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ABSTRACT

Modern neural models capture rich priors and have complementary knowledge
over shared data domains, e.g., images and videos. Integrating diverse knowl-
edge from multiple sources—including visual generative models, visual language
models, and sources with human-crafted knowledge such as graphics engines and
physics simulators remains under-explored. We propose a probabilistic frame-
work that combines information from these heterogeneous models, where expert
models jointly shape a product distribution over outputs. To sample from this
product distribution for controllable image/video synthesis tasks, we introduce an
annealed MCMC sampler in combination with SMC-style resampling to enable
efficient inference-time model composition. Our framework empirically yields
better controllability than monolithic methods and additionally provides flexible
user interfaces for specifying visual generation goals.

1 INTRODUCTION

Recent image and video generative models (Saharia et al., 2022; Rombach et al., 2022; Ho et al.,
2022; Brooks et al., 2024) have achieved remarkable success in realistic appearance modeling, yet
still have limitations in following complex text instructions and adhering to real-world constraints
such as physical laws. The former would benefit from semantic priors in visual language models
(VLMSs) (Radford et al., 2021; Li et al., 2023; Bai et al., 2023; Achiam et al., 2023), and the latter
from rules embedded in physics simulators. However, training a single model to absorb all informa-
tion sources (texts/visual corpora, simulation trajectories, etc.) can be prohibitively expensive.

We address this challenge by integrating knowledge across models at inference time (Du & Kael-
bling, 2024), leveraging visual generative priors, discriminative rewards from VLMs, and rule-based
knowledge from physics simulators. We focus on the task of controllable visual generation and ag-
gregate opinions across a set of “expert” models by sampling from the product distribution defined
by the models. Each expert, in our case, pretrained models such as VLMs or image and video gener-
ative models, focuses on one or more constraints in generation, and the resulting product distribution
naturally assigns high probabilities only to samples that satisfy all constraints simultaneously. The
use of product distributions to combine the opinions of multiple experts has been extensively used
in the past (Bacharach, 1972; Genest & Zidek, 1986; Hinton, 1999), and in the visual domain in
Markov Random Forests (Wang et al., 2013; Kolmogorov & Zabih, 2002; Glocker et al., 2008;
Boykov & Funka-Lea, 2006) and Conditional Random Fields (Boykov & Jolly, 2001; Kumar &
Hebert, 2003; He et al., 2004).

Despite its conceptual appeal, sampling from product distributions is often intractable. Straightfor-
ward approaches like rejection sampling are inefficient due to vanishing acceptance rates in high
dimensions. Recent works have gotten around these difficulties by either composing model distri-
butions in a simpler Gaussian latent space (Huang et al., 2022) or by composing through models
through an annealed Langevin procedure (Du et al., 2020; 2023; Geffner et al., 2023), where the
combination of annealing and gradient-based sampling enables the modes of the product probability
distribution to be effectively identified. In this paper, we provide a more general framework that en-
ables us to sample from the product of both autoregressive and diffusion-based generative models,
as well as discriminative models such as VLMs. Our approach relies on a combination of Annealed
Importance Sampling (Neal, 2001) and Sequential Monte Carlo (Doucet et al., 2001a) to effectively
find the modes of the product distribution across all experts.
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Our overall framework enables us to integrate multiple input constraints without costly retraining.
We empirically validate its benefits in image generation following complex text instructions. It
also naturally yields a flexible user interface for defining complex generative goals by selecting and
configuring experts, e.g., allowing users to specify the pose and motion trajectory of an object of
interest, insert it into an existing image, and animate the full scene.

Overall, our contributions are threefold:

i) We formulate controllable visual synthesis tasks in a unified Product-of-Experts (PoE) frame-
work that enables principled knowledge integration of heterogeneous generative and discrimi-
native models, as well as physics simulators.

ii) We propose a practical, computationally efficient sampling framework based on Annealed Im-
portance Sampling (AIS) and Sequential Monte Carlo (SMC).

iii) Our method enables flexible forms of user-instruction-following (texts, images, and low-level
specifications such as object poses and trajectories) for image/video synthesis applications and
achieves better user controllability and output fidelity compared to baseline methods.

2 RELATED WORKS

Compositional Generative Modeling. Prior works on compositional generative modeling typically
combine multiple generative models to jointly generate data samples (Du et al., 2020; Garipov et al.,
2023; Du et al., 2023; Huang et al., 2022; Mahajan et al., 2024; Du & Kaelbling, 2024; Bradley et al.,
2025; Thornton et al., 2025; Gaudi et al., 2025) and has been previously applied in visual content
generation (Liu et al., 2022a; Bar-Tal et al., 2023; Zhang et al., 2023; Yang et al., 2024; Su et al.,
2024; Li et al., 2022), but such applications typically focus on multiple homogeneous generator
experts, or, in the case of Li et al. (2022), a single generator expert with multiple discriminative
experts. In contrast, our approach provides a general probabilistic framework through which many
heterogeneous generative and discriminative experts can be jointly combined in generation.

Reward Steering from Discriminative Models. Our work is further related to recent work steer-
ing generative models with discriminative models and reward functions. Methods using gradient
descent on a discriminative reward (Grathwohl et al., 2019; Dhariwal & Nichol, 2021; Bansal et al.,
2023; Luo et al., 2025; He et al., 2023; Ye et al., 2024; Song et al., 2023; Rout et al., 2025) assume
dense, differentiable gradients on the reward. Another branch of work applies SMC for more exact
reward steering (Wu et al., 2023; Zhao et al., 2024; Singhal et al., 2025). Both Skreta et al. (2025);
He et al. (2025) and our work build on top of this formulation and consider composing both gen-
erative and discriminative experts, but with the following difference: when considering generative
expert products (Eq. (2)), these works calculate path-wise importance weights to ensure sampling
correctness, risking weight degeneracy as path length grows (Skreta et al., 2025), while ours uses
per-timestep MCMC kernels that leave p; (Eq. (3)) invariant without accumulating weights.

Video Generation with Physical Simulators. Our framework integrates knowledge from physical
simulators to improve physical accuracy compared to end-to-end models, while alleviating the need
for tedious 3D scene setups in traditional graphics rendering pipelines. Recent works have explored
such direction typically convert physical simulator outputs into a specific type of conditional signals
such as optical flow (Burgert et al., 2025; Montanaro et al., 2024; Yang et al., 2025) and point
tracking (Gu et al., 2025), or rely on a single pre-trained video generation model (Liu et al., 2024a;
Chen et al., 2025; Tan et al., 2024), while our framework allows for the integration of various signals
available from physical simulation, providing more complete specifications of controls.

3 METHOD

We aim to generate complex scenes € R? by combining the priors from both generative models
(such as image/video models conditioned on texts or control signals converted from physics simu-
lators) as well as discriminative models (such as VLMs), with examples detailed in Section 4. We
formulate this composition of models in a probabilistic manner, where generative models are repre-
sented as probabilistic priors over data {p(?) () }¥,. Discriminative models are written as constraint
functions, {r() : R? — R}j”il, each assigning a scalar reward that represents how much a sam-
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ple  matches the constraint encoded in the model. Each constraint function is converted into an
unnormalized probability distribution through the Boltzmann distribution, ¢\/) (x) := (expr))(x).

To combine these two classes of models, we aim to sample from the product distribution:
N M
z ~p(@) o [[p7 () [] ¢ (@), )
i=1 j=1

where each generative expert p(*) () and discriminative expert ¢'/)(z) are defined over parts of
the scene . The product distribution p(x) has high probability for a sample 2 when z has high
probability under both p(i)(x) and q(j)(x) (Hinton, 2002; Du et al., 2020; Du & Kaelbling, 2024),
allowing us to compose together the priors in both generative and discriminative models.

However, sampling from Eq. (1) is challenging, as we need to search for samples that satisfies con-
straints across all experts. Below, we will discuss how we can efficiently and effectively sample from
the Eq. (1) for high fidelity visual generation. We first discuss how we can sample from multiple
generative experts in Section 3.1 and then discuss how to sample jointly from multiple discriminative
and generative experts in Section 3.2, followed by a practical implementation in Section 3.3.

3.1 SAMPLING FROM GENERATIVE EXPERTS

We first discuss how we can effectively sample from the product of a set of generative experts,

N
x ~p(x) i Hp(i)(:c). 2)
i=1

To sample from the above distribution, we can use Markov chain Monte Carlo (MCMC) Robert
et al. (1999), where we iteratively refine samples based on their likelihood under the product distri-
bution. In discrete settings, a variant of Gibbs sampling may be used, while in continuous domains,
Langevin sampling based on the gradient of log density may be used (Welling & Teh, 2011).

A central issue, however, is that MCMC is a local refinement procedure and can take an expo-
nentially long time for the sampling procedure to mix and find a high likelihood scene x from the
product distribution (Robert et al., 1999). To effectively sample from product of generative experts,
we propose to use Annealed Importance Sampling (ALS) (Neal, 2001) and construct of a sequence
of T distributions, {p;(z)}}_7, where pr(z) is a smooth, easy-to-sample distribution and p; () is
the desired product distribution defined in Eq. (2). To draw a sample from p; (), we first initialize a
sample from pp () and iteratively run MCMC on the sample to sample from each intermediate dis-
tribution before finally reaching p; (). Since intermediate distributions are easier to sample from,
this enables us to more effectively find a high likelihood scene x from the product distribution.

We construct the intermediate probability distributions of the following form:

N
pe(z) o [T ot (@), (3)
=1

where pﬁi) (x) is an expert-specific distribution interpolating between an initial distribution (e.g.,

Gaussian or uniform) and the final expert distribution p(*) (). We list concrete choices of pgl)(x)
for two common classes of generative models in Section 3.3. For autoregressive models (Oord
et al., 2016; Larochelle & Murray, 2011), it is the marginal distribution for a prefixed data region
determined by ¢; for diffusion/flow models (Liu et al., 2022b; Lipman et al., 2022; Ho et al., 2020;
Sohl-Dickstein et al., 2015), it is the time marginal distribution with estimated score functions.

Composing Conditional Generative Experts. To improve the efficacy of sampling from the prod-
uct distribution of generative experts, we can modify each generative expert to be conditionally
dependent on the outputs of other experts. Specifically, we can represent the product distribution as

N
z ~ p(a) o [ [ PP (@il zpa)), (4)
=1
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Algorithm 1 Product Distribution Sampling

1: Input: Annealing length 7', initial distribution pr(-), particle count L, MCMC step count K,

generative experts {pgi)(-)}i\;{tzl with kernels Ky yy1(- | ) for MCMC initialization and

Kt (- | -) for MCMC steps, discriminative experts with log probabilities {r () ()}?il

2: Initialize: Sample 2 ~ p(-),Vi=1,--- , L.

3: fort =T —1to1do > Transition to the next annealed distribution
4: for! =1to Ldo > Parallel sampling
5: 20 Ko pya (- | 2W) > MCMC initialization
6: for k = 1to K do

7: @ < ICy(- | W) > MCMC step
8: end for

9: end for

10:  Resample samples with log weights ZJM:1 r(20) where r? (20) ~ @ (0).
11: end for 4

12: I* + max; EJM:1 @) (20)

13: Output: (")

where each z; refers to the part of a scene x represented by the generative expert p(*), and Tpa(i)
refers to the other parts of a scene specified by other experts the expert is conditioned on.

Making each generative expert conditionally dependent on the values of other experts reduces the
multi-modality in the distribution p(*) (z), enabling more efficient MCMC sampling on the product
distribution. Its benefit is empirically shown in Fig. 2 and Table 1.

3.2 PARALLEL SAMPLING WITH DISCRIMINATIVE EXPERTS

Next, we discuss how we can modify the annealed sampling procedure in Section 3.1 to sample from
the full product distribution from Eq. (1), including discriminative experts. Similar to the previous
section, we can define a sequence of intermediate sampling distributions

pe(@) o [ ot (@) [T ot (). ©)
i=1 j=1

To implement AIS, one simple approach is importance sampling as follows. We first obtain L sam-
ples from the product of the intermediate generative expert distributions defined in Eq. (3) according
to Section 3.1, and then draw a weighted random sample from these L samples, each with impor-
tance weight H;Vil q§] ) (x) corresponding to the likelihood under product of discriminative experts.
An issue with this simple procedure is that each sample drawn from the MCMC may be correlated
with each other, since MCMC is slow at mixing and may not cover the entire generative product
distribution. To improve coverage, we use a parallel SMC sampler (Doucet et al., 2001b), where we
maintain L particles over the course of annealing. At each intermediate distribution, we run MCMC
on each particle to draw samples from the product of the generative distributions, and then weigh
and resample particles based on their likelihood under the product of the discriminative experts.

Our overall algorithm requires only black-box access to each discriminator, requiring knowing only
the likelihood the discriminator assigns to a sample = and not additional information such as log-
likelihood gradients. If we do have more information about the discriminative expert’s form, we can
directly treat it as generative as in Section 3.1 and use approaches such as gradient-based MCMC.

3.3 FRAMEWORK INSTANTIATION

‘We now introduce a specific implementation of the framework as summarized in Algorithm 1, which
describes the annealed distribution and expert instantiations primarily used in the paper.

Generative Experts. The framework requires specifying the annealed generative distributions fac-
tors {pgl)(m)}tl:T (Eq. (3)), a kernel K¢¢41(- | -) to propagate samples from the previous an-
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Graphics Engine Input

Graphics Engine Input Graphics Engine Input

Input Image + “metal box” + “glass box” + “coke can”

Figure 1: Application on Image Object Insertion where the goal is to insert assets posed in a
graphics engine (top row) and described with text prompts (bottom row) into images (first column).

nealed distribution p;y1 () to the next distribution p; () (line 5, Algorithm 1), and a MCMC kernel
KCi(+ | ) that leaves p, invariant (line 7). While K,_;11 does not draw a sample from p;(x) exactly,
it serves as an effective initialization for MCMC sampling.

When generative expert p() () is a flow model, a natural choice for {pii) (x)}l_r is a discretization

of the probability path generated by its velocity prediction vt(l)(x). We set Ky ¢+1 as one Euler

step in the flow ODE integration, and /; is the Langevin dynamics transition, both under composed

score y .V, log pgi)(a:) (Section C.1). When p(¥) is an autoregressive model, we use its prefix
marginal for annealing, namely p,@(m) = p(i)(x1:T+1_t) such that z1.7 = x, where x1.711_¢ is a
data slice. We set KCr.++1 such that it appends the next data slice sampled from the model-predicted
conditional distribution, and KC; can be implemented as Gibbs sampling (Section C.2).

Conditional Sampling. We implement conditional generative experts pgi)(xi | Zpa(s)) for flow
models by modifying the original generative experts p,(f) (2;). In particular, we modify the generative

flow vgz) (z;) to take into account the predicted flow at parent regions

v (@i | 2o) o (2) —w Y Vo, o (2;) — stopgrad (v (1)) 13, ©6)

i/ €pa(i)

where w is the learning rate. Justifications of this approximation are deferred to Section C.3.

Discriminative Experts. We use pre-trained VLMs as reward functions r(*) (). When generative
experts are flow models, the noisy samples = are out of distribution for discriminative experts. We
define the intermediate counterparts in Eq. (5) as rﬁj ) (x) = () (&) where % is the predicted endpoint
of z (Chung et al., 2022; Efron, 201 1) whose computation is specified in Eq. (8).

4 EXPERIMENTS

We apply our framework to image/video synthesis tasks. Expert configurations can adapt to the
desired, task-dependent input granularity, including high-level text instructions (Sections 4.1 to 4.3)
and precise, low-level pose controls (Sections 4.1 and 4.2), and leverage expert knowledge ranging
across natural image and video priors (Sections 4.1 to 4.3), precise physics rules from physical
simulators (Section 4.2), and semantic visual understandings from VLMs (Section 4.3).
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Input Image & Rendering Ours RF-Solver Ours (No Conditional)
Figure 2: Image Object Insertion Comparisons. Our method better adheres to input geometric
conditions while faithfully preserving background details. The last column shows that conditional
sampling improves visual harmonization and fidelity.

Controllability Image Quality Text Alignment
MSE (bg) (4) LPIPS (fg) ()  GPT-4o (1) Aesthetic (1) GPT-40 (1)  ImageReward (1)  GPT-4o (1)

Methods

Graphics Engine Rendering Input

RE-Solver 1.619+0.605 0.178+0.061 0.518+0.168 0.618+0.070 0.6624+0.103 0.948+0.777 0.4384+0.179
Ours NoCond 1.511+0.661 0.065+0.018 0.727+4+0.141 0.599+40.059 0.718+0.120 1.142+0.668 0.675+0.180
Ours 1.429+40.602 0.065+0.019 0.827+0.073 0.596+0.061 0.783+0.082 1.175+0.666 0.817+0.129

Character Rendering Input (Magic Insert (Ruiz et al., 2024) Dataset)

Magic Insert 0.76940.535 0.1064+0.042 0.7434+0.142 0.7214+0.076 0.758+0.130 1.169+0.701 0.649+0.141

Add-it 0.710+0.473 0.128+0.048 0.763+0.126 0.715+0.066 0.778+0.097 1.078+0.708  0.684+0.155
FLUX-Fill 0.058+0.044 0.1034+0.042 0.6554+0.147 0.69140.070 0.746+0.092  0.828+0.777  0.59040.152
SDEdit 0.968+0.965 0.026+0.020 0.744+0.131 0.724+0.074 0.8714+0.061 1.6404+0.376 0.658+0.144
Ours 0.365+0.247 0.0644+0.033 0.818+0.097 0.760+0.060 0.769+0.118 1.7114+0.308 0.763+0.107

Table 1: Image Object Insertion Evaluation.
4.1 GRAPHICS-ENGINE-INSTRUCTED IMAGE EDITING

Task. This task provides the following image object insertion interface for applications where users
want to insert an object precisely into certain parts of the image. Inputs consist of an image to
be edited, an input 3D asset posed in a graphics engine, and a text description describing higher-
level information such as object materials (“metal”) and semantics (“coke can”). We deploy two
generative experts for this task: a depth-to-image model, FLUX.1 Depth [dev], and an inpainting
model, FLUX.1 Fill [dev] (FLUX, 2024). The former ensures inserted objects follow input pose
specifications, and the latter provides a natural image prior to produce realistic outputs.

Evaluation. We compare with an editing method, RF-Solver (Wang et al., 2024), which inverts the
input image to a Gaussian noise and then generates the output starting from that noise, conditioned
on a text prompt that additionally describes where to insert the object, e.g., “a metal box standing
on the ground”. The evaluation dataset consists of 10 natural images paired with 3 object assets,
resulting in 30 scenes in total, with examples in Fig. 1. The metrics cover three major aspects: con-
trollability, image quality, and text alignment. Specifically, we evaluate the MSE distance between
generation outputs and input images on background pixels to evaluate background preservation,
and LPIPS (Zhang et al., 2018) distance between outputs and graphics engine’s RGB renderings
on foreground pixels to measure the fidelity to input objects. We report aesthetic score using the
LAION-Aesthetic predictor (Schuhmann & Beaumont, 2022) and measure text alignment with Im-
ageReward (Xu et al., 2023), and query GPT-40 for automatic evaluation (details in Section E.2).

Results are in Table | (top half). Baseline outputs do not conform to input object pose due to the
lack of precision of text prompts, and may fail to preserve input background as observed in Fig. 2.

Ablation on Conditional Sampling. Section 3.1 introduced the conditionally sampling strategy,
which is crucial for efficient sampling from the product distribution. Removing the updates in Eq. (6)
(“No Cond” in Table 1) decreases performance and results in less harmonized visual outputs (Fig. 2).

Character Insertion. The task spec above is closely relevant to the character insertion task studied
in Magic Insert (Ruiz et al., 2024), where the goal is to insert a character from an image into a
background image. We use 10 background images paired with 8 character inputs released on their
official demo page to construct an evaluation dataset of 80 scenes. Since their model uses a different
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L\ [ ..

Input Physical Simulation (4 keyframes)
N N N \ ] ™

“Pzgeons startled as the white cloth slips oﬁr the box and ﬂutters to the pavement.”

“Cloth slips off the wooden box as a distant car emerges, its low rumble stirring dust.”

Input Image

Input Image

Input Image “A bike rider speeds along the wet}mvemet as water sﬁlashex up from the wheels.”
Figure 3: Application on Physical-Simulation-Instructed Video Generation. Given an input
image and a physical simulator rendering describing precise object motions, our method generates
videos aligned with input motions while synthesizing natural content for non-foreground regions.

Controllability Video Quality Semantic Alignment
ToU (fg) (1) LPIPS () GPT-40 (1) Smooth (1) Aesthetic (1) Imaging (1) GPT-40 (1) ViICLIP (1) GPT-4o (1)

Methods

Object-Centric Simulation Input

Traj2V  0.602+.193 0.109+.033 0.638+.172 0.993+.003 0.534+.071 0.570+.154 0.725+.179 0.258+.041 0.757+.141
Depth2V 0.787+.2290.103+.031 0.650+.144 0.984+.015 0.534+.069 0.581+.155 0.750+.126 0.261+.041 0.775+.130
Image2V 0.321£.249 0.1114.021 0.708+.104 0.978+.025 0.553+.057 0.611+.101 0.775+.099 0.255+.036 0.788+.079
Ours 0.739+.221 0.104+.030 0.708+.104 0.994+.003 0.549+.068 0.625+.1170.842+.1320.270+4.038 0.817+.080

Full-Scene Simulation Input (PhysGen3D (Chen et al., 2025) dataset)

PhysG3D - - 0.438+.099 0.995+.002 0.571+.114 0.673+.046 0.513+.117 0.2244.026 0.588+.117
Inversion - 0.237+.084 0.263+.122 0.993+.002 0.468+.097 0.410+.144 0.250+.206 0.202+4+.058 0.400+.206
Depth2V - 0.164+.065 0.550+.173 0.993+.003 0.579+.067 0.680+.081 0.662+.216 0.242+4.030 0.788+.108
Image2V - 0.242+.077 0.525+£.192 0.986+.010 0.594+.074 0.662+.052 0.638+.245 0.236+.028 0.788+.105
Ours - 0.136+.047 0.587+.220 0.993+.003 0.575+.071 0.688+.0450.763+.132 0.239+.038 0.825+.141

Table 2: Physics-Simulator-Instructed Video Generation Evaluation.

backbone (Podell et al., 2023), for fair comparisons, we also include three baselines using the same
FLUX backbone as ours: Add-it (Tewel et al., 2024), SDEdit (Meng et al., 2021), and FLUX-Fill.

Results are in Table 1 (bottom half). Add-it receives text instructions for object insertion, but tends
not to follow the specified character location in the prompts; SDEdit produces harmonized outputs
but does not closely preserve the background due to the global noising operation; the inpainting
method, FLUX-Fill, sometimes ignores the character descriptions in the input text instruction and
fails to insert any object. These observations are also reflected qualitative samples in Section D.2.

4.2 PHYSICAL-SIMULATOR-INSTRUCTED VIDEO GENERATION

Task. The setup from Section 4.1 can be directly extended to dynamic scenes for video genera-
tion, with object poses and dynamics (e.g., a ball bouncing, Fig. 3 top row) specified by a physical
simulator, an input image, and a textual scene description. Below, we consider two sets of experts:
flow-based (Wang et al., 2025) and autoregressive-based (Zhang & Agrawala, 2025).
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Ours  Input Sim

Image2V  Depth2V

Traj2V

Frame t, Frame t3 Frame ¢, Frame t, Frame t3

“Passing taxis, umbrella-clad crowds, flickering “A seagull stands in a puddle. Other gulls mill
billboards...as a metal sphere falls down.” about behind, while a ball sails past a seagull.”

Figure 4: Comparisons on Physics-Simulator-Instructed Video Generation. Predictions are pro-
cessed in grayscale and overlaid with estimated tracking (Xiao et al., 2024) for visualization.

Flow-Based Experts. We evaluate our method and several monolithic models, including image-to-
video (Image2V), depth-to-video (Depth2V), and trajectory-to-video (Traj2V), all using the same
Wan2.1 (14B) model as backbone, on a dataset consisting of 3 simulation inputs paired with 4 input
images each, giving a total of 12 scenes with examples in Fig. 3. To obtain the initial frame for all
methods, we edit the input image with our method described in Section 4.1 to insert the simulated
object. Depth maps required as method inputs are rendered from the physical simulator, and input
trajectory maps are computed using object centroids. Metrics include the ones from Section 4.1
that are relevant to this task, with additional ones adopted from a video benchmark VBench (Huang
etal., 2024): motion smoothness scores introduced in VBench, MUSIQ (Ke et al., 2021) for imaging
quality, and ViCLIP (Wang et al., 2023) for text prompts alignment. We further compute foreground
motion trajectory accuracy with IoU on SAM2 (Ravi et al., 2024) detected from output videos.

Results are in Table 2 (top half). Depth-to-video and trajectory-to-video alone fail to capture rich
non-foreground-object motions, such as cars moving and birds running in Fig. 4. In particular, they
tend to compensate for the object’s downward motion with upward camera motions, as visualized
by the tracking trajectories in Fig. 4. Image-to-video model does not follow the input motion.

Autoregressive Experts. We implement the autoregressive construction for Eq. (3) using two gener-
ative experts: a next-frame-section video prediction model, FramePack (Zhang & Agrawala, 2025),
and a Gaussian distribution p*™(z) centered on physics simulator renderings. Denote a video se-
quence of the physics simulator’s RGB rendering overlayed with the input initial frame as c*™, then
M (z) :oc exp (—w||x — ¢$™||3) with constant w € R. In this case, ., represents the first T+ 1—
frame sections of a video x. We approximate sampling from this distribution with its MAP solution,
which amounts to gradient updates w.r.t. loss ||z —c*™||3. Qualitative results are in Fig. 5, suggesting

that composing per-expert constraints enforces desired object motion on top of output photorealism.

Full-Scene Simulation. In the above setting, simulation inputs only describe foreground objects.
We further evaluate cases where full-scene simulation is available. We use the simulation results
from 9 released scenes from PhysGen3D (Chen et al., 2025), a method that reconstructs and animates
images in physical simulators, as evaluation inputs. To better preserve scene content, we use the
flow-inverted noise vector for particle initialization as opposed to random noise, and compare with
this inversion baseline. Results are included in Table 2 with qualitative samples in Fig. 10.

4.3 TEXT-TO-IMAGE GENERATION WITH LAYOUT CONTROL

Task and Evaluation. This task aims to generate an image given an input global text prompt and
a set of object bounding boxes with paired object text descriptions. We evaluate on 50 scenes ran-
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Simulation

Ours

FramePack

“A dog is watching a red ball falling and bounces off.”

W~ =

urs

O

FramePack

“A bird is dancing while a white rubber ball is falling down.”

Frame ¢t; Frame ¢, Frame t;3 Frame t, Frame t5

Figure 5: Physical-Simulation-Instructed Video Generation compared with the baseline with the
same backbone. Our method better adheres to the input object motion trajectory.

Method mloU (1) VQAScore (1) VQAScore-R (1)
3DIS-FLUX 0.673+0.182 0.800+0.190 0.808+0.161
L =1 (Duetal. (2023)) 0.675+0.200 0.567+0.272 0.567+0.189
L=4 0.695+0.172 0.802+0.190 0.7954+0.155
L=28 0.7154+0.177 0.879+0.115 0.84340.135
L =16 0.723+0.176 0.897+0.106 0.870+0.128
L =32 0.728+0.170  0.904+40.092 0.881+0.115

Table 3: Text-to-Image Generation with Layout Controls on MIG-Bench (Zhou et al., 2024)
dataset, comparing our method with varying compute budgets and an application-specific baseline.

domly sampled from the full MIG-Bench (Zhou et al., 2024) dataset of 800 scenes. Metrics include
bounding box mloU, detected using GroundingDINO (Liu et al., 2024b), and VQAScore (Lin et al.,
2024) measuring output alignment with global and regional prompts.

Results. Table 3 and Fig. 7 contains results on ablating the number of particles L and also com-
parisons with 3DIS-FLUX (Zhou et al., 2025), a state-of-the-art method designed for text-to-image
generation with the same backbone model as ours. In the case of L = 1, the method reduces to
Du et al. (2023). The performance of our method improves with higher computation budgets, and
alleviates the need for application-specific designs, such as cross-attention layer intervention as used
in Zhou et al. (2025). The ablation on SMC resampling is deferred to Section D.4.

5 CONCLUSION

We have introduced a probabilistic framework where knowledge from heterogeneous sources is
composed in the form of product distributions, and proposed an efficient sampling algorithm in-
terleaving annealed MCMC sampling and SMC resampling to integrate guidance from multiple
generative and discriminative models. Our training-free approach can effectively integrate visual
generative priors, VLM guidance, and physics-based constraints. Empirical evaluation suggests that
this method generates images and videos with improved controllability and fidelity compared to
prior works, providing a practical recipe for controllable visual synthesis tasks.
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Reproducibility Statement. Experiment details including implementation details for the proposed
method and for baselines, evaluation protocol, and raw results are included in the appendix and the
supplementary webpage. To promote reproducibility and to facilitate future research, we will release
the code upon acceptance.
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A  OVERVIEW

The supplementary material contains discussions (Section B), extended descriptions of the frame-
work (Section C), and additional experimental results (Section D) and details (Section E).

B DISCUSSIONS

Compute Requirement. All image experiments are run using 1 NVIDIA H200 GPUs and all video
experiments with 2 NVIDIA H200 GPUs. Generating one sample in Section 4.1 takes approximately
4min. It takes Smin for flow-based and 30min for autoregressive-based models in Section 4.2. Wall-
clock time for the task in Section 4.3 with different numbers of particles is included in Table 4.

Limitations. The proposed method requires extra computation due to intermediate MCMC steps
and parallel sampling compared to vanilla feedforward inference of the image or video generative
model backbones. Furthermore, the sampling efficacy relies on the assumption that expert predic-
tions are reasonably compatible, and strong incompatibilities might require other sampling tech-
niques or training. This work proposes a framework and provides empirical validation with small
number of experts and we leave large-scale sampling as future work.

Societal Impact. We believe outputs of the proposed framework does not directly possess negative
societal impact. The underlying technology enable more content creation tools and benefits under-
standing model behaviors. However, highly controllable generation could be exploited to create
misinformation. While our work does not inherently use sensitive data, we are aware of such risks
and closely follow ethical guidelines in the community to help mitigate these risks.

C FRAMEWORK DETAILS

C.1 FLow MODELS

We use bar notations for pre-trained models in the following discussions.

Consider the i-th generative expert, which is a flow model that defines a time-dependent continuous
probability path p() (2;%),z € R% ¢ € [0, 1], with boundary conditions p(*)(z;0) = N(0, ) and
PO (x;1) ~ p((igd(x) Each flow model is associated with a scheduler @, : [0,1] — R that defines
a conditional probability path ) (z | y; 1) = N'(z | a(®)y,a(®)I),y ~ p((lgd(y) and is trained to
predict a velocity field 5" (; 7, 6;) that generates the marginalized path p(*)(2; ), where 6; denotes
model parameters. While the training-time scheduler (&, &) can differ across experts, they can be
aligned during inference time via a scale-time transformation (Lipman et al., 2024).

Given a time remapping function & : {T,7 — 1,--- ,1} — [0, 1], one can construct the per-expert
product component from Eq. (3) via discretizing the path () (z; ) into

P (@) = pD (w3 £(8)). (7)

We require that £ is monotonic and £(T') = 0,£(1) = 1. By construction, pg,f)(a;) = N(0, 1) is easy
to sample from, and p{” (z) = p((jga(x) encapsulates the prior data distribution of the expert model,
fulling our motivation in Section 3.1. For all experiments, we define £ to be the Euler discretiza-
tion (Esser et al., 2024; Euler, 1792), with additional alignment to the DDPM scheduler (Ho et al.,

2020) for experiments in Section 4.3.
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Line 5 from Algorithm 1 is computed as follows:

0! (2) = 09D (2;£(2), 6:),

B —atvt(i)(x) + oux

dtUtO{t - O.étO'tQ

u@) = A @),
sil@) = 3 A (@) @),

K (@' [ 2) = 6(2" — (x + v(2)(E(t = 1) = £(1)))),
2
&@W@ZNWJ+%&@ﬁ%%
where A(¥)(z) is defined in Section E.1, with all entries of 3", A(*)(z) to be 1.
The end-point prediction is available as
O é't

I = fvt(x) - 0. (8)
Q0 — OOt Q0 — Ot

C.2 FRAMEWORK INSTANTIATION WITH AUTOREGRESSIVE EXPERTS
C.3 APPROXIMATION FOR CONDITIONAL SAMPLING

We explain Eq. (6) below. Let 2; be any expert. We approximate the distribution p(x; | Zpa(;)) as
(@i | Tpaiy) X p(xi)p(Tpaiy | 76) = p(23) H p(xi | x;), )
i’ €pa(i)

where parent regions z;; are assumed to be conditionally independent given x;. To model each
conditional distribution p(z; | x;), we define a Gaussian distribution of the deviation of the flow

vector predicted at x;; and x;, where p(z;/ | ;) o e~ wlv(@i)=v(@)I* with a constant w € R. Under
this parametric distribution, when z;; and x; have consistent flow predictions, the likelihood is high
(which is reasonable as this indicates both x;» and x; are mutually compatible). We can convert the
probability expression in Eq. (9) to a corresponding score function, resulting in Eq. (6).

In this work, pa(¢) is defined as the generative expert defining a natural data distribution for global
r € RY, e.g., a text-conditioned generative model for the full image/video x. Each generative expert

is additionally conditioned on a context signal ¢; € RE™, e.g., texts or depth maps. Note that the
framework allows for different types of conditions across experts, enabling flexible control handles
that are typically application-dependent.

D EXTENDED EXPERIMENTAL RESULTS

D.1 QUALITATIVE VIDEO RESULTS

Please view the “index.html” in the supplementary material folder using a web browser.

D.2 GRAPHICS-ENGINE INSTRUCTED IMAGE EDITING

Fig. 6 contains qualitative samples on the Magic Insert dataset for experiments in Section 4.1.

D.3 TEXT-TO-IMAGE GENERATION WITH REGIONAL COMPOSITION

Fig. 7 contains qualitative samples on the MIG-Bench dataset for experiments in Section 4.3.
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Method mloU (1) VQAScore (1) VQAScore-R (1) Wall-Clock Time (min)
L= 0.675+0.200 0.567+0.272 0.567+0.189 ~1
L =1 (No SMC) 0.67540.200 (+0.000)  0.567+0.272 (4+0.000)  0.567+0.189 (+0.000) ~1
L=4 0.695+0.172 0.802+0.190 0.795+0.155 ~4
L = 4 (No SMC) 0.7154+0.170 (+0.020) ~ 0.795+0.170 (—0.007)  0.767+0.159 (—0.028) ~4
L=38 0.715+0.177 0.879+0.115 0.843+0.135 ~6
L = 8 (No SMC) 0.735+0.163 (+0.020)  0.807+0.182(—0.072)  0.795+0.153 (—0.048) ~6
L =16 0.7234+0.176 0.897+0.106 0.870+0.128 ~12
L =16 (NoSMC)  0.698+0.177 (—0.025)  0.81440.186 (—0.083)  0.806+0.162 (—0.064) ~12
L =32 0.728+0.170 0.904+0.092 0.881+0.115 ~25
L =32(NoSMC) 0.691+0.183(—0.037)  0.854+0.139 (—0.050)  0.838+0.136 (—0.043) ~25

Table 4: SMC resampling ablations on the task from Section 4.3. Values in green (red) indicate
“No SMC” is better (worse). Results suggest that SMC benefits sampling efficiency. Resampling
has relatively marginal computation.

D.4 ABLATION ON SMC

We conduct ablation for SMC with results shown in Table 4.

D.5 TEXT-TO-IMAGE GENERATION

We further demonstrate the efficacy of distribution composition on the task of text-to-image gen-
eration, where we first query an LLM to parse an input text prompt into spatial bounding boxes
with regional prompts (Fig. 8 left), aiming to compose the distributions from text-to-image model
(FLUX.1 [dev]) conditioned on regional text prompts, one for each region, as generative experts, and
from VQAScore (Lin et al., 2024) as a discriminative expert, which gives a scalar value predicting
the probability that its input image is aligned with the input text prompt. We compare our methods
using L = 16,4 particles and 1 particle (which amounts to not using the discriminative expert), a
variant using no generative composition (equivalent to best-of-N sampling for vanilla FLUX) while
matching the compute budget for 16 particles, and with the vanilla FLUX backbone. In the examples
shown in Fig. 8, our compositional approach achieves better text alignment compared to the base-
lines, and the discriminative expert provides crucial knowledge, e.g., counting, to steer the output
distribution.

The parallel sampling process is visualized in Fig. 9. For each scene from Section 4.3, we use an
LLM to convert a text prompt into a layout of bounding boxes following the procedure described
in Section E.5. The input text prompts and resulting layouts and regional prompts are visualized in
Fig. 8. Then, we follow Algorithm | and initialize L = 4 particles and annealed schedule length
T = 28, which are reweighed at three key timesteps ¢ = 21,19, 1 using the discriminative expert,
VQAScore (Lin et al., 2024), which measures image-text alignment with a probability score. At
t = 21,19, we binarize the scores with the threshold set to be the median score of the current 4
particles, discard the two below the threshold, and duplicate the remaining two high-score particles
two times to maintain 4 particles in each round. Att¢ = 1, we keep the highest-scoring particle as
the final output sample.

Fig. 9 shows end-point predictions to visualize the intermediate samples from the annealing process
from ¢t = 28 to t = 1. VQAScore measurements (higher means more aligned) are overlayed on the
top-left corner for each sample. In the proposed framework, integrating multiple generative experts
allows for composing simpler regional prompts, construction of the annealed distributions allows
for iterative refinement of samples, and parallel sampling further integrates the knowledge from the
discriminative expert and improves output accuracy, as evidenced in the comparisons from Fig. 8.

D.6 PHYSICAL-SIMULATOR-INSTRUCTED VIDEO GENERATION

Qualitative samples are included in Fig. 10.
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E EXPERIMENT DETAILS

E.1 IMPLEMENTATION DETAILS

As described in Eq. (4), a generative expert can be defined over the entire scene = € R? or a region
xT; € R4 with d(®) < d, in which case the expert has prior over only part of the scene, e.g., a spatial
region in Section 4.3. In these cases, we zero-pad the model prediction from R4 to RY.

In other cases, one may restrict the influence of a generative expert to update only a scene region,
even when the expert is defined over the full scene 2 € R, e.g., when the expert only has knowledge
over foreground object informed by the graphics engine or physics simulators (Sections 4.1 and 4.2).
We apply a regional (spatial for images and spatio-temporal for videos) weight A(*)(z) € [0, 1}d on
the velocity prediction vt(l) (z) in these cases, where A(*) () is a Gaussian-blurred foreground mask.

E.2 AUTOMATIC EVALUATION WITH VLMS

We follow the protocol proposed in PhysGen3D (Chen et al., 2025) to run automatic evaluation for
Sections 4.2 and 4.3 using GPT-40 (Hurst et al., 2024). For each scene, all methods’ output images,
or uniformly sampled 10 frames when outputs are videos, are sent to GPT-40 together with template
prompts as specified in PhysGen3D (Chen et al., 2025). GPT-40 is asked to give scores from 0 to 1
for each video on all metrics. The scores for the same metric are averaged across all scenes.

E.3 GRAPHICS-ENGINE-INSTRUCTED IMAGE EDITING

In Section 4.1, the product distribution is defined as p(z) oc pdePth2image (g, | clext  cdepth) pimagefil (g, |
Xt cimage emasky We yse T' = 28, L = 1, with | MCMC sampling step and 2 conditional sampling
updates (Eq. (6)) per iteration. The spatial resolution is 960 x 1664 for the graphics engine dataset
and 1024 x 1024 for Magic Insert dataset.

For the graphics engine dataset, assets are rendered in Genesis'.

For Magic Insert data preprocessing, we use SAM2 (Ravi et al., 2024) to obtain the segmentation
masks of foreground characters, and feed the images of segmented characters, resized to the bottom-
left quadrant and overlaid with backgrounds, into GPT o4-mini for image captions to serve as text
prompts for evaluated methods. Magic Insert results are downloaded from the official demo page.
Add-it receives background images from the dataset as inputs, together with the GPT-generated
captions (of overlaid images) appended with “{character} is at the bottom left quarter” to indicate
the desired locations. SDEdit takes in input overlaid images and adds Gaussian noise with standard
deviation 0.5 before denoising.

E.4 PHYSICAL-SIMULATOR-INSTRUCTED VIDEO GENERATION

In Section 4.2, for flow models, the product distribution is defined as p(z) oc pdepth2video(g |

Xt cdepth) pimage2video (. | lext cimage) “We yge T = 30, L = 1 with | MCMC sampling step per
iteration. We use no conditional sampling updates for this task due to GPU memory constraint.
Each generated video has 81 frames and spatial resolution 480 x 832.

For autoregressive models, the product distribution is defined as p(z) o pS™(z | cSim)pimage2video (o, |
At cmage) with pSiM(x | M) defined in Section 4.2. We approximate sampling from this dis-
tribution with first sampling from p™ma&2video then do 8 gradient updates with respect to Lo loss
||z — csimulation|| 2 "Regults in Fig. 5 use 81 frames per sequence and spatial resolution 512 x 768. We

set L = 1, with 1 MCMC sampling step per iteration for this experiment.

E.5 TEXT-TO-IMAGE GENERATION WITH REGIONAL CONTROL

For Section 4.3, the product distribution is p(z) oc ([, pePhaimaee (g, | 't cdepth)) gVIM (g | clext),
Here, pdePth?image js 5 regional generative experts (FLUX-Depth), which predict scores for bounding-
box-cropped images conditioning on regional text prompts and on regional depth maps cropped from

"https://github.com/Genesis—Embodied-AI/Genesis
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global depth maps predicted using the first stage of 3DIS-FLUX (Zhou et al., 2025) (layout-to-depth
generation); ¢¥™™ a discriminative expert VQAScore, where for each image sample, it assigns the
summed score computed over a full image and its regions cropped with input bounding boxes as the
reward. We use 7' = 28 and image resolution 1024 x 1024, with 1 MCMC sampling step and 2
conditional sampling steps per iteration.
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Overlayed Inputs ~ Magic Insert Add-it FLUX-Fill SDEdit Ours
Figure 6: Comparisons on Character Insertion Task.
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o yellow knife

a yellow chair

a white hot dog.

a white hot dog

Input Layout 3DIS-FLUX L=1(Duetal (2023)) L=4 L=32 L =32 No SMC

Figure 7: Comparisons on Layout-Conditioned Image Generation Task.
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“an ant standing
a green le
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“In a field of flowers, every bloom is yellow, save for one that is blue.’

“Five ants are carrying biscuits, and an ant that is not carrying biscuits is standing on a green leaf directing them.’

>

Regional Layout  Ours (16 particles) Ours (4 particles) No Disc. Expert  No Gen. Composition Vanilla FLUX

Figure 8: Text-to-Image Generation.
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t=21
t=19
t=1

Particle 1 Particle 2 Particle 3 Particle 4
“Five ants are carrying biscuits, and an ant that is not carrying biscuits is standing on a green leaf directing them.’

>

t=21
t=19
t=1

Particle 1 Particle 2 Particle 3 Particle 4
“In a field of flowers, every bloom is yellow, save for one that is blue.”

Figure 9: Visualizations of Parallel Sampling with Discriminative Experts. Discriminative ex-
pert (VQAScore) scores are annotated on the top-left corners; score underlining means the sample
proceeds to the next annealed distributions (with smaller ¢). Images with the same boundary color
share the same initial seed.
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