, and input
trajectory maps are computed using object centroids. Metrics include the ones from Section 4.1
that are relevant to this task, with additional ones adopted from a video benchmark VBench (Huang
et al., 2024): motion smoothness scores introduced in VBench, MUSIQ (Ke et al., 2021) for imaging
quality, and ViCLIP (Wang et al., 2023) for text prompts alignment. We further compute foreground
motion trajectory accuracy with IoU on SAM2 (Ravi et al., 2024) detected from output videos.

Results are in Table 2 (top half). Depth-to-video and trajectory-to-video alone fail to capture rich
non-foreground-object motions, such as cars moving and birds running in Fig. 4. In particular, they
tend to compensate for the object’s downward motion with upward camera motions, as visualized
by the tracking trajectories in Fig. 4. Image-to-video model does not follow the input motion.

Autoregressive Experts. We implement the autoregressive construction for Eq. (3) using two gener-
ative experts: a next-frame-section video prediction model, FramePack (Zhang & Agrawala, 2025),
and a Gaussian distribution psim(x) centered on physics simulator renderings. Denote a video se-
quence of the physics simulator’s RGB rendering overlayed with the input initial frame as csim, then
psim(x) :∝ exp (−w∥x− csim∥22) with constant w ∈ R. In this case, x1:t represents the first T+1−t
frame sections of a video x. We approximate sampling from this distribution with its MAP solution,
which amounts to gradient updates w.r.t. loss ∥x−csim∥22. Qualitative results are in Fig. 5, suggesting
that composing per-expert constraints enforces desired object motion on top of output photorealism.

Full-Scene Simulation. In the above setting, simulation inputs only describe foreground objects.
We further evaluate cases where full-scene simulation is available. We use the simulation results
from 9 released scenes from PhysGen3D (Chen et al., 2025), a method that reconstructs and animates
images in physical simulators, as evaluation inputs. To better preserve scene content, we use the
flow-inverted noise vector for particle initialization as opposed to random noise, and compare with
this inversion baseline. Results are included in Table 2 with qualitative samples in Fig. 11.

4.3 TEXT-TO-IMAGE GENERATION WITH LAYOUT CONTROL

Task and Evaluation. This task aims to generate an image given an input global text prompt and
a set of object bounding boxes with paired object text descriptions. We evaluate on 50 scenes ran-
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Figure 5: Physical-Simulation-Instructed Video Generation compared with the baseline with the
same backbone. Our method better adheres to the input object motion trajectory.

Method mIoU (↑) VQAScore (↑) VQAScore-R (↑)

3DIS-FLUX 0.673±0.182 0.800±0.190 0.808±0.161

L = 1 (Du et al. (2023)) 0.675±0.200 0.567±0.272 0.567±0.189

L = 4 0.695±0.172 0.802±0.190 0.795±0.155

L = 8 0.715±0.177 0.879±0.115 0.843±0.135

L = 16 0.723±0.176 0.897±0.106 0.870±0.128

L = 32 0.728±0.170 0.904±0.092 0.881±0.115

Table 3: Text-to-Image Generation with Layout Controls on MIG-Bench (Zhou et al., 2024)
dataset, comparing our method with varying compute budgets and an application-specific baseline.

domly sampled from the full MIG-Bench (Zhou et al., 2024) dataset of 800 scenes. Metrics include
bounding box mIoU, detected using GroundingDINO (Liu et al., 2024b), and VQAScore (Lin et al.,
2024) measuring output alignment with global and regional prompts.

Results. Table 3 and Fig. 8 contains results on ablating the number of particles L and also com-
parisons with 3DIS-FLUX (Zhou et al., 2025), a state-of-the-art method designed for text-to-image
generation with the same backbone model as ours. In the case of L = 1, the method reduces to
Du et al. (2023). The performance of our method improves with higher computation budgets, and
alleviates the need for application-specific designs, such as cross-attention layer intervention as used
in Zhou et al. (2025). The ablation on SMC resampling is deferred to Section D.5.

5 CONCLUSION

We have introduced a probabilistic framework where knowledge from heterogeneous sources is
composed in the form of product distributions, and proposed an efficient sampling algorithm in-
terleaving annealed MCMC sampling and SMC resampling to integrate guidance from multiple
generative and discriminative models. Our training-free approach can effectively integrate visual
generative priors, VLM guidance, and physics-based constraints. Empirical evaluation suggests that
this method generates images and videos with improved controllability and fidelity compared to
prior works, providing a practical recipe for controllable visual synthesis tasks.

9
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Reproducibility Statement. Experiment details including implementation details for the proposed
method and for baselines, evaluation protocol, and raw results are included in the appendix and the
supplementary webpage. To promote reproducibility and to facilitate future research, we will release
the code upon acceptance.
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A OVERVIEW

The supplementary material contains discussions (Section B), extended descriptions of the frame-
work (Section C), and additional experimental results (Section D) and details (Section E).

B DISCUSSIONS

Compute Requirement. All image experiments are run using 1 NVIDIA H200 GPUs and all video
experiments with 2 NVIDIA H200 GPUs. Generating one sample in Section 4.1 takes approximately
4min. It takes 5min for flow-based and 30min for autoregressive-based models in Section 4.2. Wall-
clock time for the task in Section 4.3 with different numbers of particles is included in Table 5.

Limitations. The proposed method requires extra computation due to intermediate MCMC steps
and parallel sampling compared to vanilla feedforward inference of the image or video genera-
tive model backbones. Furthermore, the sampling efficacy relies on the assumption that expert
predictions are reasonably compatible, and strong incompatibilities might require other sampling
techniques or training. Qualitative examples are discussed in Section D.4.

This work proposes a framework and provides empirical validation with small number of experts
and we leave large-scale sampling as future work. We mainly highlight two straightforward sources
for parallelism: MCMC sampling across particles, and inference for different generative experts
within each MCMC step evaluation.

Societal Impact. We believe outputs of the proposed framework does not directly possess negative
societal impact. The underlying technology enable more content creation tools and benefits under-
standing model behaviors. However, highly controllable generation could be exploited to create
misinformation. While our work does not inherently use sensitive data, we are aware of such risks
and closely follow ethical guidelines in the community to help mitigate these risks.

C FRAMEWORK DETAILS

C.1 FLOW MODELS

We use bar notations for pre-trained models in the following discussions.

Consider the i-th generative expert, which is a flow model that defines a time-dependent continuous
probability path p̄(i)(x; t̄), x ∈ Rd, t̄ ∈ [0, 1], with boundary conditions p̄(i)(x; 0) = N (0, I) and
p̄(i)(x; 1) ≈ p

(i)
data(x). Each flow model is associated with a scheduler ᾱ, σ̄ : [0, 1] → R that defines

a conditional probability path p̄(i)(x | y; t̄) = N (x | ᾱ(t̄)y, σ̄(t̄)I), y ∼ p
(i)
data(y), and is trained to

predict a velocity field v̄(i)(x; t̄, θi) that generates the marginalized path p̄(i)(x; t̄), where θi denotes
model parameters. While the training-time scheduler (ᾱ, σ̄) can differ across experts, they can be
aligned during inference time via a scale-time transformation (Lipman et al., 2024).

Given a time remapping function ξ : {T, T − 1, · · · , 1} → [0, 1], one can construct the per-expert
product component from Eq. (3) via discretizing the path p̄(i)(x; t̄) into

p
(i)
t (x) := p̄(i)(x; ξ(t)). (7)

We require that ξ is monotonic and ξ(T ) = 0, ξ(1) = 1. By construction, p(i)T (x) = N (0, I) is easy
to sample from, and p

(i)
1 (x) = p

(i)
data(x) encapsulates the prior data distribution of the expert model,

fulling our motivation in Section 3.1. For all experiments, we define ξ to be the Euler discretiza-
tion (Esser et al., 2024; Euler, 1792), with additional alignment to the DDPM scheduler (Ho et al.,
2020) for experiments in Section 4.3.
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Line 5 from Algorithm 1 is computed as follows:

v
(i)
t (x) = v̄(i)(x; ξ(t), θi),

αt = ᾱ(ξ(t)),

σt = σ̄(ξ(t)),

s
(i)
t (x) =

−αtv
(i)
t (x) + α̇tx

σ̇tσtαt − α̇tσ2
t

,

vt(x) =
∑
i

λ(i)(x)v(i)(x),

st(x) =
∑
i

λ(i)(x)s(i)(x),

Kt←t+1(x
′ | x) = δ(x′ − (x+ vt(x)(ξ(t− 1)− ξ(t)))),

Kt(x
′ | x) = N (x′;x+

κ2

2
st(x), κ

2I),

where λ(i)(x) is defined in Section E.1, with all entries of
∑

i λ
(i)(x) to be 1.

The end-point prediction is available as

x̂ =
σt

α̇tσt − σ̇tαt
vt(x)−

σ̇t

α̇tσt − σ̇tαt
x. (8)

C.2 APPROXIMATION FOR CONDITIONAL SAMPLING

We explain Eq. (6) below. Let xi be any expert. We approximate the distribution p(xi | xpa(i)) as

p(xi | xpa(i)) ∝ p(xi)p(xpa(i) | xi) = p(xi)
∏

i′∈pa(i)

p(xi′ | xi), (9)

where parent regions xi′ are assumed to be conditionally independent given xi. To model each
conditional distribution p(xi′ | xi), we define a Gaussian distribution of the deviation of the flow
vector predicted at xi′ and xi, where p(xi′ | xi) ∝ e−w∥v(xi′ )−v(xi)∥2 with a constant w ∈ R. Under
this parametric distribution, when xi′ and xi have consistent flow predictions, the likelihood is high
(which is reasonable as this indicates both xi′ and xi are mutually compatible). We can convert the
probability expression in Eq. (9) to a corresponding score function, resulting in Eq. (6).

In this work, pa(i) is defined as the generative expert defining a natural data distribution for global
x ∈ Rd, e.g., a text-conditioned generative model for the full image/video x. Each generative expert
is additionally conditioned on a context signal ci ∈ Rdcontext

i , e.g., texts or depth maps. Note that the
framework allows for different types of conditions across experts, enabling flexible control handles
that are typically application-dependent.

D EXTENDED EXPERIMENTAL RESULTS

D.1 SYNTHETIC EXPERIMENTS

We conducted experiments using a synthetic mixture-of-Gaussians dataset with known ground-truth
product distributions for further quantitative evaluation.

Dataset. We use a 2D mixture-of-Gaussian as the target distribution for two experts p(1)data and p
(2)
data.

The first expert mixture consists of 8 Gaussian whose means are equally spaced along the x-axis
with anisotropic covariance; the second is defined analogously along the y-axis. Fig. 6 shows the
visualization of ground truth distributions.

Metrics. W1 and W2 are empirical 1- and 2-Wasserstein distances between method samples and
ground truth ones. MMD is the squared maximum mean discrepancy with RBF kernels. TV is total
variation distance. NLL is the Monte Carlo estimate of the negative log-likelihood−E

[
log pdata(x)

]
of method samples under the analytic density pdata(x).
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Expert 1 𝑝data
(") Product 𝑝data

(") 𝑝data
($)Expert 1 𝑝data

($)

Figure 6: Mixture-of-Gaussian Data Visualization.

Method W1 (↓) W2 (↓) MMD (↓) TV (↓) NLL (↓)

Expert 1 (p(1)) 0.906 1.033 0.047 0.709 7.727
Expert 2 (p(2)) 0.883 1.023 0.045 0.702 8.197
No-annealing (T = 1) 3.765 4.005 5.075 0.999 21.129
No-MCMC (K = 0) 0.728 0.909 0.027 0.604 5.008
Ours 0.580 0.777 0.018 0.583 4.517

Table 4: Comparisons on Mixture-of-Gaussian Data.

Models. Each expert model is a 5-layer MLP with hidden dimension 512. Models are trained with
flow matching for 10000 iterations with Adam (Kingma, 2014) optimizer and learning rate 1e − 3.
During inference, for each method, we choose the number of discretization steps T and the number
of Langevin steps K so that the number of function evaluation (NFE) is constant across models.
NFE is computed with (K +1)(T − 1) since each step involves 1 query for initialization and K for
MCMC updates, and there are T − 1 steps in the for loop in Algorithm 1.

Results. Results are reported in Table 4. Our method achieves better sampling quality compared to
all baselines, indicating improved mixing on this dataset, with sharply peaked energy surface of the
target product distribution.

D.2 QUALITATIVE VIDEO RESULTS

Please view the “index.html” in the supplementary material folder using a web browser.

D.3 GRAPHICS-ENGINE INSTRUCTED IMAGE EDITING

Fig. 7 contains qualitative samples on the Magic Insert dataset for experiments in Section 4.1.

D.4 TEXT-TO-IMAGE GENERATION WITH REGIONAL COMPOSITION

Fig. 8 contains qualitative samples on the MIG-Bench dataset for experiments in Section 4.3.

This task exemplifies challenges when multiple expert models (one for each image region) are com-
posed, and we observe two failure modes expanding the discussions from Section B.

The first arises when input conditions are contradictory. An example is shown in the second-to-last
row of Fig. 8, where the regions for “a yellow horse” and “a blue horse” overlap. In this case, the
support of the product distribution becomes very small, and although our method draws samples
from the product, the resulting samples may not be visually desirable.

The second occurs when some input conditions are complex and our method inherits limitations of
the underlying expert models. For example, in the last row of Fig. 8, the text prompt for the global
region specifies attributes for multiple objects, which leads to attribute leakage: the global expert
makes all three hot dogs blue in the result for L = 32.
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Method mIoU (↑) VQAScore (↑) VQAScore-R (↑) Wall-Clock Time (min)

L = 1 0.675±0.200 0.567±0.272 0.567±0.189 ∼1
L = 1 (No SMC) 0.675±0.200 (+0.000) 0.567±0.272 (+0.000) 0.567±0.189 (+0.000) ∼1
L = 4 0.695±0.172 0.802±0.190 0.795±0.155 ∼4
L = 4 (No SMC) 0.715±0.170 (+0.020) 0.795±0.170 (−0.007) 0.767±0.159 (−0.028) ∼4
L = 8 0.715±0.177 0.879±0.115 0.843±0.135 ∼6
L = 8 (No SMC) 0.735±0.163 (+0.020) 0.807±0.182 (−0.072) 0.795±0.153 (−0.048) ∼6
L = 16 0.723±0.176 0.897±0.106 0.870±0.128 ∼12
L = 16 (No SMC) 0.698±0.177 (−0.025) 0.814±0.186 (−0.083) 0.806±0.162 (−0.064) ∼12
L = 32 0.728±0.170 0.904±0.092 0.881±0.115 ∼25
L = 32 (No SMC) 0.691±0.183 (−0.037) 0.854±0.139 (−0.050) 0.838±0.136 (−0.043) ∼25

Table 5: SMC resampling ablations on the task from Section 4.3. Values in green (red) indicate
“No SMC” is better (worse). Results suggest that SMC benefits sampling efficiency. Resampling
has relatively marginal computation.

D.5 ABLATION ON SMC

We conduct ablation for SMC with results shown in Table 5.

D.6 TEXT-TO-IMAGE GENERATION

We further demonstrate the efficacy of distribution composition on the task of text-to-image gen-
eration, where we first query an LLM to parse an input text prompt into spatial bounding boxes
with regional prompts (Fig. 9 left), aiming to compose the distributions from text-to-image model
(FLUX.1 [dev]) conditioned on regional text prompts, one for each region, as generative experts, and
from VQAScore (Lin et al., 2024) as a discriminative expert, which gives a scalar value predicting
the probability that its input image is aligned with the input text prompt. We compare our methods
using L = 16, 4 particles and 1 particle (which amounts to not using the discriminative expert), a
variant using no generative composition (equivalent to best-of-N sampling for vanilla FLUX) while
matching the compute budget for 16 particles, and with the vanilla FLUX backbone. In the examples
shown in Fig. 9, our compositional approach achieves better text alignment compared to the base-
lines, and the discriminative expert provides crucial knowledge, e.g., counting, to steer the output
distribution.

The parallel sampling process is visualized in Fig. 10. For each scene from Section 4.3, we use an
LLM to convert a text prompt into a layout of bounding boxes following the procedure described
in Section E.5. The input text prompts and resulting layouts and regional prompts are visualized in
Fig. 9. Then, we follow Algorithm 1 and initialize L = 4 particles and annealed schedule length
T = 28, which are reweighed at three key timesteps t = 21, 19, 1 using the discriminative expert,
VQAScore (Lin et al., 2024), which measures image-text alignment with a probability score. At
t = 21, 19, we binarize the scores with the threshold set to be the median score of the current 4
particles, discard the two below the threshold, and duplicate the remaining two high-score particles
two times to maintain 4 particles in each round. At t = 1, we keep the highest-scoring particle as
the final output sample.

Fig. 10 shows end-point predictions to visualize the intermediate samples from the annealing process
from t = 28 to t = 1. VQAScore measurements (higher means more aligned) are overlayed on the
top-left corner for each sample. In the proposed framework, integrating multiple generative experts
allows for composing simpler regional prompts, construction of the annealed distributions allows
for iterative refinement of samples, and parallel sampling further integrates the knowledge from the
discriminative expert and improves output accuracy, as evidenced in the comparisons from Fig. 9.

D.7 PHYSICAL-SIMULATOR-INSTRUCTED VIDEO GENERATION

Qualitative samples are included in Fig. 11.
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E EXPERIMENT DETAILS

E.1 IMPLEMENTATION DETAILS

As described in Eq. (4), a generative expert can be defined over the entire scene x ∈ Rd or a region
xi ∈ Rd(i)

with d(i) ≤ d, in which case the expert has prior over only part of the scene, e.g., a spatial
region in Section 4.3. In these cases, we zero-pad the model prediction from Rd(i)

to Rd.

In other cases, one may restrict the influence of a generative expert to update only a scene region,
even when the expert is defined over the full scene x ∈ Rd, e.g., when the expert only has knowledge
over foreground object informed by the graphics engine or physics simulators (Sections 4.1 and 4.2).
We apply a regional (spatial for images and spatio-temporal for videos) weight λ(i)(x) ∈ [0, 1]

d on
the velocity prediction v

(i)
t (x) in these cases, where λ(i)(x) is a Gaussian-blurred foreground mask.

E.2 AUTOMATIC EVALUATION WITH VLMS

We follow the protocol proposed in PhysGen3D (Chen et al., 2025) to run automatic evaluation for
Sections 4.2 and 4.3 using GPT-4o (Hurst et al., 2024). For each scene, all methods’ output images,
or uniformly sampled 10 frames when outputs are videos, are sent to GPT-4o together with template
prompts as specified in PhysGen3D (Chen et al., 2025). GPT-4o is asked to give scores from 0 to 1
for each video on all metrics. The scores for the same metric are averaged across all scenes.

E.3 GRAPHICS-ENGINE-INSTRUCTED IMAGE EDITING

In Section 4.1, the product distribution is defined as p(x) ∝ pdepth2image(x | ctext, cdepth)pimagefill(x |
ctext, cimage, cmask). We use T = 28, L = 1, with 1 MCMC sampling step and 2 conditional sampling
updates (Eq. (6)) per iteration. The spatial resolution is 960 × 1664 for the graphics engine dataset
and 1024× 1024 for Magic Insert dataset.

For the graphics engine dataset, assets are rendered in Genesis1.

For Magic Insert data preprocessing, we use SAM2 (Ravi et al., 2024) to obtain the segmentation
masks of foreground characters, and feed the images of segmented characters, resized to the bottom-
left quadrant and overlaid with backgrounds, into GPT o4-mini for image captions to serve as text
prompts for evaluated methods. Magic Insert results are downloaded from the official demo page.
Add-it receives background images from the dataset as inputs, together with the GPT-generated
captions (of overlaid images) appended with “{character} is at the bottom left quarter” to indicate
the desired locations. SDEdit takes in input overlaid images and adds Gaussian noise with standard
deviation 0.5 before denoising.

E.4 PHYSICAL-SIMULATOR-INSTRUCTED VIDEO GENERATION

In Section 4.2, for flow models, the product distribution is defined as p(x) ∝ pdepth2video(x |
ctext, cdepth)pimage2video(x | ctext, cimage). We use T = 30, L = 1 with 1 MCMC sampling step per
iteration. We use no conditional sampling updates for this task due to GPU memory constraint.
Each generated video has 81 frames and spatial resolution 480× 832.

For autoregressive models, the product distribution is defined as p(x) ∝ psim(x | csim)pimage2video(x |
ctext, cimage) with psim(x | csim) defined in Section 4.2. We approximate sampling from this dis-
tribution with first sampling from pimage2video, then do 8 gradient updates with respect to L2 loss
∥x− csimulation∥2. Results in Fig. 5 use 81 frames per sequence and spatial resolution 512× 768. We
set L = 1, with 1 MCMC sampling step per iteration for this experiment.

E.5 TEXT-TO-IMAGE GENERATION WITH REGIONAL CONTROL

For Section 4.3, the product distribution is p(x) ∝
(∏

i p
depth2image(xi | ctext, cdepth)

)
qVLM(x | ctext).

Here, pdepth2image is a regional generative experts (FLUX-Depth), which predict scores for bounding-
box-cropped images conditioning on regional text prompts and on regional depth maps cropped from

1https://github.com/Genesis-Embodied-AI/Genesis
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global depth maps predicted using the first stage of 3DIS-FLUX (Zhou et al., 2025) (layout-to-depth
generation); qVLM a discriminative expert VQAScore, where for each image sample, it assigns the
summed score computed over a full image and its regions cropped with input bounding boxes as the
reward. We use T = 28 and image resolution 1024 × 1024, with 1 MCMC sampling step and 2
conditional sampling steps per iteration.

F EXTENDED DISCUSSIONS

F.1 GUIDANCE FOR DIFFUSION MODELS

Classifier guidance (CG) (Dhariwal & Nichol, 2021) and classifier-free guidance (CFG) (Ho & Sal-
imans, 2022) are canonical approaches for improving sampling quality of diffusion models. While
our framework is a general sampler for product distributions and can be instantiated with diffusion-
based and autoregressive models, we proceed with the discussion fully within the context of diffu-
sion models, and expand on the connection and differences of this work with CG and CFG below.

CG aims to sample from a class-conditioned distribution by adding the score of a base generative
model and a classifier trained on noisy inputs. However, because the product of diffused marginals
does not equal the diffused marginal of the product distribution, CG results in biased scores. We
formalize this claim in the follows.

Let Pt be an operator on a density function f(x), x ∈ Rd, with

Ptf(x) :=

∫
N (x;αtx0, σ

2
t I)f(x0) dx0, (10)

where αt, σt ∈ R are constants, then Ptf is the diffused marginal of f corresponding to a noise
level t as defined in standard diffusion or flow-based models. In the case of CG for a fixed class c,
the desired target distribution is pCG(x) := p(x)ps(c | x; t) with unconditional distribution p(x),
classifier p(c | x; t), and gradient scale s ∈ R. CG aims to sample from pCG following a Markov
chain (Ptp

CG)t≥0. Doing so requires scores for Ptp
CG. However, in general cases,

(Ptp
CG)(x) ̸= (Ptp)(x) p(c | x; t)s, (11)

and therefore the score of the right-hand side of Eq. (11) as computed in CG is biased for the true
marginal Pt(p

CG) which corresponds to the left-hand side.

Similarly, in CFG, for a fixed class c and guidance scale s, pCFG(x) := ps(x | c)p1−s(x | ∅). For
general densities u, v, Pt(uv) ̸= PtuPtv. In particular,

Ptp
CFG = Pt

[
p(· | c)sp(· | ∅)1−s

]
̸= (Ptp(· | c))s(Ptp(· | ∅))1−s, (12)

also leading to biased scores estimates.

On the other hand, when applied to sampling from pCG, our proposed sampler explicitly sets the
intermediate annealing target at step t to the right-hand side of Eqs. (11) and (12) and uses additional
MCMC transitions to asymptotically converge to the target, yielding unbiased samples.

F.2 EVALUATION ON CLASS-CONDITIONED SAMPLING

In the case of class-conditioned sampling for pCG and pCFG, vanilla CG can be viewed as a special
case with K = 0 MCMC steps with K defined in Algorithm 1. The advantages of setting K > 0
are empirically verified in the following experiments.

Baselines. We compare the following methods (s is guidance scale as defined in Section F.1, and
K is the number of MCMC steps): vanilla class-conditional sampling without guidance with s =
1,K = 0; CFG with guidance scale with s = 2,K = 0; and our sampler with additional MCMC
refinement with s = 1,K > 0. All models are 5-layer MLPs with hidden dimension 512, trained
with flow matching. We zero out class conditioning with probability 0.5 during training. Similar to
Section D.1, the step number T for each method is determined to maintain constant NFEs; each step
for CFG involves 2 NFEs while others involve 1.

Dataset and Metrics. We use a synthetic 2D dataset forming an 8×8 checkerboard, where each
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Method W1 (↓) W2 (↓) MMD (↓) TV (↓) NLL (↓)

Vanilla (s = 1, K = 0) 0.581 0.724 0.389 0.833 2.796
CFG (s = 2, K = 0) 0.296 0.476 0.026 0.671 2.631
Ours (s = 1, K = 1) 0.296 0.468 0.024 0.667 2.534

Table 6: Evaluation on Class-Conditioned Sampling.

column corresponds to one class. Ground truth data visualization is shown in Fig. 12. Metrics
follow Section D.1.

Results. Results are reported in Table 6. Applying additional MCMC steps to the class-conditioned
sampling tasks, with total NFE controlled, results in better sampling quality compared to diffusion
model inference with and without CFG.
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Overlayed Inputs Add-it	 FLUX-FillMagic Insert SDEdit Ours
Figure 7: Comparisons on Character Insertion Task.
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Input Layout 𝐿 = 1 (Du et al. (2023)) 𝐿 = 43DIS-FLUX 𝐿 = 32 𝐿 = 32 No SMC

Figure 8: Comparisons on Layout-Conditioned Image Generation Task.
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Ours (16 particles) Ours (4 particles) No Gen. CompositionNo Disc. Expert Vanilla FLUXRegional Layout
“In a field of flowers, every bloom is yellow, save for one that is blue.”

“Five ants are carrying biscuits, and an ant that is not carrying biscuits is standing on a green leaf directing them.”

“a field of flowers 
where every 

bloom is yellow”

“one 
blue 

bloom”

“five ants 
carrying 
biscuits”

“an ant standing 
on a green leaf 
directing them”

Figure 9: Text-to-Image Generation.
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𝑡 = 21

𝑡 = 19

𝑡 = 1

0.449 0.291 0.590 0.472

0.565 0.531 0.706 0.695

0.869 0.914 0.914 0.899

Particle 1 Particle 2 Particle 3 Particle 4

𝑡 = 21

𝑡 = 19

𝑡 = 1

0.951 0.291 0.893 0.927

0.956 0.961 0.942 0.950

0.969 0.971 0.971 0.969

Particle 1 Particle 2 Particle 3 Particle 4
“In a field of flowers, every bloom is yellow, save for one that is blue.”

“Five ants are carrying biscuits, and an ant that is not carrying biscuits is standing on a green leaf directing them.”

Figure 10: Visualizations of Parallel Sampling with Discriminative Experts. Discriminative
expert (VQAScore) scores are annotated on the top-left corners; score underlining means the sample
proceeds to the next annealed distributions (with smaller t). Images with the same boundary color
share the same initial seed.
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Figure 11: Baseline Comparisons on PhysGen3D Data. Our method improves the visual quality
compared to the input simulation and adheres more closely to the input object motions compared to
baselines.

Ground Truth 𝑝data
cond

Figure 12: Class-Conditioned Data Visualization.
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